
A formal proof of the equivalence between pushdown

automata and context-free grammars

Tobias Leichtfried

January 2025

Abstract

We introduce pushdown automata and context-free grammars and their associated language
classes. We then provide a formalization of these definitions in the interactive proof assistant
Lean. Further we show that this two language classes are equal and provide a formalized proof
of this fact in Lean.

1 Introduction

The goal of this bachelor thesis was to formalize a proof of the equivalence of pushdown automata
and context-free grammars in the interactive proof assistant Lean. This document is intended to
give an overview of the resulting formal proof. We will introduce pushdown automata, context-free
grammars and the main theorems about them, as well as compare them with their formalization in
Lean.

2 Pushdown Automata and Context-Free Grammars

The PDA can be (informally) imagined as a machine consisting of states Q equipped with a tape
from which the input is read and a form of memory called stack. In each step of the computation
the following happens: The input tape is moved one letter forward, this letter is then consumed,
the topmost symbol of the stack is consumed and according the the combination of state, letter and
stack symbol which the machine has now ingested, it moves in a new state and pushes an arbitrary
long string of symbols on the stack. This happens, possibly, in a nondeterministic manner. So a
given triple of letter, state and stack symbol may allow many different next states and stack pushes.
Also the consumption of a letter from the input tape is optional. If the machine does not perform a
read, the behaviour only depends on state and current stack symbol. The combination of remaining
input tape, state and stack is called a configuration. More formally:

Definition 1. A pushdown automaton (PDA) is a tuple (Q,Σ,Γ, δ, q0, Z0, F) where

1

1. Q is the finite set of states

2. Σ is the alphabet of the input

3. Γ is the alphabet of the stack

4. δ : Q× (Σ∪{ε})×Γ → P(Q×Γ∗) is the transition function, fullfilling |δ(q, a, Z)| < ∞ for all
q ∈ Q, a ∈ Σ and Z ∈ Γ

5. q0 ∈ Q is the initial state

6. Z0 ∈ Γ is the start symbol

7. F ⊆ Q are the final states

In the whole documentation excerpts of lean source code and traditional mathematics will be inter-
laced, to complement each other. The traditional mathematics to document and explain the ideas
behind the source code, and the source code to demonstrate the practical implementation.

structure PDA (Q T S : Type) [Fintype Q] [Fintype T] [Fintype S] where

initial_state : Q

start_symbol : S

final_states : Set Q

transition_fun : Q → T → S → Set (Q × List S)

transition_fun’ : Q → S → Set (Q × List S)

finite (q : Q)(a : T)(Z : S): (transition_fun q a Z).Finite

finite’ (q : Q)(Z : S): (transition_fun’ q Z).Finite

A tuple translates usually to a structure in Lean, while it would be possible to define the PDA
directly as tuple the ability to name fields in a structure makes working with the so defined PDA
less cumbersome.

If we compare the structure in the source code listing with the definition given before, we see two
additional fields (finite, finite’) and notice that the transition function looks somewhat different.

While the original definition of a PDA uses just one transition function to model both computation
steps which read from the input and which do not read from the input (ε-transistion), this distinction
is made into two transition functions in the Lean source code. While it would be possible to just use
one transition function at this point, definitions later on would be more convoluted if this distinction
where not made.

The fields finite and finite’ contain proofs that the transistion function fulfills |δ(q, a, Z)| <
∞ forall q ∈ Q, a ∈ Σ and Z ∈ Γ. This means that, if one wants to construct a PDA given
initial_state, start_symbol, final_state, transition_fun, transition_fun’ they still need a proof
that this requirement holds.

Definition 2. We call a Tuple (q, x, α) ∈ Q×Σ∗×Γ∗ a configuration of the PDA M=(Q,Σ,Γ, δ, q0, Z0, F).

structure conf (p : PDA Q T S) where

state : Q

input : List T

stack : List S

2

Here we note that the structure conf depends on a PDA p. So for every PDA there exists a seperate
type conf p

Definition 3. We say (q, x, α) ⊢1 (p, y, β) or configuration (q, x, α) reaches (p, y, β) in one step iff
there exist a ∈ Σ ∪ {e}, Z ∈ Γ and ν, µ ∈ Γ∗ so that x = ay, α = Zν, β = µν and (p, µ) ∈ δ(q, a, Z)

For n ∈ N fullfilling n ≥ 2 we say (q, x, α) ⊢n (p, y, β) or configuration (q, x, α) reaches (p, y, β)
in n steps iff there exist n − 1 configurations ci so that (q, x, α) ⊢1 c1 ⊢1 · · · ⊢1 cn−1 ⊢1 (p, y, β)
Additionally we say (q, x, α) ⊢0 (p, y, β) iff (q, x, α) = (p, y, β).

Finally we say (q, x, α) ⊢ (p, y, β) or configuration (q, x, α) reaches (p, y, β) iff there exists n ∈ N so
that (q, x, α) ⊢n (p, y, β).

def step (r1 : conf pda) : Set (conf pda) :=

match r1 with

| ⟨q, a::w, Z::α⟩ =>

{ r2 : conf pda | ∃ (p : Q) (β : List S), (p,β) ∈ pda.transition_fun q a Z ∧
r2 = ⟨p, w, (β ++ α)⟩ } ∪

{ r2 : conf pda | ∃ (p : Q) (β : List S), (p,β) ∈ pda.transition_fun’ q Z ∧
r2 = ⟨p, a :: w, (β ++ α)⟩ }

| ⟨q, [], Z::α⟩ => { r2 : conf pda | ∃ (p : Q) (β : List S),

(p,β) ∈ pda.transition_fun’ q Z ∧ r2 = ⟨p, [], (β ++ α)⟩ }

| ⟨_, _, []⟩ => ∅

def Reaches1 (r1 r2 : conf pda) : Prop := r2 ∈ step r1
def Reaches : conf pda → conf pda → Prop := Relation.ReflTransGen Reaches1

inductive ReachesIn : N → conf pda → conf pda → Prop where

| refl : (r1 : conf pda) → ReachesIn 0 r1 r1
| step : {n: N} → {r1 r2 r3 : conf pda} → ReachesIn n r1 r2 → Reaches1 r2 r3 →

ReachesIn (n+1) r1 r3

Comparing these two definitions the first noteable fact is the step function, which only exists in
the Lean code. The function step receives a configuration of a PDA as input and returns the set
of possible next configurations. Looking closely we recognize two different sets, one corresponding
to transistion_fun and one to transistion_fun’, so one modeling computation with read and one
computation without read. The definition of these sets is subtle different, demonstrating the need
for seperating transistion_fun and transistion_fun’ instead of using one transition function as in
the mathematical definiton.

The relation Reaches1 is defined in the obvious way, less obvious are Reaches and ReachesIn. The
definition of Reaches uses a feature of Mathlib, the Lean library of formalized mathematics, the
reflexive, transitive closure. This is consistent with the defintion of ⊢ but more idiomatic than the
traditional definition given. The relation ReachesIn is defined inductively, in manner virtually the
same as the implementation of Relation.ReflTransGen but counting the steps of computation along
the way.

This distinction is important as the fundamental method of proof in Lean is structural induction.
The induction principle generated for Reaches is somewhat weak, as it only allows to split the
computation at the first or last step of computation. When using ReachesIn, one can use the strong

3

induction of the natural numbers on the number of computation steps. This allows splitting the
computation in more complicated parts, manipulating them in non obvious ways and still being able
to apply the induction hypthesis.

Definition 4. For a PDA M (Q,Σ,Γ, δ, q0, Z0, F) we define

N(M) = {w ∈ Σ∗ | ∃q ∈ Q : (q0, w, Z0) ⊢ (q, ε, ε)}

the Language of the PDA accepted by empty stack.

def acceptsByEmptyStack (pda : PDA Q T S) : Language T :=

{ w : List T | ∃ q : Q,

Reaches (⟨pda.initial_state, w, [pda.start_symbol]⟩ : conf pda) ⟨q, [], []⟩ }

The definition of the language of the PDA is as expected, noteworthy is the type annotation Language

T. This is the Mathlib type of a language over the alphabet T and is definitionally equal to the type
Set (List T).

It is clear that ⊢ is reflexive and transitive and so is Reaches. To use these properties in Lean they
need to be proven. This is not particularly challenging as Relation.ReflTransGen already provides
corresponding theorems.

theorem Reaches.refl (r1 : conf pda) : Reaches r1 r1 := Relation.ReflTransGen.refl

theorem Reaches.trans {r3 : conf pda} (h1 : Reaches r1 r2) (h2 : Reaches r2 r3) :

Reaches r1 r3 := Relation.ReflTransGen.trans h1 h2

Following properties of ReachesInare easily proved :

theorem reachesIn_zero (h: ReachesIn 0 r1 r2) : r1 = r2

theorem reaches1_iff_reachesIn_one : Reaches1 r1 r2 ↔ ReachesIn 1 r1 r2

theorem reachesIn_one : ReachesIn 1 r1 r2 ↔ r2 ∈ step r1

And the next three very useful properties require a little work and induction.

theorem reachesIn_iff_split_last {n : N} :

(∃ c : conf pda, ReachesIn n r1 c ∧ ReachesIn 1 c r2) ↔ ReachesIn (n+1) r1 r2

theorem reachesIn_iff_split_first {n : N}:
(∃ c : conf pda, ReachesIn 1 r1 c ∧ ReachesIn n c r2) ↔ ReachesIn (n+1) r1 r2

theorem reaches_iff_reachesIn : Reaches r1 r2 ↔ ∃ n : N, ReachesIn n r1 r2

We will now examine the proof of a simple lemma closer, before embarking to more interesting
matters. The lemma states that after a single step of computation the input of the PDA either
stays the same or a prefix is removed. No other change is possible. This is consistent with the
interpretation of a PDA as a machine consuming input from a tape in a sequential manner. In fact
the input decreases by at most one letter, this is not part of the lemma for a reason: This lemma
will be used only to prove a similar statement for arbitrary many steps of computation, where of
course no such restriction applies. The proof below is more verbose than necessary, in order to allow
it to be stepped through in an interactive manner easily.

4

theorem decreasing_input_one (h : ReachesIn 1 r1 r2) :

∃ w : List T, r1.input = w ++ r2.input := by

apply reachesIn_one.mp at h -- Apply characterization of ReachesIn 1

rcases r1 with ⟨q, w, _ | ⟨Z, β⟩⟩ -- To simplify step we have to split cases

· simp [step] at h -- If the stack is empty no computation can happen

· rcases w with _ | ⟨a, w⟩ -- Again case split if a read is possilbe

· dsimp [step] at h

obtain ⟨_,_,h⟩ := h -- If the tape is empty no read can happen

use []

simp [h.2] -- Closes the goal

· dsimp [step] at h

rw [Set.mem_union] at h -- Convert membership of union to or

rcases h with h|h -- Split cases on wether a read is happening

· rw [Set.mem_setOf] at h -- Convert membership of set builder to predicate

obtain ⟨p,β,h⟩ := h -- We know that a is read

use [a]

simp [h.2] -- Closes the goal

· obtain ⟨_,_,h⟩ := h -- No read is happening, so as before

use []

simp [h.2]

This lemma is used to prove the following theorem:

theorem decreasing_input (h : Reaches r1 r2) : ∃ w : List T, r1.input = w ++ r2.input

The source code contains a few more useful lemmas about ReachesIn which we will encounter looking
at the proofs of the main results of the formalization. Before continuing we introduce context-free
grammars and their formalization in Mathlib.

Definition 5. A context-free grammar (CFG) is a Tuple (T,N, P, S) where

1. T is the finite set of terminals

2. N is a finite set of nonterminals

3. P ⊆ N × (T ∪N)∗ is a finite set of production rules (we often write A → α instead of (A,α)
for elements of P)

4. S is the start symbol

For two strings of terminal and nonterminal symbols v, w ∈ (T ∪N)∗ we say v derives w in one step
(or in symbols v ⇒1 w) iff:

∃v1, v2α ∈ (N ∪ T)∗, A ∈ N : v = v1Av2 ∧ w = v1αv2 ∧ (A,α) ∈ P

Smiliar to PDAs we define ⇒0,⇒n,⇒. We call L(G) = {w ∈ T ∗ | S ⇒ w} the language generated
by G.

In Mathlib the derives relation is called Derives and is defined very similar to Reaches. If one replaces
the definition of ⇒1 with

∃v1 ∈ T ∗, v2, α ∈ (N ∪ T)∗, A ∈ N : v = v1Av2 ∧ w = v1αv2 ∧ (A,α) ∈ P

5

one obtains the definition of leftmost deriviations. It can be shown that, if we replace deriviation with
leftmost deriviation in the definition of L(G), the resulting language stays the same. To make proofs
easier we will only work with leftmost deriviations from now on (and interpret ⇒n,⇒ accordingly).
The proofs in this formalization make thus use of two variations of Derives not provided in Mathlib,
namely DerivesLeftmost and DerivesLeftmostIn. At this point it should be noted that Mathlib
also does not provide a DerivesIn relation. The implementation of DerivesLeftmost provided in the
formalization is a pull request to Mathlib currently in review.

3 CFG to PDA

With this vocabulary at our disposal we can now begin with the first major result of the formalizia-
tion:

Theorem 1. Let G be a CFG with L = L(G) then there exists a PDA M so that N(M) = L.

Proof. Let G = (N,T, P, S) be a context-free grammar. We construct a PDA M , and show
N(M)=L(G). So M = (Q,Σ,Γ, δ, q0, Z0, F) is defined as follows:

Q = {q0} Σ = T Γ = T ∪N Z0 = S F = ∅

δ(q0, a, Z) =


{(q0, β) | Z → β ∈ P} if a = ε ∧ Z ∈ N

{(q0, ε)} if a ∈ T ∧ Z ∈ T ∧ a = Z

∅ else

We show now L(G)=N(M). So let w ∈ L(G) be arbitrary. So we know that there exists a sequence
of leftmost deriviations

S ⇒1
G α1 ⇒1

G · · · ⇒1
G αn ⇒1

G w

by induction on the number of steps we show that there exists a computation

(q0, w, S) ⊢1
M c1 ⊢1

M · · · ⊢1
M cm ⊢1

M (q0, ε, ε).

We need however a slightly stronger induction hypothesis. Instead of S we will work with α ∈
(N ∪ T)∗ and w ∈ T ∗. For the base case we have α ⇒0

G w this means α = w. Per construction of
M we know (q0, ε) ∈ δ(q0, a, a), by repeatedly applying this we obtain (q0, w, w) ⊢M (q0, ε, ε) and
conclude the base case. Now assuming ∀α : (α ⇒n

G w =⇒ (q0, w, α) ⊢M (q0, ε, ε)), we want to
show the same for α ⇒n+1

G w. If α ⇒n+1
G w we know there exists a α1 ∈ (N ∪ T)∗ so that

α ⇒1
G α1 ⇒n

G w.

Because α ⇒1
G α1 we can write α = w1Aα′ and α1 = w1βα

′ where w1 ∈ T ∗, α′, β ∈ (N ∪ T)∗

and A → β ∈ P. By applying the induction hypotheses we obtain (q0, w, α1) ⊢M (q0, ε, ε). That is
(q0, w, w1βα

′) ⊢M (q0, ε, ε), our construction of M guarantees then that following computation is
happening: (q0, w, w1βα

′) ⊢M (q0, w
′, βα′) ⊢M (q0, ε, ε) with w = w1w

′ for some w′ ∈ T ∗. Similarily
as in the base case we have (q0, w, α) = (q0, w1w

′, w1Aα′) ⊢M (q0, w
′, Aα′). As A → β ∈ P we also

know (q0, w
′, Aα′) ⊢M (q0, w

′, βα′). It suffices now that (q0, w
′, βα′) ⊢M (q0, ε, ε), which we already

established.

6

For the other direction let again w ∈ T ∗ be arbitrary. We again show by induction on the number
of computation steps (q0, w, α) ⊢n

M (q0, ε, ε) implies α ⇒G w for every w ∈ T ∗, α ∈ (T ∪ N)∗.
For the base case we have (q0, w, α) ⊢0

M (q0, ε, ε). This implies w = ε and α = ε, so we see
α ⇒G w. For the induction step we assume ∀α : ((q0, w, α) ⊢n

M (q0, ε, ε) =⇒ α ⇒G w) and
(q0, w, α) ⊢n+1

M (q0, ε, ε). So

(q0, w, α) ⊢1
M (q0, w

′, α1) ⊢n
M (q0, ε, ε).

Obviously there exists w1 ∈ T ∗ so that w = w1w
′. By the induction hypothesis we have α1 ⇒G w′.

We distinguish two possible cases for the first computation step: Either there are A ∈ N and
β ∈ (T ∪ N)∗ so that w = w′ (that is w1 = ε), α = Aα′, α1 = βα′ and A → β ∈ P or w = aw′,
α = aα1. In the first case we have α ⇒G α1 and as already established α1 ⇒G w′ = w. So α ⇒G w.
In the second case we have α = aα′ ⇒G aw′ = w. So in either case we have the desired result. By
applying this to S ⇒G w we have L(G) ⊆ N(M).

The formaliziation of this proof is in the Lean file CFG_to_PDA.lean and is split across multiple
lemmas and definitions. The first step of course is given a grammer G to construct M . Than we
have to prove the ”obvious” properties of M before showing the main result with induction. The
shown source code is slightly abbreviated.

structure Q where loop ::

abbrev S (G : ContextFreeGrammar T) [Fintype G.NT] := Symbol T G.NT

abbrev transition_fun (G : ContextFreeGrammar T) [Fintype G.NT] (_ : Q) (a : T) (Z : S G)

: Set (Q × List (S G)) :=

match Z with

| terminal b => if a=b then {(Q.loop, [])} else ∅
| _ => ∅

abbrev transition_fun’ (G : ContextFreeGrammar T) [Fintype G.NT] (_ : Q) (Z : S G) : Set

(Q × List (S G)) :=

match Z with

| nonterminal N => { (Q.loop, α) | (α : List (S G)) (_ : ⟨N, α⟩ ∈ G.rules) }

| _ => ∅

abbrev M (G : ContextFreeGrammar T) [Fintype G.NT] : PDA Q T (S G):= {

initial_state := Q.loop

start_symbol := nonterminal G.initial

transition_fun := transition_fun G

transition_fun’ := transition_fun’ G

finite := --

finite’ := --

For Q we need a set with one element which translates in Lean to a type with a single element. The
type Q has a single construtor with no arguments, which results in exactly one term of type Q namely
loop : Q. The set of stack symbols is a union of N and T , in Lean both T (T) and G.NT (N) are types
not sets, so a union is not possible, the sum type Symbol T G.NT fills therefore the role of N ∪T . For

7

brevity we call this type S G. If we look at the transition functions transition_fun, transition_fun’
we see that reads only happen with a terminal symbol on the stack and ε-transitions only with
a nonterminal on the stack (otherwise the set of possible next configurations is empty). The sets
themselves are exactly as in the proof.

The automaton M is just the tuple of these components, and the two proofs that the sets returned
by the transition functions are really finite. We will show the more interesting finite’:

finite’ : ∀(q : Q)(Z : S): (transition_fun’ q Z).Finite :=

-- Introduce vars, split case on terminal, nonterminal

rintro q (⟨x⟩|⟨N⟩)
· exact Set.finite_empty -- for terminals the empty set is returned

· -- Build a large finite set and show that our set is a subset

let R := {r | r ∈ G.rules}

have hR : R.Finite := by simp [R] -- G.rules is a Finset

let S := (λ ⟨N, α⟩ 7→ (Q.loop, α)) ’’ R -- Our set has a different form

-- Finitess is preserved under images

have hS : S.Finite := by apply Set.Finite.image; exact hR

-- The set we want prove to be finite

let A := (transition_fun’ G q (nonterminal N))

have : A ⊆ S := by

intro ⟨_, α⟩ h -- introduce the element of A

dsimp [A, transition_fun’] at h -- simplify the proof of (_, α) ∈ A

obtain ⟨α’, hr, he⟩ := h -- seperate h in to two parts

obtain ⟨_, hα⟩ := Prod.mk.inj he -- α and α’ are obviously equal

rw [hα] at hr

rw [Set.mem_image] -- we want to show that (_, α) ∈ S

use ⟨N, α⟩ -- Our candiate for the preimage

simp [hr, R] -- simplifcation closes the goal

exact Set.Finite.subset hS this

As the proof of Theorem 1 is split into multiple lemmas in Lean, I will illustrate how the ”obvious
facts” used in the traditional proof translate into Lean lemmas.

The base case of the first induction is realized in Lean via an application of following lemma (with
w’:=α:=[]):

theorem M_consumes_terminal_string (w w’: List T) (α : List (S G)):

(M G).Reaches ⟨Q.loop, w++w’, w.map terminal ++ α⟩ ⟨Q.loop, w’, α⟩

Which states that M in fact consumes terminals as we intended, the proof boils down to an induction
on the List w and simplification with the definition of transition_fun.

To formalize the induction step we make use of following lemmas:

theorem M_consumes_terminal_string (w w’: List T) (α : List (S G)):

(M G).Reaches ⟨Q.loop, w++w’, w.map terminal ++ α⟩ ⟨Q.loop, w’, α⟩

theorem M_consumes_nonterminal {r : ContextFreeRule T G.NT} (h : r ∈ G.rules) (w : List T)

(α : List (S G)):

(M G).ReachesIn 1 ⟨Q.loop, w, nonterminal r.input :: α⟩ ⟨Q.loop, w, r.output ++ α⟩

8

theorem M_deterministic_of_terminal_stack (w v: List T) (β : List (S G)):

(M G).Reaches ⟨Q.loop, w, v.map terminal ++ β⟩ ⟨Q.loop, [], []⟩ →
∃ w’ : List T, w = v ++ w’ ∧ (M G).Reaches ⟨Q.loop, w’, β⟩ ⟨Q.loop, [], []⟩

The first one we have already seen, and the second one is very similar to the first one (but easier to
prove as no induction is required). The third one however requires some work to obtain and its proof
is split into two further lemmas. Equipped with these lemmas the formalization of the induction
step as in the traditional proof is quite straightforward.

theorem M_reaches_off_G_derives (α : List (Symbol T G.NT)) (w : List T)

(h : G.DerivesLeftmost α (w.map terminal)):

(M G).Reaches ⟨Q.loop, w, α⟩ ⟨Q.loop, [], []⟩ := by

induction’ h using Relation.ReflTransGen.head_induction_on with α β hα _ ih

case refl =>

convert M_consumes_terminal_string w [] [] <;> simp

case head =>

obtain ⟨r,hrg,hrα⟩ := hα
rw [rewrites_leftmost_iff] at hrα
obtain ⟨p,q,hα’,hβ’⟩ := hrα
rw [hβ’] at ih

rw [List.append_assoc] at ih

apply M_deterministic_of_terminal_stack at ih

obtain ⟨w’, hw’, hr ⟩ := ih

have hpart1 : (M G).Reaches ⟨Q.loop, w,α⟩ ⟨Q.loop, w’, nonterminal r.input :: q ⟩ := by

rw [hα’, List.append_assoc, hw’]

apply M_consumes_terminal_string p _

have hpart2 : (M G).Reaches ⟨Q.loop, w’, nonterminal r.input :: q⟩ ⟨Q.loop, w’,

r.output ++ q⟩ := by

rw [reaches_iff_reachesIn]

use 1

exact M_consumes_nonterminal hrg _ q

have := Reaches.trans hpart1 hpart2
exact Reaches.trans this hr

As opposed to the traditional proof, the formalized proof makes use of a structural induction principle
Relation.ReflTransGen.head_induction_on. This is more idiomatic as Mathlib provides this principle
of induction directly, for proofs actually using a induction on the number of deriviations steps a lot
of custom code is necessary. Looking at the source code we see that without interactive feedback
this proof is difficult to understand. It is included mainly to highlight that the three lemmas from
before are really sufficient for the induction step and (as further inspection maybe reveals) that the
induction step mirror the traditional proof very closely.

The other direction of the proof requires the following additional theorems:

theorem reachesIn_one_on_empty_stack {q p: Q}{w w’: List T}{α : List S}:

¬pda.ReachesIn 1 ⟨q, w, []⟩ ⟨p, w’, α⟩

theorem G_rule_of_M_consumes_nonterminal {w w’: List T}{α β: List (S G)}{N : G.NT} :

(M G).ReachesIn 1 ⟨Q.loop, w, nonterminal N :: α⟩ ⟨Q.loop, w’, β⟩ →
∃(γ : List (S G)), (⟨N,γ⟩ ∈ G.rules) ∧ β = γ ++ α ∧ w=w’

9

The first of the two is just to exclude the trivial case in the induction step, that is α = ε. So that
just the two cases discussed in the traditional proof remain. The second one is more interesting
as it allows us to conclude from behavior of M (consumption of a nonterminal) the existence of a
production rule in G. If we look back at the first half of the proof, all our conclusions where of the
form:

Knowledge of G =⇒ Knowledge of M

Which is more natural (and easier to prove) as we constructed M out of G. The base case is in Lean as
clear as in the traditional proof. The main difference in the induction step is the nature of the case
split, in Lean we perform an case split on the top most stack element (terminal, nonterminal, empty),
show that the empty case is contradictory and proof in the remaining cases that the computation
we described in the traditional proof is actually happening. This aside the induction step in Lean is
again virtually identical to the traditional proof:

theorem G_derives_of_M_reaches {α : List (Symbol T G.NT)} {w : List T}

(h: (M G).Reaches ⟨Q.loop,w,α⟩ ⟨Q.loop,[], []⟩):
G.Derives α (w.map terminal) := by

rw [reaches_iff_reachesIn] at h

obtain ⟨n,hr⟩ := h

induction’ n with n ih generalizing w α
· apply reachesIn_zero at hr

apply conf.mk.inj at hr

simp [hr, Derives.refl]

· rw [←reachesIn_iff_split_first] at hr

obtain ⟨⟨_,w’,β⟩, h1, h2⟩ := hr

apply ih at h2
rcases α with _|⟨⟨a⟩|⟨N⟩,α’⟩
· -- trivial case, stack is empty

apply reachesIn_one_on_empty_stack at h1
contradiction

· -- topmost stack symbol is terminal

apply M_deterministic_step_of_terminal_stack_cons at h1
rw [h1.1,h1.2]

convert ContextFreeGrammar.Derives.append_left h2 [terminal a]

· -- topmost stack symbol is nonterminal

apply G_rule_of_M_consumes_nonterminal at h1
obtain ⟨γ,hr,hγ,hw⟩ := h1
rw [hw.symm] at h2
have : G.Derives ([nonterminal N] ++ α’) β := by

have : G.Derives [nonterminal N] γ := by

apply Produces.single

use ⟨N,γ⟩, hr

convert ContextFreeRule.rewrites_of_exists_parts ⟨N,γ⟩ [] []

simp

convert ContextFreeGrammar.Derives.append_right this α’
exact Derives.trans this h2

Again the proof is difficult to read, but it should be noticeable that the structure is as described.
The last case seems overly long, but this is just caused by piecing together a proof that α ⇒G α1 ⇒G

w′ = w. Which is clear and easy to prove but somewhat lengthy.

Combining these two results we get:

10

theorem pda_of_cfg (G : ContextFreeGrammar T)[Fintype G.NT] : G.language = (M

G).acceptsByEmptyStack

With this we have shown that every language generated by a CFG can be recognized with a PDA,
now we show the opposite.

4 PDA to CFG

Theorem 2. Let M be a PDA with L = N(M) then there exists a CFG G so that L(G) = L.

Proof. Let M = (Q,Σ,Γ, δ, q0, Z0, F) be a PDA, we define a grammar G = (N,Σ, P, S) as follows:
Let n0 = max{|α| | ∃q, p ∈ Q, a ∈ Σ, Z ∈ Γ : (p, α) ∈ δ(q, a, Z)}+ 1 we define the nonterminals

N = {[p, Z, q] | p, q ∈ Q,Z ∈ Γ} ∪ {⟨p, α, q⟩ | p, q ∈ Q,α ∈ Γ∗, |α| ≤ n0} ∪ {S}

(note: [p, Z, q] ̸= ⟨p, Z, q⟩) and following productions

⟨q, ε, q⟩ → ε for every q ∈ Q (1)

[q, Z, p] → a⟨q1, γ, p⟩ if (q1, γ) ∈ δ(q, a, Z) (2)

⟨q, Zα, p⟩ → [q, Z, q1]⟨q1, α, p⟩ for every q1 ∈ Q (3)

S → [q0, Z0, p] for every p ∈ Q. (4)

We will now proof L(G) = N(M) by first showing

∀⟨q, γ, p⟩ ∈ N : ⟨q, γ, p⟩ ⇒G x ⇔ (q, x, γ) ⊢M (p, ε, ε)

We begin with the reverse implication, so assume (q, x, γ) ⊢M (p, ε, ε) we proof ⟨q, γ, p⟩ ⇒G x by
induction on the number of computation steps. For the base case we have (q, x, γ) ⊢0

M (p, ε, ε)
so γ = ε, x = ε and q = p, we know ⟨q, ε, q⟩ → ε by (3.1). For the induction step we assume
(q, x, γ) ⊢n

M (p, ε, ε) and assume the statement holds for natural numbers less than n. We further
assume γ = Zγ′ as otherwise no computation would be possible and write x = ay, noting that a = ε
is possible.

We split at the first step of the computation:

(q, ay, Zγ′) ⊢1
M (q1, y, αγ

′) ⊢n−1
M (p, ε, ε)

where (q1, α) ∈ δ(q, a, Z). From (q1, y, αγ
′) ⊢n−1

M (p, ε, ε) we obtain the existence of q̃ ∈ Q, y1, y2 ∈
Σ∗, m1,m2 < n so that y = y1y2, (q1, y1, α) ⊢m1

M (q̃, ε, ε) and (q̃, y2, γ
′) ⊢m2

M (p, ε, ε). By applying
the induction hypothesis twice we obtain ⟨q1, α, q̃⟩ ⇒G y1 and ⟨q̃, γ′, p⟩ ⇒G y2. Here it should be
noted ⟨q1, α, q̃⟩ and ⟨q̃, γ′, p⟩ are really members of N , as α is a stack push and γ′ is shorter than
the stack push γ. By rules (3.3) and (3.4) we have ⟨q, γ, p⟩ = ⟨q, Zγ′, p⟩ ⇒G [q, Z, q̃]⟨q̃, γ′, p⟩ ⇒G

a⟨q1, α, q̃⟩⟨q̃, γ′, p⟩ ⇒G a⟨q, α, q̃⟩⟨q̃, γ′, p⟩. Taking all this together gives us ⟨q, γ, p⟩ ⇒G ay1y2 = x

For the other direction we use induction on the number of deriviation steps, for the base case we
have ⟨p, γ, q⟩ ⇒0

G x as assumption, this however cannot be the case, so the base case is concluded.

11

For the induction step we assume ⟨p, γ, q⟩ ⇒n
G x and assume further that the implication holds for

natural numbers less than n. We differentiate if γ = ε or γ = Zγ′. In the first case we immediately
see q = p and x = ε and conclude (q, ε, ε) ⊢M (q, ε, ε). We now consider the case γ = Zγ′. As we
are working with leftmost deriviations we know the first two steps of the deriviation:

⟨p, γ, q⟩ = ⟨p, Zγ′, q⟩ ⇒1
G [p, Z, q̃]⟨q̃, γ′, q⟩ ⇒1

G a⟨p1, α, q̃⟩⟨q̃, γ′, q⟩ ⇒n−2
G x

Where p1 ∈ Q, a ∈ Σ ∪ {ε} and (p1, α) ∈ δ(p, a, Z). We can now split x = ax1x2 so that

⟨p, α, q̃⟩ ⇒G x1 ⟨q̃, γ′, p⟩ ⇒G x2

in fewer than n steps. By applying the induction hypothesis we have (p1, x1, α) ⊢M (q̃, ε, ε) and
(q̃, x2, γ

′) ⊢M (p, ε, ε). By putting this two computations together we obtain (p1, x1x2, αγ
′) ⊢M

(q, ε, ε). Together with (p, x, γ) = (p, ax1x2, Zγ′) ⊢M (p1, x1x2, αγ
′) we show the result.

The formalization again begins by defining the construction and and proving some technicalities.
Compared to Theorem 1 this construction is more involved and quite long (in fact nearly as long as
the whole formalization of Theorem 1). We will know elaborate where this complexity comes from:

To define a CFG G we need a type of nonterminals, terminals and a Finset of rules. The type
Finset is one of the possible ways to represent finite sets in Lean. The other approach is to use the
ordinary Set type and the Set.Finite predicate.

These two approaches differ significantly (Finset is more akin to a data structure than to a mathe-
matical set), but it is quite straightforward to switch between them (Mathlib ContextFreeGrammar

uses Finset while this formaliziation uses Set.Finite).

Note that there is no requirement that the type of nonterminals is finite. This makes sense, as if the
set of rules is finite there are only a finite number of nonterminals which can be reached from the
start symbol anyway. We will later make use of this fact.

However if we look at the proof of Theorem 2 we see that

N = {[p, Z, q] | p, q ∈ Q,Z ∈ Γ} ∪ {⟨p, α, q⟩ | p, q ∈ Q,α ∈ Γ∗, |α| ≤ n0} ∪ {S}

with
n0 = max{|α| | ∃q, p ∈ Q, a ∈ Σ, Z ∈ Γ : (p, α) ∈ δ(q, a, Z)}+ 1

is a finite set and that P is only finite because N is finite. If we would drop the restriction |α| ≤ n0

in the definition of N the proof would still work, but the resulting grammar would not be a CFG.
The implementation of N without this restriction is obvious:

inductive N (M: PDA Q T S) where

| start : N M

| single : Q → S → Q → N M

| list : Q → List S → Q → N M

It is however less obvious how to add the restriction |α| ≤ n0 which guarantees finiteness. If we
would modify the definition of N like that:

12

inductive N (M: PDA Q T S) where

| start : N M

| single : Q → S → Q → N M

| list : Q → (α : List S) → α.length ≤ n0 → Q → N M

It would more accurately reflect the set N . But any function with codomain N, would always be
required to implement a proof that α.length ≤ n0 holds. Which is quite cumbersome, furthermore
it would still not be obvious how to prove the type N to be finite. To avoid these problems, the
type N is constructed as before, without any restriction on the length of the list constructor. This
results in an infinite type. The production rules are however still required to be finite, this is solved
by the construction of a finite set of nonterminals (AllowedNonterminals) which is then used to build
a finite set of production rules. So while the set of all nonterminals is infinite only a finite number
of them is used to construct production rules, the set of them is therefore finite.

abbrev AllStackPushes (M : PDA Q T S) : Set (List S) :=

(Prod.snd ’’
⋃
(q : Q)(a : T)(Z : S), M.transition_fun q a Z) ∪

Prod.snd ’’
⋃
(q : Q)(Z : S), M.transition_fun’ q Z

theorem allStackPushes_finite (M : PDA Q T S) : (AllStackPushes M).Finite := --

abbrev AllStackPushes’ (M : PDA Q T S): Finset (List S) :=

(allStackPushes_finite M).toFinset

abbrev max_push (M : PDA Q T S) := max ((AllStackPushes’ M).image List.length).max 1

abbrev N.IsAllowed: N M → Prop

| N.start => True

| N.single _ _ _ => True

| N.list _ α _ => α.length ≤ max_push M

abbrev AllowedNonterminals : Set (N M) := {n : N M | n.IsAllowed}

Looking at the code we see that n0 from before is now called max_push, which is obtained by
collecting all possible stack pushes in a set and than taking the maximum of its image under the
List.length function. Note the different notation for image in AllStackPushes and max_push,
this occurs because one is the image of a Set the other of a Finset. A Finset occurs here because
taking the maximum (as all operations only defined for finite sets) requires a Finset. The following
obvious seeming result is then proven:

theorem allowedNonterminals_finite : (AllowedNonterminals : Set (N M)).Finite

and for completeness I show following somewhat technical results:

theorem push_le_max_push (α : List S)(q : Q)(Z : S)(a : T)

(h : α ∈ Prod.snd ’’ M.transition_fun q a Z): α.length ≤ max_push M

theorem push_le_max_push’ (α : List S)(q : Q)(Z : S)

(h : α ∈ Prod.snd ’’ M.transition_fun’ q Z): α.length ≤ max_push M

Now we can definite the set of production rules:

13

abbrev epsilon_rule (q : Q): Set (ContextFreeRule T (N M)) := {⟨N.list q [] q ,[]⟩}

abbrev compute_rule (q p: Q) (a : T) (Z : S) : Set (ContextFreeRule T (N M)) :=

(λ ⟨q1,α⟩ 7→ ⟨N.single q Z p, [terminal a, nonterminal (N.list q1 α p)]⟩) ’’

M.transition_fun q a Z

abbrev compute_rule’ (q p: Q) (Z : S) : Set (ContextFreeRule T (N M)) :=

(λ ⟨q1,α⟩ 7→ ⟨N.single q Z p, [nonterminal (N.list q1 α p)]⟩) ’’ M.transition_fun’ q Z

abbrev split_rule (q1:Q) :(n : N M) → Set (ContextFreeRule T (N M))

| N.start => ∅
| N.single _ _ _=> ∅
| N.list _ [] _ => ∅
| N.list q (Z::α) p =>

{⟨N.list q (Z::α) p, [nonterminal (N.single q Z q1),nonterminal (N.list q1 α p)]⟩}

abbrev start_rule (q: Q): Set (ContextFreeRule T (N M)) :=

{⟨N.start, [nonterminal (N.list (M.initial_state) [M.start_symbol] q)]⟩}

abbrev RuleSet : Set (ContextFreeRule T (N M)) :=

(
⋃
q:Q, epsilon_rule q) ∪ (

⋃
(q:Q)(p:Q)(a:T)(Z:S), compute_rule q p a Z)

∪ (
⋃
(q:Q)(p:Q)(Z:S), compute_rule’ q p Z) ∪ (

⋃
(q:Q)(n ∈ AllowedNonterminals),

split_rule q n)

∪ (
⋃
(q:Q), start_rule q)

theorem ruleSet_finite : (RuleSet : Set (ContextFreeRule T (N M))).Finite := --

abbrev rules : Finset (ContextFreeRule T (N M)) := ruleSet_finite.toFinset

Looking at the definition of RuleSet, we see there a five types of rules, as in the construction in the
traditional proof. If we look at the union containing split_rule we see that the index n is bounded
by AllowedNonterminals thus also making RuleSet finite.

And finally we can define the grammar:

abbrev G (M : PDA Q T S) : ContextFreeGrammar T := {

NT := N M

initial := N.start

rules := rules

}

Before proving the first implication we need following easy to prove facts about G:

theorem produces_epsilon (q : Q) :(G M).Produces [nonterminal (N.list q [] q)] (List.map

terminal [])

theorem produces_split (q q1 p : Q){α : List S}{Z : S}(h : (Z :: α).length ≤ max_push M):

(G M).Produces [nonterminal (N.list q (Z :: α) p)]

[nonterminal (N.single q Z q1), nonterminal (N.list q1 α p)]

theorem produces_compute {q q1 p : Q}{α : List S}{a : T}{Z : S}

14

(h : (q1, α) ∈ M.transition_fun q a Z) :

(G M).Produces [nonterminal (N.single q Z p)] [terminal a, nonterminal (N.list q1 α p)]

theorem produces_compute’ {q q1 p : Q}{α : List S}{Z : S}

(h : (q1, α) ∈ M.transition_fun’ q Z) :

(G M).Produces [nonterminal (N.single q Z p)] [nonterminal (N.list q1 α p)]

Which just state that G realizes our intended deriviations. And following characterization of Reaches1.

theorem reaches1_push {q : Q}{x : List T}{Z : S}{γ : List S}{c : pda.conf}

(h : pda.Reaches1 ⟨q, x, Z::γ⟩ c) :

(∃(a : T)(y : List T)(p : Q)(α : List S), x = a::y ∧ c = ⟨p, y, α ++ γ⟩ ∧
(p, α) ∈ pda.transition_fun q a Z) ∨
(∃(p : Q)(α : List S), c = ⟨p, x, α ++ γ⟩ ∧ (p, α) ∈ pda.transition_fun’ q Z)

Here we note, that while in the traditional proof we do not a require a case distinction on wether
a read happens, this is necessary in the formalization. As we can clearly see in the disjunction in
reaches1_push. We note that in the formalization of theorem 1 no lemma like reaches1_push was
necessary as the automaton there was constructed by us, and so we were able to prove more specific
lemmas about its behavior. The last puzzle piece is following lemma.

theorem split_stack {n : N}{q p : Q}{x : List T}{α β : List S}

(h : pda.ReachesIn n ⟨q, x, α ++ β⟩ ⟨p, [], []⟩):
∃(q1 : Q)(m1 m2 : N)(y1 y2 : List T), x=y1++y2 ∧ m1 ≤ n ∧ m2 ≤ n ∧
pda.ReachesIn m1 ⟨q, y1, α⟩ ⟨q1, [], []⟩ ∧ pda.ReachesIn m2 ⟨q1, y2, β⟩ ⟨p, [], []⟩

It formalizes that if a certain configuration results in a successful computation, we can split the
stack at an arbitrary point and obtain two separate successful computations. One for each part of
the stack.

Because of the case split, the way grammars work and the required book keeping for AllowedNonterminals
the proof turns out rather lengthy. I will show a shortened version.

theorem derives_of_reachesIn {γ : List S}{q p : Q}{x : List T}{n : N}
(hγ : γ.length ≤ max_push M) (h : M.ReachesIn n ⟨q,x,γ⟩ ⟨p,[],[]⟩) :

(G M).Derives [nonterminal (N.list q γ p)] (x.map terminal) := by

induction’ n using Nat.strong_induction_on with n ih generalizing x γ p q

rcases n with _ | ⟨n⟩
· apply reachesIn_zero at h

injection h with h1 h2 h3
rw [h1,h2,h3]

apply Produces.single

exact produces_epsilon _

· rcases γ with _ | ⟨Z, γ⟩
· obtain ⟨_, h, _⟩ := reachesIn_iff_split_first.mpr h

apply reachesIn_one_on_empty_stack at h

contradiction

· obtain ⟨⟨q0, x, γ’⟩, h1, h2⟩ := reachesIn_iff_split_first.mpr h

rw [←reaches1_iff_reachesIn_one] at h1
rcases reaches1_push h1 with ⟨a, y, q1, α, rfl, hc, hα⟩ | ⟨q1, α, hc, hα⟩
· obtain ⟨rfl, rfl, rfl⟩ := conf.mk.inj hc

obtain ⟨q1, m1, m2, y1, y2, hy, hm1, hm2, h21, h22⟩ := split_stack h2

15

have hα_allowed : α.length ≤ max_push M := --

have hγ_allowed : γ.length ≤ max_push M := --

apply ih m1 (Nat.lt_succ_of_le hm1) hα_allowed at h21
apply ih m2 (Nat.lt_succ_of_le hm2) hγ_allowed at h22
convert calc

(G M).Derives

[nonterminal (N.list q (Z :: γ) p)]

([nonterminal (N.single q Z q1)]++[nonterminal (N.list q1 γ p)]) := --

(G M).Derives _

([terminal a, nonterminal (N.list q0 α q1)] ++

[nonterminal (N.list q1 γ p)]) := --

(G M).Derives _

([terminal a, nonterminal (N.list q0 α q1)]++ (List.map terminal y2)) := --

(G M).Derives _

([terminal a] ++ List.map terminal y1++ (List.map terminal y2)) :=--

simp [hy]

· --

Inspecting the code reveals that the induction base is exactly as in the traditional proof, that the
trivial case of an empty stack in the induction step is easily discharged and that the application of
reaches1_push results in a case split. Only the case where a read occurs is included. Looking at this
case we see that the split stack lemma is applied, splitting the stack at the most recent push. Again
as in the traditional proof. The induction hypotheses is applied twice, and the rest is bookkeeping
and gluing together deriviations.

If we look at the traditional proof of the other implication, we see that it is very straightforward. We
begin by assuming a deriviation is happening and because of the way we constructed our grammar
we know how it has to look. These facts are formalized as following the four lemmas in Lean:

theorem deriviation_empty {n : N}{x : List T}{q p : Q}

(h : (G M).DerivesLeftmostIn [nonterminal (N.list q [] p)] (List.map terminal x) n) :

q = p ∧ x = []

theorem produces_cons {q p : Q}{Z : S} {γ : List S}

{u : List (Symbol T (N M))} (h : (G M).ProducesLeftmost [nonterminal (N.list q (Z::γ)
p)] u):

∃q1:Q, u = [nonterminal (N.single q Z q1), nonterminal (N.list q1 γ p)]

theorem produces_single {q p : Q}{Z : S}

{u v: List (Symbol T (N M))}

(h : (G M).ProducesLeftmost ((nonterminal (N.single q Z p)) :: v) u) :

(∃(α : List S)(q0 : Q)(a : T), (q0, α) ∈ M.transition_fun q a Z

∧ u = (terminal) a :: (nonterminal (N.list q0 α p)) :: v) ∨
(∃(α : List S)(q0 : Q), (q0, α) ∈ M.transition_fun’ q Z

∧ u = (nonterminal (N.list q0 α p)) :: v)

These lemmas are proved by an exhaustive case split. All of them have as hypotheses that a
deriviation is happening and conclude its general form and in some cases also some information
about the PDA M. If we look at produces_single we see again the case split from before.

theorem reachesIn_of_derivesLeftmostIn {γ : List S}{q p : Q}{x : List T}{n : N}
(hγ : γ.length ≤ max_push M)

16

(h : (G M).DerivesLeftmostIn [nonterminal (N.list q γ p)] (x.map terminal) n) :

M.Reaches ⟨q, x, γ⟩ ⟨p, [], []⟩ := by

induction’ n using Nat.strong_induction_on with n ih generalizing x q p γ
· rcases γ with _ | ⟨Z,γ’⟩
· apply deriviation_empty at h

simp only [h]

rfl

· rcases n with _ | ⟨n⟩
· obtain h := h.zero -- contradictory case

cases x <;> simp at h

obtain ⟨u, h1, h2⟩ := h.head_of_succ

obtain ⟨q1, rfl⟩ := produces_cons h1
rcases n with _ | ⟨n⟩
· have := h2.zero -- contradictory case

cases x <;> simp at this

obtain ⟨u, h21, h22⟩ := h2.head_of_succ

obtain ⟨α, q0, a, hα, rfl⟩ | ⟨α, q0, hα, rfl⟩ := produces_single h21
· obtain ⟨w, x’, m1, m2, hm1, hm2, rfl, hw, hx’⟩ := derivesLeftmostIn_cons’ h22

conv at hw => arg 2; change [a].map terminal; rfl

obtain hw := hw.terminal

rcases w with _ | ⟨a’, w’⟩
· simp at hw -- contradictory case

obtain ⟨rfl, rfl⟩ : (a’ = a ∧ w’ = []) := by simpa using hw

obtain ⟨w1, w2, m1’, m2’, hm1’, hm2’, rfl, hw1, hw2⟩ := derivesLeftmostIn_cons’ hx’

have hα_allowed : α.length ≤ max_push M := --

have hγ’_allowed : γ’.length ≤ max_push M := --

have r1 : M.Reaches ⟨q, a’ :: (w1 ++ w2), Z :: γ’⟩ ⟨q0, w1 ++ w2, α ++ γ’⟩ := by

apply Relation.ReflTransGen.single

simp [Reaches1, step, hα]
have r2 := ih m1’ (by linarith) hα_allowed hw1
have r3 := ih m2’ (by linarith) hγ’_allowed hw2
have r2 := r2.append_stack γ’
rw [unconsumed_input w2] at r2
apply Reaches.trans r1
apply Reaches.trans r2
exact r3

· --

In this proof we see the need for DerivesLeftmostIn as otherwise strong induction would not be pos-
sible. The case split in the traditional proof if γ is empty or not, is clearly visible. The destructuring
of the deriviation uses quite a lot of work, even though the lemmas from before are already proven.
Closer inspection also reveals the use of the derivesLeftmostIn_cons’ lemma, which is necessary to
split a deriviation resulting in a list of nonterminals into two separate deriviations. As is used in the
traditional proof, to apply the induction hypothesis twice.

Now we can finally prove

theorem cfg_of_pda (M : PDA Q T S) : (G M).language = M.acceptsByEmptyStack

which does require still a little effort, as our proofs until now did not even mention the start symbol
of G. So each direction of this theorem, does a little preparation before calling the corresponding

17

implications proven before. With this theorem the formalization is completed.

5 Conclusion

As the formalization is now presented completely, we will use this section to highlight the challenges
and takeaways from the project. The traditional proof, if written in a very detailed manner (as it is
the case in this documentation) plus the definition of PDA, CFG, ⊢ and ⇒ takes about three full
pages. Whereas the formalization in Lean takes about 2000 lines of code or if one would print the
source code 37 printed pages. These numbers are just to give an impression how much longer a fully
formalized proof is. A lot of this additional code are just ”obvious” lemmas, which require work
to be formalized, but do not really add complexity to the proof. There are however a few areas,
where the formalization really required additional thought and work. The obvious example is the
finiteness of the set of production rules in theorem 2. In a traditional style of proof the finiteness
of the construction is obvious immediately. Whereas in the formalized variant much thought went
into the design of the production rules, so that this proof would be somewhat straightforward.

A less obvious example is the usage of strong induction throughout the formalization. In the tradi-
tional proofs, induction was always performed on a number and strong and normal induction where
used freely. In Lean, however, the standard method of proof is structural induction. If structural
induction is used however, the induction hypothesis can only be applied to the next ”smaller” object,
not to arbitrary ”smaller” objects. The proof of theorem 2 requires the application of the induction
hypotheses on arbitrary smaller derivations and computations, something which adds significantly
on complexity in Lean. As infrastructure (in the form of ReachesIn, DerivesLeftmostIn and ac-
companying lemmas) has to be programmed and proven in order to enable these strong inductions.

Another example of additional complexity which has not been mentioned until now, is that some
proofs can not be formalized at all in Lean. A different proof of theorem 2, for example, uses a
construction of a CFG, where some productions results not necessarily in two nonterminals but in
a list of, more or less, arbitrary length. While this could theoretically be translated into Lean, it
would add mountains of complexity. Because the split_stack theorem we already encountered,
would than necessarily have to handle arbitrary numbers of stack splits, and the induction would
need to bookeep all the families of stack splits and productions. The proof in this documentation
is based on this difficult to formalize proof, but altered the construction significantly so it can be
translated into Lean more cleanly.

So in conclusion: The formalized proof is significantly longer than its traditional counterpart. To
some degree because of the additional complexity the formalization brings, and to some degree
because of simple ”legwork” which has to be performed, but has not impact on the proof or its
complexity otherwise. Some of the additional complexity stems from the incompatibility of structural
induction with some traditional proofs, while some of it stems just from the additional rigor that is
required for a formal proof.

18

