
Towards Algorithmic Cut-Introduction�

Stefan Hetzl1, Alexander Leitsch2, and Daniel Weller1

1 Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien
2 Institut für Computersprachen, Technische Universität Wien

Abstract. We describe a method for abbreviating an analytic proof in
classical first-order logic by the introduction of a lemma. Our algorithm
is based on first computing a compressed representation of the terms
present in the analytic proof and then a cut-formula that realizes such
a compression. This method can be applied to the output of automated
theorem provers, which typically produce analytic proofs.

1 Introduction

Computer-generated proofs are typically analytic, i.e. they only contain logical
material that also appears in the theorem shown. This is due to the fact that
analytic proof systems have a considerably smaller search space which makes
proof-search practically feasible. In the case of the sequent-calculus, proof-search
procedures work on the cut-free fragment only. But also resolution is essentially
analytic as all clauses derive from the formula that is shown.

One interesting property of non-analytic proofs is their considerably smaller
length. The exact difference depends on the logic (or theory) under consideration,
but it is typically enormous. In (classical and intuitionistic) first-order logic there
are proofs with cut of length n whose theorems have only cut-free proofs of length
2n (where 20 = 1 and 2n+1 = 22n). The length of a proof plays an important
role in many situations such as human readability, space requirements and time
requirements for proof checking (also in applications such as proof carrying code).
For most of these situations general-purpose data compression methods cannot
be used as the compressed representation is not a proof any more. It is therefore
of high practical interest to develop proof-search methods which produce non-
analytic and hence potentially much shorter proofs. The difficulty in devising
such methods is that it seems impossible to come up with a method for finding
useful cut-formulas during proof search. In this paper we take a different angle
at the problem: we start with a cut-free proof and abbreviate it by computing
useful cuts based on a structural analysis of the cut-free proof.

There is another, more theoretical, motivation which derives from the founda-
tions of mathematics: most of the central mathematical notions have developed
from the observation that many proofs share common structures and steps of

� This work was supported by a Marie Curie Intra European Fellowship within the
7th European Community Framework Programme and by the projects P-22028-N13
and I-603 N18 of the Austrian Science Fund (FWF).

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 228–242, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Towards Algorithmic Cut-Introduction 229

reasoning. Encapsulating those leads to a new abstract notion, like that of a
group or a vector space. Such a notion then builds the base for a whole new
theory whose importance stems from the pervasiveness of its basic notions in
mathematics. From a logical point of view this is the introduction of cuts into
an existing proof database. While we cannot claim to contribute much to the
understanding of such processes by the current technical state of the art, this
second motivation is still worthwhile to keep in mind, if only to remind ourselves
that we are dealing with a difficult problem here.

Work on cut-introduction can be found at a number of different places in
the literature. Closest to our approach are [14] which is an algorithm for the
introduction of atomic cuts that is capable of exponential proof compression
and the method [2] for propositional logic which is shown to never increase
the size of proofs more than polynomially. The work [1] is studying a different
approach to cut-introduction which is based on filling a so-called proof skeleton
with formulas in order to obtain a proof with cuts. Yet another approach to the
compression of first-order proofs by introduction of definitions is [13]. A way to
use focusing to avoid proving atomic subgoals twice which results in a proof with
atomic cuts can be found in [8].

In this paper we consider classical first-order logic and treat the problem of
introducing a cut that contains a single quantifier. While this is a modest class,
the present algorithm is to the best of our knowledge the first for the introduction
of quantified non-analytic cuts. The class being simple has the further advantage
of allowing a clear exposition of the basic principles of the algorithm. After some
preparation in Sections 2 and 3 we describe in Section 4 a calculus that allows
to compute compressed representation (“decompositions”) of the terms present
in a cut-free proof. In Section 5 we show how to find a cut-formula that realizes
such a decomposition and in Section 6 we discuss how to further improve the
choice of the cut-formula. Some of the proofs are left out from this paper; the
reader interested in all details is referred to the technical report [6].

2 Proofs and Herbrand-Sequents

A sequent is an ordered pair of sets of formulas (Γ,Δ) written as Γ → Δ.
We use the sequent calculus G3c + Cutcs

1 from [12] and denote it by LK. An
instance of ∀x1 · · · ∀xn A or ∃x1 · · · ∃xn A (for A quantifier-free) is a formula
of the form A[x1\t1, . . . , xn\tn]. A strong quantifier is a ∀ (∃) quantifier with
positive (negative) polarity. We distinguish some important subsets of sequents.

Definition 1. A prenex sequent is a sequent containing only prenex formulas.
A prenex sequent without strong quantifiers is called a Σ1-sequent. A Σ1-sequent
in which every formula has at most one quantifier is called a simple sequent.

The notion of instance extends in a straightforward way to Σ1-sequents. In
this section, we will primarily work with Σ1-sequents which does not constitute

1 G3c+ Cutcs has no structural rules and all its rules are invertible.

230 S. Hetzl, A. Leitsch, and D. Weller

a substantial restriction as one can transform every sequent into a validity-
equivalent Σ1-sequent by skolemisation and prenexification.

Definition 2. Let Γ → Δ be a Σ1-sequent. Then Γ ′ → Δ′ is called Herbrand-
sequent of Γ → Δ if it is a tautology and consists of instances of Γ → Δ. The
complexity of a Herbrand-sequent is defined as |Γ ′ → Δ′| = |Γ ′| + |Δ′|, where
| | denotes cardinality.

Example 1. Consider the language containing a constant symbol a, a unary func-
tion symbol f and a unary predicate symbol P and the sequent

Pa, ∀x (Px ⊃ Pfx)→ Pfma

in this language (we omit parentheses around the argument of a unary symbol).
This sequent has a Herbrand-sequent

Pa, Pa ⊃ Pfa, . . . , Pfm−1a ⊃ Pfma→ Pfma

of complexity m+2. Note that this Herbrand-sequent is of minimal complexity.

The length of a proof π, written as |π|, is defined as the number of inferences.
The following result is shown in [3].

Theorem 1. Let s:Γ → Δ be a Σ1-sequent and π a cut-free proof of s. Then
there is a Herbrand-sequent s′:Γ ′ → Δ′ of s s.t. |s′| ≤ |π|.

Note that given an Herbrand-sequent s′ of s one can find a cut-free proof of s
from s′ by quantifier introductions. Combining this with a propositional proof
of s′ one obtains a cut-free proof of s. Assuming that π is cut-free is essen-
tial for the above theorem to hold. The well-known non-elementary growth of
cut-elimination [9,11,10] shows that it cannot be true if π contains cuts. We gen-
eralize the concept of Herbrand-sequent to extended Herbrand-sequents which
correspond to proofs with cuts (similarly to [4]): define a ∀-cut to be a cut with
cut-formula ∀x A, where A is quantifier-free. There are efficient algorithms for
extracting Herbrand-sequents from cut-free proofs, see e.g. [7].

Definition 3. Let Γ → Δ be a Σ1-sequent, let A be a quantifier-free formula,
α be a variable not appearing in Γ ∪Δ∪{A} and s1, . . . , sk be terms. A sequent
of the form

A[x\α] ⊃
k∧

j=1

A[x\sj], Γ ′ → Δ′

is called extended Herbrand-sequent if it is a tautology and Γ ′ → Δ′ consists of
instances of Γ → Δ. The complexity of the above extended Herbrand-sequent s
is defined as |s| = k + |Γ ′|+ |Δ′|.

Proposition 1. If π is a proof of a Σ1-sequent Γ → Δ and the only cut of π is
a ∀-cut, then there is an extended Herbrand-sequent s of Γ → Δ with |s| ≤ |π|.

Towards Algorithmic Cut-Introduction 231

Proof. W.l.o.g. the strong universal quantifier in the cut is introduced from a
single eigenvariable α. Obtain a propositional proof π′ of an extended Herbrand-
sequent by replacing the introductions of the weak universal quantifier by ∧l-
inferences and omitting all inferences that introduce quantifiers into the end-
sequent.

Example 2. Consider the sequent Pa, ∀x (Px ⊃ Pfx) → Pfn2

a for n ≥ 1. It
can be derived by a proof πn using one ∀-cut as follows:

(χn
1)

∀x (Px ⊃ Pfx)→ Pα ⊃ Pfnα

∀x (Px ⊃ Pfx)→ ∀x (Px ⊃ Pfnx)
∀r

(χn
2)

∀x (Px ⊃ Pfnx), Pa→ P (fn2

a)

Pa, ∀x (Px ⊃ Pfx)→ Pfn2

a
cut

where χn
1 uses the instances α, fα, . . . , fnα of the successor-axiom to prove the

cut formula and χn
2 uses instances a, fna, . . . , f (n−1)na of the cut formula to

prove the claim. The extended Herbrand-sequent of this proof is

C,Pa, Pα ⊃ Pfα, . . . , Pfn−1α ⊃ Pfnα→ Pfn2

a

where

C = (Pα ⊃ Pfnα) ⊃
n−1∧

j=0

(Pf jna ⊃ Pf (j+1)na)

so it has complexity 2(n+ 1).

We have seen in example 1 that the complexity of the minimal Herbrand-sequent
is n2 + 2. So by introducing the cut above we get a quadratic compression. For
the case of a single universal quantifier this bound is sharp. As in the cut-free
case, one can construct a proof with cut from an extended Herbrand-sequent.

Lemma 1. If π is a proof of A ⊃ B,Γ → Δ, then there are proofs π1 of
B,Γ → Δ and π2 of Γ → Δ,A with |π1| ≤ |π| and |π2| ≤ |π|.

Proof. For obtaining π1, replace all ancestors of A ⊃ B by B and the introducing
inferences

Π → Λ,A B,Π → Λ

A ⊃ B,Π → Λ
⊃l by B,Π → Λ .

For π2 proceed analogously.

Proposition 2. Let Γ → Δ be a Σ1-sequent, let s = A[x\α] ⊃
∧k

j=1A[x\sj],
Γ ′ → Δ′ be an extended Herbrand-sequent of Γ → Δ, ψ be a proof of s and l be
the maximal length of a quantifier prefix in Γ → Δ. Then there is a proof π of
Γ → Δ having exactly one ∀-cut, s as extended Herbrand-sequent and satisfies
|π| = O(|ψ|+ |Γ → Δ| · l).

232 S. Hetzl, A. Leitsch, and D. Weller

Proof. By introducing weak quantifiers to derive Γ → Δ from Γ ′ → Δ′ and by
replacing

∧k
j=1 by universal quantifiers, obtain a proof π1 of A[x\α] ⊃ ∀xA, Γ →

Δ with |π1| ≤ |ψ| + |Γ → Δ| · l + 1. By Lemma 1 there are proofs π2 of Γ →
Δ,A[x\α] and π3 of ∀xA, Γ → Δ with |π2| ≤ |π1| and |π3| ≤ |π1|. Define π as

(π2)
Γ → Δ,A[x\α]
Γ → Δ, ∀xA ∀r (π3)

∀xA, Γ → Δ

Γ → Δ
cut

,

and observe |π| = |π2|+ |π3|+ 2 ≤ 2(|ψ|+ |Γ → Δ| · l + 2).

3 Cut-Elimination and Cut-Introduction

Let S: {σ1, . . . , σn} be a set of substitutions; then by (Γ → Δ)S we denote the
sequent Γσ1, . . . , Γσn → Δσ1, . . . , Δσn.

Proposition 3. Let A[x\α] ⊃
∧k

j=1 A[x\sj], Γ ′ → Δ′ be an extended Herbrand
sequent of a Σ1-sequent Γ → Δ, then (Γ ′ → Δ′){[α\sj] | 1 ≤ j ≤ k} is a
Herbrand-sequent of Γ → Δ.

Proof. Consider the proof π of Γ → Δ constructed in the proof of Proposition 2:
by reducing the universal quantifier of the cut using any standard method for cut-
reduction we obtain a proof π′ having only quantifier-free cuts whose Herbrand
sequent is (Γ ′ → Δ′){[α\sj] | 1 ≤ j ≤ k}.

So we have seen in the previous section that the first-order structure of a
Herbrand-sequent corresponds to that of a cut-free proof and that of an extended
Herbrand-sequent to that of a proof with a single ∀-cut. These observations,
together with Proposition 3 that describes cut-elimination on these structures
motivates the following statement of the

Cut-introduction Problem for a Single ∀-cut: Given a simple sequent Γ →
Δ and a Herbrand-sequent Γ ′ → Δ′ of Γ → Δ, find an extended Herbrand-
sequent s = A[x\α] ⊃

∧k
j=1 A[x\sj], Γ ′′ → Δ′′ of Γ → Δ s.t.

Γ ′ → Δ′ = (Γ ′′ → Δ′′){[α\sj] | 1 ≤ j ≤ k}.

In order to describe our solution of the above problem, we first give some defini-
tions. For a sequence of terms t = t1, . . . , tn and a formula F (x) (which may or
may not contain x), we write F (t) for the sequence of formulas F (t1), . . . , F (tn).

For the rest of this section, we fix a simple sequent s = ∀x F1(x), . . . , ∀x Fn(x)
→ ∃x Fn+1(x), . . . , ∃x Fm(x) and a Herbrand-sequent s′ = F1(t1), . . . , Fn(tn)
→ Fn+1(tn+1), . . . , Fm(tm) of s where ti = ti,1, . . . , ti,ni .

We define the termset T (s, s′) = {ti,j | i ≤ m, j ≤ ni}. The following result
shows how the termset can give rise to a solution to the cut-introduction problem.

Towards Algorithmic Cut-Introduction 233

Proposition 4. Let U = {u1, . . . , u�} and S = {s1, . . . , sk} be sets of terms
such that T (s, s′) = {ui[α\sj] | i ≤ �, j ≤ k}. Then

s′ = (F1(u), . . . , Fn(u)→ Fn+1(u), . . . , Fm(u)){[α\sj] | 1 ≤ j ≤ k}

Proof. Let s, s′ be as above. Since T (s, s′) = {ui[α\sj] | i ≤ �, j ≤ k}, for every
i ≤ m, j ≤ ni there exist p, q such that ti,j = up[α\sq]. Inversely, for every p, q
there are i, j s.t. ti,j = up[α\sq].

The first phase of our approach to cut-introduction for simple sequents consists
in determining sets U, S as in Proposition 4. Such sets then induce a schematic
extended Herbrand-sequent.

Definition 4. Let U, S be as in Proposition 4. Then the induced schematic ex-
tended Herbrand-sequent is

Xα ⊃
k∧

j=1

Xsj , F1(u), . . . , Fn(u)→ Fn+1(u), . . . , Fm(u)

where X is a monadic second-order variable.

Let s′′ be the induced schematic Herbrand-sequent corresponding to s, s′, U, S.
The second phase is then to determine a substitution σ = [X\λx.ψ] s.t. s′′σ is
a tautology. We will show that such a substitution σ always exists.

4 A Calculus of Decompositions

We will now describe our algorithmic solution for the first phase. For this whole
section we fix a variable α and a set of ground terms T = {t1, . . . , tn}.
Definition 5. A decomposition of T is a pair of sets of terms, written as U ◦S,
s.t. T = {u[α\s] | u ∈ U, s ∈ S}.
Of course, every T possesses a trivial decomposition by letting U = {α} and
S = T . Keeping our aim of proof compression in mind we are looking for a
decomposition U ◦ S with |U |+ |S| < |T |. We will develop a calculus of decom-
positions along similar lines as a resolution calculus. For a set of terms W and a
term v we writeW [x\v] for {w[x\v] | w ∈W} and v[x\W] for {v[x\w] | w ∈W}
and V(v) for the set of variables occurring in v.

Definition 6. We define the following axioms and rules for the manipulation
of decompositions. Axioms are of the form

{α} ◦ {t}
ax

if t ∈ T.

The rules are

U1 ◦ S U2 ◦ S
(U1 ∪ U2) ◦ S

R
U ◦ S1 U ◦ S2

U ◦ (S1 ∪ S2)
L

U [α\v] ◦ S
U ◦ v[α\S]

→ U ◦ v[α\S]
U [α\v] ◦ S

←

for any term v with α ∈ V(v).

234 S. Hetzl, A. Leitsch, and D. Weller

To simplify the notation, we often omit the braces of singleton sets. The above
calculus is sound in the sense that it only derives decompositions of subsets of
T . More interestingly, it is also complete in the following sense:

Proposition 5. If T has a decomposition U ◦ S then U ◦ S is derivable using
ax,←,R,L.

Proof. Let T = {ui[α\sj] | 1 ≤ i ≤ m, 1 ≤ j ≤ k}. First, observe that ui ◦ sj is
derivable by a single left-shift. Secondly, we have

u1 ◦ sj · · · um ◦ sj
{u1, . . . , um} ◦ sj

R · · ·R and finally

{u1, . . . , um} ◦ s1 · · · {u1, . . . , um} ◦ sk
{u1, . . . , um} ◦ {s1, . . . , sk}

L · · ·L
.

A search for decompositions in this calculus is not very efficient due to the
indeterministic nature of the ←-inferences. Fortunately, it is possible to work
with most general forms of decompositions, thereby getting (almost) rid of the
shift-rules. The rest of this section is devoted to the development of such a most
general calculus and a search procedure for it.

Definition 7. A decomposition U ◦ S is called right normal if U = U ′[α\v]
implies v = α.

A first but essential result is that right normal forms are unique. To show this
we need some auxiliary notions.

Definition 8. For terms t, v with α ∈ V(v) ∩ V(t) we write t ≥ v if there is w
s.t. t = w[α\v].

It will be convenient to work with an inductive definition of the set of right shift
terms of a term.

Definition 9. Let α ∈ V(t) and define a set rsterms(t) as follows: rsterms(α) =
{α} and rsterms(f(t1, . . . , tn)) = {α, f(t1, . . . , tn)} ∪

⋂n
i=1,α∈V(ti)

rsterms(ti).

Example 3. f(c, g(α)) ≥ g(α) because f(c, g(α)) = f(c, α)[α\g(α)] but on the
other hand f(α, g(α)) � g(α) because every w with f(α, g(α)) = w[α\g(α)]
would have to start with f whose first argument can then no longer be filled.
Furthermore t ≥ t and t ≥ α for all terms t. We have rsterms(f(c, g(α))) =
{α, g(α), f(c, g(α))} and rsterms(f(α, g(α))) = {α, f(α, g(α))}.

Lemma 2. Let α ∈ V(t). Then v ∈ rsterms(t) iff t ≥ v.

Lemma 3. ≥ is a partial order of the set of terms containing α.

Note that ≥ is not a total order on the set of terms containing α. For example,
consider the terms f(α), g(α), then clearly α ≤ f(α) and α ≤ g(α) but f(α) and
g(α) are incomparable. On the other hand:

Towards Algorithmic Cut-Introduction 235

Lemma 4. Let α ∈ V(t), then ≥ is a total order of rsterms(t).

For a non-empty set of terms U we define rsterms(U) =
⋂

u∈U rsterms(u). Note
that ≥ on rsterms(U) is total as well because it is a substructure of ≥ on
rsterms(u) for any u ∈ U .

Proposition 6. Every decomposition has a unique right normal form.

Proof. Let U ◦S be a decomposition with two different right normal forms U1◦S1

and U2 ◦ S2. Then there are terms v1, v2 s.t. U = U1[α\v1] = U2[α\v2] and

U1[α\v1] ◦ S
U1 ◦ v1[α\S]

→ and
U2[α\v2] ◦ S
U2 ◦ v2[α\S]

→

where S1 = v1[α\S] and S2 = v2[α\S]. As v1, v2 ∈ rsterms(U) we can apply
Lemma 4 to obtain w.l.o.g. v1 ≥ v2. As U1 ◦S1 �= U2 ◦S2 we have v1 �= v2 hence
v1 > v2, i.e. there is a w �= α s.t. v1 = w[α\v2]. Therefore U = U1[α\v1] =
U1[α\w][α\v2] = U2[α\v2] hence U2 = U1[α\w] which is not in right normal
form.

In light of the above proposition we will henceforth speak about the right normal
form of a decomposition. Note that the right normal form of a term t can be
obtained from using the maximal element of rsterms(t) as a right shift term.

Lemma 5 (Lifting Lemma for L). If

U ◦ S1 U ◦ S2

U ◦ (S1 ∪ S2)
L

and U ′ ◦ S′
1 is the right normal form of U ◦ S1 and U ′ ◦ S′

2 is the right normal
form of U ◦ S2, then

U ′ ◦ S′
1 U ′ ◦ S′

2

U ′ ◦ (S′
1 ∪ S′

2)
L

where U ′ ◦ (S′
1 ∪ S′

2) is the right normal form of U ◦ (S1 ∪ S2).

Proof. Being in right normal form depends only on the U -part of the decompo-
sition. Therefore, if U ′ ◦ S′

i is in right normal form so is U ′ ◦ (S′
1 ∪ S′

2).

Right normality is more problematic when it comes to the R-rule. Consider
the two decompositions {f1(α), f2(α)} ◦ {f(g(c))} and {α} ◦ {h(g(c))}. Both
are right normal and they cannot be combined with a R-rule. However shifting
both to the left gives {f1(f(α)), f2(f(α))} ◦ {g(c)} and {h(α)} ◦ {g(c)} which
can be combined with R yielding {f1(f(α)), f2(f(α)), h(α)} ◦ {g(c)} which is
again right normal. Note that shifting by f(g(α)) and h(g(α)) instead would
give {f1(f(g(α))), f2(f(g(α)))} ◦ {c} and {h(g(α))} ◦ {c} whose combination by
R would no longer be right normal. So if a R-combination is made possible by
applying left shifts before, the minimal such left shifts are most general in the
sense that they yield a right normal conclusion of the R-rule. Let us make this
precise:

236 S. Hetzl, A. Leitsch, and D. Weller

Definition 10. For right normal decompositions D1, D2, D3, abbreviate

D1

D′
1

← D2

D′
2

←

D3
R

by
D1 D2

D3
Rmg .

Lemma 6 (Lifting Lemma for R). If
U1 ◦ S U2 ◦ S
(U1 ∪ U2) ◦ S

R and U ′
1 ◦ S1 is the

right normal form of U1 ◦S and U ′
2 ◦S2 is the right normal form of U2 ◦S, then

U ′
1 ◦ S1 U ′

2 ◦ S2

V ◦ T Rmg where V ◦ T is the right normal form of (U1 ∪ U2) ◦ S.

The calculus consisting of ax,Rmg,L is sound in the sense that only right normal
forms of subsets of T are derived and complete in the following sense:

Theorem 2. If T has a decomposition U ◦S then the right normal form of U ◦S
is derivable using ax,Rmg,L.

Proof. By Proposition 5, there exists a derivation of the right normal form of
U ◦ S using ax,←,R,L. We convert this derivation inductively to one using
only ax,Rmg,L of the same structure bringing every line into right normal form
by leaving out the ←-inferences and applying Lemmas 5 and 6 for the L- and
R-inferences respectively.

We can observe that w.r.t. the generality of a derivation, the calculus (ax,Rmg,L)
behaves like resolution and (ax,←,R,L) like ground resolution. It is useful to
observe the following algorithmic

Corollary 1. Let A be the axioms induced by T , let B be the Rmg-closure of A
and let C be the L-closure of B. Then C contains the right normal forms of all
decompositions of T .

Proof. By inspection of the completeness proof.

Example 4. The sequent Pa, ∀x (Px ⊃ Pfx)→ Pfn2

a has a Herbrand-sequent

Pa, Pa ⊃ Pfa, . . . , Pfn2−1a ⊃ Pfn2

a → Pfn2

a of size n2 as in Example 1.
For abbreviating it we have to find a decomposition of T = {a, fa, . . . , fn2−1a}.
Observe that

α ◦ f in+0a · · · α ◦ f in+n−1a

{α, fα, . . . , fn−1α} ◦ f ina
Rmg, . . . ,Rmg

for all i ∈ {0, . . . , n− 1} and that

{α, fα, . . . , fn−1α} ◦ a · · · {α, fα, . . . , fn−1α} ◦ f (n−1)na

{α, fα, . . . , fn−1α} ◦ {a, fna, . . . , f (n−1)na}
L, . . . ,L

which shows that this final decomposition is in C. This decomposition induces
the schematic extended Herbrand-sequent

Xα ⊃
n−1∧

j=0

Xf jna, Pa, Pα ⊃ Pfα, . . . , Pfn−1α ⊃ Pfnα→ Pfn2

a

Towards Algorithmic Cut-Introduction 237

which has complexity 2(n+1) and has the structure of the extended Herbrand-
sequent of the proof πn from Example 2.

5 Computing the Propositional Structure

Let

s�:Γ,Xα ⊃
n∧

i=1

Xsi → Δ

be an induced schematic extended Herbrand-sequent (see Definition 4) for some
fixed sequents s, s′ and a term decomposition of T (s, s′) by U ◦W . The solution
of the second phase consists in finding a substitution ϑ: {X ← λx.F (x)} (where
F (x) is a quantifier-free formula which may contain the variable x but no other
variable) s.t. the β-normal form of s�ϑ is a valid sequent.

The problem of finding a solution can be simplified by applying our (invertible)
version of LK to s and decompose the formulas in s down to a set of two sequents
of the form

S: {Γ → Δ,Xα; Xw1, . . . , Xwn, Γ → Δ}.
where Γ and Δ are sets of ground formulas, W : {w1, . . . , wn} is a set of ground
terms and α is a constant which does not occur in W . Note that α is basically
an eigenvariable, but in this context can be considered as a constant.

Definition 11. Let s be a sequent, s′ a corresponding Herbrand sequent and

s�: Γ,Xα ⊃
n∧

i=1

Xwi → Δ

be a schematic extended Herbrand sequent corresponding to the term decompo-
sition T of T (s, s′) by U ◦W for W = {w1, . . . , wn}. Then the set of sequents
S: {s1, s2} for

s1 = Xw1, . . . , Xwn, Γ → Δ, s2 = Γ → Δ,Xα,

is called a cut-introduction problem (CIP) w.r.t. T . s1 is called the W -sequent,
and s2 the α-sequent of S. The sequent Sconst:Γ → Δ is called the constant part
of S.

Definition 12. Let S be a CIP w.r.t. a term decomposition T and F (x) be a
quantifier-free formula s.t. V (F (x)) ⊆ {x} and α does not occur in F (x) (we call
F (x) admissible for S). The substitution ϑ: {X ← λx.F (x)} is called a solution
of S if s1ϑ ↓ and s2ϑ ↓ are both valid (where ↓ denotes normalization under
β-reduction). S is called solvable if there exists a solution of S.

Remark 1. The restriction that α does not occur in F (x) is necessary as, in case
of solvability, the formula (∀x)F (x) is the cut-formula of the cut-introduction
problem. As α is the eigenvariable of the quantifier-introduction on the left side
of the cut, α may not appear in (∀x)F (x).

238 S. Hetzl, A. Leitsch, and D. Weller

From now on we denote by S a CIP w.r.t. T where T is a decomposition of
T (s, s′) by U ◦W for W = {w1, . . . , wn}, and by F (x) an admissible formula for
S.

Definition 13. Let s1 = Xw1, . . . , Xwn, A1, . . . , An → B1, . . . , Bm and s2 =
A1, . . . , An → B1, . . . , Bm, Xα and S: {s1, s2} be a CIP.
The formula G: A1 ∧ · · · ∧ An ∧ ¬B1 ∧ · · · ∧ ¬Bm is called the characteristic
formula of S.
The system S ′: {Xw1, . . . , Xwn, G →; G → Xα} is called the characteristic
normal form of S.

Lemma 7. ϑ is a solution of a CIP S iff ϑ solves the characteristic normal
form of S.

Proof. Trivial.

Lemma 8. Let S be a CIP w.r.t. T , and let G be the characteristic formula of
S. Then G(w1), . . . , G(wn)→ is valid.

Proof. Let W = {w1, . . . , wn} and S = {s1, s2} such that s1 = Xw1, . . . , Xwn,
Γ ′ → Δ′. By Proposition 4, for the original Herbrand-sequent Γ ′′ → Δ′′ we have

Γ ′′ → Δ′′ ⊆ (Γ ′ → Δ′){α← w | w ∈ W}.

Let Γ ′ = A1, . . . , An and Δ′ = B1, . . . , Bm, then G(α) = A1∧· · ·An∧¬B1∧· · ·∧
¬Bm. The sequent G(w1), . . . , G(wn) → can be transformed (via substitution
application, and applying ∧: l and ¬: l rules backwards) to the equivalent sequent

s′′1 : (A1, . . . , Ak){α← w1}, . . . , (A1, . . . , Ak){α← wn} →
(B1, . . . , Bm){α← w1}, . . . , (B1, . . . , Bm){α← wn} =
(Γ ′ → Δ′){α← w | w ∈ W}.

But
Γ ′′ → Δ′′ = (Γ ′ → Δ′){α← w | w ∈ W} = s′′1 ,

as Γ ′′ → Δ′′ is a Herbrand-sequent s′′1 is valid. Therefore G(w1), . . . , G(wn) →
is valid.

Theorem 3. Let S be a system in characteristic normal form and let G be
the characteristic formula. Then S is solvable and {X ← λx.G{α ← x}} is a
solution of S.

Proof. Let S: {s1, s2} be a cut-introduction problem for s1 = Xw1, . . . , Xwn, Γ
′

→ Δ′, s2 = Γ ′ → Δ′, Xα, and Γ ′ = A1, . . . , Ak, Δ
′ = B1, . . . , Bm, and G be the

characteristic formula of the problem. We prove that θ = {X ← λx.G{α← x}}
is a solution of S.
(a) s′2: s2θ ↓ is valid. In fact,

s′2 = A1, . . . , Ak → B1, . . . , Bm, A1 ∧ · · · ∧ Ak ∧ ¬B1 ∧ · · · ∧ ¬Bm.

Note that (Xα){X ← λx.G{α← x}} ↓= G.

Towards Algorithmic Cut-Introduction 239

(b) s′1: s1θ ↓ is valid:

s′1 = (Xw1)θ↓, . . . , (Xwn)θ↓, Γ ′ → Δ′ =

(λx.G{α ← x})w1 ↓, . . . (λx.G{α ← x})wn ↓, Γ ′ → Δ′ =

G(w1), . . . , G(wn), Γ
′ → Δ′.

Since G(w1), . . . , G(wn)→ is valid by Lemma 8, s′1 is valid.

Corollary 2. Every cut-introduction problem is solvable.

Proof. By Lemma 7 and Theorem 3.

In fact, once we have a decomposition of the substitution terms we find a canon-
ical solution for the cut-formula. Roughly speaking this solution encodes the
whole sequent Γ ′ → Δ′.

6 Improving the Canonical Solution

In the previous section, we have shown in Theorem 3 that for any CIP S there
exists a solution {X ← λx.G{α ← x}}, where G is the characteristic formula
of S, such that |G| = O(|S|). Still for practical application of the method to
the structuring of proofs, it will be important to further simplify the solution
if possible, since the solution of the CIP corresponds to the cut-formula that is
used to structure the proof. As a motivating example, consider the following.

Example 5. Let S be the CIP of the running example. Then the characteristic
formula of S

G(α) = Pa ∧
∧

0≤i<n

(Pf iα ⊃ Pf i+1α) ∧ ¬Pfn2

a

gives rise to a solution. But there also exists a solution of constant logical com-
plexity, using

H(α) = Pα ⊃ Pfnα

which is preferable over the canonical solution based on G(α). Note that G(α) |=
H(α) but H(α) � G(α) and that H(α) only contains atoms that contain α.

We will now show that the observations from this example can be generalized and
used to simplify the canonical solution. We will focus on characteristic formulas
which are in conjunctive normal form. We will first give a sufficient criterion
for simplification of such characteristic formulas, and then present an algorithm
based on propositional resolution and validity checking that, given a solution,
searches for a smaller one. First, note that the canonical solution is most general.

Proposition 7. Let S be a CIP and ϑ = {X ← λx.F} be a solution for S.
Then G{α← x} |= F , where G is the characteristic formula of S.

240 S. Hetzl, A. Leitsch, and D. Weller

Proof. By Lemma 7, ϑ is a solution to the characteristic normal form of S,
and hence (G ⊃ X(α)){X ← λx.F} = G ⊃ F{x ← α} is valid. Therefore
(G ⊃ F{x← α}){α← x} = G{α← x} ⊃ F is valid.

Note that the converse does not hold: in general, G |= � but {X ← λx.�} is
not a solution of the CIP of our running example.

Proposition 8. Let G be a characteristic formula of the CIP S and assume
that G is in conjunctive normal form. Let G′ be obtained from G by removing
all clauses that do not contain α. Then {X ← λx.G′{α ← x}} is a solution
for S.
Let F be a formula in conjunctive normal form, i.e. F =

∧
i∈{1,...,m} Ci, with

clauses Ci =
∨

j∈{1,...,ni} Li,j, where the Li,j are literals. By L we denote the

dual of a literal L. For two clauses Ci, Cj , if there exists exactly one pair (k, �)
such that Li,k = Lj,�, we define their resolvent

res(Ci, Cj) =
∨

r∈{1,...,ni}\k
Li,r ∨

∨

q∈{1,...,nj}\�
Lj,q

and leave res(Ci, Cj) undefined otherwise.
Then define

R(F) = {res(Ci, Cj) ∧
∧

k∈{1,...,m}\{i,j}
Ck | res(Ci, Cj) defined}.

Note that if G ∈ R(F) then |G| < |F |. Since Ci ∧ Cj ⊃ res(Ci, Cj), we have

Lemma 9. If H ∈ R(F) then F ⊃ H is valid.

This directly translates to a result on CIPs:

Proposition 9. Let S = {Xw1, . . . , Xwn, Γ → Δ, Γ → Δ,Xα} be a CIP and
H ∈ R(F).

(1) If F (w1), . . . , F (wn), Γ → Δ is not valid, then {X ← λx.H(x)} is not a
solution for S.

(2) If Γ → Δ,F (α) and H(w1), . . . , H(wn), Γ → Δ are valid, then {X ←
λx.H(x)} is a solution for S.

Proof. For showing (1), assume that H(w1), . . . , H(wn), Γ → Δ is valid. Then
by Lemma 9, F (w1), . . . , F (wn), Γ → Δ is valid.

For (2), it suffices to show that Γ → Δ,H(α) is valid, which follows from the
same Lemma.

Propositions 7, 8 and 9 suggest a resolution-based method to find more efficient
solutions for a CIP {Xw1, . . . , Xwn, Γ → Δ, Γ → Δ,Xα}, starting from a
canonical solution G in conjunctive normal form: First, apply Proposition 8 to
remove unnecessary clauses from G to obtain G′. Then, compute R(G′). Since
G′ yields a solution, we have Γ → Δ,G′(α) and hence it suffices to check for

Towards Algorithmic Cut-Introduction 241

F ∈ R(G′) whether F (w1), . . . , F (wn), Γ → Δ is valid to determine whether F
yields a solution. If it is valid, we iterate the procedure on F . If it is not valid,
then we know that no iteration of R on F will yield a solution, so we can abort
the search on this branch of the search tree. Since on each branch of the search
tree, the size of solutions decreases, the search terminates.

Example 6. Let S be the CIP of the running example for n = 2, which has the
characteristic formula, written in conjunctive normal form,

G(α): Pa ∧ (¬Pα ∨ Pfα) ∧ (¬Pfα ∨ Pf2α) ∧ ¬Pf4a.

Application of Proposition 8 yields

G′(α): (¬Pα ∨ Pfα) ∧ (¬Pfα ∨ Pf2α).

We have R(G′) = {¬Pα ∨ Pf2α}. By (2) of Proposition 9, it suffices to check
whether

Pa,¬Pa ∨ Pf2a,¬Pf2a ∨ Pf4a→ Pf4a

is valid, which is the case. Since R(¬Pα ∨ Pf2α) = ∅, search terminates and
we have found a smaller solution. In general, the algorithm obtains the solution
¬Pα ∨ Pfnα after a linear number of iterations.

7 Conclusion

We have presented a method for cut-introduction which computes a quantified
cut-formula from a structural analysis of a cut-free proof. This paper is a first
step towards algorithmically feasible proof compression by cut-introduction.

As further work we plan to extend the method: the introduction of an ar-
bitrary number of ∀-cuts can be dealt with based on the results in [5] using a
decomposition calculus where lines have a flexible width. The extension from
single quantifiers to blocks of quantifiers consists in replacing a single vari-
able by a vector of variables. The treatment of cuts with quantifier alternations
first requires a description of the structure of Herbrand-sequents obtained from
such proofs (along the lines of Proposition 3) which is an interesting theoretical
problem.

In order to study this method in a realistic context we plan to implement it
within the existing gapt-project2 and to apply it to the output of automated
theorem provers.

References

1. Baaz, M., Zach, R.: Algorithmic Structuring of Cut-free Proofs. In: Martini, S.,
Börger, E., Kleine Büning, H., Jäger, G., Richter, M.M. (eds.) CSL 1992. LNCS,
vol. 702, pp. 29–42. Springer, Heidelberg (1993)

2 http://code.google.com/p/gapt/

http://code.google.com/p/gapt/

242 S. Hetzl, A. Leitsch, and D. Weller

2. Finger, M., Gabbay, D.: Equal Rights for the Cut: Computable Non-analytic Cuts
in Cut-based Proofs. Logic Journal of the IGPL 15(5–6), 553–575 (2007)

3. Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische
Zeitschrift 39, 176–210, 405–431 (1934–1935)

4. Hetzl, S.: Describing proofs by short tautologies. Annals of Pure and Applied
Logic 159(1–2), 129–145 (2009)

5. Hetzl, S.: Applying Tree Languages in Proof Theory. In: Dediu, A.-H.,
Mart́ın-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 301–312. Springer, Hei-
delberg (2012)

6. Hetzl, S., Leitsch, A., Weller, D.: Towards Algorithmic Cut-Introduction. technical
report, http://www.logic.at/people/hetzl/

7. Hetzl, S., Leitsch, A., Weller, D., Woltzenlogel Paleo, B.: Herbrand Sequent Ex-
traction. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk,
F. (eds.) AISC/Calculemus/MKM 2008. LNCS (LNAI), vol. 5144, pp. 462–477.
Springer, Heidelberg (2008)

8. Miller, D., Nigam, V.: Incorporating Tables into Proofs. In: Duparc, J., Henzinger,
T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 466–480. Springer, Heidelberg (2007)

9. Orevkov, V.P.: Lower bounds for increasing complexity of derivations after cut
elimination. Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matem-
aticheskogo Instituta 88, 137–161 (1979)

10. Pudlák, P.: The Lengths of Proofs. In: Buss, S. (ed.) Handbook of Proof Theory,
pp. 547–637. Elsevier (1998)

11. Statman, R.: Lower bounds on Herbrand’s theorem. Proceedings of the American
Mathematical Society 75, 104–107 (1979)

12. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, 2nd edn. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press (2000)

13. Vyskočil, J., Stanovský, D., Urban, J.: Automated Proof Compression by Invention
of New Definitions. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS,
vol. 6355, pp. 447–462. Springer, Heidelberg (2010)

14. Woltzenlogel Paleo, B.: Atomic Cut Introduction by Resolution: Proof Structuring
and Compression. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS,
vol. 6355, pp. 463–480. Springer, Heidelberg (2010)

http://www.logic.at/people/hetzl/

	Towards Algorithmic Cut-Introduction

	Introduction
	Proofs and Herbrand-Sequents
	Cut-Elimination and Cut-Introduction
	A Calculus of Decompositions
	Computing the Propositional Structure
	Improving the Canonical Solution
	Conclusion
	References

