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A SIMPLIFIED PROOF OF THE EPSILON THEOREMS

STEFAN HETZL

Abstract. We formulate Hilbert’s epsilon calculus in the context of expansion proofs. This
leads to a simplified proof of the epsilon theorems by disposing of the need for prenexification,
Skolemisation, and their respective inverse transformations. We observe that the natural notion
of cut in the epsilon calculus is associative.

§1. Introduction. The epsilon calculus has been introduced by D. Hilbert as part of
his programme for the foundation of mathematics. It is based on adding an operator
ε to first-order logic with the intended semantics that εxA denotes an individual x for
which A holds, if such an x exists. The quantifiers of first-order logic can be defined by
the ε-operator and thus first-order logic can be understood based on quantifier-free
reasoning involving the ε-operator. The epsilon calculus is obtained from first-order
logic by adding simple axioms fixing the behaviour of the ε-operator. The epsilon
calculus has been used for consistency proofs [1], for studying proof complexity [2, 24],
in computational proof theory [8], and in linguistics (see [6] for a survey).

Its main theorems, the epsilon theorems, are an analogue of cut-elimination in the
sequent calculus. The first epsilon theorem states that, if a quantifier- and epsilon-
free formula is provable in the epsilon calculus, then it is provable in first-order
logic. The second epsilon theorem states that, if an epsilon-free formula is provable
in the epsilon calculus, then it is provable in first-order logic. The standard proof of
the epsilon theorems [17] (see also [24]) proceeds as follows: first, a (non-elementary)
elimination procedure is carried out as the proof of the first epsilon theorem. For
proving the second epsilon theorem, first, the extended first epsilon theorem is
shown which states that if a formula ∃xA(x), with A quantifier- and ε-free, is provable
in the epsilon calculus, then there are term tuples t1, ... , tn s.t.

∨n
i=1A(ti) is provable in

first-order logic. This result can be shown by, essentially, repeating the proof of the first
epsilon theorem with some extra care concerning the disjunction. Finally, the second
epsilon theorem is proved by Skolemisation, prenexification, and an application of the
extended first epsilon theorem, followed by deskolemisation and deprenexification.

In this paper we give a simplified proof of the epsilon theorems. The crucial
observation is that, if we phrase the epsilon theorems in the context of expansion
proofs, then the proof of the first epsilon theorem already gives the second epsilon
theorem as a result. Neither prenexification, nor Skolemisation, nor their inverses are
required. Expansion trees are a formalism for representing Herbrand expansions of
infix formulas. They have originally been introduced in the context of higher-order logic
in [22]. Expansion trees have turned out to be useful for both theoretical investigations
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2 STEFAN HETZL

as, e.g., in [7, 10, 26] as well as implementations (see, e.g., [3, 15, 19] and have become
standard in the literature).

The second contribution of this paper is to develop the natural notion of cut in the
epsilon calculus and to observe that it is associative, which suggests the perspective of
investigating the epsilon calculus from the point of view of category theory along the
lines of [18].

§2. Terms, formulas, and substitutions. To obtain a uniform treatment of first-
order quantifiers and the ε-operator it is convenient to represent first-order terms and
formulas, with and without ε, as simply typed lambda terms in the spirit of [11].
The base types of our simply typed lambda calculus are �, for individual, and o, for
Boolean. The types are formed from the base types with the binary type constructor→.
The logical constants are ∧ : o → o → o, ∨ : o → o → o, and, since we will only be
dealing with first-order logic, ∀ : (� → o) → o, ∃ : (� → o) → o and ε : (� → o) → �.
A first-order function symbol is a (lambda) constant of type �n → � for some n ≥ 0.
A first-order predicate symbol is a (lambda) constant of type �n → o for some
n ≥ 0. A first-order language is a set of first-order function symbols and first-order
predicate symbols. We will only consider first-order languages L that are closed under
dualisation, i.e., for every P : �n → o ∈ L there is a dual P⊥ : �n → o ∈ L. Lambda
terms are formed from variables, the logical constants, and the constants in L using
abstraction and application as usual. We identify terms which only differ in the names
of bound variables; hence, α-equivalence is denoted by =. We write FV(M ) for the
set of free variables of the term M. We employ the usual notational conventions such
as the infix notation of binary connectives and the abbreviation of ∀�x.A as ∀xA, of
∃�x.A as ∃xA, and of ε�x.A as εxA.

A first-order formula is a lambda term M of type o s.t. all variables occurring
in M are of type �. Since, in this paper, we are dealing with first-order logic only,
we will refer to a first-order formula simply as a formula. A sentence is a formula
without free variables. A first-order term is a lambda term M of type � s.t. all variables
occurring in M are of type � and M does not contain ∀ nor ∃ (but may contain ε).
An ε-term is a first-order term of the form εxA. Note that ε-terms do not contain
quantifiers. A first-order term or formula is called ε-free if it does not contain ε.
The ε-free terms and formulas of this paper are those of standard first-order logic.
We define the dual of a formula inductively by (P(t1, ... , tn))⊥ = P⊥(t1, ... , tn) for an
atom P(t1, ... , tn), (A ∧ B)⊥ = A⊥ ∨ B⊥, (A ∨ B)⊥ = A⊥ ∧ B⊥, (∀x A)⊥ = ∃x A⊥,
and (∃x A)⊥ = ∀x A⊥. We sometimes abbreviate A⊥ ∨ B as A ⊃ B .

For the sake of precision, it will later be useful to indicate certain locations in
formulas explicitly. To that aim, we define: a position is a finite word over the alphabet
{1, 2}. We write 〈〉 for the empty position. If q = q1 ··· qn and r = r1 ··· rk are positions,
their concatenation is qr = q1 ··· qnr1 ··· rk . For a set R of positions we define qR =
{qr | r ∈ R}. The positions of a formula are defined inductively as follows.
Pos(A) = {〈〉} if A is an atom, Pos(A ◦ B) = 1Pos(A) ∪ 2Pos(B) for ◦ ∈ {∧,∨},
and Pos(QxA) = 1Pos(A) for Q ∈ {∀,∃}.

Since we are dealing with first-order logic only, we limit our notion of substitution
to replacing objects of type � by first-order terms. On the other hand, in our
setting, substitutions, in addition to replacing variables by first-order terms, may also
replace closed ε-terms by first-order terms. Consequently we define: a substitution
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A SIMPLIFIED PROOF OF THE EPSILON THEOREMS 3

is a finite set of pairs � = [x1\M1, ... , xm\Mm, e1\N1, ... , en\Nn] where x1, ... , xm
are pairwise different variables of type �, e1, ... , en are pairwise different closed
ε-terms andM1, ... ,Mm,N1, ... , Nn are first-order terms. The domain of � is dom(�) =
{x1, ... , xm, e1, ... , en} and the range of � is rng(�) =

⋃m
i=1 FV(Mi) ∪

⋃n
i=1 FV(Ni).

The application of a substitution � to a term M is defined, as usual, by induction on
M renaming bound variables if necessary. A consequence of this definition is that, if
e1 is a subterm of e2, then M [e1\N1, e2\N2] =M [e2\N2] for all M, N1, and N2. We
define �-reduction as usual by (�x.M )N →� M [x\N ].

Even though the definition of such substitutions is straightforward, in applying them
certain phenomena arise that warrant some additional caution. This is best illustrated
by first observing that, if x, y are variables of type � and s, t first-order terms with
y /∈ FV(t), then [y\s][x\t] = [x\t][y\s[x\t]]. If, instead, a is a closed ε-term, we no
longer have [y\s][a\t] = [a\t][y\s[a\t]] as the following example shows.

Example 1. Let M = P(εxQ(x, y)), s = c, t = d , and a = εxQ(x, c), then
M [y\s][a\t] = P(a)[a\d ] = P(d ) butM [a\t][y\s[a\t]] =M [y\s] = P(a).

The crucial point in the above example is that the ε-term a which is replaced by d
is formed partially from M and partially from s inM [y\s], a phenomenon that does
not exist when substituting variables only. A way to obtain an analogous commutation
property for substitution of ε-terms is, roughly speaking, to only replace such ε-terms
whose structure is of maximal complexity among the terms considered. These ε-terms
cannot be obtained by substitution from less complex ε-terms. In the epsilon calculus
this is made precise by the notion of subordination and rank but since this is a more
general phenomenon, we develop these notions for lambda terms here.

Definition 2. Let M be a lambda term and let x be a variable, then the set of terms
subordinate to M w.r.t. x, subordx(M ), is defined inductively as follows:

subordx(c) = ∅ for a constant c,

subordx(y) = ∅ for a variable y,

subordx(MN ) = subordx(M ) ∪ subordx(N ),

subordx(�y.M ) =

{
{�y.M}, if x ∈ FV(�y.M ),
∅, otherwise.

Let �x.M and N be lambda terms, then N is called subordinate to �x.M if N ∈
subordx(M ), in other words, if N is a subterm of M that starts with an abstraction
and contains x as free variable.

Definition 3. The rank of a lambda term is defined inductively by rk(x) =
rk(c) = 0, rk(MN ) = max{rk(M ), rk(N )}, and rk(�x.M ) = 1 + max{rk(N ) | N ∈
subordx(M )} with the convention that max ∅ = 0.

Example 4. Let N =�y.yx andM =�x.zN , then N is subordinate to M, rk(N )=1
and rk(M ) = 2.

Note that this generalises the traditional definition of rank of an ε-term [17, 24]. Also
note that this formalism, in contrast to the traditional one [17, 24], neither requires
notions such as semi-terms and semi-formulas nor does it require the variables bound
by different ε’s to be different, which, although it is theoretically trivial, is a nuisance
for implementations.
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Lemma 5. For any lambda term M and any substitution �: rk(M�) = rk(M ).

Proof. First observe that, for any lambda term M, x /∈ FV(M ) implies
subordx(M ) = ∅. Secondly, we claim that

subordx(M�) = subordx(M )� (∗)

for any lambda term M, any variable x, and any substitution � with x /∈ dom(�) ∪
rng(�). This is shown by induction on the structure of M with the cases for
constants and application being straightforward and the one for variables relying
on x /∈ rng(�). For abstraction let M = �y.N . If x /∈ FV(M ) we are done by the
above observation, so assume that x ∈ FV(M ). Then subordx(�y.N )� = {�y.N}� =
{�y′.N [y\y′]�} where y′ /∈ dom(�) ∪ rng(�) ∪ FV(M ). On the other hand, we also
have x ∈ FV(N [y\y′]�) because x /∈ dom(�) and therefore subordx((�y.N )�) =
subordx(�y′.N [y\y′]�) = {�y′.N [y\y′]�}.

For showing the lemma it suffices to consider the caseM = �x.M0. We proceed by
induction on the rank of M. We assume w.l.o.g. that x /∈ dom(�) ∪ rng(�). Then we
have

rk(M�) = 1 + max{rk(N ) | N ∈ subordx(M�)} =(*) 1 + max{rk(N ) | N ∈ subordx(M )�}
= 1 + max{rk(N0�) | N0 ∈ subordx(M )} = 1 + max{rk(N0) | N0 ∈ subordx(M )}
= rk(M ).

Lemma 6. Let y be a variable, let a be a closed ε-term, let s and t be first-order terms
s.t. y /∈ FV(t), and let M be a lambda term s.t. rk(�y.M ) ≤ rk(a). ThenM [y\s][a\t] =
M [a\t][y\s[a\t]].

Proof. Suppose M contains an ε-term a′ = �x.A s.t. a′[y\s] = a, then �x.A ∈
subordy(M ) and hence rk(�y.M ) > rk(a′). On the other hand, by Lemma 5, we
have rk(a′) = rk(a), contradiction.

Thus, when replacing ε-terms of maximal rank, the substitution has the above
commutation property that is well-known from ordinary substitutions (which only
replace variables).

§3. Expansion proofs. In this section we describe (a variant of) expansion trees,
originally introduced in [22] in the setting of higher-order logic, that is suitable for our
purposes. In particular witness terms may contain ε’s. It will be convenient to treat
universal quantifiers with Skolem symbols instead of eigenvariables, similarly to the
Skolem expansion trees of [22]. Therefore our expansion trees will not contain free
variables.

Skolemisation is often applied in a refutational setting for obtaining a satisfiability-
equivalent formula by replacing existential quantifiers by new function symbols. For
expansion proofs, the dual transformation that yields a validity-equivalent formula
by replacing universal quantifiers is needed. In this validity-preserving Skolemisation,
sometimes also called Herbrandisation, of a formula A, an occurrence of a quantified
subformula ∀y C is replaced by C [y\f(x1, ... , xn)] where x1, ... , xn are the variables
bound by existential quantifiers on the path from the root of A to the root of C. In
a detailed inductive definition of expansion trees we have to also consider the case of
intermediate subformula occurrences, i.e., of B s.t. A is A[B[∀y C ]]. In B the variables
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x1, ... , xk , for some k ≤ n, are already free and thus are considered parameters of B
while the quantifiers ∃xk+1, ... ,∃xn are in B. To deal with this situation precisely we
introduce the notion of Skolem mapping.

Definition 7. Let A be a sentence. A Skolem mapping for A is a pair (p; s) s.t. 1. p is a
k-tuple of terms without free variables for some k ≥ 0 and 2. s assigns a function symbol
sq to every position q of a universal quantifier in A s.t.:

3. sq does not occur in A,
4. q1 �= q2 implies sq1 �= sq2 , and
5. the arity of sq is k plus the number of existential quantifiers on the path from the

root of A to q.

The tuple p are the parameters of (p, s). The range of (p, s) is the range of s.

Example 8. ∃x (P⊥(x) ∨ P(f(x))) is the Skolemisation of ∃x∀y (P⊥(x) ∨ P(y));
((); {1 �→ f}) is a Skolem mapping for ∃x∀y(P⊥(x) ∨ P(y)). In a proof of
∃x∀y (P⊥(x) ∨ P(y)), the variable x may be instantiated with some term t. This
will be reflected by using the Skolem mapping ((t); {〈〉 �→ f}) for the formula
∀y (P⊥(t) ∨ P(y)) in order to store the information that y should be instantiated
with f(t).

Definition 9. We define the notion of expansion tree w.r.t. a Skolem mapping
simultaneously with its shallow mapping Sh(·) and deep mapping Dp(·).

1. Every atom A without free variables is an expansion tree w.r.t. any Skolem mapping
(t; ∅). We define Sh(A) = A and Dp(A) = A.

2. If E1 and E2 are expansion trees w.r.t. Skolem mappings (t; s1) and (t; s2) respec-
tively and ◦ ∈ {∧,∨}, then E1 ◦ E2 is an expansion tree w.r.t. (t; 1s1 ∪ 2s2). We
define Sh(E1 ◦ E2) = Sh(E1) ◦ Sh(E2) and Dp(E1 ◦ E2) = Dp(E1) ◦ Dp(E2).

3. If {t1, ... , tn} is a set of terms and E1, ... , En are expansion trees w.r.t. the Skolem
mappings (p, t1; s), ... , (p, tn; s) and Sh(Ei) = A[x\ti ] for i = 1, ... , n, then E =
∃x A+t1 E1 ··· +tn En is an expansion tree w.r.t. the Skolem mapping (p; 1s). We
define Sh(E) = ∃x A and Dp(E) =

∨n
i=1 Dp(Ei).

4. If E is an expansion tree w.r.t. a Skolem mapping (p, s) with Sh(E) = A[x\f(p)]
where f does not occur in A, then E ′ = ∀x A+f(p) E is an expansion tree with
Skolem mapping (p, 1s ∪ {〈〉 �→ f}, Sh(E ′) = ∀x A and Dp(E ′) = Dp(E).

We simply say that E is an expansion tree if there exists a Skolem mapping w.r.t. which
E is an expansion tree.

Note that ε, being part of our logic, may appear anywhere in an expansion tree,
subject to the general restriction that an ε-term is quantifier-free. If we want to consider
formulas, expansion trees, etc. that do not contain ε we explicitly designate them as
ε-free formulas, expansion trees, etc.

A sequent is a finite set of sentences. If Γ = A1, ... , An is a sequent, E1, ... , En are
expansion trees with Sh(Ei) = Ai for i = 1, ... , n and Skolem mappings of disjoint
range, then S = E1, ... , En is called expansion sequent with Sh(S) = Γ and Dp(S) =∨n
i=1 Dp(Ei).

Definition 10. An expansion sequent S with Sh(S) = Γ is called expansion proof of Γ
if Dp(S) is a tautology.
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Example 11. Let s and t be closed first-order terms, then

E0(s, t) = ∀y (P⊥(s) ∨ P(y)) +f(t) P⊥(s) ∨ P(f(t))

is an expansion tree of ∀y (P⊥(s) ∨ P(y)) with Skolem mapping ((t); {〈〉 �→ f}). Let
E(t) = E0(t, t), then

D0 = ∃x∀y (P⊥(x) ∨ P(y)) +c E(c) and

D = ∃x∀y(P⊥(x) ∨ P(y)) +c E(c) +f(c) E(f(c))

are expansion trees of ∃x∀y (P⊥(x) ∨ P(y)), both with Skolem mapping ((); {1 �→ f}).
D is an expansion proof but D0 is not.

In the setting of an existential formula ∃x Awhere A is quantifier-free, two finite sets
of instances,

∨
t∈T A[x\t] and

∨
u∈U A[x\u], can be merged by simply forming their

union
∨
t∈T∪U A[x\t]. We will now generalise this merge operation to expansion trees.

Two expansion trees E1 and E2 are called mergeable if Sh(E1) = Sh(E2) and they have
the same Skolem mapping. If two expansion trees E1 and E2 satisfy Sh(E1) = Sh(E2)
we can w.l.o.g. assume that they are mergeable by renaming the Skolem symbols in one
of them.

Definition 12. Let E1 and E2 be mergeable expansion trees, then their merge E1 � E2

is defined as follows:

1. If A is an atom, then E1 = E2 and we define

E1 � E2 = E1 = E2.

2. If A = A′ ◦ A′′ for ◦ ∈ {∧,∨}, then E1 = E ′
1 ◦ E ′′

1 , E2 = E ′
2 ◦ E ′′

2 and we define

E1 � E2 = (E ′
1 � E ′

2) ◦ (E ′′
1 � E ′′

2 ).

3. If A = ∃x A′, then E1 = ∃x A′ +r1 E1,1 ...+rk E1,k +s1 F1 ...+sl Fl and E2 =
∃x A′ +r1 E2,1 ...+rk E2,k +t1 G1 ...+tm Gm where {s1, ... , sl} ∩ {t1, ... , tm} = ∅
and we define

E1 � E2 = ∃x A′ +r1 (E1,1 � E2,1) ...+rk (E1,k � E2,k)

+s1 F1 ...+sl Fl +t1 G1 ...+tm Gm.

4. If A = ∀x A′, then E1 = ∀x A′ +s〈〉(p) E ′
1, E2 = ∀x A′ +s〈〉(p) E ′

2 and we define

E1 � E2 = ∀x A′ +s〈〉(p) (E ′
1 � E ′

2).

Two expansion sequents S = E1, ... , En and T = F1, ... , Fm are called mergeable
if Sh(Ei) = Sh(Fj) implies that Ei and Fj are mergeable for all i ∈ {1, ... , n} and
j ∈ {1, ... , m}. Note that, up to renaming Skolem symbols, any two expansion sequents
are mergeable. Let S1 = E1,1, ... , E1,k , F1, ... , Fl and S2 = E2,1, ... , E2,k , G1, ... , Gm
be mergeable expansion sequents s.t. Sh(E1,i) = Sh(E2,i) for i = 1, ... , k and
Sh(F1, ... , Fn) ∩ Sh(G1, ... , Gm) = ∅. Then their merge is defined as S1 � S2 = E1,1 �
E2,1, ... , E1,k � E2,k , F1, ... , Fl , G1, ... Gm. Note that Sh(E1 � E2) = Sh(E1) = Sh(E2)
and Sh(S1 � S2) = Sh(S1) ∪ Sh(S2). Moreover, note that the merge operation, both
on expansion trees and on expansion sequents, is associative. We now turn to analysing
the deep mapping of a merge. For quantifier-free sentences A,B we writeA⇒ B if the
formula A ⊃ B is a tautology.
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Lemma 13. Let E1, E2 be mergeable expansion trees, then Dp(E1) ∨ Dp(E2) ⇒
Dp(E1 � E2). Let S1, S2 be mergeable expansion sequents, then Dp(S1) ∨ Dp(S2) ⇒
Dp(S1 � S2).

Proof. The result on formulas is proved by a straightforward induction on the
structure of Sh(E1) = Sh(E2). The most interesting case is that of ∧ since it hinders
the logical equivalence: For E1 = E ′

1 ∧ E ′′
1 and E2 = E ′

2 ∧ E ′′
2 we have

Dp(E1) ∨ Dp(E2) = (Dp(E ′
1) ∧ Dp(E ′′

1 )) ∨ (Dp(E ′
2) ∧ Dp(E ′′

2 ))

⇒ (Dp(E ′
1) ∨ Dp(E ′

2)) ∧ (Dp(E ′′
1 ) ∨ Dp(E ′′

2 ))

⇒IH Dp(E ′
1 � E ′

2) ∧ Dp(E ′′
1 � E ′′

2 )

= Dp(E1 � E2).

The result on sequents follows from that on formulas since we have

Dp(S1) ∨ Dp(S2) =
k∨
i=1

(Dp(E1,i) ∨ Dp(E2,i))
l∨
i=1

Dp(Fi)
m∨
i=1

Dp(Gi)

⇒
k∨
i=1

Dp(E1,i � E2,i)
l∨
i=1

Dp(Fi)
m∨
i=1

Dp(Gi)

= Dp(S1 � S2).

Definition 14. Let E be an expansion tree and let � be a substitution, thenE� is defined
as follows:

1. If E is an atom, then E� is already defined.
2. If E = E1 ◦ E2 for ◦ ∈ {∧,∨}, then E� = E1� ◦ E2�.
3. If E = ∃x A+t1 E1 ··· +tn En, let {s1, ... sk} = {t1�, ... , tn�} and define

E� = ∃x A� +s1
⊔

1≤i≤n
ti �=s1

Ei� ··· +sk
⊔

1≤i≤n
ti �=sk

Ei�.

This is well-defined since ti� = tj� implies that Ei� and Ej� are mergeable.
4. If E = ∀x A+f(t) E0, then E� = ∀x A� +f(t)� E0�.

For an expansion sequent S = E1, ... , En we define S� as the merge
⊔n
i=1 Ei� of the

singleton expansion sequents E1�, ... , En�.

We have Sh(E�) = Sh(E)� and Sh(S�) = Sh(S)�. The deep formula has the
following behaviour under substitution:

Lemma 15. Let E be an expansion tree, let S be an expansion sequent, and let � be a
substitution. Then Dp(E)� ⇒ Dp(E�) and Dp(S)� ⇒ Dp(S�).

Proof. For the first statement we proceed by induction on E. All cases except the
existential quantifier are straightforward. For the existential quantifier, following the
notation of Definition 14, we have Dp(∃x A+t1 E1 ··· +tn En)� =

∨n
i=1 Dp(Ei)� ⇒IH∨n

i=1 Dp(Ei�) =
∨k
j=1

∨
1≤i≤n
ti �=sj

Dp(Ei�) ⇒Lem. 13 ∨k
j=1 Dp(

⊔
1≤i≤n
ti �=sj

Ei�).

For the second statement let S = E1, ... , En and observe that Dp(S)� = (
∨n
i=1

Dp(Ei))� =
∨n
i=1 Dp(Ei)� ⇒

∨n
i=1 Dp(Ei�) ⇒Lem. 13 Dp(

⊔n
i=1 Ei�) = Dp(S�).
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In particular, applying a substitution to an expansion proof yields an expansion
proof.

Lemma 16. If an ε-free sequent Γ has an expansion proof, then Γ has an ε-free
expansion proof.

Proof. Let S be an expansion proof of Γ, then neither S nor Γ contains a free
variable and thus all ε-terms in S are closed. Let e1, ... , en be the ε-terms in S and
let t be any ε-free term. Then S ′ = S[e1\t, ... , en\t] is an ε-free expansion proof of
Γ[e1\t, ... , en\t] = Γ.

It is straightforward to translate a cut-free sequent calculus proof into an expansion
proof and vice versa. These translations are described in detail in [7], here we just recall
the essential points: the most natural match for the expansion proofs used in this paper
is a cut-free sequent calculus where the rule for the universal quantifier is

Γ, A[x\f(t1, ... , tn)]
Γ,∀x A ∀

,

where t1, ... , tn are the terms inserted for the weak quantifiers on the path from ∀x A to
the end-sequent and a global condition on Skolem symbols guarantees their consistent
choice.

An expansion proof is then read off from a cut-free sequent calculus proof recursively.
The merge operation is used on (explicit and implicit) contractions. The joint trace of
formula successors from the conclusion of the contraction to the end-sequent ensures
mergeability. The Skolem condition on the sequent calculus proof ensures the existence
of a Skolem mapping for the expansion proof. The invariant of the recursive extraction
algorithm is that Dp(Γ) is a tautology where Γ is the current end-sequent.

The translation in the other direction is a bottom-up construction of a sequent
calculus proof guided by the given expansion proof. At each step, an outermost node
of the expansion proof is removed by translating it to an inference in the sequent
calculus. The use of invertible rules ensures that Dp(Γ) remains a tautology where
Γ is the current end-sequent. In case the universal quantifiers are modelled using
eigenvariables, an acyclicity condition which mimics the acyclicity of the subterm
order on Skolem terms is satisfied (see [7] for details).

§4. The epsilon theorems. In this section we define epsilon proofs and show an
elimination theorem which yields the epsilon theorems as corollaries.

Definition 17. A critical axiom is a sentence of the form A[x\t] ⊃ A[x\εxA].

Note that, given a critical axiom A′ ⊃ A′′, the terms t and εxA are uniquely
determined. Given a critical axiomA′ ⊃ A′′ we can therefore speak about itsε-termεxA
and thus, given a set C of critical axioms and an ε-term εxA we can speak about the
subset C ′ ⊆ C of critical axioms of εxA in C.

Definition 18. An ε-preproof is a pair P = (C ;S) where C is a finite set of critical
axioms and S is an expansion sequent. An ε-preproof (C ;S) is called ε-proof if

∧
C ⊃

Dp(S) is a tautology.

Note that the notion of ε-proof is a straightforward generalisation of the notion of
expansion proof which corresponds to the case C = ∅. In Section 5 we will show how
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to read off ε-proofs from sequent calculus proofs. An ε-term a is called critical in an
epsilon preproof P = (C ;S) if there is a critical axiom of a in C.

Definition 19. Let P = (C ;S) be an ε-preproof, let a = εxA be a critical ε-term of
maximal rank in P, and let Ca = {A[x\ti ] ⊃ A[x\a] | 1 ≤ i ≤ n} ⊆ C be the set of
critical formulas of a. The reduct of P w.r.t. a in C is defined as P′ = (C ′, S ′) where

C ′ = (C \ Ca) ∪ (C \ Ca)[a\t1] ∪ ··· ∪ (C \ Ca)[a\tn] and

S ′ = S � S[a\t1] � ··· � S[a\tn].

If P′ is the reduct of P w.r.t. a we write P →a P′. If we want to ignore the ε-term a we
write P → P′. We write � for the reflexive and transitive closure of →.

For P′ to be an ε-proof we need to ensure in particular that C ′ is a set of critical
axioms. This will be obtained from the assumption that rk(a) is maximal via the
following lemma.

Lemma 20. Let a = εxA and b = εyB be closed ε-terms, let B[y\s] ⊃ B[y\b] be a
critical axiom s.t. rk(a) ≥ rk(b), then (B[y\s] ⊃ B[y\b])[a\t] is a critical axiom of
b[a\t].

Proof. By Lemma 6 we have (B[y\s] ⊃ B[y\b])[a\t] = B ′[y\s[a\t]] ⊃ B ′[y\b
[a\t]] where B ′ = B[a\t]. This is a critical axiom of b[a\t].

Lemma 21. If P is an ε-proof and P → P′, then P′ is an ε-proof.

Proof. Let P = (C ;S), P′ = (C ′;S ′), P →a P′ where a = εxA and Ca =
{A[x\ti ] → A[x\a] | 1 ≤ i ≤ n}. Then C ′ and S ′ are as in Definition 19. By
Lemma 20, C ′ consists of critical axioms; hence, P′ is a ε-preproof. Let i ∈ {1, ... , n}.
Note that a = εxA does not occur in A and hence A[x\a][a\ti ] = A[x\ti ]. So
Ca [a\ti ] = {Bj → A[x\ti ] | 1 ≤ j ≤ n} for some formulas B1, ... , Bn. Therefore
A[x\ti ] ⊃

∧
Ca [a\ti ] is a tautology. Since

∧
C ⊃ Dp(S) is a tautology, so is

(
∧
C ⊃ Dp(S))[a\ti ] and, by Lemma 15, also

∧
C [a\ti ] ⊃ Dp(S[a\ti ]). Therefore

A[x\ti ] ⊃
∧

(C \ Ca)[a\ti ] ⊃ Dp(S[a\ti ])︸ ︷︷ ︸
�i

is a tautology. Moreover,
∧n
i=1 ¬A[x\ti ] ⊃

∧
Ca is a tautology and therefore

n∧
i=1

¬A[x\ti ] ⊃
∧

(C \ Ca) ⊃ Dp(S)︸ ︷︷ ︸
�0

is a tautology. Removing the case distinction shows that �0 ∨ �1 ∨ ··· ∨ �n is a
tautology and thus, so is∧

C ′ → Dp(S) ∨ Dp(S[a\t1]) ∨ ··· ∨ Dp(S[a\tn]).

Therefore, by Lemma 13, also ∧
C ′ → Dp(S ′)

is a tautology.
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Theorem 22. Let Γ be an ε-free sequent and let (C ;S) be an ε-proof of Γ. Then there is
an expansion proof S∗ of Γ s.t. (C,S) � (∅, S∗).

Proof. The order of a expansion proof P w.r.t. r ∈ N is the number of ε-terms of
rank r in P. At each step of the reduction we pick an ε-term a of maximal rank s.t. if b
is another ε-term of maximal rank, then a is not a subterm of b. Thus substituting for a
does not change the other ε-terms of maximal rank. Hence the order w.r.t. the maximal
rank strictly decreases and, once the last ε-term of maximal rank is eliminated, the
maximal rank strictly decreases.

Corollary 23 (First ε-theorem). If a quantifier- and ε-free sequent Γ has an ε-proof,
then Γ is a tautology.

Proof. By Theorem 22 there is an expansion proof S∗ of Γ. Since Γ does not contain
quantifiers, Dp(S∗) = Γ and thus Γ is a tautology.

Corollary 24 (Extended first ε-theorem). If a formula ∃x ϕ, where ϕ is quantifier-
and ε-free, has an ε-proof then there are ε-free term tuples t1, ... , tk s.t.

∨k
i=1 ϕ[x\ti ] is

a tautology.

Proof. By Theorem 22 there is an expansion proof S∗ of ∃x ϕ. By Lemma 16 we can
assume that S∗ is ε-free. Since ϕ does not contain quantifiers, Dp(S∗) is a formula of
the required form.

Corollary 25 (Second ε-theorem). If an ε-free sequent Γ has an ε-proof, then Γ has
an ε-free expansion proof.

Proof. Immediate from Theorem 22 and Lemma 16.

§5. Cut for epsilon proofs. In this section we define a cut operation for ε-proofs
which yields an ε-proof of Γ,Δ from ε-proofs of Γ, A and A⊥,Δ. In particular, this
operation allows to read off an ε-proof from a sequent calculus proof with cut in
a straightforward way. We first recall the ε-translation of formulas from [17] (see
also [24]).

Definition 26. The epsilon translation of formulas and terms is defined inductively as
follows:

cε = c, xε = x, f(t1, ... , tn)
ε = f(tε1 , ... , t

ε
n),

P(t1, ... , tn)
ε = P(tε1 , ... , t

ε
n), (A ∧ B)ε = Aε ∧ Bε, (A ∨ B)ε = Aε ∨ Bε,

(∃x A)ε = Aε [x\εxAε ], (∀x A) = Aε [x\εxA⊥ε ], (εxA)ε = εxAε.

Note that A⊥ε = Aε⊥ for all formulas A which can be shown by a straightforward
induction. Moreover, note that Aε = A for a quantifier-free formula A. In particular,
Aεε = Aε for all formulas A.

Example 27. Let A = ∀y (P⊥(x) ∨ P(y)) and b(x) = εy(P(x) ∧ P⊥(y)), then

Aε = P⊥(x) ∨ P(εy(P⊥(x) ∨ P(y))
⊥ε

) = P⊥(x) ∨ P(b(x)).

Let a = εxAε = εx(P⊥(x) ∨ P(b(x))), then

(∃x A)ε = Aε[x\a] = P⊥(a) ∨ P(b(a)).
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In what follows we will replace an n-ary function symbol with an ε-term with n free
variables. In analogy to substitutions, such replacements will be written with angle
brackets and �-abstraction as 〈f1\�x1.εy1A1, ... , fn\�xn.εynAn〉 Their application is
defined by

f(t1, ... , tn)� =

{
f(t1�, ... , tn�), if f /∈ dom(�),
εyA(t1�, ... , tk�), if 〈f\�x1 ···xk.εyA(x1, ... , xk, y)〉 ∈ �.

Definition 28. Let A be a sentence, let ((), s) be a Skolem mapping for A, let q be the
position of a universal quantifier in A, let ∀y B be the subformula of A at q, and let x =
x1, ... , xn be the variables of the existential quantifiers dominating q from the outside-in.
Define �q = 〈sq\�x.εyB⊥ε〉. If q1, ... , qm are the positions of universal quantifiers of A,
define �A =

⋃m
i=1 �qi .

In a nutshell, �A replaces the Skolem symbols of ((), s) for A (which have arbitrary
names and an arity depending on the number of existential quantifiers on the path to
the universal quantifier) by ε-terms (that include the information for which formula
they provide a witness and have an arity depending on the number of free variables in
that formula).

Definition 29. Let E be an expansion tree. The set of critical axioms Eε of E is defined
inductively as

Eε = ∅ for an atom E,

(E1 ◦ E2)ε = Eε1 ∪ Eε2 for ◦ ∈ {∧,∨},
(∃x A+t1 E1 ··· +tn En)ε = {Aε[x\ti ] ⊃ Aε[x\εxAε] | 1 ≤ i ≤ n} ∪ Eε1 ∪ ··· ∪ Eεn ,

(∀x A+sq (t) E0)ε = Eε0 .

The following lemma shows how reasoning about quantifiers is axiomatised by
critical formulas over propositional logic. It is a variant of the lower part of Gentzen’s
mid-sequent theorem for the epsilon calculus and expansion trees for non-prenex
formulas.

Lemma 30. Let E be an expansion tree and A = Sh(E), then Eε�A ∧ Dp(E)�A ⊃ Aε
is a tautology.

Proof. We will show by induction that, for every subtree E0 of E, the formula

Eε0�A ∧ Dp(E0)�A ⊃ Sh(E0)ε�A

is a tautology. This suffices since Aε�A = Aε .
IfE0 is an atom, thenEε0 = ∅ and Dp(E0) = Sh(E0) = Sh(E0)ε . IfE0 = E1 ◦ E2 for

◦ ∈ {∧,∨}, then, by induction hypothesis, both Eε1�A ∧ Dp(E1)�A ⊃ Sh(E1)ε�A and
Eε2�A ∧ Dp(E2)�A ⊃ Sh(E2)ε�A are tautologies. Therefore also

Eε0�A ∧ (Dp(E1)�A ◦ Dp(E2)�A) ⊃ Sh(E1)ε�A ◦ Sh(E2)ε�A

is a tautology.
If E0 is ∃x A0 +t1 E1 ··· +tn En, then, by the induction hypothesis, Eεi �A ∧

Dp(Ei)�A ⊃ Sh(Ei)ε�A is a tautology for i = 1, ... , n. So, since Dp(E0) =∨n
i=1 Dp(Ei), also
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Eε0�A ∧ Dp(E0)�A ⊃
n∨
i=1

Sh(Ei)ε�A

is a tautology. But now Sh(Ei)ε�A = (A0[x\ti ])ε�A = Aε0[x\ti ]�A. Moreover,
Aε0[x\ti ] ⊃ Aε0[x\εxAε0] ∈ Eε0 and Aε0[x\εxAε0] = Sh(E0)ε , so Eε0�A ∧ Dp(E0)�A ⊃
Sh(E0)ε�A is a tautology.

If E0 is ∀x A0 +sq (t) E1, then, by the induction hypothesis, Eε1�A ∧ Dp(E1)�A ⊃
Sh(E1)ε�A is a tautology. But now Eε0 = Eε1 , Dp(E0) = Dp(E1) and since �A replaces
sq(t) by εxA0

⊥[y\t] we also have Sh(E0)ε�A = (∀x A0)ε�A = A0[x\sq(t)]�A =
Sh(E1)ε�A.

Example 31. Let D be as in Example 11 and let A and b(x) be as in Example 27, then

�Sh(D) = 〈f\�x.b(x)〉 = 〈f\�x.εy(P(x) ∧ P⊥(y))〉,
Dε�Sh(D) = {Aε[x\c] ⊃ Aε[x\εxAε], Aε [x\b(c)] ⊃ Aε[x\εxAε]},

Dp(D)�Sh(D) = P⊥(c) ∨ P(b(c)) ∨ P⊥(b(c)) ∨ P(b(b(c))),

and since Aε[x\c] = P⊥(c) ∨ P(b(c)), Aε[x\b(c)] = P⊥(b(c)) ∨ P(b(b(c))), and
Sh(D)ε = Aε[x\εxAε] also

Dε�Sh(D) ∧ Dp(D)�Sh(D) ⊃ Sh(D)ε

is a tautology.

Definition 32. Let P1 = (C1;S1, E) and P2 = (C2;S2, E
′) be ε-preproofs s.t. S1 and

S2 are mergeable and A = Sh(E) = Sh(E ′)⊥. Then we define the ε-preproof

cutA(P1, P2) = (C1�A ∪ C2�A⊥ ∪ Eε�A ∪ E ′ε�A⊥ ;S1�A � S2�A⊥).

Lemma 33. Let P1 = (C1;S1, E) and P2 = (C2;S2, E
′) be ε-proofs s.t. S1 and S2 are

mergeable and A = Sh(E) = Sh(E ′)⊥. Then cutA(P1, P2) is an ε-proof.

Proof. Since P1 and P2 are ε-proofs, the formulas∧
C1�A ⊃ Dp(S1)�A ∨ Dp(E)�A and

∧
C2�A⊥ ⊃ Dp(S2)�A⊥ ∨ Dp(E ′)�A⊥

are tautologies. Furthermore, by Lemma 30, so are

Eε�A ∧ Dp(E)�A ⊃ Aε and E ′ε�A⊥ ∧ Dp(E ′)�A⊥ ⊃ A⊥ε .

Therefore∧
C1�A

∧
C2�A⊥

∧
Eε�A

∧
E ′ε�A⊥ ⊃ (Dp(S1)�A ∨ Aε) ∧ (Dp(S2)�A⊥ ∨ A⊥ε)

is a tautology. Since A⊥ε = Aε⊥ also∧
C1�A

∧
C2�A⊥

∧
Eε�A

∧
E ′ε�A⊥ ⊃ (Dp(S1)�A ∨ Dp(S2)�A⊥)

is a tautology. So, by Lemma 13, cutA(P1, P2) is an ε-proof.

This cut-operation on expansion proofs, together with the algorithm mentioned in
Section 3 and described in detail in [7] gives an algorithm for translating a sequent
calculus proof with cut to an ε-proof.
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§6. Associativity of cut. It is well known that, in the sequent calculus, two cuts
commute as in

(P1)
Γ, A1

(P2)
A1

⊥,Δ, A2

Γ,Δ, A2

(P3)
A2

⊥,Π
Γ,Δ,Π

←→ (P1)
Γ, A1

(P2)
A1

⊥,Δ, A2

(P3)
A2

⊥,Π

A1
⊥,Δ,Π

Γ,Δ,Π

for formulas A1, A2 and sequents Γ,Δ,Π with A1, A2 /∈ Γ, A1
⊥, A2 /∈ Δ and

A1
⊥, A2

⊥ /∈ Π. From a category-theoretic point of view it is desirable to equip proofs
with an associative cut operation. In this section we prove that our cut operation is
indeed associative, i.e., the two above sequent calculus proofs yield the same expansion
proof.

In order to show this result we need to prove a few simple commutation properties
first.

Lemma 34. Let A be a sentence. Then:

1. for every first-order term t: (t�A)ε = tε�A,
2. for every formula F: (F�A)ε = F ε�A, and
3. for every expansion tree E s.t. the ranges of the Skolem mappings of E and A are

disjoint: (E�A)ε = Eε�A.

Proof. 1 can be shown by induction on the structure of t. 2 can be shown by induction
on the structure of F using 1 for atoms. 3 is shown by induction on the structure of E: the
cases of atoms, conjunction, and disjunction are straightforward. If E is ∀x B +sq (t) E0

then

(E�A)ε = (∀x B�A +sq (t�A) E0�A)ε = (E0�A)ε = Eε0�A = Eε�A.

If E is ∃x B +t1 E1 ··· +tn En then

(E�A)ε = {(B�A)ε [x\ti�A] ⊃ (B�A)ε [x\εx(B�A)ε ] | 1 ≤ i ≤ n} ∪ (E1�A)ε ∪ ··· ∪ (En�A)ε

and

Eε�A = {Bε [x\ti ]�A ⊃ Bε[x\εxBε]�A | 1 ≤ i ≤ n} ∪ Eε1�A ∪ ···Eεn�A.
By 2 we have (B�A)ε [x\ti�A] = Bε�A[x\ti�A] = Bε [x\ti ]�A and (B�A)ε [x\εx
(B�A)ε ] = Bε�A[x\εxBε�A] = Bε[x\εxBε]�A which entails the claim together with
the induction hypothesis.

Theorem 35. Let P1 = (C1;S1, E1), P2 = (C2;E ′
1, S2, E2), and P3 = (C3;E ′

2, S3) be
ε-preproofs, letA1 = Sh(E1) = Sh(E ′

1)⊥, and letA2 = Sh(E2) = Sh(E ′
2)⊥ s.t.A1, A2 /∈

Sh(S1), A1
⊥, A2 /∈ Sh(S2) and A1

⊥, A2
⊥ /∈ Sh(S3). Then

cutA2(cutA1(P1, P2), P3) = cutA1(P1, cutA2(P2, P3)).

Proof. Note thatAi�Aj = Ai�A⊥j
= Ai for i, j ∈ {1, 2}. Therefore, by definition, we

have

cutA2 (cutA1 (P1, P2), P3) = (C1�A1�A2�A⊥1
∪ C2�A⊥1

�A2�A⊥1
∪ C3�A⊥2

∪

Eε1�A1�A2�A⊥1
∪ E′

1
ε
�
A⊥1
�A2�A⊥1

∪ (E2�A⊥1
)ε�A2�A⊥1

∪ E′
2
ε
�
A⊥2

;

S1�A1�A2�A⊥1

 S2�A⊥1

�A2�A⊥1

 S3�A⊥2

)
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cutA1 (P1, cutA2 (P2, P3)) = (C1�A1 ∪ C2�A2�A⊥1 �A2
∪ C3�A⊥2

�
A⊥1 �A2

∪

Eε1�A1 ∪ (E′
1�A2 )ε�

A⊥1 �A2
∪ Eε2�A2�A⊥1 �A2

∪ E′
2
ε
�
A⊥2
�
A⊥1 �A2

;

S1�A1 
 S2�A2�A⊥1 �A2

 S3�A⊥2

�
A⊥1 �A2

)

Since C1�A1 does not contain Skolem symbols from A2, we have i) C1�A1�A2 = C1�A1

and, symmetrically ii) C3�A⊥2
�A⊥1

= C3�A⊥2
. Analogously we obtain iii) S1�A1�A2 =

S1�A1 , iv) S3�A⊥2
�A⊥1

= S3�A⊥2
, v)Eε1�A1�A2 = Eε1�A1 , and vi)E ′ε

2 �A⊥2
�A⊥1

= E ′ε�A⊥2
.

Since A1 and A2 have different Skolem symbols we have vii) �A1�A2 = �A2�A1 and
analogously viii) �A⊥1

�A2 = �A2�A⊥1
. The equality follows straightforwardly from

i)–viii) and Lemma 3.

In fact, the ε-proof read off from a sequent calculus proof with cut is global in the
sense that it is invariant under a wide class of rule permutations. The associativity of
cut is merely a special case.

§7. A remark on Skolem axioms. There is an intimate relationship between the
epsilon calculus and Skolemisation. In fact, by considering ε-terms as Skolem terms, a
critical formulaA[y\t] ⊃ A[y\εyA] can be considered an instance of the Skolem axiom
∀x(∃yA0 ⊃ A0[y\f(x)]). Then the elimination of critical formulas corresponds to the
elimination of Skolem axioms from a proof. This relationship has been made explicit
in various forms in the literature: A proof of the second ε-theorem based on sequent
calculus and Skolem functions is given in [20]. A reformulation of first-order predicate
logic using a version of the ε-calculus that uses Skolem functions instead of ε’s is
given in [13]. A presentation of the ε substitution method for first-order arithmetic
and pure first-order logic in terms of Skolem function symbols is given in [25]. In
[8, 9] the authors give a reformulation of the extended first epsilon theorem using
Skolem functions instead of epsilons. In [23] Mints relates a contribution of Skolem
to the epsilon calculus. This connection to Skolemisation carries over to the setting of
this paper: in a formalism obtained from replacing critical formulas by (instances of)
Skolem axioms, an analogue of Theorem 22 can be shown with, essentially, the same
proof.

§8. Conclusion. We have presented a simplified proof of the epsilon theorems. The
use of expansion proofs eliminates the need for Skolemisation and prenexification and
their respective inverse transformations in the proof of the second epsilon theorem.
This work also shows that expansion proofs [22] integrate seamlessly with epsilon
terms [17] and that the notion of rank applies to lambda terms, not just to ε-
terms. A more modern presentation including the use of expansion trees, lambda
tree syntax, reduction relations, negation normal forms, a more modular treatment of
the substitution of ε-terms and a more liberal reduction leads to a smoother formalism
than the original of [17].

Epsilon proofs as introduced in this paper use expansion proofs for representing
the instances of the sequent being proved as do the formalisms in [4, 16] and, up to
minor modifications, also [14, 21]. These formalisms contain cuts with cut formulas
and represent their instances by expansion trees as well. Epsilon proofs do not contain
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cuts. Their critical axioms are more general as the translation in Section 5 shows. In
how far this higher generality affects proof complexity is an open question that is
closely related to the complexity of deskolemisation, see Problem 22 in [12] as well as
[5, 7] for partial results.

In addition, we have observed that the natural cut operation on ε-proofs is
associative. This suggests the perspective of an investigation of the ε-calculus from
the point of view of category theory along the lines of [18].
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