
Archive for Mathematical Logic (2024) 63:813–835
https://doi.org/10.1007/s00153-024-00923-8 Mathematical Logic

Quantifier-free induction for lists

Stefan Hetzl1 · Jannik Vierling1

Received: 27 April 2023 / Accepted: 21 March 2024 / Published online: 20 April 2024
© The Author(s) 2024

Abstract
We investigate quantifier-free induction for Lisp-like lists constructed inductively from
the empty list nil and the operation cons, that adds an element to the front of a list. First
we show that, form ≥ 1, quantifier-freem-step induction does not simulate quantifier-
free (m + 1)-step induction. Secondly, we show that for all m ≥ 1, quantifier-free
m-step induction does not prove the right cancellation property of the concatenation
operation on lists defined by left-recursion.

Keywords Weak theories of arithmetic · Theories of lists · Automated inductive
theorem proving · Transfinite lists

Mathematics Subject Classification 03C62 · 03F30 · 03H15 · 68V15 · 03B35 · 03B70

1 Introduction

In this article we consider Lisp-like lists in the context of the automation of proof by
mathematical induction. The subject of automated inductive theorem proving (AITP)
aims at automating the process of proving statements about inductively constructed
objects such as natural numbers, lists and trees. The formal verification of software is
a particularly prominent application of automated inductive theorem proving. Since
every non-trivial program contains loops or recursion, some form of mathematical
induction is necessary to reason about such programs. By Gödel’s incompleteness
theorem the task addressed by AITP is in general not even semi-decidable. Therefore,
there is a lot more freedom in the choice of the proof systems than in the case of first-
order validity. For that reason and because of technical constraints, a great variety of
methods have been developed for that purpose. To name just a few examples, there

B Stefan Hetzl
stefan.hetzl@tuwien.ac.at

Jannik Vierling
jannik.vierling@tuwien.ac.at

1 Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Vienna, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00153-024-00923-8&domain=pdf

814 S. Hetzl, J. Vierling

are methods based on recursion analysis [5], integration into saturation-based provers
[10, 21, 25], cyclic proofs [3], theory exploration [6], proof by consistency [8].

The current methodology in automated inductive theorem proving concentrates pri-
marily on the implementation of systems and their empirical evaluation. The work in
this article is part of a research program that aims at complementing this state of the
art by focusing on the formal analysis of methods for automated inductive theorem
proving. In particular, we aim at understanding the theoretical limits of systems by
developing upper bounds on the logical strength of methods. Establishing sufficiently
tight upper bounds on the strength of AITP systems often allows us to provide prac-
tically meaningful unprovability results whereas an empirical evaluation only shows
the failure of a particular implementation.Moreover, upper bounds typically reveal the
particular form of induction underlying theAITP systems. This knowledge permits the
direct comparison of methods and helps in judging the applicability of AITP systems
to certain domains.

So far the work in this research program [17–20, 31] has concentrated on induction
for natural numbers only. However, since lists and other inductive data types are
fundamental structures of computer science, it is of paramount importance for the
subject of AITP to analyze the mechanical properties of these inductive datatypes. In
this article we make a first important step towards extending this research program
to inductively defined lists. In particular, we show that the right cancellation property
of the concatenation of lists is not provable by a form of induction used in some
automated inductive theorem proving systems. With this result we pave the way for
obtaining further unprovability results for AITP systems on lists and other inductive
data types.

In the followingwe brieflymention some aspects of axiomatic theories of finite lists
have been studied in theoretical computer science. In [22] an axiomatic theory of linear
lists (Lisp-like lists) is defined and some basic results about consistency, completeness,
and independency of the axioms are shown. Similar theories are considered in a more
general setting in [23]. In [1, 2, 12] the computability aspects of list structures are
investigated.

Axiomatic theories of lists are closely related to theories of concatenation studied
in logic [24, 29]. Theories of concatenation axiomatise strings of symbols over a finite
alphabet. Theories of concatenation have been proposed as alternative basic systems
for the development of metamathematical results such as Gödel’s incompleteness
theorems and computability [9, 13, 14, 30, 32]. In such theories there is no need to
develop a coding of finite sequences [13, 24]. Hence, theories of concatenation permit
a more natural development of syntax.

In this article we consider the provability of the right-cancellation of the concate-
nation of finite lists from quantifier-free big-step first-order induction for Lisp-like
lists. After recalling some basic concepts and notations in Sect. 2, we show the two
main results of this article in Sects. 3 and 4. First, in Sect. 3, we show that in general
m-step quantifier-free induction does not prove (m + 1)-step quantifier-free induc-
tion. This results sets induction on lists in contrast with induction for natural numbers
where big-step quantifier-free induction is not stronger than one-step quantifier-free
induction. Secondly, in Sect. 4, we show that for all m ≥ 1, m-step induction, over
the language consisting of the list constructors and a concatenation operator, does

123

Quantifier-free induction for lists 815

not prove the right cancellation property of the concatenation operation. In order to
show these unprovability results we will construct models whose domain contains
sequences of transfinite length.

2 Preliminaries

In this section we introduce some concepts, notations, and results that we will use
throughout the article. In Sect. 2.1 we recall some basic concepts and notations of
many-sorted first-order logic. Section2.2 defines some basic axioms of the list con-
structors and the traditional induction schema for lists as well as related terminology.
Finally, in Sect. 2.3 we introduce some concepts on transfinite sequences, which we
will use in the model theoretic constructions of Sects. 3 and 4.

2.1 Many-sorted first-order logic

We work in the setting of classical many-sorted first-order logic with equality. Let
S be a finite set of sorts, then for each sort s ∈ S we let Vs be a countably infinite
set of variable symbols of the sort s. We write x : s to indicate that x is a variable
symbol of sort s, that is, x ∈ Vs . When the sort of a variable is irrelevant or clear
from the context, we omit the sort annotation and simply use the variable symbol. We
assume that the sets of variable symbols for the sorts in S are pairwise disjoint. A
many-sorted first-order languageL over the sorts S is a set of predicate symbols of the
form P : s1×· · ·×sn → o and function symbols of the form f : s1×· · ·×sn → sn+1,
where P, f are symbols, s1, . . . , sn, sn+1 ∈ S and o is a special sort symbol assumed
not to appear in S. For a function symbol f the expression f : s1 × · · · × sn →
sn+1 with s1, . . . , sn+1 ∈ S indicates that f takes arguments of sorts s1, …, sn to
a value of sort sn+1. Similarly, for a predicate symbol P the expression of the form
P : s1 × · · · × sn → o indicates that P is a predicate with arguments of sorts s1,
…, sn . Terms of L are constructed as usual from the variable symbols and function
symbols according to their respective types. Each constructed term t has a uniquely
determined sort s and, therefore, we call t an s-term. Formulas of L are constructed
from terms, predicate symbols, the connectives �, ⊥, ∧, ¬, ∨, → and the quantifiers
(∀x : s), (∃x : s) for s ∈ S and x ∈ Vs .

In this article we will make heavy, albeit elementary, use of model theoretic
techniques. Hence, we recall some basic model theoretic concepts and notations.
A first-order structure M for the language L (over sorts S) is a function that
assigns: To each sort s ∈ S a non-empty set M(s); To each function symbol
f : s1×· · ·×sn → sn+1 a function f M :×n

i=1 M(si) → M(sn+1); To each predicate
symbol P : s1 × · · · × sn → o a set PM ⊆×n

i=1 M(si). A variable assignment σ is
a function that assigns to each variable symbol v : s with s ∈ S an element of M(s).
We write M, σ |� ϕ if the formula ϕ is true in M under the variable assignment σ .
Let ϕ(x1 : s1, . . . , xn : sn, y) be a formula and di ∈ M(si) for i = 1, . . . , n, then we
write M, {xi �→ di | i = 1, . . . , n} |� ϕ (or M |� ϕ(d1, . . . , dn, y)) if M, σ |� ϕ,
for all variable assignments σ with σ(xi) = di for i = 1, . . . , n. Thus, in particular,

123

816 S. Hetzl, J. Vierling

M |� ϕ if M, σ |� ϕ for all variable assignments σ . Let t(x1 : s1, . . . , xn : sn) be a
term and d1, . . . , dn a finite sequence in M(s1) × · · · × M(sn), then we write t M (d)

to denote the element b of M such that M, {xi �→ di | i = 1, . . . , n} |� t = b.
In the arguments given in Sects. 3 and 4 it is often necessary to consider terms and

formulas of a language L under some partial variable assignment over an L structure
M . In order to simplify the notation, we let L(M) denote the language L extended by
a fresh function symbol cd : s for each element d ∈ M(s) and sort s ∈ S. Moreover,
we let the structure M interpret the language L(M) by letting M interpret cd as the
object d.

In this article we define a theory T to be a set of sentences, which we call the
axioms of T . Let ϕ be formula, then we write T � ϕ if ϕ is provable in (many-sorted)
first-order logic from the axioms of T . Let T1, T2 be theories, then T1 + T2 denotes
the theory axiomatized by the set of sentences T1 ∪ T2.

Finally, let us define somenotation for someparticular sets of formulas. ByOpen(L)

we denote the set of quantifier-free formulas of the language L. Let � be a set of
formulas, then we write ∀1(�) (∃1(�)) for the set of formulas in � of the form (∀x)ϕ
((∃x)ϕ) where ϕ is a quantifier-free formula and x is a possibly empty sequence of
variables. We also write ∀1(L) for the formulas of the above form in the language L.

2.2 Induction and lists

In this section we introduce the basic construction of finite Lisp-like lists that we
work with in this article. We also recall the traditional induction schema for lists
and its related terminology. Throughout the article we will consider various forms of
induction that will be defined when needed. We use the traditional induction schema
as defined in this section as a reference in the sense that we justify the other induction
schemata in terms of the traditional one.

Nowwewill define the basic language of finite Lisp-like lists and the corresponding
induction schema.

Definition 2.1 The language L0 consists of the sort i of elements and the sort list of
finite lists. Moreover, the language L0 contains the function symbols nil : list and
cons : i × list → list.

Informally, the symbol nil denotes the empty list and cons denotes the operation
that adds a given element to the front of a given list. For the sake of legibility we will
use upper case letters X , Y , Z and variants thereof to denote variables that range over
the sort list. For these variables we omit the the sort annotation, that is, the “: list” part.

The traditional induction schema for Lisp-like lists is analogous to the one for nat-
ural numbers with the exception that the induction step also quantifies over elements.

Definition 2.2 Let ϕ(X , z) be a formula, then the formula IXϕ is given by

(ϕ(nil, z) ∧ (∀X)(∀x)(ϕ(X , z) → ϕ(cons(x, X), z)))) → (∀X)ϕ(X , z).

For a set of formulas �, the theory �-IND is axiomatized by the universal closure of
the formulas IXϕ, where ϕ(X , z) ∈ �.

123

Quantifier-free induction for lists 817

The induction schema given above is parameterized by the set of possible induction
formulas. This permits to consider various theories by varying the structure of the
induction formulas.

We will also refer to the above induction principle as one-step induction, since the
induction step proceeds by a step of size one. In Sect. 3 we will introduce the big-step
induction principle that proceeds in larger steps.

Whenweworkwith theories of lists we usually work over the following base theory
that provides the disjointness and the injectivity of the list constructors nil and cons.

Definition 2.3 The theory T0 is axiomatized by the following axioms

nil �= cons(x, X), (L0.1)

cons(x, X) = cons(y,Y) → x = y ∧ X = Y . (L0.2)

2.3 Transfinite sequences

In this section we introduce some notations and definitions related to transfinite
sequences, that is, sequences indexed by ordinals. Later on in Sects. 3 and 4, we
will heavily rely on transfinite sequences, of length up to ω3, for the construction of
non-standard models of induction over lists.

Let X be a set and α be an ordinal number, then as usual X α denotes the set
{ f : α → X } of sequences of elements ofX with length α. If a ∈ X α and β < α then
we write aβ for a(β), the element of a with index β. By X<α (X≤α) we denote the
set

⋃
β<α X β (

⋃
β≤α X β). In particular, we denote by X ∗ the set X<ω = ⋃

i∈N
X i

of all finite sequences of elements of X . Let a ∈ X≤α , then |a| denotes the ordinal
β ≤ α such that a ∈ X β . The empty sequence () (= ∅) is also denoted by ε and (x)
denotes the one element sequence {0 �→ x}.

In the following we define concatenation of ordinal indexed sequences. The defini-
tion as given below relies on the well-definedness of ordinal subtraction of an ordinal
β from an ordinal α when α ≥ β (see [28, Theorem 8.8]).

Definition 2.4 Let X be a set, α, β ordinals, a ∈ X α , and b ∈ X β , then the sequence
a 	 b ∈ X α+β is defined by

(a 	 b)γ :=
{
aγ if γ < α

bδ otherwise
,

where γ < α + β and δ is the unique ordinal such that α + δ = γ .

Observe that the definition of concatenation of ordinal indexed sequences given
above generalizes the concatenation of finite sequences, since

(a0, . . . , an−1) 	 (b0, . . . , bm−1) = (a0, . . . , an−1, b0, . . . , bm−1).

123

818 S. Hetzl, J. Vierling

The concatenation of ordinal indexed sequences as defined above has some interesting
properties.

Lemma 2.5 Let X be a set, α, β, γ ordinals, a ∈ X α , b ∈ X β , c ∈ X γ , then we have:

(i) associativity: a 	 (b 	 c) = (a 	 b) 	 c;
(ii) left cancellation: If a 	 b = a 	 c, then b = c.

Proof For (i) let μ < α + β + δ. By the associativity of ordinal addition we have
a 	 (b 	 c), (a 	 b) 	 c ∈ X α+β+γ . Now we have to consider three cases. If
μ < α, then μ < α + β. Hence

(a 	 (b 	 c))μ = aμ = (a 	 b)μ = ((a 	 b) 	 c)μ.

If α ≤ μ < α + β, then there is a unique ordinal δ such that α + δ = μ. Moreover,
by the monotonicity properties of ordinal addition we have δ < β. Hence

(a 	 (b 	 c))μ = (b 	 c)δ = bδ = (a 	 b)μ = ((a 	 b) 	 c)μ.

Finally, if α + β ≤ μ < α + β + γ , then there are unique δ1 and δ2 such that
α + δ1 = μ and α + β + δ2 = μ. Furthermore, we have δ1 ≥ β, hence there is δ3
such that β + δ3 = δ1. Thus μ = α + δ1 = α + β + δ3 = α + β + δ2, hence δ2 = δ3.
Therefore

(a 	 (b 	 c))μ = (b 	 c)β+δ3 = cδ3 = cδ2 = ((a 	 b) 	 c)μ.

For (ii) observe that since a 	 b ∈ X α+β , a 	 c ∈ X α+γ we have α +β = α +γ

and therefore by the left cancellation of ordinal addition β = γ . Now let δ < β, then
we have (a 	 b)α+δ = bδ = cδ = (a 	 c)α+δ . Hence, b = c. ��

Observe, however, that since ordinal addition does not have right cancellation, the
concatenation of ordinal indexed sequences does clearly also not have right cancella-
tion.

For sequences we will often be interested in suffixes. In the following definition we
introduce some notation for accessing the suffix of a sequence.

Definition 2.6 (Sequence suffix) LetX be a set, α, β ordinals with β ≤ α, and a ∈ X α ,
then the sequence a ↑ β is given by

(a ↑ β)γ = aβ+γ ,

for γ < μ where μ is the unique ordinal such that β + μ = α.

Finally, let us give some notation for the sequence obtained by concatenating
sequences of uniform length. This construction will be used in Sect. 4 and relies on
ordinal division with remainder (see [28, Theorem 8.27]).

123

Quantifier-free induction for lists 819

Definition 2.7 LetX be a set, α, β ordinals with α > 0, and a ∈ (X α)β . The sequence
�a� ∈ X α·β is defined by

�a�ξ := aδ,μ,

for ξ < α ·β where μ, δ are the unique ordinals such that ξ = (α · δ)+μ with μ < α.
Furthermore, for a ∈ X α , we denote by aβ the sequence �(a)γ<β� consisting of β

times the sequence a.

Example 2.8 Let a = 0, 2, 4, 6, . . . ∈ N
ω be the sequence of even numbers and b =

1, 3, 5, 7, . . . ∈ N
ω be the sequence of odd numbers. Then, e.g., a0 = 0, b0 = 1, and

b1 = 3. Let a = (a, b) ∈ (Nω)2. Then, in the notation of Definition 2.7, α = ω,
β = 2, and �a� = a 	 b = 0, 2, 4, 6, . . . 1, 2, 5, 7, . . . ∈ N

ω·2. For, e.g., ξ = ω + 3,
we have δ = 1 and μ = 3, so �a�ξ = aδ,μ = bμ = 7. Moreover, �a� ↑ 2 =
4, 6, 8, . . . 1, 3, 5, . . . and �a� ↑ ω = b.

3 Big-step induction

Big-step induction is a generalization of the induction principle of Definition 2.2 in
which the induction step proceeds by addingmore thanone element.Big-step induction
and other induction principles are often used in automated inductive theorem provers
[4]. Some formulas can be proved more naturally by a special induction principle.
Hence a special induction principle may allow a prover to find a proof faster under the
constraints of its proof search algorithm or even enable the prover to prove the formula
in the first place [31]. It is therefore interesting to investigate the relation between the
one-step induction principle and special induction principles implemented in AITP
systems.

In this section we show the first main result of this article, namely that, for all
m ≥ 1, quantifier-free (m+1)-step induction for lists does not follow from quantifier-
free m-step induction. In particular, quantifier-free big-step induction for lists cannot
be reduced to quantifier-free one-step induction, which is in contrast to induction on
natural numbers where such a reduction is possible (see for example [31]).

The definition below defines the big-step induction principle for lists considered in
this article. Let us introduce some notation to make it easier to state big-step induction
for lists. Let t1, . . . , tn be a possibly empty list of terms of sort i and T a term of sort
list, then the term cons(t1, . . . , tn; T) is defined inductively by

cons(; T) = T ,

cons(t1, . . . , tn+1; T) = cons(t1, . . . , tn, cons(tn+1, T)).

123

820 S. Hetzl, J. Vierling

Definition 3.1 Let ϕ(x, z) be a formula and m ≥ 1, then the formula Ix�mϕ is given
by

⎛

⎜
⎝

∧

i=1,...,m

(∀x1, . . . , xi−1)ϕ(cons(x1, . . . , xi−1; nil), z)

∧ (∀X)(∀x1, . . . , xm)(ϕ(X , z) → ϕ(cons(x1, . . . , xm; X), z))

⎞

⎟
⎠ → (∀X)ϕ(X , z).

Let � be a set of formulas and m ≥ 1, then the m-step induction schema �-IND�m

over� is axiomatized by the universal closure of the formulas Ix�mϕ where ϕ(x, z) ∈
�.

A simple example of formulas that have natural proofs by big-step induction are
the acyclicity formulas given below, which express that adding a finite number n ≥ 1
of elements to a list results in a different list:

X �= cons(x1, . . . , xn; X). ()

To prove this formula by n-step induction it suffices to proceed by induction on X in
the formula itself. For the base case we have to show that nil �= cons(x1, . . . , xn; nil),
which follows readily from (L0.1). For the induction step we assume (). For a con-
tradiction assume

cons(x ′
1, . . . , x

′
n; X) = cons(x1, . . . , xn, x

′
1, . . . , x

′
n; X).

Then by an n-fold application of (L0.2) we obtain x ′
i = xi for i = 1, . . . , n and

X = cons(x ′
1, . . . , x

′
n; X).

This contradicts the induction hypothesis and thus completes the induction step. Inter-
estingly, however, the acyclicity formula () also has a slightly less natural proof using
one-step quantifier-free induction.

Lemma 3.2 The theory T0 + Open(L0)-IND proves

(i) X �= cons(x1, . . . , xn; X) for n ≥ 1;
(ii) X = nil ∨ (∃x ′)(∃X ′)X = cons(x ′, X ′).

Proof For (i) we assume X = cons(x1, . . . , xn; X) and proceed by induction on X ′ in
the formula

X ′ �= X
︸ ︷︷ ︸
ψ1(X ′)

∧ X ′ �= cons(xn, X)
︸ ︷︷ ︸

ψ2(X ′)

∧ · · · ∧ X ′ �= cons(x2, . . . , xn; X)
︸ ︷︷ ︸

ψn(X ′)

.

For the base case we have to show ψi (nil) for i = 1, . . . , n. For i > 1, this fol-
lows easily from (L0.1) and for i = 0 we obtain X ′ �= X from the assumption
X = cons(x1, . . . , xn; X) and (L0.1). For the induction step we assume

∧n
i=1 ψi (X ′).

123

Quantifier-free induction for lists 821

Let i ∈ {1, . . . , n}. If i = 1 assume cons(x ′, X ′) = X , then by the assump-
tion X = cons(x1, . . . , xn; X) and (L0.2) we obtain X ′ = cons(x2, . . . , xn; X)

which contradicts the assumption ψn(X ′). If i > 1, then assume cons(x ′, X ′) =
cons(xn−i+2, . . . , xn; X), then by (L0.2) we obtain X ′ = cons(xn−i+1, . . . , xn; X),
which contradicts ψi−1(X ′). Hence, we finally obtain (∀X ′)

(∧n
i=1 ψi (X ′)

)
. Thus, in

particular, we have
∧

i=1 ψi (cons(x1, . . . , xn; X)). Therefore, we obtain

cons(x1, . . . , xn; X) �= X ,

which contradicts the first assumption.
For (ii) we proceed by induction on Y in the formula X �= Y . For the base case we

have to show X �= nil. Assume X = nil, then we are done. For the induction step, we
assume X �= Y and X = cons(y,Y) and we are done. Hence we have (∀Y)X �= Y .
Thus in particular X �= X , which is a contradiction and thus implies the claim. ��

This gives rise to the question whether a similar technique as we have used to
prove the acyclicity formulas with quantifier-free induction is also possible in general.
It is straightforward to see that we can simulate big-step induction with single-step
induction by making use of universal quantifiers and conjunction. For the sake of
completeness we recall the argument.

Lemma 3.3 Let m ≥ 1 and ϕ(X , z) be a formula, then

� IX

m∧

i=1

(∀x1). . . (∀xi−1)ϕ(cons(x1, . . . , xi−1; X), z) → IX�mϕ(X , z).

Proof Assume (∀x1). . . (∀xi−1)ϕ(cons(x1, . . . , xi−1; nil), z) for i = 1, . . . ,m and

(∀X)(∀x1). . . (∀xm)(ϕ(X , z) → ϕ(cons(x1, . . . , xm; X), z)). ()

Clearly it suffices to show the following formula.

m∧

j=1

(∀x1). . . (∀x j−1)ϕ(cons(x1, . . . , x j−1; X), z). (†)

We proceed by induction on X in the formula (†). The base case follows imme-
diately from the assumptions. For the induction step case we assume (†). Now let
i ∈ {1, . . . ,m}, let x ′, x1, . . . , xi−1 be fixed but arbitrary. If i < m, then we have to
show ϕ(cons(x1, . . . , xi−1, x ′; X), z), which follows from the induction hypothesis
with j = i + 1. If i = m, then we have to show ϕ(cons(x1, . . . , xm−1, x ′; X), z). By
(†) with j = 1, we have ϕ(X , z), hence by () we obtain the desired formula. ��
Remark 3.4 When the domain of the elements provably consists of a finite number
of elements n ≥ 1, then the quantifiers over elements in the induction formula of
Lemma 3.3 can be replaced by a conjunction. Hence, in this situation (m + 1)-step
induction reduces to m-step induction without an increase in quantifier-complexity of
the induction formulas.

123

822 S. Hetzl, J. Vierling

However, aswewill show, the increase of the quantifier complexitywhen simulating
big-step induction with one-step induction is in general unavoidable. The remainder
of the section is devoted to the proof of the following proposition.

Definition 3.5 The languageLA extends the base language of listsL0 by the predicate
symbol A : list → o.

Proposition 3.6 Let m ≥ 2, then

T0 +
⋃

1≤ j<m

Open(LA)-IND� j � Ix�m A(x).

This proposition entails, in particular, thatT0+Open(LA)-IND � Open(LA)-IND�2.
We will show the above claim by constructing a model of quantifier-free induction

over the language LA in which the predicate A does not satisfy two-step induction.
In such a model we call an element a standard element if it can be expressed as
a term of the form cons(x1, . . . cons(xn, nil)) under a suitable variable assignment.
All other elements are called the non-standard elements. By Lemma 3.2.(ii) a non-
standard element can be decomposed any finite number of times and thus resemble
transfinite sequences of length at least ω. The model constructed in Definition 3.8 will
use transfinite sequences of length up to ω as the non-standard elements. Since for
example the transfinite sequence vω with v ∈ N

∗ satisfies vω = v 	 vω it violates
the acyclicity property X �= cons(x1, . . . , x|v|, X) (see Lemma 3.2). Hence we have
to avoid sequences that absorb a finite prefix.

The following definition introduces the non-standard elements that we use for the
model constructed in this section.

Definition 3.7 Let k ∈ N, then by Nk we denote the sequence (i)k≤i<ω. Now we
define

N := {w 	 Nk | w ∈ N
∗, k ∈ N}.

Let N ∈ N , then there is a unique decomposition N = w 	 Nk such that |w| and k
are minimal. We write wN for this w and kN for this k. We call wN the main prefix of
N and NkN the main suffix of N .

We can now define a structure whose domain consists of the finite sequences of
natural numbers and the non-standard elements defined above.

Definition 3.8 Let m ≥ 1, then the structure Mm
1 interprets the sort i as the natural

numbers and the sort list as Mm
1 (list) = N

∗ ∪ N . Furthermore, Mm
1 interprets the list

constructors as nilM
m
1 := ε and consM

m
1 (n, l) := (n) 	 l and the predicate symbol

A : list → o as

AMm
1 := N

∗ ∪ {
N ∈ N | wN �= ε or m � kN

}
.

123

Quantifier-free induction for lists 823

Wesay that an element l1 is a predecessor of an element l2 if there are k, n1, . . . , nk ∈
N such that Mm

1 |� l2 = cons(n1, . . . , nk; l1).
We start by observing that the structure defined above satisfies the basic axioms of

the constructors nil and cons of finite sequences.

Lemma 3.9 Let m ≥ 1, then Mm
1 |� T0.

Proof We start with the axiom (L0.1). We have nilM
m
1 = ε = ∅. Let n ∈ N and

l ∈ Mm
1 (list), then (0, n) ∈ (n) 	 l = consM

m
1 (n, l). Hence, nilM

m
1 �= consM

m
1 (n, l)

and thereforeMm
1 |� (L0.1). Now let n1, n2 ∈ N and l1, l2 ∈ Mm

1 (list) and assume that
consM

m
1 (n1, l1) = (n1) 	 l1 = (n2) 	 l2. Clearly, n1 = n2, hence by Lemma 2.5 we

immediately obtain Mm
1 |� (L0.2). ��

The following lemma shows that unary A predicates ofMm
1 , eventually periodically

become true on predecessors of non-standard elements.

Lemma 3.10 Let m ≥ 1, t(X) be a LA(Mm
1) term, then there is a K ∈ N such that

for all k ∈ N with k ≥ K and m � k, Mm
1 |� A(t(Nk)).

Proof There clearly is a w ∈ N
∗ such that Mm

1 |� t(l) = w 	 l for all l ∈ Mm
1 (list).

If w = ε, then we are done by letting K = 0. Otherwise, we let K = (w)|w|−1 + 2.
For k ≥ K , the sequence Nk is the main suffix of the sequence w 	 Nk and the main
prefix of w 	 Nk is not empty. Thus Mm

1 |� A(t(Nk)). ��
Informally, the following lemma states that unary equational predicates over ele-

ments of Mm
1 eventually stabilize.

Lemma 3.11 Let m ≥ 1 and E(X) an LA(Mm
1) equation. If Mm

1 �|� E(X) then there
exists K ∈ N such that firstly Mm

1 �|� E(w) for allw ∈ N
∗ with |w| ≥ K and secondly

Mm
1 �|� E(Nk) for all k ≥ K.

Proof The casewhere X /∈ Var(E) is trivial. Let E(X)beu(X) = v(X). If X ∈ Var(u)

and Var(v) = ∅, then there is w ∈ N
∗ and l ′ ∈ Mm

1 (list) such that Mm
1 |� u(l) =

w 	 l for all l ∈ Mm
1 (list) and Mm

1 |� v = l ′. If |w| > |l ′|, then we are done by letting
K = 0. Otherwise, if |w| ≤ |l ′| we consider the prefix of l ′. If w is not a prefix of l ′,
then again we are done by letting K = 0. If w is the prefix of l ′, then l ′ = w 	 l ′′ for
some l ′′ ∈ N

≤|l ′|. We have l ′′ ∈ Mm
1 (list), since Mm

1 (list) is closed under predecessors.
Thus Mm

1 |� E(l) if and only if l = l ′′. If l ′′ is a standard element, then Mm
1 �|� E(l)

for all l ∈ Mm
1 (list) with |l| > |l ′′|. Hence, we let K = |l ′′| + 1. Otherwise, if l ′′ is

non-standard, then we readily have Mm
1 �|� E(l) for all l ∈ N

∗. Furthermore, we have
Mm

1 �|� E(l) for all non-standard l ∈ Mm
1 (list) with l0 �= l ′′0 . Hence, it suffices to let

K = l ′′0 + 1.
Now let us consider the case where Var(u)∩Var(v) = {X}. There existw,w′ ∈ N

∗
such that for all l ∈ Mm

1 (list), Mm
1 |� u(l) = w 	 l and Mm

1 |� v(l) = w′ 	 l.
Moreover, by the assumption that Mm

1 �|� E(X)we havew �= w′. Hence, Mm
1 �|� E(l)

for all l ∈ Mm
1 (list). Thus, we let K = 0. ��

We are now ready to show that the structure Mm
1 satisfies quantifier-free j-step

induction for 1 ≤ j < m over the language consisting of the list constructors nil,
cons, and the predicate symbol A.

123

824 S. Hetzl, J. Vierling

Lemma 3.12 Let m ≥ 2, then Mm
1 |� ⋃

1≤ j<m Open(LA)-IND� j .

Proof Let j ∈ N with 1 ≤ j < m and ϕ(X) be a quantifier-free LA(Mm
1) formula.

Assume that

Mm
1 |� ϕ(cons(x1, . . . , xi−1; nil)), (∗)

for i = 1, . . . , j and

Mm
1 |� ϕ(X) → ϕ(cons(x1, . . . , x j ; X)), ()

Let l ∈ Mm
1 (list). We have to show that Mm

1 |� ϕ(l). If l is standard, then we are done
by a straightforward induction on |l| making use of (∗) and ().

Now let us consider the case where l is non-standard, that is, l ∈ N . Let
E1(X), . . . , En(X) be all the list equations of ϕ with Mm

1 �|� Ei (X) for i = 1, . . . , n.
Then by Lemma 3.11 there exists K ∈ N such that Mm

1 �|� Ei (w) for all w ∈ N
∗ with

|w| ≥ K and Mm
1 �|� Ei (Nk) for all k ≥ K .

Now let A(t1(X)), …, A(tp(X)) be all the A atoms of ϕ. By Lemma 3.10, there
exists K ′ ≥ K such that for all k ∈ Nwith k ≥ K ′ andm � k, we haveM |� A(tq(Nk))

for q = 1, . . . , p. Hence, by taking a sufficiently long prefix w of l (|w| ≥ j), we
obtain K ′′ ≥ K ′ such that l = w 	 NK ′′ and m | K ′′ − 1. Since m | K ′′ − 1 and
j < m, we have m � K ′′ + i for i = 0, . . . , j − 1. Thus, Mm

1 |� A(tq(l ↑ |w| − i))
for q = 1, . . . , p and i = 0, . . . , j − 1.

Let ψ(X) be any atom of ϕ(X) and w′ ∈ N
∗ with |w′| ≥ K , then by the above,

for i = 0, . . . , j − 1, we have Mm
1 |� ψ(w′) if and only if Mm

1 |� ψ(l ↑ |w| − i).
Hence, Mm

1 |� ϕ(l ↑ |w| − i) ↔ ϕ(w′). In the first part of the proof we have already
shown that Mm

1 |� ϕ(w′). Hence, we have Mm
1 |� ϕ(l ↑ |w| − i).

Therefore, by a straightforward induction starting with Mm
1 |� ϕ(l ↑ |w| − i) for

i = 0, . . . , j − 1 and by making use of () we obtain Mm
1 |� ϕ(w′ 	 (l ↑ |w|)) for

all w′ ∈ N
∗. In particular, we have Mm

1 |� ϕ(l). ��
Lemma 3.13 Let m ≥ 2, then Mm

1 �|� Ix�m A(x).

Proof We have Mm
1 |� A(w) for all w ∈ N

∗, hence in particular

Mm
1 |� A(cons(x1, . . . , x j−1; nil)) for j = 1, . . . ,m.

Now we consider the induction step. Let l ∈ Mm
1 (list) and n1, . . . , nm ∈ N. If l ∈ N

∗,
then by the above we have

(cons(n1, . . . , nm; l))Mm
1 ∈ N

∗ ⊆ AMm
1 .

Hence, Mm
1 |� A(X) → A(cons(n1, . . . , nm; l)). For l ∈ N we show the contrapos-

itive of the induction step. Suppose first that (n1, . . . , nm) 	 l /∈ AMm
1 . Hence, we

have (n1, . . . , nk) 	 l = Nk for some k ∈ N and m | k. Thus, l = Nk+m that is
l /∈ AMm

1 . Hence, Mm
1 |� A(x) → A(cons(x1, . . . , xm; X)). However, we also have

N0 /∈ AMm
1 because wN0 = ε and kN0 = 0. Hence, Mm

1 �|� Ix�m A(x). ��

123

Quantifier-free induction for lists 825

Proof of Proposition 3.6 An immediate consequence of Lemmas 3.9 and 3.12, and
Lemma 3.13. ��

So far we have shown that simulating quantifier-freem+1-step induction over lists
with m-step induction, is not possible when induction formulas are quantifier-free.
The simulation of big-step induction in Lemma 3.3 by one-step induction makes use
of universal quantifiers and conjunction. This gives rise to the question whether the
use of conjunction is necessary. We conjecture that it is necessary in the following
sense. By Clause(L) we denote the set of all clauses (disjunctions of atoms and their
negation) over the language L.

Conjecture 3.14 Let m ≥ 2, then

T0 +
⋃

1≤ j<m

∀1Clause(LA)-IND� j � Ix�m A(x).

This conjecture is particularly interesting for the methods presented in [15, 16,
25]. As shown in [19, 31] these methods carry out induction on literals and clauses.
However, the results in [19, 31] are formulated for induction over natural numbers and
need to be adapted to the case for induction over lists and other recursive datatypes.
A positive answer to the conjecture above together with analogues of the results [19,
31] would provide a formal justification for the necessity to implement more powerful
induction rules that handle conjunction and quantification such as described in [16]. As
a byproduct, the formulas IX�m A(X) with m ≥ 1 form a set of benchmark problems
of increasing difficulty for automated theorem provers.

The above shows that mechanizing induction on lists is more complicated than
induction on natural numbers in the sense that a reduction of big-step induction to
one-step induction requires induction formulas with a higher quantifier-complexity.
In the following we will consider lists with a concatenation operation and we will
show that big-step induction does not prove the right cancellation of concatenation.

4 Right cancellation of list concatenation

In the previous section we have shown that quantifier-free (m + 1)-big step induction
is strictly stronger than quantifier-free m-step induction, but not stronger than ∀1
induction. In this section we show that big-step quantifier-free induction is in general
strictly weaker than ∀1 induction. We will prove this result by showing that the right
cancellation property of the append operation on lists can not be provedwith quantifier-
free big-step induction on lists. This result is of particular interest for the automation of
proof by mathematical induction, since it implies the necessity to work with induction
rules that exceed the power quantifier-free big-step induction to handle comparatively
basic properties such as the right cancellation of list concatenation.

In the following we will work with a language that extends the base language of
lists L0 by an infix symbol for the concatenation of lists. We will work with the usual
left-recursive definition of concatenation.

123

826 S. Hetzl, J. Vierling

Definition 4.1 The infix function symbol · 	 · : list × list → list represents the
append operation on lists. We define the language L1 to be L0 ∪ {	}. The theory T1
extends the base theory of lists T0 by the following axioms

nil 	 Y = Y , (L1.1)

cons(x, X) 	 Y = cons(x, X 	 Y). (L1.2)

In the following lemmaswe prove several properties about lists, and in particular the
concatenation operation, using increasingly powerful induction principles. We start
by proving some simple properties with quantifier-free induction.

Lemma 4.2 The theory T1 + Open(L1)-IND proves the following formulas

(i) X 	 nil = X,
(ii) X 	 (Y 	 Z) = (X 	 Y) 	 Z.

Proof For both formulas we use a straightforward induction on X and making use of
(L1.1), (L1.2). ��

We prove the next property, the right cancellation for single-element lists, using
simultaneous induction on two variables.

Definition 4.3 Let ϕ(X ,Y , z) be a formula, then the formula IX ,Yϕ is given by

(
(∀X)ϕ(X , nil, z) ∧ (∀Y)ϕ(nil,Y , z)
∧ (∀X)(∀Y)(∀x)(∀y)(ϕ(X ,Y , z) → ϕ(cons(x, X), cons(y,Y), z))

)

→ (∀X)(∀Y)ϕ(X ,Y , z).

Let � be a set of formulas, then the theory �-DIND is axiomatized by the sentences
(∀z)IX ,Yϕ(X ,Y , z) with ϕ(X ,Y , z) ∈ �.

Lemma 4.4 T1 + Open(L1)-DIND proves

Y 	 cons(x, nil) = Z 	 cons(x, nil) → Y = Z .

Proof We proceed by induction on Y and Z simultaneously. We consider only one of
the two base cases, since the other one is symmetric. For the base case Y = nil we
assume nil 	 cons(x, nil) = Z 	 cons(x, nil) and we have to show that Z = nil.
First of all, by (L1.1) we obtain cons(x, nil) = Z 	 cons(x, nil). By Lemma 3.2 we
can consider two cases. If Z = nil, then we are done. Otherwise, there are z′ and Z ′
such that Z = cons(z′, Z ′). Thus

cons(x, nil) = cons(z′, Z ′) 	 cons(x, nil)

=(L1.2) cons(z
′, Z ′ 	 cons(x, nil)).

123

Quantifier-free induction for lists 827

Therefore, by (L0.2) we have in particular nil = Z ′ 	 cons(x, nil). We apply
Lemma 3.2 and consider two cases. If Z ′ = nil, then nil = nil 	 cons(x, nil) =
cons(x, nil), which contradicts (L0.1). Otherwise, there are z′′ and Z ′′ such that
Z ′ = cons(z′′, Z ′′), then, by (L1.2), nil = cons(z′′, Z ′′ 	 cons(x, nil)), which contra-
dicts (L0.1). For the induction step assume Y 	 cons(x, nil) = Z 	 cons(x, nil) →
Y = Z and cons(y,Y) 	 cons(x, nil) = cons(z, Z) 	 cons(x, nil). Then by (L1.2)
and (L0.2) we obtain y = z and

Y 	 cons(x, nil) = Z 	 cons(x, nil).

By the induction hypothesis we obtain Y = Z , thus, cons(y,Y) = cons(z, Z). ��
Observe that double induction is contained within induction on ∀1 formulas when

working modulo case analysis CA given by

(∀X)
(
X = nil ∨ (∃X ′)(∃x ′)X = cons(x ′, X ′)

)
.

Lemma 4.5 CA + ∀1(L)-IND � Open(L)-DIND.

Proof Let ϕ(X ,Y , z) be a quantifier-free L formula. Let X ,Y , z be fixed and assume
(∀X)ϕ(X , nil, z), (∀Y)ϕ(nil,Y , z), and

(∀X)(∀Y)(∀x)(∀y)(ϕ(X ,Y , z) → ϕ(cons(x, X), cons(y,Y), z)).

We proceed by induction on X in (∀Y)ϕ(X ,Y , z). The base case follows imme-
diately from the assumptions. For the step case assume (∀Y)ϕ(X ,Y , z) and let Y
be fixed. By CA we can consider two cases. If Y = nil, then we are done by the
assumption. Otherwise, there are y′ and Y ′ such that Y = cons(y′,Y ′). By the induc-
tion hypothesis, we obtain ϕ(X ,Y ′, z). Hence, by the third assumptions, we have
ϕ(cons(x, X), cons(y′,Y ′), z), that is, ϕ(cons(x, X),Y , z). ��

Using induction on a ∀1 formula, we can straightforwardly prove the right cancel-
lation of the append operation for arbitrary lists.

Lemma 4.6 The theory T1 + ∀1(L1)-IND proves

Y 	 X = Z 	 X → Y = Z .

Proof We proceed by induction on X in the formula

(∀Y)(∀Z)(Y 	 X = Z 	 X → Y = Z).

For the base case, let Y and Z be arbitrary and assume Y 	 nil = Z 	 nil. By
Lemma 4.2 we readily obtain Y = Z . For the step case we assume

(∀Y)(∀Z)Y 	 X = Z 	 X → Y = Z .

123

828 S. Hetzl, J. Vierling

and Y 	 cons(x, X) = Z 	 cons(x, X). By (L1.1), (L1.2), and Lemma 4.2 we
obtain

(Y 	 cons(x, nil)) 	 X = (Z 	 cons(x, nil)) 	 X .

By the induction hypothesis we obtain Y 	 cons(x, nil) = Z 	 cons(x, nil). Hence,
by Lemmas 4.4 and 4.5 we obtain Y = Z . ��

In the remainder of this section we will show that right cancellation of append
cannot be proved by quantifier-free big-step induction on lists.

Theorem 4.7

T1 +
⋃

m∈N

Open(L1)-IND�m+1 � Y 	 X = X → Y = nil.

We proceed as usual by constructing a structure that satisfies the base theory of
lists with append together with quantifier-free induction for lists, but which contains
elements l1, l2 such that l1 	 l2 = l2 and l1 �= ε. Since the concatenation of transfinite
sequences of length greater or equal to ω does not have the right cancellation property,
as for example a 	 aω = aω, it seems natural to use concatenation as an interpretation
of the append symbol 	.

In Sect. 3 we have already mentioned that, in order to construct a model of T0 +
Open(L0)-IND we have to avoid transfinite sequences λ such that λ = w 	 λ for
some w ∈ N

∗, cf. Lemma 3.2. However, we may introduce sequences that have a
transfinitely periodic structure, such as, the sequence Nω

0 = N0 	 Nω
0 of length ω2.

In the following we define the set of elements that we will use for the construction
of the model of quantifier-free big-step induction.

Definition 4.8 The structure M2 interprets the sort i as the set N and the sort list as the
set L given by

{
�l� 	 w | w ∈ N

∗, l ∈ N β, β < ω2
}

.

Furthermore, the structure M2 interprets the non-logical symbols as follows

nilM2 := ε,

consM2(n, l) := n 	 l,

l1 	M2 l2 := l1 	 l2.

Wewill nowfirst ensure that the structureM2 defined above is indeed awell-defined
L1 structure, that is, that it is closed under the functions nilM2 , consM2 , and 	M2 .

123

Quantifier-free induction for lists 829

Lemma 4.9 M2 is an L1 structure.

Proof We have to show that M2 is closed under the operations nilM2 , consM2(·, ·),
and · 	M2 ·. We have nilM2 = ε ∈ N

∗ ⊆ L. Now let n ∈ N and l ∈ L. Let
l = �(mγ)γ≤β� 	 w with β < ω2, m ∈ N β , and w ∈ N

∗. If β = 0, then
n 	 l = n 	 ε 	 w = n 	 w ∈ N

∗ ⊆ L. Otherwise, if 0 < β, then for γ < β we
let

m′
γ :=

{
(n) 	 m0 if γ = 0,

mγ otherwise

Now observe that (n) 	 �(mγ)γ<β� = �(m′
γ)γ<β� and clearly m′

γ ∈ N , for all

γ < β. Hence, consM2(n, l) ∈ L. Now let l1, l2 ∈ L and consider l1 	M2 l2. If
l1 ∈ N

∗, then we use an analogous argument as above. If l2 ∈ N
∗, then we clearly

have l1 	 l2 ∈ L. If l1 and l2 are non-standard, then for i = 1, 2 there are αi < ω2,
ai ∈ N αi , wi ∈ N

∗ such that li = �ai� 	 wi . Moreover, there exists δ ≤ α2 and
w′ 	 Nk ∈ N such that 1+ δ = α2 and l2 = w′ 	 Nk 	 �(a2,1+γ)γ<δ�. Therefore,
we have

l1 	 l2 = �a1� 	 (w1 	 w′ 	 Nk) 	 �(a2,1+γ)γ<δ� 	 w2.

Since w1 	 w′ 	 Nk ∈ N and α1 + α2 < ω2 we have l1 	 l2 ∈ L. ��
Next we show that M2 satisfies the basic axioms of the list constructors nil and

cons, as well as those of the append symbol.

Lemma 4.10 M2 |� T1.

Proof Let n ∈ N and l ∈ L, then, since every element of N has length ω, there
is some ordinal α < ω3 such that l ∈ N

α . Hence, consM2(n, l) ∈ N
1+α . Therefore

consM2(n, l) �= nilM2 = ε = ∅. ThusM2 |� (L0.1). Now let n1, n2 ∈ N and l1, l2 ∈ L
and assume that n1 	 l1 = n2 	 l2. For i = 1, 2, let αi < ω3 such that li ∈ N

αi . We
thus have 1 + α1 = 1 + α2 which implies α1 = α2. Therefore, n1 = (n1 	 l1)0 =
(n2 	 l2)0 = n2. Let γ < α1, then l1,γ = (n1 	 l1)1+γ = (n2 	 l2)1+γ = l2,γ .
Thus, l1 = l2. Hence M2 |� (L0.2). Now let l ∈ L. We have nilM2 	 l = ε 	 l = l.
Hence, M2 |� (L1.1). Now let n ∈ N, l, l ′ ∈ L. Then we have

consM2(n, l) 	M2 l ′ = ((n) 	 l) 	 l ′ = (n) 	 (l 	 l ′) = consM2(n, l 	M2 l ′).

Thus, M2 |� (L1.2). ��
Since the domain of M2 interprets the sort of lists as transfinite sequences and the

append operation as the concatenation of transfinite sequences, we can decompose list
terms as follows.

Lemma 4.11 Let t(X , y) be aL1 list-term and b elements of M2, then there exist n ∈ N

and l0, . . . , ln ∈ L such that

M2 |� t(X , b) = l0 	 X 	 l1 	 · · · 	 ln−1 	 X 	 ln .

123

830 S. Hetzl, J. Vierling

Proof We proceed by induction on the structure of the term t . If t is nil, then M2 |�
t = ε, and thus we are done. If t is the variable X , then we are done by letting n = 0
and l0 = ε ∈ N

0. If t is of the form cons(u, t ′), then M2 |� u(b) = k, for some k ∈ N.
Hence we apply the induction hypothesis in order to obtain n′ ∈ N and l ′0, . . . , l ′n′ ∈ L

such that M2 |� t ′(X , b) = l ′0 	 X 	 · · · 	 l ′n′−1 	 X 	 l ′n′ . Hence,

M2 |� t(X , b) = (k) 	 l ′0 	 X 	 · · · 	 l ′n′−1 	 X 	 l ′n′ .

Thus, we let n = n′ and l0 = (k) 	 l ′0 and li = l ′i for 1 ≤ i ≤ n. If t is of the form
t1 	 t2, then simply apply the induction hypothesis to t1 and t2. ��

Equational predicates over M2 in one variable stabilize eventually in a similar way
to Lemma 3.11.

Lemma 4.12 Let E(X) be an L1(M2) equation such that M2 �|� E(X), then there
exists N ∈ N such that M2 �|� E((n) 	 l) for all n ≥ N and l ∈ L.

Proof Let E(X) be t1(X) = t2(X), then by Lemma 4.11 for i = 1, 2 there exist
ni ∈ N and li0, . . . , l

i
ni ∈ L such that

M2 |� ti = li0 	 X 	 · · · 	 lini−1 	 X 	 lini .

By the symmetry of equality we can assume n1 ≤ n2 without loss of generality. Since
M2 �|� E(X) we either have n1 �= n2 or l1i �= l2i for some i ∈ {0, . . . , n1}. We start by
assuming that l1i = l2i for i = 0, . . . , n1 and n1 < n2. Then by the left cancellation of
	 we obtain

M2 |� E(X) ↔ ε = X 	 l2n1+1 	 · · · 	 l2n2−1 	 X 	 l2n2 .

Hence, we have M2 �|� E((n) 	 l), for all n ∈ N and l ∈ L. So in this case it suffices
to take N = 0. Now consider the case where there exists j ∈ {0, . . . , n1} such that
l1j �= l2j and let j0 ∈ {0, . . . , n1} be the least such number. There are sequences l, l1′j0
and l2′j0 such that lij0 = l 	 li ′j0 for i = 1, 2 and either |l1′j0 | = 0, |l2′j0 | ≥ 1, or |l1′j0 | ≥ 1,

|l2′j0 | = 0, or |l1′
j0
| ≥ 1, |l2′

j0
| ≥ 1 and (l1

′
j0
)0 �= (l2

′
j0
)0. Hence, by left cancellation of

concatenation, we obtain

M2 |� E(X) ↔ l1′j0 	 X 	 · · · 	 l1n1−1 	 X 	 ln1

= l2′j0 	 X 	 · · · 	 l2n2−1 	 X 	 ln2 .

If l1
′
j0

= ε and l2
′
j0

�= ε, then for n �= (l2j0)0, we have M2 �|� E((n) 	 l) for all l ∈ L. So

in this case we take N = (l2j0)0 + 1 The case where l1
′
j0

�= ε and l2
′
j0

= ε is symmetric.

Finally, in the case that l1
′
j0
, l2

′
j0

�= ε with (l1
′
j0
)0 �= (l2

′
j0
)0, we trivially have M2 �|� E(l)

for all l ∈ L. So it suffices to take N = 0. ��

123

Quantifier-free induction for lists 831

As an immediate consequence of the previous lemma, we obtain the following
result, which essentially says that for a non-standard element λ a list-equation E(X)

can eventually be stabilized for predecessors of λ.

Lemma 4.13 Let E(X) be anL1(M2) equation such that M2 �|� E(X) and λ ∈ L\N
∗.

Then there exists N ∈ N such that M2 �|� E(λ ↑ n) for all n ≥ N.

Proof First by applying Lemma 4.12 we obtainm0 such that M �|� E((m) 	 l) for all
m ≥ m0 and l ∈ L. Sinceλ /∈ N

∗, there clearly isn0 ∈ N such thatλ ↑ n0 = Nm0 	 λ′
for some λ′ ∈ L. Since (λ ↑ n0 + k)0 = m0 + k ≥ m0 for k ∈ N, we have
M2 �|� E(λ ↑ n) for all n ≥ n0. ��

The previous two lemmas show that the truth value of formulas in M2 on non-
standard elements eventually synchronizes with that on standard elements, when
considering sufficiently distant predecessors.

Lemma 4.14 Let ϕ(X) be an open L1(M2) formula and λ ∈ L, then there exists
n0 ∈ N such that

M2 |� ϕ(λ ↑ n) ↔ ϕ((n)),

for all n ≥ n0.

Proof Clearly, it suffices to consider the list-equations of ϕ, since the i-equations
do not depend on the variable X . Let E1(X), . . . , Ek(X) be the atoms of ϕ with
M2 �|� Ei (X), for i = 1, . . . , k. Then by Lemmas 4.13 and 4.12 there is n0 ∈ N such
that M2 �|� Ei (λ ↑ n) and M2 �|� Ei ((n)) for n ≥ n0 and i = 1, . . . , k. Since we have
M2 |� E(X) for the other list-atoms of ϕ, we obtain M2 |� ϕ(λ ↑ n) ↔ ϕ((n)) for
n ≥ n0. ��

We are now ready to show that M2 satisfies open big-step induction.

Proposition 4.15 Let m ∈ N with m ≥ 1, then M2 |� Open(L1)-IND�m.

Proof Let ϕ(X) be a quantifier-free L1(M2) formula. Assume that

M2 |�
∧

i=1,...,m

ϕ(cons(x1, . . . , xi−1; nil)), (∗)

M2 |� ϕ(X) → ϕ(cons(x1, . . . , xm; X)). ()

Let λ ∈ L. If λ ∈ N
∗, then a straightforward induction making use of (∗) and ()

yields M2 |� ϕ(λ). Now we consider the case λ /∈ N
∗, that is, λ is a non-standard

element. By Lemma 4.14 there is n0 ∈ N such that M2 |� ϕ(λ ↑ n) if and only if
M2 |� ϕ((n)) for all n ≥ n0. In particular, we thus have

M2 |� ϕ(λ ↑ n0 + m + i) ↔ ϕ((n0 + m + i))

for i = 0, . . . ,m − 1. Since, M2 |� ϕ(w) for all w ∈ N
∗, we obtain M2 |� ϕ(λ ↑

n0 + m + i) for i = 0, . . . ,m − 1. By a straightforward induction starting with

123

832 S. Hetzl, J. Vierling

M2 |� ϕ(λ ↑ n0 + m − 1), …, M2 |� ϕ(λ ↑ n0) and making use of () we
obtain M2 |� ϕ(w 	 (λ ↑ n0)) for all w ∈ N

∗. Therefore, we have in particular
M2 |� ϕ(λ). ��
Proof of Theorem 4.7 Clearly, N0 ∈ L. Since Nω

0 = �(N0)γ<ω�, we have Nω
0 ∈ L.

Now observe that N0 	 Nω
0 = Nω

0 but N0 �= ∅. Hence, by Proposition 4.15 we are
done. ��

This result is of interest for automated inductive theorem proving, because it essen-
tially provides a lower bound on the power necessary for the proof of a rather simple
yet practically relevant property about the important datatype of lists.

The unprovability of right cancellation of concatenation is a first step towards a
classification of the inductive power needed to prove certain practically interesting
properties of finite Lisp-like lists. Theorem 4.7 as well as the auxiliary results of this
section give rise to many related questions and conjectures that we will briefly discuss
in the following.

We conjecture that even quantifier-free simultaneous induction on several variables
with big-steps does not prove right cancellation of the concatenation operation. Let x =
(x1, . . . , xn) be a finite sequence and i ∈ N such that 1 ≤ i ≤ n, then by x<i we denote
the sequence (x1, . . . , xi−1). Similarly, x>i denotes the sequence (xi+1, . . . , xn).

Definition 4.16 Let X = (X1, . . . , Xm) be pairwise distinct variables with m ≥ 1,
p = (p1, . . . , pm) a sequence of non-zero natural numbers, and ϕ(X , z) a formula.
The multivariate big-step list induction axiom I listX� pϕ for ϕ is given by

⎛

⎜
⎜
⎜
⎝

m∧

i=1

pi∧

j=1

(∀ X<i)(∀ X>i)(∀x1, . . . , x j−1)ϕ(X<i , cons(x1, . . . , x j−1; nil), X>i , z)

∧(∀ X)(∀x p1). . . (∀x pm)
(
ϕ(X , z) → ϕ(cons(x p1; X1), . . . , cons(x pm ; Xm), z)

)

⎞

⎟
⎟
⎟
⎠

→ (∀ X)ϕ(X).

where the x pi with i ∈ {1, . . . ,m} are vectors of variables of sort iwhose elements are
all pairwise distinct. Let� be a set of formulas, then theory�-INDlist↗�

is axiomatized

by I listX� pϕ with ϕ(X , z) ∈ � and X , p as above.

Conjecture 4.17 T1 + Open(L1)-INDlist↗�
� Y 	 X = Z 	 X → Y = Z.

A positive answer to this question would thus greatly improve upon our Theo-
rem 4.7. A related question of interest is whether single-element right cancellation
can be proven by quantifier-free big-step induction in one variable.

The subject of AITP mainly focuses on the mechanization of induction in general,
rather than on the mechanization of individual theories. Nevertheless, the theories of
lists with concatenation considered in this section are of some practical relevance.
Hence, it may be valuable to investigate their mechanization separately. Because of
the homomorphic relation between natural numbers with addition and lists with con-
catenation, it could be especially interesting to investigate whether simple theories of

123

Quantifier-free induction for lists 833

lists such as T1 +∀1(L1)-IND have finite axiomatizations analogous to the one shown
in [27] for natural numbers with addition.

Finally, let us observe that as an immediate consequence of Proposition 4.15 we
obtain the unprovability of right-decomposition of list by open big-step induction.

Corollary 4.18 T1 + ⋃
m≥1 Open(L1)-IND�m does not prove

X = nil ∨ (∃x ′)(∃X ′)X = X ′ 	 cons(x ′, nil).

Proof Consider the element N0 ∈ M2(list) and observe that N0 �= nil but since
|N0| = ω, we cannot express N0 as λ 	 (n) with λ ∈ N

≤ω and n ∈ N. Now, the
claim follows from Proposition 4.15. ��

Clearly, the formula X = nil ∨ (∃x ′)(∃X ′)X = X ′ 	 cons(x ′, nil) is provable by
induction on the formula itself, that is, by ∃1 induction. This gives rise to the question
whether right-decomposition can be proved by ∀1 induction and more generally to the
more general question how ∃1 induction and ∀1 induction over lists with concatenation
are related. This question is relevant for AITP, since there are systems such as [21] that
are based on ∃1 induction [18] and systems such as [10] that are based on ∀1 induction
[31, Chapter 5]. We plan to investigate this question separately in the future.

5 Conclusion

In this article we have shown two main results about induction for lists. Firstly, in
Sect. 3 we have shown that quantifier-free (m + 1)-step induction can in general not
be simulated with quantifier-free m-step induction. In particular, this result thus ren-
ders impossible a reductive implementation of quantifier-free big-step induction in
AITP systems with an induction mechanism based on quantifier-free induction. This
observation may be relevant for future extensions of systems based on quantifier-free
one-step induction mechanism, such as the AITP system described in [25, Section
3.2]. The idea is that whenever an induction principle can be reduced to a simpler one,
then for the sake of soundness one should consider the reduction.

The second main result of this article, shown in Sect. 4, is the unprovability of right
cancellation of the concatenation for lists by quantifier-free big-step induction. Thus
automated inductive theorem provers have to implement a comparatively strong induc-
tion mechanism in order to the prove seemingly simple property of right cancellation
of concatenation.

In the light of the results of Sect. 3, a natural choice would be to implement an
induction principle that can handle at least ∀1 induction formulas with conjunction.
Such an induction principle permits a reductive implementation of ∀1 big-step induc-
tion. An example of a system implementing such an induction mechanism is the one
described in [10] and analyzed in [31, Chapter 5].

One direction for future research is to carry out similar investigations focusing on
other datatypes, induction principles, and properties. In principle questions such as the
one addressed in Sect. 4 could be considered for every problem in benchmark suites

123

834 S. Hetzl, J. Vierling

such as [7] in order to obtain a classification of the difficulty of the problems that
complements empirical results.

Furthermore, the results in this article raise a number of questions and conjectures
that we would like to address in the future. In particular, we would like to investi-
gate Conjecture 4.17, since a positive answer, showing that quantifier-free induction
combining, both, simultaneous induction and big-step induction does not prove right
cancellation of concatenation, would significantly strengthen the result of Sect. 4.
Another interesting question is whether the right injectivity of concatenation (see
Lemma 4.4) can be proved with quantifier-free big-step induction. Finally, the use of
transfinite lists used in this article are reminiscent of streams defined by coinduction.
It could be interesting investigate to which extent the techniques employed for the
analysis of AITP systems can be transferred to systems that automate the coinduction
principle such as [11, 26].

Acknowledgements The authors would like to thank the anonymous reviewer for many helpful comments
that led to an improvement of the presentation of this paper.

Funding Open access funding provided by TU Wien (TUW).

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Aleksandrova, S.A., Bazhenov, N.A.: On decidability of list structures. Sib. Math. J. 60(3), 377–388
(2019)

2. Bazhenov, N.A.: Automatic structures and the theory of lists. Sib. Electron. Math. Rep. 12, 714–722
(2015)

3. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theoremprover. In: Jhala, R., Igarashi,
A. (eds.) Programming Languages and Systems, volume 7705 of Lecture Notes in Computer Science,
pp. 350–367. Springer, Berlin (2012)

4. Bundy, A., Basin, D.A., Hutter, D., Ireland, A.: Rippling—Meta-Level Guidance for Mathematical
Reasoning, Volume 56 of Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, Cambridge (2005)

5. Bundy, A., van Harmelen, F., Hesketh, J., Smaill, A., Stevens, A.: A rational reconstruction and
extension of recursion analysis. In: Sridharan, N.S. (ed.) Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence, vol. 1, pp. 359–365. Morgan Kaufmann, Burlington (1989)

6. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: Automating inductive proofs using theory
exploration. In: Bonacina, M.P. (ed.) Automated Deduction—CADE-24, Volume 7898 of Lecture
Notes in Computer Science, pp. 392–406. Springer, Berlin (2013)

7. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: TIP: Tons of inductive problems. In: Kerber,
M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) Intelligent Computer Mathematics, Volume
9150 of Lecture Notes in Computer Science, pp. 333–337. Springer, Berlin (2015)

8. Comon, H.: Inductionless induction. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated
Reasoning, vol. 1, chapter 14, pp. 913–962. North-Holland, Amsterdam (2001)

9. Corcoran, J., Frank, W., Maloney, M.: String theory. J. Symb. Logic 39(4), 625–637 (1974)

123

http://creativecommons.org/licenses/by/4.0/

Quantifier-free induction for lists 835

10. Cruanes, S.: Superposition with structural induction. In: Dixon, C., Finger, M. (eds.) Frontiers of
Combining Systems, Volume 10483 of Lecture Notes in Computer Science, pp. 172–188. Springer,
Berlin (2017)

11. Einarsdóttir, S.H., Johansson, M., Pohjola, J.Å.: Into the infinite—theory exploration for coinduction.
In: Fleuriot, J.D.,Wang,D., Calmet, J. (eds.) Artificial Intelligence and Symbolic Computation, volume
11110 of Lecture Notes in Computer Science, pp. 70–86. Springer, Berlin (2018)

12. Goncharov, S.S.: A theory of lists and its models. Vychislitel’nye Sistemy 114, 84–95 (1986)
13. Grzegorczyk, A.: Undecidability without arithmetization. Stud. Logica 79(2), 163–230 (2005)
14. Grzegorczyk, A., Zdanowski, K.: Undecidability and Concatenation. In: Ehrenfeucht, A.,Marek, V.W.,

Srebrny, M. (eds.) Andrzej Mostowski and Foundational Studies, pp. 72–91. IOS Press, Amsterdam
(2008)

15. Hajdú, M., Hozzová, P., Kovács, L., Schoisswohl, J., Voronkov, A.: Induction with generalization in
superposition reasoning. In: Benzmüller, C., Miller, B.R. (eds.) Intelligent Computer Mathematics,
volume 12236 of Lecture Notes in Computer Science, pp. 123–137. Springer, Berlin (2020)

16. Hajdu, M., Hozzová, P., Kovács, L., Voronkov, A.: Induction with recursive definitions in superpo-
sition. In: Piskac, R., Whalen, M.W. (eds.) Proceedings of the 21st Conference on Formal Methods
in Computer-Aided Design – FMCAD 2021, volume 2 of Conference Series: Formal Methods in
Computer-Aided Design, pp. 246–255. TU Wien Academic Press, Vienna (2021)

17. Hetzl, S., Vierling, J.: Clause Set Cycles and Induction. Log. Methods Comput. Sci. 16(4), 11:1-11:17
(2020)

18. Hetzl, S., Vierling, J.: Unprovability results for clause set cycles. Theor. Comput. Sci. (2022)
19. Hetzl, S., Vierling, J.: Induction and Skolemization in saturation theorem proving. Ann. Pure Appl.

Logic 174(1) (2023)
20. Hetzl, S., Wong, T.L.: Some observations on the logical foundations of inductive theorem proving.

Log. Methods Comput. Sci. 13(4), 10:1-10:26 (2018)
21. Kersani, A., Peltier, N.: Combining superposition and induction: a practical realization. In: Fontaine,

P., Ringeissen, C., Schmidt, R.A. (eds.) Frontiers of Combining Systems, volume 8152 of Lecture
Notes in Computer Science, pp. 7–22. Springer, Berlin (2013)

22. Moore, D.J., Russell, B.: Axiomatic data type specifications: a first order theory of linear lists. Acta
Informatica 15, 193–207 (1981)

23. Oppen, D.C.: Reasoning about recursively defined data structures. In: Proceedings of the 5th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL ’78, pp. 151–157.
Association for Computing Machinery, New York, NY, USA (1978)

24. Quine, W.V.: Concatenation as a basis for arithmetic. J. Symb. Logic 11(4), 105–114 (1946)
25. Reger, G., Voronkov, A.: Induction in saturation-based proof search. In: Fontaine, P. (ed.), Automated

Deduction—CADE 27, volume 11716 of Lecture Notes in Computer Science, pp. 477–494. Springer,
Berlin (2019)

26. Rustan, K., Leino, M., Moskal, M.: Co-induction simply—automatic co-inductive proofs in a program
verifier. In: Jones, C.B., Pihlajasaari, P., Sun, J. (eds.) FM 2014: Formal Methods, volume 8442 of
Lecture Notes in Computer Science, pp. 382–398. Springer, Berlin (2014)

27. Shoenfield, J.R.: Open sentences and the induction axiom. J. Symb. Log. 23(1), 7–12 (1958)
28. Takeuti, G., Zaring, W.M.: Introduction to Axiomatic Set Theory, volume 1 of Graduate Texts in

Mathematics. Springer, Berlin (1971)
29. Tarski, A.: Der Wahrheitsbegriff in den formalisierten Sprachen. Studia Philosophica 1, 261–405

(1935)
30. Thatcher, J.W.: Decision problems for multiple successor arithmetics. J. Symb. Logic 31(2), 182–190

(1966)
31. Vierling, J.: The limits of automated inductive theorem provers. Ph.D. thesis, Technische Universität

Wien (2022)
32. Visser, A., Commas, G.: A study of sequentiality and concatenation. Notre Dame J. Formal Logic

50(1), 61–85 (2009)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Quantifier-free induction for lists
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Many-sorted first-order logic
	2.2 Induction and lists
	2.3 Transfinite sequences

	3 Big-step induction
	4 Right cancellation of list concatenation
	5 Conclusion
	Acknowledgements
	References

