
Proof Transformation by CERES ?

Matthias Baaz1, Stefan Hetzl2, Alexander Leitsch2, Clemens Richter2, and
Hendrik Spohr2

1 Institute of Discrete Mathematics and Geometry (E104),
Vienna University of Technology, Wiedner Hauptstraße 8-10,

1040 Vienna, Austria
baaz@logic.at

2 Institute of Computer Languages (E185),
Vienna University of Technology, Favoritenstraße 9,

1040 Vienna, Austria
{hetzl|leitsch|richter|spohr}@logic.at

Abstract. Cut-elimination is the most prominent form of proof trans-
formation in logic. The elimination of cuts in formal proofs corresponds
to the removal of intermediate statements (lemmas) in mathematical
proofs. The cut-elimination method CERES (cut-elimination by resolu-
tion) works by constructing a set of clauses from a proof with cuts. Any
resolution refutation of this set then serves as a skeleton of an LK-proof
with only atomic cuts.
In this paper we present an extension of CERES to a calculus LKDe
which is stronger than the Gentzen calculus LK (it contains rules for
introduction of definitions and equality rules). This extension makes it
much easier to formalize mathematical proofs and increases the perfor-
mance of the cut-elimination method. The system CERES already proved
efficient in handling very large proofs.

1 Introduction

Proof analysis is a central mathematical activity which has proved crucial to the
development of mathematics. Many mathematical concepts such as the notion
of group or the notion of probability were introduced by analyzing existing ar-
guments. In some sense the analysis and synthesis of proofs form the very core
of mathematical progress[13, 14].
Cut-elimination introduced by Gentzen [9] is the most prominent form of proof
transformation in logic and plays an important role in automating the analysis
of mathematical proofs. The removal of cuts corresponds to the elimination of
intermediate statements (lemmas), resulting in a proof which is analytic in the
sense, that all statements in the proof are subformulas of the result. Therefore,
the proof of a combinatorial statement is converted into a purely combinatorial
proof. Cut-elimination is therefore an essential tool for the analysis of proofs,
especially to make implicit parameters explicit. In particular, cut free derivations
allow for:
? supported by the Austrian Science Fund (project no. P17995-N12)

– the extraction of Herbrand disjunctions, which can be used to establish
bounds on existential quantifiers (e.g. Luckhardt’s analysis of the Theorem
of Roth [11]),

– the construction of interpolants, which allow the replacement of implicit
definitions by explicit ones according to Beth’s Theorem,

– the calculation of generalized variants of the end formula.

In a formal sense Girard’s analysis of van der Waerden’s theorem [10] is the ap-
plication of cut-elimination to the proof of Fürstenberg/Weiss with the “perspec-
tive” of obtaining van der Waerden’s proof. Indeed an application of a complex
proof transformation like cut-elimination by humans requires a goal oriented
strategy. In contrast, such a transformation can be done purely automatically,
which also might result in unexpected and interesting results [3]. Note that cut-
elimination is non-unique, i.e. there is no single cut-free proof which represents
the analytic version of a proof with lemmas. Indeed, it is non-uniqueness which
makes computational experiments with cut-elimination interesting. The experi-
ments can be considered as a source for a base of proofs in formal format which
provide different mathematical and computational information.
CERES [6] is a cut-elimination method that is based on resolution. The method
roughly works as follows: The structure of the proof containing cuts is mapped
to a clause term which evaluates to an unsatisfiable set of clauses C (the char-
acteristic clause set). A resolution refutation of C, which is obtained using a
first-order theorem prover, serves as a skeleton for the new proof which con-
tains only atomic cuts. In a final step also these atomic cuts can be eliminated,
provided the (atomic) axioms are valid sequents; but this step is of minor math-
ematical interest only. In the system CERES3 this method of cut-elimination has
been implemented. The system is capable of dealing with formal proofs in LK,
among them also very large ones.
The extension of CERES to a calculus containing definition-introduction and
equality rules moves the system closer to real mathematical proofs. By its high
efficiency (the core of the method is first-order theorem proving by resolution and
paramodulation) CERES might become a strong tool in automated proof mining
and contribute to an experimental culture of computer-aided proof analysis in
mathematics.

2 Extensions of Gentzen’s LK

Gentzen’s LK is the original calculus for which cut-elimination was defined. The
original version of CERES in based on LK and several variants of it (we just refer
to [6] and [7]). In formalizing mathematical proofs it turns out that LK (and also
natural deduction) are not sufficiently close to real mathematical inference. First
of all, the calculus LK lacks an efficient handling of equality (in fact equality
axioms have to be added to the end-sequent). Due to the importance of equality
this defect was apparent to proof theorists; e.g. Takeuti [15] gave an extension of

3 available at http://www.logic.at/ceres/

LK to a calculus LKe, adding atomic equality axioms to the standard axioms
of the form A ` A. The advantage of LKe over LK is that no new axioms have
to be added to the end-sequent; on the other hand, in presence of the equality
axioms, full cut-elimination is no longer possible, but merely reduction to atomic
cut. But still LKe uses the same rules as LK as equality is axiomatized. On the
other hand, in formalizing mathematical proofs, using equality as a rule is much
more natural and concise. For this reason we choose the most natural equality
rule, which is strongly related to paramodulation in automated theorem proving.
Our approach differs from this in [17], where a unary equality rule is used (which
does not directly correspond to paramodulation). The equality rules are:

Γ1 ` ∆1, s = t A[s]Λ, Γ2 ` ∆2

A[t]Λ, Γ1, Γ2 ` ∆1,∆2
=: l1

Γ1 ` ∆1, t = s A[s]Λ, Γ2 ` ∆2

A[t]Λ, Γ1, Γ2 ` ∆1,∆2
=: l2

for inference on the left and

Γ1 ` ∆1, s = t Γ2 ` ∆2, A[s]Λ
Γ1, Γ2 ` ∆1,∆2, A[t]Λ

=: r1
Γ1 ` ∆1, t = s Γ2 ` ∆2, A[s]Λ

Γ1, Γ2 ` ∆1,∆2, A[t]Λ
=: r2

on the right, where Λ denotes a set of positions of subterms where replacement
of s by t has to be performed. We call s = t the active equation of the rules.
In CERES it is crucial that all nonlogical rules (which also work on atomic
sequents) correspond to clausal inference rules in automated deduction. While
cut and contraction correspond to resolution (and factoring, dependent on the
version of resolution), the equality rules =: l1,=: l2,=: r1,=: r2 correspond to
paramodulation, which is the most efficient equality rule in automated deduction
[12]. Indeed, when we compute the most general unifiers and apply them to the
paramodulation rule, then it becomes one of the rules =: l1,=: l2,=: r1,=: r2.
Perhaps the most significant tool in structuring mathematical proofs is the in-
troduction of new concepts (formally definition-introduction). Though the use
of definition introductions can be simulated by cuts, this simulation is rather un-
natural and has a negative effect on the CERES-algorithm as will be explained
in section 3 (definition introduction is a unary rule, while cut is a binary one).
The definition rules directly correspond to the extension principle (see [8]) in
predicate logic. It simply consists in introducing new predicate- and function
symbols as abbreviations for formulas and terms. Let A be a first-order formula
with the free variables x1, . . . , xk (denoted by A(x1, . . . , xk)) and P be a new
k-ary predicate symbol (corresponding to the formula A). Then the rules are:

A(t1, . . . , tk), Γ ` ∆
P (t1, . . . , tk), Γ ` ∆ defP : l

Γ ` ∆,A(t1, . . . , tk)
Γ ` ∆,P (t1, . . . , tk)

defP : r

for arbitrary sequences of terms t1, . . . , tk. Definition introduction is a simple
and very powerful tool in mathematical practice. Note that the introduction
of important concepts and notations like groups, integrals etc. can be formally
described by introduction of new symbols. There are also definition introduction
rules for new function symbols which are of similar type.

The axiom system for LKDe may be an arbitrary set of atomic sequents con-
taining the sequents A ` A (for atomic formulas A) which is closed under substi-
tution. The only axioms which have to be added for equality are ` s = s where
s is an arbitrary term. So every axiom system has to contain the axioms A ` A
and ` s = s.
The calculus LKDe is LK extended by the equality rules and by the (infinite
set of) definition-introduction rules. Clearly these extensions do not increase the
logical expressivity of the calculus, but they make him much more compact and
natural. To illustrate the rules defined above we give a simple example. The aim
is to prove the (obvious) theorem that a number divides the square of a number
b if it divides b itself. In the formalization below a and b are constant symbols
and the predicate symbol D stands for “divides” and is defined by

D(x, y) ↔ ∃z.x ∗ z = y.

The active equations are written in boldface.

` (a ∗ z0) ∗ b = a ∗ (z0 ∗ b)
a ∗ z0 = b ` a ∗ z0 = b ` b ∗ b = b ∗ b

a ∗ z0 = b ` (a ∗ z0) ∗ b = b ∗ b =: r2

a ∗ z0 = b ` a ∗ (z0 ∗ b) = b ∗ b =: r1

a ∗ z0 = b ` ∃z.a ∗ z = b ∗ b ∃r

∃z.a ∗ z = b ` ∃z.a ∗ z = b ∗ b ∃: l

∃z.a ∗ z = b ` D(a, b ∗ b) defD: r

D(a, b) ` D(a, b ∗ b) defD: l

` D(a, b) → D(a, b ∗ b)
→: r

The axioms of the proof are: (1) an instance of the associativity law, (2) the
equational axiom ` b ∗ b = b ∗ b and the tautological standard axiom a ∗ z0 = b `
a ∗ z0 = b.

3 CERES on LKDe

3.1 Definitions and Results

Though CERES has been defined for LK originally, the method is very flexible
and can be applied to virtually any sequent calculus for classical logic. Indeed,
the extensions defined above, can easily built in without affecting the clarity and
efficiency of the method. The central idea of CERES consists in analyzing the
proof first, extracting a so-called characteristic clause set from the proof, and
then using a resolution refutation of this set to obtain a proof with only atomic
cuts. We consider the proofs in LKDe as directed trees with nodes which are
labelled by sequents, where the root is labelled by the end-sequent. According
to the inference rules, we distinguish binary and unary nodes. In an inference

ν1:S1 ν2:S2

ν:S
x

where ν is labelled by S, ν1 by S1 and ν2 by S2, we call ν1, ν2 predecessors of
ν. Similarly ν′ is predecessor of ν in a unary rule if ν′ labels the premiss and
ν the consequent. Then the predecessor relation is defined as the reflexive and
transitive closure of the relation above. Every node is predecessor of the root,
and the axioms have only themselves as predecessors. For a formal definition of
the concepts we refer to [6] and [7]. A similar relation holds between formula
occurrences in sequents. Instead of a formal definition we give an example.
Consider the rule:

∀x.P (x) ` P (a) ∀x.P (x) ` P (b)
∀x.P (x) ` P (a) ∧ P (b)

∧: r

The occurrences of P (a) and P (b) in the premiss are ancestors of the occurrence
of P (a)∧P (b) in the consequent. P (a) and P (b) are called auxiliary formulas of
the inference, and P (a) ∧ P (b) the main formula. ∀x.P (x) in the premisses are
ancestors of ∀x.P (x) in the consequent. Again the ancestor relation is defined
by reflexive transitive closure.

Let Ω be the set of all occurrences of cut-formulas in sequents of an LKDe-
proof ϕ. The cut- formulas are not ancestors of the formulas in the end-sequent,
but they might have ancestors in the axioms (if the cuts are not generated by
weakening only). The construction of the characteristic clause set is based on
the ancestors of the cuts in the axioms. Note that clauses are just defined as
atomic sequents. We define a set of clauses Cν for every node ν in ϕ inductively:

– If ν is an occurrence of an axiom sequent S(ν), and S′ is the subsequent of
S(ν) containing only the ancestors of Ω then Cν = {S′}.

– Let ν′ be the predecessor of ν in a unary inference then Cν = Cν′ .
– Let ν1, ν2 be the predecessors of ν in a binary inference. We distinguish two

cases
(a) The auxiliary formulas of ν1, ν2 are ancestors of Ω. Then

Cν = Cν1 ∪ Cν2 .

(b) The auxiliary formulas of ν1, ν2 are not ancestors of Ω. Then

Cν = Cν1 × Cν2 .

where C × D = {C ◦D | C ∈ C, D ∈ D} and C ◦D is the merge of the
clauses C and D.

The characteristic clause set CL(ϕ) of ϕ is defined as Cν0 , where ν0 is the root.
The definition of CL(ϕ) is the same as the one used for LK since both they
contain only unary and binary rules. Note that unary rules have no effect on the
characteristic clause set.

Theorem 1. Let ϕ be a proof in LKDe. Then the clause set CL(ϕ) is equa-
tionally unsatisfiable.

Remark 1. A clause set C is equationally unsatisfiable if C does not have a model
where = is interpreted as equality over a domain.

Proof. The proof is essentially the same as in [6]. Let ν be a node in ϕ and S′(ν)
the subsequent of S(ν) which consists of the ancestors of Ω (i.e. of a cut). It is
shown by induction that S′(ν) is LKDe-derivable from Cν . If ν0 is the root then,
clearly, S′(ν0) = ` and the empty sequent ` is LKDe-derivable from the axiom
set Cν0 , which is just CL(ϕ). As all inferences in LKDe are sound over equational
interpretations (where new symbols introduced by definition introduction have
to be interpreted according to the defining equivalence), CL(ϕ) is equationally
unsatisfiable. Note that, without the rules =: l and =: r, the set CL(ϕ) is just
unsatisfiable. Clearly the rules =: l and =: r are sound only over equational
interpretations. 3

Note that, for proving Theorem 1, we just need the soundness of LKDe not its
completeness.

The next steps in CERES are

(1) the computation of the proof projections ϕ[C] w.r.t. clauses C ∈ CL(ϕ),
(2) the refutation of the set CL(ϕ), resulting in an RP-tree γ, i.e. in a deduction

tree defined by the inferences of resolution and paramodulation, and
(3) “inserting” the projections ϕ[C] into the leaves of γ.

Step (1) is done like in CERES for LK, i.e. we skip in ϕ all inferences where the
auxiliary resp. main formulas are ancestors of a cut. Instead of the end-sequent
S we get S ◦ C for a C ∈ CL(ϕ). The construction does not differ from this in
[6] as the form of the rules do not matter.
Step (2) consists in ordinary theorem proving by resolution and paramodulation
(which is equationally complete). For refuting CL(ϕ) any first-order prover like
Vampire 4, SPASS 5 or Otter 6 can be used. By the completeness of the methods
we find a refutation tree γ as CL(ϕ) is unsatisfiable by Theorem 1.
Step (3) makes use of the fact that, after computation of the simultaneous most
general unifier of the inferences in γ, the resulting tree γ′ is actually a derivation
in LKDe! Indeed, after computation of the simultaneous unifier, paramodula-
tion becomes =: l and =: r and resolution becomes cut in LKDe. Note that the
definition rules, like the logical rules, do not appear in γ′. Now for every leaf ν
in γ′, which is labelled by a clause C ′ (an instance of a clause C ∈ CL(ϕ)) we
insert the proof projection ϕ[C ′]. The result is a proof with only atomic cuts.

The proof projection is only sound if the proof ϕ is skolemized, i.e. there are
no strong quantifiers (i.e. quantifiers with eigenvariable conditions) in the end-
sequent. If ϕ is not skolemized a priori it can be transformed into a skolemized
proof ϕ′ in polynomial (at most quadratic) time; for details see [5].

4 http://www.vampire.fm/
5 http://spass.mpi-sb.mpg.de/
6 http://www-unix.mcs.anl.gov/AR/otter/

3.2 An Example

The example below is taken from [16]; it was formalized in LK and analyzed by a
former version of CERES in the paper [3]. Here we use the extensions by equality
rules and definition-introduction to give a simpler formalization and analysis of
the proof. The end-sequent formalizes the statement: on a tape with infinitely
many cells which are all labelled by 0 or by 1 there are two cells labelled by the
same number. f(x) = 0 expresses that the cell nr. x is labelled by 0. Indexing of
cells is done by number terms defined over 0, 1 and +. The proof ϕ below uses
two lemmas: (1) there are infinitely many cells labelled by 0 and (2) there are
infinitely many cells labelled by 1. These lemmas are eliminated by CERES and
a more direct argument is obtained in the resulting proof ϕ′. Ancestors of the
cuts in ϕ are indicated in boldface.

Let ϕ be the proof

(τ)
A ` I0, I1

(ε0)
I0 ` ∃p∃q(p 6= q ∧ f(p) = f(q))

A ` ∃p∃q(p 6= q ∧ f(p) = f(q)), I1
cut

(ε1)
I1 ` ∃p∃q(p 6= q ∧ f(p) = f(q))

A ` ∃p∃q(p 6= q ∧ f(p) = f(q))
cut

where τ =

(τ ′)
f(n0 + n1) = 0 ∨ f(n0 + n1) = 1 ` f(n0 + n1) = 0, f(n1 + n0) = 1

∀x(f(x) = 0 ∨ f(x) = 1) ` f(n0 + n1) = 0, f(n1 + n0) = 1
∀: l

A ` f(n0 + n1) = 0, f(n1 + n0) = 1
defA: l

A ` f(n0 + n1) = 0,∃k.f(n1 + k) = 1
∃r

A ` ∃k.f(n0 + k) = 0,∃k.f(n1 + k) = 1
∃r

A ` ∃k.f(n0 + k) = 0,∀n∃k.f(n + k) = 1
∀: r

A ` ∀n∃k.f(n + k) = 0,∀n∃k.f(n + k) = 1
∀: r

A ` I0,∀n∃k.f(n + k) = 1
defI0 : r

A ` I0, I1
defI1 : r

For τ ′ =

f(n0 + n1) = 0 ` f(n0 + n1) = 0

(Axiom)
` n1 + n0 = n0 + n1 f(n1 + n0) = 1 ` f(n1 + n0) = 1

f(n0 + n1) = 1 ` f(n1 + n0) = 1
=: l1

f(n0 + n1) = 0 ∨ f(n0 + n1) = 1 ` f(n0 + n1) = 0, f(n1 + n0) = 1
∨: l

And for i = 1, 2 we define the proofs εi =

ψ ηi

f(s) = i, f(t) = i ` s 6= t ∧ f(s) = f(t)
∧: r

f(s) = i, f(t) = i ` ∃q(s 6= q ∧ f(s) = f(q)) ∃: r

f(s) = i, f(t) = i ` ∃p∃q(p 6= q ∧ f(p) = f(q)) ∃: r

f(n0 + k0) = i,∃k.f(((n0 + k0) + 1) + k) = i ` ∃p∃q(p 6= q ∧ f(p) = f(q)) ∃: l

f(n0 + k0) = i,∀n∃k.f(n + k) = i ` ∃p∃q(p 6= q ∧ f(p) = f(q)) ∀: l

∃k.f(n0 + k) = i,∀n∃k.f(n + k) = i ` ∃p∃q(p 6= q ∧ f(p) = f(q)) ∃: l

∀n∃k.f(n + k) = i,∀n∃k.f(n + k) = i ` ∃p∃q(p 6= q ∧ f(p) = f(q)) ∀: l

∀n∃k.f(n + k) = i ` ∃p∃q(p 6= q ∧ f(p) = f(q)) c: l

Ii ` ∃p∃q(p 6= q ∧ f(p) = f(q))
defIi

: l

for s = n0 + k0, t = ((n0 + k0) + 1) + k1, and the proofs
ψ =

(axiom)
` (n0 + k0) + (1 + k1) = ((n0 + k0) + 1) + k1

(axiom)
n0 + k0 = (n0 + k0) + (1 + k1) `

n0 + k0 = ((n0 + k0) + 1) + k1 `
=: l1

` n0 + k0 6= ((n0 + k0) + 1) + k1

¬: r

and ηi =

f(s) = i ` f(s) = i

f(t) = i ` f(t) = i
(axiom)
` i = i

f(t) = i ` i = f(t)
=: r2

f(s) = i, f(t) = i ` f(s) = f(t)
=: r2

The characteristic clause set is (after variable renaming)

CL(ϕ) = {` f(x+ y) = 0, f(y + x) = 1; (C1)

f(x+ y) = 0, f(((x+ y) + 1) + z) = 0 `; (C2)

f(x+ y) = 1, f(((x+ y) + 1) + z) = 1 `} (C3).

The axioms used for the proof are the standard axioms of type A ` A and
instances of ` x = x, of commutativity ` x + y = y + x, of associativity `
(x+ y) + z = x+ (y + z), and of the axiom

x = x+ (1 + y) `,

expressing that x+ (1 + y) 6= x for all natural numbers x, y.
The comparison with the analysis of Urban’s proof formulated in LK (without
equality) [3] shows that this one is much more transparent. In fact the set of char-
acteristic clauses contains only 3 clauses (instead of 5), which are also simpler.
This also facilitates the refutation of the clause set and makes the output proof

simpler and more transparent. On the other hand, the analysis below shows that
the mathematical argument obtained by cut-elimination is the same as in [3].

The program Otter found the following refutation of CL(ϕ) (based on hyperres-
olution only – without equality inference):
The first hyperesolvent, based on the clash sequence (C2;C1, C1), is

C4 = ` f(y + x) = 1, f(z + ((x+ y) + 1)) = 1, with the intermediary clause
D1 = f(((x+ y) + 1) + z) = 0 ` f(y + x) = 1.

The next clash is sequence is (C3;C4, C4) which gives C5 with intermediary
clause D2, where:

C5 = ` f(v′ + u′) = 1, f(v + u) = 1,
D2 = f(x+ y) = 1 ` f(v + u) = 1.

Factoring C5 gives C6:` f(v + u) = 1 (which roughly expresses that all fields
are labelled by 1). The final clash sequence (C3;C6, C6) obviously results in the
empty clause ` with intermediary clause D3: f(((x + y) + 1) + z) = 1 `. The
hyperresolution proof ψ3 in form of a tree can be obtained from the following
resolution trees, where C ′ and ψ′ stand for renamed variants of C and of ψ,
respectively:

C1 C2

D1
res

C ′
1

ψ1: C4
res

C ′
3 ψ1

D2
res

ψ′
1

C5
res

ψ2: C6
factor

ψ2 C ′′
3

D3
res

ψ′
2

ψ3: `
res

Instantiation of ψ3 by the uniform most general unifier σ of all resolutions gives a
deduction tree ψ3σ in LKDe; indeed, after application of σ, resolution becomes
cut and factoring becomes contraction. The proof ψ3σ is the skeleton of an
LKDe-proof of the end-sequent with only atomic cuts. Then the leaves of the
tree ψ3σ have to be replaced by the proof projections. E.g., the clause C1 is
replaced by the proof ϕ[C1], where s = n0 + n1 and t = n1 + n0:

f(s) = 0 ` f(s) = 0

(Axiom)
` t = s f(t) = 1 ` f(t) = 1

f(s) = 1 ` f(t) = 1 =: l1

f(s) = 0 ∨ f(s) = 1 ` f(s) = 0, f(t) = 1 ∨: l

∀x(f(x) = 0 ∨ f(x) = 1) ` f(s) = 0, f(t) = 1 ∀: l

A ` f(s) = 0, f(t) = 1
defA: l

A ` ∃p∃q(p 6= q ∧ f(p) = f(q)), f(s) = 0, f(t) = 1
w: r

Furthermore C2 is replaced by the projection ϕ[C2] and C3 by ϕ[C3], where (for
i = 0, 1) ϕ[C2+i] =

ψ ηi

f(s) = i, f(t) = i ` s 6= t ∧ f(s) = f(t)
∧: r

f(s) = i, f(t) = i ` ∃q(s 6= q ∧ f(s) = f(q)) ∃: r

f(s) = i, f(t) = i ` ∃p∃q(p 6= q ∧ f(p) = f(q)) ∃: r

f(s) = i, f(t) = i, A ` ∃p∃q(p 6= q ∧ f(p) = f(q)) w: l

Note that ψ, η0, η1 are the same as in the definition of ε0, ε1 above.
By inserting the σ-instances of the projections into the resolution proof ψ3σ and
performing some additional contractions, we eventually obtain the desired proof
ϕ′ of the end-sequent

A ` ∃p∃q(p 6= q ∧ f(p) = f(q))

with only atomic cuts. ϕ′ no longer uses the lemmas that infinitely many cells
are labelled by 0 and by 1, respectively.

4 The System CERES

The cut-elimination system CERES is written in ANSI-C++. There are two main
tasks. On one hand, to compute an unsatisfiable set of clauses characterizing the
cut formulas. This is done by automatically extracting the so-called characteristic
clause term from a proof ϕ and computing the resulting characteristic clause set
CL(ϕ). On the other hand, to generate a resolution refutation of CL(ϕ) by an
external theorem prover7, and to compute the necessary projection schemes of
ϕ w.r.t. the clauses in CL(ϕ) actually used for the refutation. The properly
instantiated projection schemes are concatenated, using the refutation obtained
by the theorem prover as a skeleton of a proof with only atomic cuts.
Concerning the extension of LK to LKDe, equality rules appearing within the
input proof are propagated to the projection schemes as any other binary rules.
During theorem proving equality is treated by paramodulation (which is closely
related to the equality rules in LKDe); its application within the final clausal
refutation is then transformed to the appropriate equality rules in LKDe. The
definition introductions do not require any other special treatment within CERES
than all other unary rules; in particular, they have no influence on the theorem
proving part.
Since the restriction to skolemized proofs is crucial to the CERES-method, the
system also performs skolemization (according to Andrew’s method [2]) on the
input proof.

7 The current version of CERES uses the automated theorem prover Otter (see
http://www-unix.mcs.anl.gov/AR/otter/), but any refutational theorem prover
based on resolution and paramodulation may be used.

The system CERES expects an LKDe proof of a sequent S and a set of axioms as
input, and computes a proof of S containing at most non atomic-cuts. Input and
output are formatted using the well known data representation language XML.
This allows the use of arbitrary and well known utilities for editing, transfor-
mation and presentation and standardized programming libraries. To increase
the performance and avoid redundancy, most parts of the proofs are internally
represented as directed acyclic graphs. This representation turns out to be very
handy, also for the internal unification algorithms.
The formal analysis of mathematical proofs (especially by a mathematician as
a pre- and post-“processor”) relies on a suitable format for the input and out-
put of proofs, and on an appropriate aid in dealing with them. We developed
an intermediary proof language connecting the language of mathematical proofs
with LKDe. Furthermore we implemented a proof viewer and proof editor with
a graphical user interface, allowing a convenient input and analysis of the out-
put of CERES. Thereby the integration of definition- and equality-rules into the
underlying calculus plays an essential role in overlooking, understanding and
analyzing complex mathematical proofs by humans.

5 Future Work

We plan to develop the following extensions of CERES:

– As the cut-free proofs are often very large and difficult to interpret, we
intend to provide the possibility to analyze certain characteristics of the cut-
free proof (which are simpler than the proof itself). An important example
are Herbrand sequents which may serve to extract bounds from proofs (see
e.g. [11]). We plan to develop algorithms for extracting Herbrand sequents
(also from proofs of nonprenex sequents as indicated in [4]) and for comput-
ing interpolants.

– A great challenge in the formal analysis of mathematical proofs lies in pro-
viding a suitable format for the input and output of proofs. We plan to
improve our intermediary proof language and to move closer to the “natu-
ral” language of mathematical proofs.

– In the present version CERES eliminates all cuts at once. But — for the
application to real mathematical proofs — only interesting cuts (i.e. lemmas)
deserve to be eliminated, others should simply remain or be integrated as
additional axioms.

– As CERES requires the skolemization of the end-sequent the original proof
must be transformed to skolem form. We plan to develop an efficient de-
skolemization-algorithm, which transforms the theorem to be proved into its
original form.

To demonstrate the abilities of CERES and the feasibility of formalizing and
analyzing complex proofs of mathematical relevance, we currently investigate a
well known proof of the infinity of primes using topology (which may be found
in [1]). Our aim is to eliminate the topological concepts from the proof by means

of CERES, breaking it down to a proof solely based on elementary number
arithmetic.

References

1. M. Aigner, G. M. Ziegler. Proofs from THE BOOK. Springer 1998.
2. P. B. Andrews: Resolution in Type Theory, Journal of Symbolic Logic, 36, pp. 414–

432, 1971.
3. M. Baaz, S. Hetzl, A. Leitsch, C. Richter, H. Spohr: Cut-Elimination: Experiments

with CERES, LPAR 2004, Lecture Notes in Artificial Intelligence, pp. 481-495,
2005.

4. M. Baaz, A. Leitsch: On skolemization and proof complexity, Fundamenta Infor-
maticae, 20(4), pp. 353–379, 1994.

5. M. Baaz, A. Leitsch: Cut normal forms and proof complexity, Annals of Pure and
Applied Logic, 97, pp. 127-177, 1999.

6. M. Baaz, A. Leitsch: Cut-Elimination and Redundancy-Elimination by Resolution,
Journal of Symbolic Computation, 29, pp. 149-176, 2000.

7. M. Baaz, A. Leitsch: Towards a Clausal Analysis of Cut-Elimination, Journal of
Symbolic Computation, 41, pp. 381–410, 2006.

8. E. Eder: Relative complexities of first-order calculi, Vieweg, 1992.
9. G. Gentzen: Untersuchungen über das logische Schließen, Mathematische

Zeitschrift, 39, pp. 405–431, 1934–1935.
10. J.Y. Girard: Proof Theory and Logical Complexity, in Studies in Proof Theory,

Bibliopolis, Napoli, 1987.
11. H. Luckhardt: Herbrand-Analysen zweier Beweise des Satzes von Roth: polynomi-

ale Anzahlschranken. The Journal of Symbolic Logic 54, 234–263, 1989.
12. R. Nieuwenhuis, A. Rubio: Paramodulation-based Theorem Proving, in Handbook

of Automated Reasoning, eds. J.A. Robinson, A. Voronkov, pp. 371–443, Elsevier,
2001.

13. G. Polya. Mathematics and plausible reasoning, Volume I: Induction and Analogy
in Mathematics. Princeton University Press, Princeton, New Jersey, 1954.

14. G. Polya. Mathematics and plausible reasoning, Volume II: Patterns of Plausible
Inference. Princeton University Press, Princeton, New Jersey, 1954.

15. G. Takeuti: Proof Theory, North-Holland, Amsterdam, 2nd edition, 1987.
16. C. Urban: Classical Logic and Computation Ph.D. Thesis, University of Cambridge

Computer Laboratory, 2000.
17. A. Degtyarev and A. Voronkov: Equality Reasoning in Sequent-Based Calculi

Handbook of Automated Reasoning vol. I, ed. by A. Robinson and A. Voronkov,
chapter 10, pp. 611-706, Elsevier Science, 2001.

