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Kurzfassung

Die Beweistheorie jener Zweig der mathematischen Logik, in dem mathe-
matisches Schließen und mathematische Beweise untersucht werden. Sie
entstand aus Hilberts Programm: der Suche nach Konsistenzbeweisen für
formale Theorien. In den 1950ern begann sich der Fokus der Beweistheorie
auf Anwendungen formaler Methoden auf konkrete Beweise zu verschieben.

Die Methode CERES (cut-elimination by resolution) verwendet Techniken
des Automatischen Beweisens zur Automatisierung der Schnittelimination.
Der beweistheoretische Kern dieser Methode ist die Extraktion einer charak-
teristischen Klauselmenge aus einem Beweis. Eine Resolutionswiderlegung
dieser Klauselmenge dient als Skelett eines schnittfreien Beweises.

Die vorliegende Dissertation ist eine Untersuchung des Potentials dieser Art
von Klauselmengen zur Charakterisierung des mathematischen Inhaltes und
der Struktur eines formalen Beweises. Es wird eine Variante dieser Klausel-
mengen vorgestellt, das Profil, welches die folgenden Vorteile gegenüber der
originalen charakteristischen Klauselmenge bietet:

Es erzeugt niemals längere Beweise, sondern ist besser in der Behandlung
von Redundanzen, was eine nicht-elementare Beschleunigung ermöglicht.
Außerdem hat es die angenehme theoretische Eigenschaft invariant unter
Regelpermutationen zu sein. Daraus folgt sofort, dass zwei Beweise mit
dem gleichen Beweisnetz auch das gleiche Profil haben.

In dieser Arbeit wird eine große Klasse von Beweistransformationen definiert,
die das Profil nicht verändern. Als Basis dieses Resultats wird zuvor eine
detaillierte Analyse des Verhaltens des Profils unter der Schnittelimination
durchgeführt, die zu einem sehr natürlichen Resultat führt.

Es wird gezeigt werden, dass das Profil in einer sehr engen Beziehung zu
Herbrand-Disjunktionen steht: Das Profil besteht aus zwei Teilen die genau
zu redundanzfreien Varianten der beiden partiellen Herbrand-Disjunktionen
eines Beweises mit Schnitten korrespondieren.

In einer Fallstudie werden zwei unterschiedliche Beweise eines mathematis-
ches Theorems mit Hilfe von charakteristischen Klauselmengen analysiert,
um das Anwendungspotential zu illustrieren.
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Abstract

Proof Theory is the branch of mathematical logic that investigates math-
ematical reasoning and mathematical proofs. This area emanated from
Hilbert’s Program calling for consistency proofs of formal theories. In the
1950s the focus of proof theory began shifting towards applications of formal
methods to concrete proofs in order to obtain new mathematical results.

The method CERES (cut-elimination by resolution) uses techniques from
automated theorem proving for the automation of cut-elimination. The main
proof-theoretical tool of this method is the extraction of a characteristic
clause set from a proof, a resolution refutation of which serves as the skeleton
of a cut-free proof.

This thesis is an investigation of the potential of these kind of clause sets
for characterizing the mathematical content and structure of a formal proof.
We first define a variant of these clause sets, the profile that has several
advantages w.r.t. the original characteristic clause sets:

It is computationally superior in the sense that it will never generate longer
proofs with CERES, but is better in detecting certain redundancies thus
allowing even a non-elementary speed-up. Furthermore, it has the nice the-
oretical property of being invariant under rule permutations which shows
that two proofs having the same proof net will also have the same profile.

We will isolate a large class of proof transformations and show that they
leave the profile invariant. As a basis for this result we will give a detailed
analysis of the behavior of the profile under cut-elimination whose result
will be particularly natural.

We will show that the profile is intimately related to Herbrand-disjunctions.
It turns out that the profile has two dual parts corresponding to pruned
versions of the two partial Herbrand-disjunctions that can be extracted from
a proof with cuts: One being the instances of the end-sequent and one the
instances of the cut-formulas.

Finally we will perform a case study where two different proofs of a simple
mathematical theorem are analyzed by characteristic clause sets in order to
demonstrate its potential for applications.
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Chapter 1

Introduction

The history of logic starts with Aristotle’s fundamental insight that there
are propositions that are true not by virtue of their meaning but by virtue of
their form. His syllogisms are a systematic collection of the abstract forms
of valid deductive arguments, independent of their concrete meaning. For
example, each proposition of the form “All A are B. All B are C. Therefore
all A are C” is true whatever the meaning of A, B and C is. Aristotle’s work
remained dominant in logic until the 19th century.

In the early 1920s, the influential mathematician David Hilbert proposed
the research program of providing a formalization of mathematics in an
axiomatic form. The purpose of this axiomatization was the justification
of mathematical reasoning, and in particular to show its consistency by re-
stricted means: The consistency proof itself should be carried out by finitary
methods which are themselves not doubtable.

In his landmark work [27], Kurt Gödel proved the incompleteness theorems:
In every axiomatic theory containing a certain amount of number theory
there exist true propositions whose truth cannot be shown within the theory.
And furthermore, the consistency of the theory is an example of such a
proposition. This result not only invalidated a certain specific formalization
of mathematical reasoning but shows that – in principle – there can not
exists a single axiomatic theory containing all mathematics, as in particular
for the consistency proof of the theory, it must be transcended.

In [24] Gerhard Gentzen gave a proof of the consistency of Peano Arith-
metic that is divided into two parts: A finitary part consisting of a proof
transformation and an assumption whose truth cannot be shown in Peano
Arithmetic but which entails the termination of the transformation. Most of
the basic methods of the finitary part has already been developed in [23] for
pure first-order logic: The sequent calculus for the formalization of proofs
and the proof transformation of cut-elimination.

1



CHAPTER 1. INTRODUCTION 2

Cut-elimination brings a sequent calculus proof into a form where each for-
mula occurring in the proof is a sub-formula of the theorem shown. Mathe-
matically, this means that the concepts and structures present in a theorem
are sufficient for proving it, for example number-theoretic statements can
be proved by purely number-theoretic means and while the employment of
e.g. analytic methods is useful in practice it is – in principle – not necessary.
Moreover, the cut-elimination theorem is not a mere existence proof but a
constructive method – it does not only show that an elementary proof exists
but it gives a method for actually constructing such an elementary proof
from any proof.

In the 1950s the work of Georg Kreisel (see e.g. [35, 36, 37]) marks a shift of
emphasis in the research in consistency proofs: Instead of seeking a general
justification of an axiomatic system one can apply the methods used for the
consistency proof to concrete mathematical proofs formalized in the system.
There exist several examples of such applications: Girard’s demonstration
(in [26]) that from the proof of Fürstenberg and Weiss of van der Waerden’s
theorem by cut-elimination the original combinatorial argument of van der
Waerden can be obtained. Another example is Luckhardt analysis [39] of
Roth’s theorem about approximations of irrational numbers. The work of U.
Kohlenbach (see e.g. [34]) is an application of proof interpretations, in par-
ticular of Gödel’s functional interpretation, to the analysis of proofs. Most of
these analyses are carried out by hand and require not only knowledge of the
logical methods involved but also in-depth knowledge of the mathematical
field under analysis.

With the increasing power of computers, the body of completely formalized
mathematics that is available in electronic form has greatly increased. Sev-
eral projects have been founded that provide an environment for computer-
aided formalization of proofs (“proof assistants”) with the aim of formalizing
serious mathematical proofs, for example Mizar1, Isabelle2 or Coq3. These
systems are successful: It is practically possible to formalize also large proofs
with such systems, for example G. Gonthier has formalized a proof of the
4-color theorem in Coq (see [28]).

This possibility of completely formalizing mathematical proofs in an elec-
tronic format and the fact that the constructive content of consistency proofs
can be – in principle – automated has raised the question in how far it is
possible to employ computers not only for the formalization but also for the
analysis of mathematical proofs. The CERES-method for cut-elimination
[8] has been developed by M. Baaz and A. Leitsch with this aim and it

1http://mizar.org/
2http://www.cl.cam.ac.uk/research/hvg/Isabelle/
3http://coq.inria.fr/



CHAPTER 1. INTRODUCTION 3

has also been implemented4. Another system with similar aims is minlog5,
developed by the group of H. Schwichtenberg.

The main proof-theoretical tool of the CERES-method is the extraction of
a characteristic clause set from a formal proof with cuts. Any resolution
refutation of this clause set can then serve as a skeleton for a cut-free proof.
This thesis is an investigation of the potential of these kind of clause sets
for characterizing the mathematical content and structure of a formal proof

After explaining the scientific background of this thesis in Chapter 2, we will
in Chapter 3 define an improved variant of the original characteristic clause
sets, the profile of a proof. We will show that the profile can completely
replace the original characteristic clause sets: It is computationally superior
in the sense that it will never generate longer proofs with CERES, i.e. if
there is a resultion refutation of the characteristic clause set of length l then
there is a resolution refutation of the profile of length l′ ≤ l. It is even better
in detecting certain types of redundancies thus allowing a non-elementary
speed-up, i.e. there is a sequence of proofs where the length of the refutation
of the characteristic clause set cannot be bounded by an elementary function
whereas there exists a refutation of the profile of constant length.

Chapter 4 is devoted to relating and comparing the profile to other methods
for abstracting from concrete details of formal proofs: proof nets, Herbrand-
disjunctions and logical flow graphs will be investigated. The profile has the
nice theoretical property of being invariant under rule permutations which
gives as immediate corollary that two proofs having the same proof net will
also have the same profile and – in this sense – it constitutes a generaliza-
tion of proof nets. Proof nets originate from J.-Y. Girard’s work on linear
logic [25] and can also be defined for classical logic as in [44]. An impor-
tant tool for the analysis of mathematical proofs are Herbrand-disjunction,
named after J. Herbrand whose famous theorem says that an existentially
quantified first-order formula is valid iff there exists a finite disjunction of
instances of these existential quantifiers which are a propositional tautology
(see [29] and also [13]). Chapter 4 is mainly devoted to showing that the
profile is intimately related to Herbrand-disjunctions: The profile has two
dual parts corresponding to pruned versions of the two partial Herbrand-
disjunctions that can be extracted from a proof with cuts: One being the
instances of the end-sequent and one the instances of the cut-formulas. In
a certain sense the profile can be seen as a combination of the techniques
of first building an Herbrand-disjunction in order to abstract from concrete
details of the proof and secondly of applying a normal form transformation
to abstract from concrete details of the formulas in the proof.

In Chapter 5 we will give an analysis of the behavior of the profile under

4http://www.logic.at/ceres/
5http://www.mathematik.uni-muenchen.de/~minlog/



CHAPTER 1. INTRODUCTION 4

proof transformations. First we will show that cut-elimination does change
the profile in a surprisingly simple and natural way. Then we will define
a large class of proof transformations, containing e.g. the transformation
of formulas to negation normal form. We will show that applying transfor-
mations from this class to the cut-formulas of a proof will leave the profile
invariant. This class of proof transformations will be defined via a class
of (simple) proofs and cut-elimination will be used as execution of these
transformations.

Finally, in Chapter 6 we will perform a case study where two different proofs
of a simple mathematical theorem are analyzed by characteristic clause sets.
This analysis reveals that the characteristic clause set contains essential
information not only about the proof itself but – more importantly – about
all cut-free proofs that can be obtained from this one.



Chapter 2

Background

2.1 The Sequent Calculus

In his seminal work [23], Gentzen introduced the two formal systems which
still today are the most prominent of proof theory: The sequent calculus
and the calculus of natural deduction. In this paper he proved his famous
Hauptsatz: the cut-elimination theorem. Gentzen’s primary interest was the
calculus of natural deduction, the sequent calculus has been introduced for
the purpose of showing the cut-elimination theorem. As these two systems
can be easily translated into each other, the cut-elimination theorem in the
sequent calculus gave an indirect proof of the analogue theorem about nat-
ural deduction. A direct proof for natural deduction has only been obtained
later in [42].

The calculi in [23] are designed in a way that is well-suited for both the
formalization of classical and of intuitionistic first-order logic. This led to
certain peculiarties of the form of inference rules and of the form of cut
reduction rules. In this thesis we will deal with classical logic only, so we
will not use Gentzen’s original calculus but a more streamlined version. Our
rules will be purely multiplicative which is well-suited for investigating proof
transformations.

In order to distinguish different occurrences of the same formula in a sequent
without having to introduce exchange or permutation rules to the calculus,
we formally use sequents of indexed formulas. An indexed formula is pair
consisting of a formula and an index from some countable infinite index set
I. A sequent is a pair of sets of indexed formulas. It is assumed that each
index occurs at most once in a proof. So, formally, a formula occurrence is
an index.

Definition 2.1 (LK-proof). An LK-proof ϕ is a tree. The nodes of ϕ are
labelled with sequents, the edges are labelled with rules and the leaves are

5



CHAPTER 2. BACKGROUND 6

called axiom sequents.

1. Axiom sequents are of the form:

A ⊢ A for an atomic formula A

2. Logical Rules

Γ ⊢ ∆, A Π ⊢ Λ, B

Γ,Π ⊢ ∆,Λ, A ∧B
∧: r

A,B,Γ ⊢ ∆

A ∧B,Γ ⊢ ∆
∧: l

A,Γ ⊢ ∆ B,Π ⊢ Λ

A ∨B,Γ,Π ⊢ ∆,Λ
∨: l

Γ ⊢ ∆, A,B

Γ ⊢ ∆, A ∨B
∨: r

Γ ⊢ ∆, A B,Π ⊢ Λ

A→ B,Γ,Π ⊢ ∆,Λ
→ : l

A,Γ ⊢ ∆, B

Γ ⊢ ∆, A→ B
→ : r

Γ ⊢ ∆, A

¬A,Γ ⊢ ∆
¬: l

A,Γ ⊢ ∆

Γ ⊢ ∆,¬A
¬: r

A{x← t},Γ ⊢ ∆

(∀x)A,Γ ⊢ ∆
∀: l

Γ ⊢ ∆, A{x← α}

Γ ⊢ ∆, (∀x)A
∀: r

Γ ⊢ ∆, A{x← t}

Γ ⊢ ∆, (∃x)A
∃: r

A{x← α},Γ ⊢ ∆

(∃x)A,Γ ⊢ ∆
∃: l

For the variable α and the term t the following must hold:

(a) t must not contain a variable that occurs bound in A

(b) α is called an eigenvariable and must not occur in Γ ∪∆ ∪ {A}
(eigenvariable condition).

3. Structural Rules

Γ ⊢ ∆
Γ ⊢ ∆, A

w : r Γ ⊢ ∆
A,Γ ⊢ ∆

w : l

A,A,Γ ⊢ ∆

A,Γ ⊢ ∆
c : l

Γ ⊢ ∆, A,A

Γ ⊢ ∆, A
c : r

Γ ⊢ ∆, A A,Π ⊢ Λ

Γ,Π ⊢ ∆,Λ
cut
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In the above definition of the rules some formula occurrences are written
down explicitly, e.g. A and ¬A in the definition of the ¬ : r-rule and some
occur in the context Γ,∆. For a concrete rule ρ in a proof, the formula oc-
currence written down explicitly in the definition of the rule in the sequent
below the rule is called main occurrence of ρ. The formula occurrences writ-
ten down explicitly in the sequents above ρ are called auxiliary occurrences
of ρ. If an occurrence is auxiliary or main for a certain rule, it is said to be
an active occurrence of this rule.

We define an ancestor-relation as follows: For formula occurrences µ and ν, µ
is said to be an immediate ancestor of ν if either µ is an auxiliary occurrence
of a rule whose main occurrence is ν or µ occurs in the context in a sequent
above a rule and ν is the corresponding occurrence in the sequent below this
rule. The ancestor-relation is then defined as the reflexive and transitive
closure of the immediate ancestor-relation.

In order to keep track of ancestor occurrences in axioms we will consider
proofs labelled in the following way: We fix a countable label set L, e.g.
L = N, and given a proof ϕ assign each axiom occurrence in ϕ a unique
label. For a formula occurrence µ, the label set of µ, written as L(µ), is
defined as follows: If µ occurs in an axiom, its label set is the singleton set
containing only the axiom’s label. If µ does not occur in an axiom, its label
set is the union of the label sets of all its immediate ancestors. For a rule ρ,
the label set of ρ, written L(ρ), is the union of the label sets of its auxiliary
occurrences. This way of assigning labels connects each formula occurrence
and each rule in the proof with the axioms necessary for composing it.

There exist several extensions of the sequent calculus as presented above:
For example, the calculus LKe in [49] includes additional axioms for the
handling of equality. Reflexivity and compatibility of = are added as addi-
tional axiom sequents, symmetry and transitivity can be derived.

2.1.1 An Example

In this section we will give an example for the formalization of a mathe-
matical proof in the sequent calculus. This is a very simple example from
lattice theory (see e.g. [11]). There exist several equivalent definition of the
notion of a lattice. We will formalize a proof that one such definition entails
another one.

Definition (SL). A semi-lattice is a non-empty set L together with a binary
operation · s.t.

1. x · y = y · x (commutativity)

2. (x · y) · z = x · (y · z) (associativity)
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3. x · x = x (idempotence)

Definition. Let (L, ·) be a semi-lattice. The binary relation ≤· on L is
defined as

x ≤· y ⇐⇒ x · y = x

The two following definitions are equivalent.

Definition (L1). Let (L,∩) and (L,∪) be semi-lattices. Then (L,∩,∪) is a
lattice if the following condition is fulfilled:

x ≤∩ y ⇐⇒ y ≤∪ x

Definition (L2). Let (L,∩) and (L,∪) be semi-lattices. Then (L,∩,∪) is a
lattice if the absorption laws

(x ∩ y) ∪ x = x and (x ∪ y) ∩ x = x

are fulfilled.

We will give a formal proof of the implication (L1)⇒ (L2).

Example 2.1. Let · be a binary operation, define the following abbrevia-
tions for formulas formalizing the properties above:

C· := (∀x)(∀y) x · y = y · x

A· := (∀x)(∀y)(∀z) (x · y) · z = x · (y · z)

I· := (∀x) x · x = x

SL· := C· ∧A· ∧ I·

D1 := (∀x)(∀y) (x ≤∩ y → y ≤∪ x)

D2 := (∀x)(∀y) (x ≤∪ y → y ≤∩ x)

A1 := (∀x)(∀y) (x ∩ y) ∪ x = x

A2 := (∀x)(∀y) (x ∪ y) ∩ x = x

The mathematical statement that every object satisfying definition (L1) also
satisfies (L2) can now be formalized as the sequent s =

SL∪,SL∩,D1 ∧D2 ⊢ A1 ∧A2

A formal proof of s in the sequent calculus is ϕ =

(ϕ1)
SL∪,SL∩,D1 ∧D2 ⊢ A1

(ϕ2)
SL∪,SL∩,D1 ∧D2 ⊢ A2

SL∪,SL∪,SL∩,SL∩,D1 ∧D2,D1 ∧D2 ⊢ A1 ∧A2
∧: r

SL∪,SL∪,SL∩,SL∩,D1 ∧D2 ⊢ A1 ∧A2
c : l

SL∪,SL∪,SL∩,D1 ∧D2 ⊢ A1 ∧A2
c : l

SL∪,SL∩,D1 ∧D2 ⊢ A1 ∧A2
c : l



CHAPTER 2. BACKGROUND 9

where ϕ1 =

(ψ1)
SL∩ ⊢ (α ∩ β) ∩ α = α ∩ β

(ψ2)
SL∪, α ∪ (α ∩ β) = α ⊢ (α ∩ β) ∪ α = α

SL∪,SL∩, (α ∩ β) ∩ α = α ∩ β → α ∪ (α ∩ β) = α ⊢ (α ∩ β) ∪ α = α
→ : l

SL∪,SL∩, (∀y) ((α ∩ β) ∩ y = α ∩ β → y ∪ (α ∩ β) = y) ⊢ (α ∩ β) ∪ α = α
∀: l

SL∪,SL∩, (∀x)(∀y) (x ∩ y = x→ y ∪ x = y) ⊢ (α ∩ β) ∪ α = α
∀: l

SL∪,SL∩, (∀x)(∀y) (x ≤∩ y → y ≤∪ x) ⊢ (α ∩ β) ∪ α = α

SL∪,SL∩, (∀x)(∀y) (x ≤∩ y → y ≤∪ x) ⊢ (∀y) (α ∩ y) ∪ α = α
∀: r

SL∪,SL∩, (∀x)(∀y) (x ≤∩ y → y ≤∪ x) ⊢ (∀x)(∀y) (x ∩ y) ∪ x = x
∀: r

SL∪,SL∩,D1 ⊢ A1

SL∪,SL∩,D1,D2 ⊢ A1
w : l

SL∪,SL∩,D1 ∧D2 ⊢ A1
∧: l

where ψ1 consists of trivial applications of associativity, commutativity and
idempotence and ψ2 consists of a single application of commutativity. The
proof ϕ2 is analogous to ϕ1. Note that the proofs ψ1 and ψ2 have to be
carried out in LKe because reasoning with equality is needed.

2.2 Cut-Elimination

Gentzen’s proof of the cut-elimination theorem works by shifting cuts up-
ward in the proof until the logical complexity of the cut-formula can be
reduced. This is repeated for the cuts newly created by the reduction of the
logical complexity. A cut on a formula in an axiom can be deleted together
with the axiom. We present this proof here in a variant that is inspired
by term rewriting and computational interpretations of cut-elimination: We
first give a general reduction relation→G between LK-proofs and then show
that→G is weakly normalizing, i.e. that there exists a terminating strategy.
The reduction relation works only on regular proofs. A proof is called reg-
ular if all eigenvariables are different, i.e. for each pair of strong quantifier
rules, the respective eigenvariables are different.

Definition 2.2 (→G). We define the Gentzen-style cut-elimination as the
reduction relation →G on regular LK-proofs which is the union of the re-
duction relations →Gp ,→Gq ,→Ga ,→Gw ,→Gc ,→Gr defined as follows:

Let ϕ be an LK-proof of the form:

(ϕ1)
Γ ⊢ ∆, A

(ϕ2)
A,Π ⊢ Λ

Γ,Π ⊢ ∆,Λ
cut

1. Reduction of propositional rules →Gp :
The cut formula is introduced by propositional rules on both sides
immediately above the cut.
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(a) A = B ∧ C, ϕ =

(ϕ′
1)

Γ1 ⊢ ∆1, B
(ϕ′′

1)
Γ2 ⊢ ∆2, C

Γ1,Γ2 ⊢ ∆1,∆2, B ∧ C
∧: r

(ϕ′
2)

B,C,Π ⊢ Λ

B ∧ C,Π ⊢ Λ
∧: l

Γ1,Γ2,Π ⊢ ∆1,∆2,Λ
cut

then ϕ→Gp ϕ
′ :=

(ϕ′′
1)

Γ2 ⊢ ∆2, C

(ϕ′
1)

Γ1 ⊢ ∆1, B
(ϕ′

2)
B,C,Π ⊢ Λ

C,Γ1,Π ⊢ ∆1,Λ
cut

Γ1,Γ2,Π ⊢ ∆1,∆2,Λ
cut

(b) A = B ∨ C: symmetric to case 1a.

(c) A = B → C, ϕ =

(ϕ′
1)

B,Γ ⊢ ∆, C

Γ ⊢ ∆, B → C
→ : r

(ϕ′
2)

Π1 ⊢ Λ1, B
(ϕ′′

2)
C,Π2 ⊢ Λ2

B → C,Π1,Π2 ⊢ Λ1,Λ2
→ : l

Γ,Π1,Π2 ⊢ ∆,Λ1,Λ2
cut

then ϕ→Gp ϕ
′ :=

(ϕ′
2)

Π1 ⊢ Λ1, B
(ϕ′

1)
B,Γ ⊢ ∆, C

Π1,Γ ⊢ Λ1,∆, C
cut

(ϕ′′
2)

C,Π2 ⊢ Λ2

Γ,Π1,Π2 ⊢ ∆,Λ1,Λ2
cut

(d) A = ¬B, ϕ =

(ϕ′
1)

B,Γ ⊢ ∆

Γ ⊢ ∆,¬B
¬: r

(ϕ′
2)

Π ⊢ Λ, B

¬B,Π ⊢ Λ
¬: l

Γ,Π ⊢ ∆,Λ
cut

then ϕ→Gp ϕ
′ :=

(ϕ′
2)

Π ⊢ Λ, B
(ϕ′

1)
B,Γ ⊢ ∆

Γ,Π ⊢ ∆,Λ
cut

2. Reduction of quantifier rules →Gq :
The cut formula is introduced by quantifier rules on both sides imme-
diately above the cut.
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(a) A = (∀x)B, ϕ =

(ϕ′
1)

Γ ⊢ ∆, B{x← α}

Γ ⊢ ∆, (∀x)B
∀: r

(ϕ′
2)

B{x← t},Π ⊢ Λ

(∀x)B,Π ⊢ Λ
∀: l

Γ,Π ⊢ ∆,Λ
cut

then ϕ→Gq ϕ
′ :=

(ϕ′
1{α← t})

Γ ⊢ ∆, B{x← t}
(ϕ′

2)
B{x← t},Π ⊢ Λ

Γ,Π ⊢ ∆,Λ
cut

(b) A = (∃x)B: symmetric to case 2a.

3. Reduction of axioms →Ga :
The cut formula is introduced by an axiom on (at least) one of the
two sides immediately above the cut.

(a) ϕ1 is an axiom sequent, ϕ =

A ⊢ A
(ϕ2)

A,Π ⊢ Λ

A,Π ⊢ Λ
cut

then ϕ→Ga ϕ2

(b) ϕ2 is an axiom sequent, then ϕ→Ga ϕ1

4. Reduction of weakening →Gw :
The cut formula is introduced by weakening on (at least) one of the
two sides immediately above the cut.

(a) ϕ1 ends with w : r, ϕ =

(ϕ′
1)

Γ ⊢ ∆
Γ ⊢ ∆, A

w : r (ϕ2)
A,Π ⊢ Λ

Γ,Π ⊢ ∆,Λ
cut

then ϕ→Gw ϕ
′ :=

(ϕ′
1)

Γ ⊢ ∆
Γ,Π ⊢ ∆,Λ

w : ∗

(b) ϕ2 ends with w : l: symmetric to case 3b.

5. The cut formula is introduced by a contraction on (at least) one of the
two sides immediately above the cut.
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(a) ϕ1 ends with c : r, ϕ =

(ϕ′
1)

Γ ⊢ ∆, A,A

Γ ⊢ ∆, A
c : r (ϕ2)

A,Π ⊢ Λ

Γ,Π ⊢ ∆,Λ
cut

then ϕ→Gc ϕ
′ :=

(ϕ′
1)

Γ ⊢ ∆, A,A
(ϕ2)

A,Π ⊢ Λ

Γ,Π ⊢ ∆,Λ, A
cut

(ϕ′
2)

A,Π ⊢ Λ

Γ,Π,Π ⊢ ∆,Λ,Λ
cut

Γ,Π ⊢ ∆,Λ
c : ∗

where ϕ′
2 is a variant of ϕ2, defined by renaming all eigenvariables

in ϕ2 by fresh ones (in order to keep the regularity of the proof).

(b) ϕ2 ends with c : l: symmetric to case 5a

6. rank-reduction →Gr :
The cut formula is not introduced immediately above the cut on (at
least) one of the two sides.

(a) on the right side

i. ϕ2 ends with a unary rule, ϕ =

(ϕ1)
Γ ⊢ ∆, A

(ϕ′
2)

A,Π′ ⊢ Λ′

A,Π ⊢ Λ
r

Γ,Π ⊢ ∆,Λ
cut

Then ϕ→Gr ϕ
′ :=

(ϕ1)
Γ ⊢ ∆, A

(ϕ′
2)

A,Π′ ⊢ Λ′

Γ,Π′ ⊢ ∆,Λ′ cut

Γ,Π ⊢ ∆,Λ
r

which is a valid LK-proof. Note that regularity ensures that
the eigenvariable condition cannot be violated.

ii. ϕ2 ends with a binary rule µ

A. the ancestor of A is in the left premise of µ, ϕ =

(ϕ1)
Γ ⊢ ∆, A

(ϕ′
2)

A,Π′
1 ⊢ Λ′

1

(ϕ′′
2)

Π′
2 ⊢ Λ′

2

A,Π ⊢ Λ
r

Γ,Π ⊢ ∆,Λ
cut
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Then ϕ→Gr ϕ
′ :=

(ϕ1)
Γ ⊢ ∆, A

(ϕ′
2)

A,Π′
1 ⊢ Λ′

1

Γ,Π′
1 ⊢ ∆,Λ′

1
cut

(ϕ′′
2)

Π′
2 ⊢ Λ′

2

Γ,Π ⊢ ∆,Λ
r

which is a valid LK-proof.

B. the ancestor of A is in the right premise of µ: symmetric
to the previous case.

(b) on the left side: symmetric to case 6a

The above defined set of reduction rules is not strongly terminating, i.e.
there exist infinite reduction sequences. The above set of reduction rules is
also not confluent, i.e. one proof may have several normal forms.

Example 2.2. Consider the following proof (that can also be found in
[22, 20, 50]): ϕ :=

A ⊢ A A ⊢ A
A ∨A ⊢ A,A

∨: l

A ∨A ⊢ A
c : r

A ⊢ A A ⊢ A
A,A ⊢ A ∧A

∧: r

A ⊢ A ∧A
c : l

A ∨A ⊢ A ∧A
cut

Applying the reduction rules →G with a strategy that always moves a cut
to the left side results in the normal form ϕ1 =

A ⊢ A A ⊢ A
A,A ⊢ A ∧A

∧: r

A ⊢ A ∧A
c : l

A ⊢ A A ⊢ A
A,A ⊢ A ∧A

∧: r

A ⊢ A ∧A
c : l

A ∨A ⊢ A ∧A,A ∧A
∨: l

A ∨A ⊢ A ∧A
c : r

If we instead apply the reduction rules with a strategy that favors the right
side we obtain the normal form ϕ2 =

A ⊢ A A ⊢ A
A ∨A ⊢ A,A

∨: l

A ∨A ⊢ A
c : r

A ⊢ A A ⊢ A
A ∨A ⊢ A,A

∨: l

A ∨A ⊢ A
c : r

A ∨A,A ∨A ⊢ A ∧A
∧: r

A ∨A ⊢ A ∧A
c : l

Moreover the proof ϕ does have an infinite reduction sequence and infinitely
many normal forms. By applying one rank-reduction to the left side and
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then a reduction of the upper cut to the right side we obtain the proof ϕ′ =

A ⊢ A A ⊢ A
A ∨A ⊢ A,A

∨: l

A ⊢ A A ⊢ A
A ∨A ⊢ A,A

∨: l
A ⊢ A A ⊢ A
A,A ⊢ A ∧A

∧: r

A ∨A,A ⊢ A,A ∧A
cut

A ∨A,A ∨A ⊢ A,A,A ∧A
cut

A ∨A ⊢ A,A,A ∧A
c : l

A ∨A ⊢ A,A ∧A
c : r⋆

A ⊢ A A ⊢ A
A,A ⊢ A ∧A

∧: r

A ⊢ A ∧A
c : l⋆

A ∨A ⊢ A ∧A,A ∧A
cut⋆

A ∨A ⊢ A ∧A
c : r

which contains – in the three rules marked with ⋆ – a variant of the starting
configuration. Iterating this “reduction” one can generate normal forms of
any size.

There exist several variants and refinements of the above and similar rewrite
relations that are confluent and/or terminating: In Gentzen’s original proof
[23] an uppermost reduction strategy is employed that favors moving cuts
up on the right side over the left side. This strategy is – as Gentzen shows –
terminating. Another terminating strategy is to use a cut whose cut-formula
has maximal logical complexity, see e.g. [48]. By annotating each sub-
formula of a cut-formula with a preferred direction one essentially obtains
a reduction relation that is confluent and terminating without imposing
restrictions on the reductions strategy [20]. Another terminating procedure
can be found in [50, 51].

The rest of this section is devoted to giving a proof of the cut-elimination
theorem for the present calculus: Every provable sequent has a cut-free
proof. The proof of this theorem in the present setting amounts to show-
ing weak normalization of the above cut-reduction relation →G. We will
essentially use an uppermost reduction strategy.

Definition 2.3. Let µ and ν be formula occurrences. We write µ>1ν if

1. µ is the direct ancestor of ν in the context of a rule or

2. µ is auxiliary occurrence and ν is main occurrences of a contraction
rule ρ

We write > for the reflexive and transitive closure of >1.

Definition 2.4. A formula interspace I is a set of formula occurrences closed
w.r.t. >, i.e. for all µ, ν with µ > ν : µ ∈ I ⇔ ν ∈ I.

Note that formula interspaces are trees and that every formula occurrence
in a proof belongs to exactly one formula interspace. We write I(µ) for the
formula interspace containing µ. We write ⌊I⌋ for the formula occurrence
that is the root of the interspace I, i.e. ∀µ ∈ I \ ⌊I⌋ : µ > ⌊I⌋. A formula
occurrence µ ∈ I is called a leaf if ∄ν ∈ I s.t. ν > µ.
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Definition 2.5 (rank).

1. Let I be a formula interspace. We define the rank of I as:

rank(I) := |{µ ∈ I | µ is a leaf and µ 6= ⌊I⌋}|

2. Let ω be a cut occurrence. We define

rank(ω) := rank(I(ω))

3. Let ρ be a cut with positive cut occurrence ω+ and negative cut oc-
currence ω−. We define

lrank(ρ) := rank(ω+) rrank(ρ) := rank(ω−)

rank(ρ) := lrank(ρ) + rrank(ρ)

4. Let ϕ be a proof with cuts ρ1, . . . , ρn. We define

lrank(ϕ) :=

n
∑

i=1

lrank(ρi) rrank(ϕ) :=

n
∑

i=1

rrank(ρi)

rank(ϕ) := lrank(ϕ) + rrank(ϕ)

We will use→Grc to denote the union→Gr ∪ →Gc . For a proof ϕ and a rule
ρ in ϕ we will write ϕ | ρ′ for the sub-proof of ϕ that ends with ρ.

Lemma 2.1. Let ϕ be an LK-proof of the form

(ϕ1)
Γ ⊢ ∆, A[ω]

(ϕ2)
A,Π ⊢ Λ

Γ,Π ⊢ ∆,Λ
cut[ρ]

with lrank(ϕ1) = lrank(ϕ2) = 0 and lrank(ρ) = lrank(ω) > 0. Then there is
an LK-proof ϕ∗ with ϕ→Grc ϕ

∗ and lrank(ϕ∗) < lrank(ϕ) = rank(ω).

Proof. Let µ be a leaf of I(ω). We mark all formula occurrences on the
path from µ to ω with a ⋆. Let ⋆(ϕ) denote the number of occurrences in
ϕ that are marked with ⋆. We proceed by induction on ⋆(ϕ) doing a case
distinction on the type of the last rule σ in ϕ1:

1. If σ is a contraction working on ω then ϕ =

(ϕ′
1)

Γ ⊢ ∆, A,A⋆

Γ ⊢ ∆, A⋆ c : r (ϕ2)
A,Π ⊢ Λ

Γ,Π ⊢ ∆,Λ
cut[ρ]
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and we reduce ϕ→Gc ϕ
′ where ϕ′ =

(ϕ′
1)

Γ ⊢ ∆, A,A⋆
[ω′]

(ϕ′
2)

A,Π ⊢ Λ

Γ,Π ⊢ ∆,Λ, A
cut[ρ′]

(ϕ′′
2)

A,Π ⊢ Λ

Γ,Π,Π ⊢ ∆,Λ,Λ
cut[ρ′′]

Γ,Π ⊢ ∆,Λ
c : ∗

Then ⋆(ϕ′) = ⋆(ϕ) − 1 and

lrank(ϕ′) = lrank(ρ′) + lrank(ρ′′) + lrank(ϕ′
1) + lrank(ϕ′

2) + lrank(ϕ′′
2)

= lrank(ρ′) + lrank(ρ′′)

≤ lrank(ρ)

Now if ϕ′
1 ends with a rule introducing ω′ then lrank(ρ′) = 0, ⋆(ϕ′) = 1

and lrank(ϕ′) < lrank(ϕ) which finished the induction, i.e. ϕ∗ = ϕ′.
If ϕ′

1 does not end with such a rule then we can apply the induction
hypothesis to the proof ϕ′ | ρ′ to obtain a proof ϕ∗ with lrank(ϕ∗) <
lrank(ϕ).

2. σ is a cut and the ancestor of ω occurs on the left side of σ. Then ϕ =

(ϕl
1)

Γ1 ⊢ ∆1, A
⋆, B[ω′]

(ϕr
1)

B,Γ2 ⊢ ∆2

Γ ⊢ ∆, A⋆
[ω]

cut[σ] (ϕ2)
A,Π ⊢ Λ

Γ,Π ⊢ ∆,Λ
cut[ρ]

As lrank(ϕ1) = 0, the last rule of ϕ′
1 introduced ω′, let this rule w.l.o.g.

be unary. Then ϕ =

(ϕl′

1 )
Γ′

1 ⊢ ∆′
1, A

⋆, B′

Γ1 ⊢ ∆1, A
⋆, B[ω′]

r (ϕr
1)

B,Γ2 ⊢ ∆2

Γ ⊢ ∆, A⋆
[ω]

cut[σ] (ϕ2)
A,Π ⊢ Λ

Γ,Π ⊢ ∆,Λ
cut[ρ]

We reduce this proof by shifting ρ up with two rank-reductions: ρ→Gr

ρ′ →Gr ρ
′′ where ρ′′ =

(ϕl′

1 )
Γ′

1 ⊢ ∆′
1, A

⋆
[ω′′], B

′
(ϕ2)

A,Π ⊢ Λ

Γ′
1,Π ⊢ ∆′

1,Λ, B
′ cut[ρ′]

Γ1,Π ⊢ ∆1,Λ, B
r (ϕr

1)
B,Γ2 ⊢ ∆2

Γ,Π ⊢ ∆,Λ
cut[σ′]
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Then ⋆(ϕ′′) = ⋆(ϕ) − 2 and

lrank(ϕ′′) = lrank(ϕl′

1 ) + lrank(ϕ2) + lrank(ϕr
1) + lrank(ρ′) + lrank(σ′)

= lrank(ρ′)

≤ lrank(ρ)

If ϕl′

1 ends with a rule introducing ω′′, then lrank(ρ′) = 0, ⋆(ϕ′′) = 1
and lrank(ϕ′′) < lrank(ϕ) which finished the induction, i.e. ϕ∗ = ϕ′′.
If ϕl′

1 does not end with such a rule then we can apply the induction
hypothesis to the proof ϕ′′ | ρ′.

3. σ is any other unary rule, then ϕ =

(ϕ′
1)

Γ′ ⊢ ∆′, A⋆

Γ ⊢ ∆, A⋆ r (ϕ2)
A,Π ⊢ Λ

Γ,Π ⊢ ∆,Λ
cut[ρ]

and we reduce ϕ→Gr ϕ
′ with

(ϕ′
1)

Γ′ ⊢ ∆′, A⋆
(ϕ2)

A,Π ⊢ Λ

Γ′,Π ⊢ ∆′,Λ
cut[ρ′]

Γ,Π ⊢ ∆,Λ
r

We have ⋆(ϕ′) = ⋆(ϕ) − 1 and lrank(ϕ′) ≤ lrank(ϕ). If ⋆(ϕ′) = 1, the
induction is finished, if not we can apply the induction hypothesis to
ϕ′ | ρ′.

4. If σ is any other binary rule: proceed analogously to the previous case.

Corollary 2.1. Let ϕ be an LK-proof. Then there is an LK-proof ϕ∗ with
ϕ→Grc ϕ

∗ and lrank(ϕ∗) = 0.

Proof. By repeatedly applying the previous lemma to the uppermost cut
with lrank > 0.

Lemma 2.2. Let ϕ be an LK-proof of the form

(ϕ1)
Γ ⊢ ∆, A

(ϕ2)
A[ω],Π ⊢ Λ

Γ,Π ⊢ ∆,Λ
cut[ρ]

with lrank(ϕ) = 0, rrank(ϕ1) = rrank(ϕ2) = 0 and rrank(ρ) = rank(ω) >
0. Then there is an LK-proof ϕ∗ with ϕ →Grc ϕ∗, lrank(ϕ∗) = 0 and
rrank(ϕ∗) < rrank(ϕ) = rank(ω).
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Proof. Let µ be a a leaf of I(ω) and mark all formula occurrences on the
path from µ to ω with ⋆. Let ⋆(ϕ) denote the number of occurrences marked
with ⋆. We proceed by induction on ⋆(ϕ) doing a case distinction on the
type of the last rule σ in ϕ2.

1. If σ is a contraction, then ϕ =

(ϕ1)
Γ ⊢ ∆, A

(ϕ′
2)

A⋆, A,Π ⊢ Λ

A⋆,Π ⊢ Λ
c : l

Γ,Π ⊢ ∆,Λ
cut[ρ]

and we reduce ϕ→Gc ϕ
′ where ϕ′ =

(ϕ′′
1)

Γ ⊢ ∆, A

(ϕ′
1)

Γ ⊢ ∆, A
(ϕ′

2)
A⋆, A,Π ⊢ Λ

A,Γ,Π ⊢ ∆,Λ
cut[ρ′]

Γ,Γ,Π ⊢ ∆,∆,Λ
cut[ρ′′]

Γ,Π ⊢ ∆,Λ
c : ∗

Then ⋆(ϕ′) = ⋆(ϕ)−1, lrank(ϕ′) = 0, rrank(ϕ′) = rrank(ρ′)+rrank(ρ′′) ≤
rrank(ρ) and we can apply the induction hypothesis on ϕ′ | ρ′.

2. If σ is a cut and the ancestor of ω occurs on the left side of σ then
ϕ =

(ϕ1)
Γ ⊢ ∆, A

(ϕl
2)

A⋆,Π1 ⊢ Λ1, B
(ϕr

2)
B,Π2 ⊢ Λ2

A⋆,Π ⊢ Λ
cut[σ]

Γ,Π ⊢ ∆,Λ
cut[ρ]

As lrank(ϕ) = 0, ϕ′
2 ends with a rule introducing B, let this rule

w.l.o.g. be unary, then ϕ =

(ϕ1)
Γ ⊢ ∆, A

(ϕl′

2 )
A⋆,Π′

1 ⊢ Λ′
1

A⋆,Π1 ⊢ Λ1, B
r (ϕr

2)
B,Π2 ⊢ Λ2

A⋆,Π ⊢ Λ
cut[σ]

Γ,Π ⊢ ∆,Λ
cut[ρ]

We reduce this proof by shifting up ρ with two rank reductions: ϕ→Gr

ϕ′ →Gr ϕ
′′ where ϕ′′ =

(ϕ1)
Γ ⊢ ∆, A

(ϕl′

2 )
A⋆,Π′

1 ⊢ Λ′
1

Γ,Π′
1 ⊢ ∆,Λ′

1

cut[ρ′]

Γ,Π1 ⊢ ∆,Λ1, B
r (ϕr

2)
B,Π2 ⊢ Λ2

Γ,Π ⊢ ∆,Λ
cut[σ′]

Then ⋆(ϕ′′) = ⋆(ϕ) − 2 and lrank(ϕ∗) = 0 and rrank(ϕ′′) ≤ rrank(ϕ).
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3. If σ is a cut and the ancestor of ω occurs on the right side of σ:
symmetric to the previous case.

4. σ is any other unary rule, then ϕ =

(ϕ1)
Γ ⊢ ∆, A

(ϕ′
2)

A⋆,Π′ ⊢ Λ′

A⋆,Π ⊢ Λ
[σ]

Γ,Π ⊢ ∆,Λ
cut[ρ]

and we reduce ϕ→Gr ϕ
′ with ϕ′ =

(ϕ1)
Γ ⊢ ∆, A

(ϕ′
2)

A⋆,Π′ ⊢ Λ′

Γ,Π′ ⊢ ∆,Λ′ cut

Γ,Π ⊢ ∆,Λ
[σ]

We have ⋆(ϕ′) = ⋆(ϕ) − 1, lrank(ϕ′) = 0 and rrank(ϕ′) ≤ rrank(ϕ).

5. If σ is any other binary rule: analogous to the previous case.

Corollary 2.2. Let ϕ be an LK-proof. Then there is an LK-proof ϕ∗ with
ϕ→∗

Grc
ϕ∗ and rank(ϕ∗) = 0.

Proof. From Corollary 2.1 we obtain a proof ϕ′ with lrank(ϕ′) = 0. By
repeatedly applying the previous lemma to an uppermost cut with rrank > 0
we obtain a ϕ∗ with rank(ϕ∗) = 0.

Definition 2.6 (degree).

1. Let F be a formula. The degree deg(F ) of F is defined as follows

(a) If F is an atom: deg(F ) := 0

(b) If F = G ◦H for ◦ ∈ {∧,∨,→} then

deg(F ) := deg(G) + deg(H) + 1

(c) If F = ¬G then deg(F ) := deg(G) + 1.

(d) If F = (Qx)G for Q ∈ {∀,∃} then deg(F ) := deg(G) + 1

2. Let ρ be a cut rule with cut formula F . We define

deg(ρ) := deg(F )



CHAPTER 2. BACKGROUND 20

3. Let ϕ be a proof with cuts ρ1, . . . , ρn. We define deg(ϕ) as the multiset

{deg(ϕ1), . . . ,deg(ϕn)}

Definition 2.7. Let ≻ be a binary relation on some set X.

1. ≻ is called strict order, if it is transitive and irreflexive, i.e. ∀x, y, z ∈
X : x ≻ y and y ≻ z implies x ≻ z and ∀x ∈ X : x ⊁ x

2. ≻ is called well-founded if there is no infinite sequence x1 ≻ x2 ≻ . . .
with xi ∈ X

Let X be a set. We write M(X) for the set of all multisets containing
elements of X.

Definition 2.8. Let ≻ be a strict order on a set X, the corresponding
multiset order ≻mul on M(X) is defined as follows:

M ≻mul N iff M 6= N and ∀x+ ∈ N \M ∃x− ∈M \N s.t. x− ≻ x+

The important point about multiset orders is that they preserve well-foundedness.

Theorem 2.1. The multiset order ≻mul is well-founded iff ≻ is well-founded

Proof. see [1, pp. 23–24].

We will use the multiset of cut-degrees as terminating measure for our cut-
elimination strategy. We write < for this multiset order.

Lemma 2.3. Let ϕ be an LK-proof of the form

(ϕ1)
Γ ⊢ ∆, A

(ϕ2)
A,Π ⊢ Λ

Γ,Π ⊢ ∆,Λ
cut[ρ]

where ϕ1 and ϕ2 are cut-free. Then there is a proof ϕ∗ with ϕ →∗
G ϕ∗ s.t.

deg(ϕ∗) < deg(ϕ).

Proof. By Corollary 2.2 there is a proof ϕ′ with ϕ →∗
Grc

ϕ′ and rank(ϕ′) =
0. Let ρ1, . . . , ρn be the cuts in ϕ′, then as ϕ →∗

Grc
ϕ′, deg(ρ1) = . . . =

deg(ρn) = deg(ρ) and as rank(ϕ′) = 0 all ρi can be reduced by one of
→Ga ,→Gw ,→Gp or →Gq . Applying these reductions (in any order) gives a
proof ϕ∗ with deg(ϕ∗) < deg(ϕ) = {deg(ρ)} because deg(ρ∗) < deg(ρ) for
each cut ρ∗ in ϕ∗.

Theorem 2.2. Let ϕ be an LK-proof. Then there exists a cut-free LK-
proof ϕ∗ with ϕ→G ϕ∗.
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Proof. Let ρ be an uppermost cut, let ψ := ϕ | ρ. By Lemma 2.3 there is
a ψ′ with ψ →∗

G ψ′ and deg(ψ′) < deg(ψ). Define ϕ′ := ϕ[ψ]ρ and observe
that deg(ϕ′) = deg(ψ′)∪D < deg(ψ)∪D = deg(ϕ). Iterating this operation
ends in a cut-free proof ϕ∗ by well-foundedness of the multiset ordering on
degrees.

Definition 2.9. A proof ϕ of a sequent s is said to have the subformula
property if for every formula F occurring in ϕ there is a sub-formula G in s
and a substitution σ s.t. Gσ = F .

Corollary 2.3. For every LK-proof ϕ there exists a proof ϕ′ of the same
end-sequent that has the subformula property.

Proof. By the cut-elimination theorem there exists a cut-free proof ϕ′ and
all cut-free proofs have the subformula property (as can easily be checked
by inspecting the rules).

2.2.1 The Mathematical Meaning of Cut-Elimination

Cut-elimination has important applications in proof theory: It has been
used in [23] to show the consistency of intuitionistic propositional logic.
It also plays the key role of the finitary proof transformation in Gentzen’s
consistency proof of Peano Arithmetic [24] and in various similar consistency
proofs (see e.g. [48]). Having a cut-elimination theorem, the consistency of
a calculus is easily demonstrated as follows:

Corollary 2.4. LK is consistent, i.e. there is no formula A s.t. both ⊢ A
and ⊢ ¬A are derivable.

Proof. Assume there are such proofs ϕ1 and ϕ2. Then ϕ :=

(ϕ2)
⊢ ¬A

(ϕ1)
⊢ A
¬A ⊢

¬: l

⊢
cut

would be a proof of the empty sequent. But by the cut-elimination theorem
there would exist a proof ϕ′ of the empty sequent having the subformula
property. This is a contradiction because a proof of the empty sequent
cannot have the subformula property.

The cut-elimination theorem however does not only provide a purely ex-
tensional proposition on the existence of proofs with certain properties, its
proof contains an algorithm for transforming given proofs with cuts into
proofs without cuts.
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This proof transformation corresponds to the removal of lemmas and those
mathematical notions present in the lemmas from a proof. The formal proof
resulting from cut-elimination will enjoy the subformula property. Mathe-
matically this means that only such notions will be used in the proof that
also appear in the theorem itself. So cut-elimination allows – in princi-
ple – the automated generation of elementary proofs from arbitrary proofs
and is therefore of fundamental mathematical importance. Whole branches
of mathematics, like e.g. analytic number theory, are devoted to proving
elementary statements with more advanced methods. It is often an impor-
tant and difficult problem to find an elementary proof for a theorem where
already other (non-elementary) proofs exist.

We will illustrate the potential of the application of cut-elimination methods
on a concrete example continuing the lattice example of Section 2.1.1.

Definition (PO). A partially ordered set (poset) is a non-empty set S with
a binary relation ≤ s.t.

1. x ≤ x (reflexivity)

2. if x ≤ y and y ≤ x then x = y (anti-symmetry)

3. if x ≤ y and y ≤ z then x ≤ z (transitivity)

The following definition (L3) of a lattice is equivalent to the definitions (L1)
and (L2).

Definition (L3). Let (L,≤) be a partially ordered set. If for each two
elements x, y ∈ L there exists a greatest lower bound glb(x, y) and a least
upper bound lub(x, y) then (L, glb, lub) is a lattice.

Example 2.3. Let · be a binary operation and let ⊳ be a binary relation.
We define the following formulas formalizing the properties above:

R⊳ := (∀x) x⊳ x

AS⊳ := (∀x)(∀y) ((x⊳ y ∧ y ⊳ x)→ x = y)

T⊳ := (∀x)(∀y)(∀z) ((x⊳ y ∧ y ⊳ z)→ x⊳ z)

PO⊳ := R⊳ ∧AS⊳ ∧ T⊳

GLB·
⊳

:= (∀x)(∀y)(x · y ⊳ x ∧ x · y ⊳ y ∧

(∀z)((z ⊳ x ∧ z ⊳ y)→ z ⊳ x · y))

LUB·
⊳

:= (∀x)(∀y)(x⊳ x · y ∧ y ⊳ x · y ∧

(∀z)((x ⊳ z ∧ y ⊳ z)→ x · y ⊳ z))

PO⊳ says that ⊳ is a partial order. GLB·
⊳

says that · is a function computing
the greatest lower bound of two elements w.r.t. ⊳ and analogously for LUB·

⊳
.
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The definitions L1, L2 and L3 are expressed through the formulas

L1 = SL∩ ∧ SL∪ ∧D1 ∧D2

L2 = SL∩ ∧ SL∪ ∧A1 ∧A2

L3 = PO≤ ∧GLB∩
≤ ∧ LUB∪

≤

where the abbreviations used here refer to the formulas defined in the ex-
ample in Section 2.1.1.

As all of these definitions are equivalent, there exist formal proofs ψ of
L1 ⊢ L3 and ξ of L3 ⊢ L2. One can thus compose the proof χ :=

(ψ)
L1 ⊢ L3

(ξ)
L3 ⊢ L2

L1 ⊢ L2
cut

which corresponds to the concatenation of the two arguments: “As L1 im-
plies L3 and L3 implies L2 also L1 implies L2”. The important point is that
neither L1 nor L2 contains the notion of partially ordered set. Nevertheless
our proof χ of the implication L1 ⊢ L2 makes use of this notion. But clearly
this is not necessary, for example the proof ϕ defined in Example 2.1 does not
use properties of partially ordered sets. By application of a cut-elimination
algorithm to χ we can obtain a proof χ′ of L1 ⊢ L2 having the subformula
property. In the case of this end-sequent, a proof having the sub-formula
property does not make any reference to the notion of partially ordered set
nor to its properties. The proof χ′ will be an argument working only with
the semi-lattice axioms similarly to our original proof ϕ. This way we can
eliminate mathematical notions (in this case: the partially ordered set) from
proofs by applying cut-elimination to obtain an elementary proof.

2.3 The Resolution Calculus

The main purpose of the sequent calculus as introduced by Gentzen was
to prove the cut-elimination theorem. For automated deduction, i.e. the
search for proofs by computers, the sequent calculus is not very well-suited:
In searching for a proof bottom-up, i.e. starting from the end-sequent im-
portant choices have to be made at the weak quantifier rules (∀ : l and
∃ : r). Here, a finite number of terms have to be chosen (out of an infinite
totality) that allow to finish the proof. In [45] J. A. Robinson introduced
a calculus that is much better suited for automated deduction: the resolu-
tion calculus. The key ingredient is the unification principle which allows
to choose these terms in a more goal-directed way then in sequent calculus.
The resolution calculus works in a restricted syntax: so called clause sets
which are conjunctive normal forms of skolemized formulas which has addi-
tional benefits for the automation. In this section we will review a variant
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of clause logic and of the resolution calculus as far as needed in this thesis.
For a comprehensive presentation see [38].

2.3.1 Labelled Clause Logic

A literal is an atom or a negated atom. A clause is a multiset of liter-
als. A labelled clause is a clause that is assigned a non-empty set of la-
bels from L. For a labelled clause c we write L(c) to denote this set. We
will use the notation {L1, . . . , Ln}S for the clause {L1, . . . , Ln} with the
set of labels S. In writing down concrete labelled clauses (with concrete
labels) we will sometimes omit the set braces of S to increase readabil-
ity. We will sometimes also use a sequent notation for clauses, writing the
clause {¬A1, . . . ,¬An, B1, . . . , Bm} as A1, . . . , An ⊢ B1, . . . Bm for atoms
Ai, Bj . A labelled clause in sequent notation is written as Γ ⊢L ∆. Let
c = {L1, . . . , Lk}S and d = {M1, . . . ,Mn}T be labelled clauses. We de-
fine the merge of c and d as c ◦ d := {L1, . . . , Lk,M1, . . . ,Mn}S∪T . Let
C,D be sets of labelled clauses. We define the product of C and D as
C ×D := {c ◦ d | c ∈ C, d ∈ D}. A label selection formula is a propositional
formula built up from label sets as atoms and the connectives ∧,∨,¬. For
a clause c and a set of labels L we will say that c is an L-clause if there
exists a label l that is both in L and L(c). The labels will be used in order
to describe subsets of sets of labelled clauses as follows:

Definition 2.10. Let C be a set of labelled clauses and let F be a label
selection formula. We define CF as follows:

1. CL := {c ∈ C | c is an L-clause} for a set of labels L.

2. C¬F := C \ CF

3. CF∧G := CF ∩ CG

4. CF∨G := CF ∪ CG

Example 2.4. Let C := {{P}1 ; {¬P,R}2,3 ; {¬R}3 ; {¬P,Q}2,3,4 ; {¬Q}3,4}.
Then

C{4}∨¬{3} = C{4} ∪ (C \ C{3}) = {{P}1 ; {¬P,Q}2,3,4 ; {¬Q}3,4}

Note that CL1∧L2 6= CL1∩L2 . Consider for example C = {{¬P,Q}1,2}. Then
C{1}∧{2} = C but C{1}∩{2} = C∅ = ∅. In contrast CL1∨L2 = CL1∪L2 as can
be easily verified.

Definition 2.11 (restricted product). Let C,D be sets of labelled clauses
and F be a label selection formula. We define the operation ×F as

C ×F D := (CF ×DF ) ∪ C¬F ∪D¬F
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Example 2.5. Let C = {{¬P}1 ; {¬Q}2},D = {{P}3 ; {Q}4}. Then

C ∪D = {{¬P}1 ; {¬Q}2 ; {P}3 ; {Q}4}}

C ×D = {{¬P,P}1,3 ; {¬P,Q}1,4 ; {¬Q,P}2,3 ; {¬Q,Q}2,4}

C ×{1,4} D = {{¬P,Q}1,4 ; {¬Q}2 ; {P}3}

The reader can easily convice himself that - under the usual interpretation of
a clause set as a universally quantified conjunctive normal form - the logical
meaning of the union (∪) is conjunction, the meaning of the product (×) is
disjunction and that the restricted product is in-between in the sense that
C ∪D implies C ×L D which in turn implies C ×D for all L ⊆ L.

Definition 2.12 (closure). Let F be a formula with the free variables
x1, . . . , xn. We write (∀∗)F for the universal closure (∀x1) . . . (∀xn)F and
we write (∃∗)F for the existential closure (∃x1) . . . (∃xn)F .

Definition 2.13 (∀CNF,∃DNF). We define functions ∀CNF,∃DNF map-
ping a clause set to a formula. Let C = {c1, . . . , cn} be a set of clauses where
ci = {Li,1, . . . Li,mi

} for i = 1, . . . , n. Then

∀CNF(C) := (∀∗)
n
∧

i=1

mi
∨

j=1

Li,j

∃DNF(C) := (∃∗)
n
∨

i=1

mi
∧

j=1

Li,j

Let M be a multiset. We write set(M) for the set that contains an element
iff M contains it at least once. For a set of labelled clauses C we write
set(C) for set(C ′) where C ′ is the multiset of non-labelled clauses obtained
from C by dropping all labels.

A technique for avoiding redundancy used heavily for automated deduction
is subsumption.

Definition 2.14 (subsumption). Let C,D be sets of labelled clauses. Then
C subsumes D, written as C ≤ss D if ∀d ∈ D there is a c ∈ C and a
substition σ with set(c)σ ⊆ set(d).

Definition 2.15 (propositional subsumption). Let C,D be sets of labelled
clauses. Then C propositionally subsumes D, written as C E D if ∀d ∈
D ∃c ∈ C with set(c) ⊆ set(d).

If C and D are clause sets with C E D then ∀CNF(C) implies ∀CNF(D)
and ∃DNF(D) implies ∃DNF(C).
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Definition 2.16. Let F,G,H be quantifier-free formulas. We define the
rewrite rules:

(I) F → G 7→ ¬F ∨G (DN) ¬¬F 7→ F
(M1) ¬(F ∧G) 7→ ¬F ∨ ¬G (M2) ¬(F ∨G) 7→ ¬F ∧ ¬G

(C1) F ∨ (G ∧H) 7→ (F ∨G) ∧ (F ∨H)
(C2) (G ∧H) ∨ F 7→ (G ∨ F ) ∧ (H ∨ F )
(D1) F ∧ (G ∨H) 7→ (F ∧G) ∨ (F ∧H)
(D1) (G ∨H) ∧ F 7→ (G ∧ F ) ∨ (H ∧ F )

Note that all these rewrite rules preserve logical equivalence. We define two
rewrite relations: 7→CNF as the reflexive, transitive and compatible closure
of {(I), (DN), (M1), (M2), (C1), (C2)} and 7→DNF as the reflexive, transitive
and compatible closure of {(I), (DN), (M1), (M2), (D1), (D2)}.

Definition 2.17. Let F be a quantifier-free formula, let
∧k

i=1

∨li
j=1 Li,j be

a normal form of F under 7→CNF and let
∨n

i=1

∧mi

j=1Mi,j be a normal form
of F under 7→DNF. We define the clause sets

CNF(F ) := {{L1,1, . . . , L1,l1}, . . . , {Lk,1, . . . , Lk,lk}}

DNF(F ) := {{M1,1, . . . ,M1,m1}, . . . , {Mn,1, . . . ,Mn,mn}}

These clause sets are well-defined because both 7→CNF and 7→DNF are strongly
normalizing and confluent up to commutativity of ∧ and ∨.

Definition 2.18 (dualization). Let L be a literal, then L denotes the dual of
L, i.e. if L = P (t1, . . . , tn) then L = ¬P (t1, . . . , tn) and if L = ¬P (t1, . . . , tn)
then L = P (t1, . . . , tn).

Let c = {L1, . . . , Ln}S be a clause with label set S, then c := {L1 , . . . , Ln}S .

Let C = {c1, . . . , cm} be a clause set, then C := {c1 , . . . , cm}.

Note that the dual of the empty clause is the empty clause and - similarly -
the dual of the empty clause set is the empty clause set. Also note that for

any literal L, any clause c and any clause set C: L = L, c = c and C = C.

Lemma 2.4. Let C,D be sets of labelled clauses, let L be a set of labels
and let F be a label selection formula. Then

1. C ∪D = C ∪D

2. C ×D = C ×D

3. CF = C
F

4. C ×L D = C ×L D.

Proof. by definition.
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2.3.2 Resolution

The resolution calculus works in a restricted syntax of first-order formulas:
On universally quantified conjunctive normal forms. On the propositional
level this means a transformation into a conjunction of disjunctions of liter-
als. On the first-order level this means an elimination of one type of quan-
tifier: The strong quantifiers which are – in the formulation of resolution as
a refutational procedure – the existential quantifiers. These quantifiers are
removed with a technique due to Th. Skolem which is therefore commonly
called Skolemization [46]. There are different types of skolemizations which
may strongly differ in the proof complexity of the transformed formula (see
[6]). Below we define the structural skolemization operator sk .

Definition 2.19. Let B be a formula. If (∀x) occurs positively (negatively)
in B then (∀x) is called a strong (weak) quantifier. If (∃x) occurs positively
(negatively) in B then (∃x) is called a weak (strong) quantifier.

Definition 2.20 (skolemization). sk is a function which maps closed for-
mulas into closed formulas; it is defined in the following way: sk(F ) = F if
F does not contain strong quantifiers, and

sk(F ) = sk(F(Qy){y ← f(x1, . . . , xn)})

if (Qy) is a strong quantifier and is in the scope of the weak quantifiers
(Q1x1), . . . , (Qnxn) (appearing in this order) and F(Qy) denotes F after omis-
sion of (Qy) and f is a function symbol which does not occur in F (if n = 0
then f is a constant symbol).

A skolemized formula does not contain any strong quantifiers. The skolem-
ization operator can be extended to skolemize also proofs, where a skolem-
ized proof does not contains strong quantifiers in the end-sequent (and there-
fore also not in the ancestors of the end-sequent). The cut formulas cannot
be skolemized, so the cut-formulas of a skolemized proof still contain strong
and weak quantifiers. The skolemization of proofs roughly works by skolem-
izing the end-sequent and propagating these changes upwards in the proof
– eigenvariables are replaced by skolem terms. For a complete definition see
[7, Proposition 4.2].

The key technique underlying the resolution calculus is unification.

Definition 2.21 (unifier). Let s and t be two terms.

A substition σ s.t. sσ = tσ is called a unifier of s and t.

s and t are called unifiable if there exists a unifier.

A unifier θ is called most general unifier (mgu) if for all unifiers σ there exits
a substitution τ s.t. θτ = σ.
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The notion of unifier is extended from pairs of terms to sets of terms, sets of
atoms and sets of literals. The essential point is that unifiability is decidable
and that whenever unification is possible there exists a most general unifier.

Theorem 2.3 (unification). There is an algorithm taking two atoms A1

and A2 as input that has the following properties:

1. If A1 and A2 are unifiable, the algorithm computes a most general
unifier of A1 and A2.

2. If A1 and A2 are not unifiable, the algorithm stops with failure.

Definition 2.22 (resolvent). Let c = {L1, . . . , Ln}, d = {M1, . . . ,Mk} be
variable-disjoint clauses.

If the two literals, L1 and M1 are unifiable with mgu σ, then

{L2, . . . , Ln,M2, . . . ,Mk}σ

is called binary resolvent of c and d.

Let σ be a mgu of some literals in c. Then the clause set set(cσ) is called
factor of c. Let c′ and d′ be factors of c and d. Then a binary resolvent of
c′ and d′ is called resolvent of c and d.

Definition 2.23 (resolution refutation). Let C be a set of clauses. A list
of clauses c1, . . . , cn is called a resolution refutation of C if cn is the empty
clause and for all i = 1, . . . , n:

1. ci is a clause c ∈ C modulo variable renaming or

2. ci is a resolvent of clauses cj , ck with j, k < i.

A resolution refutation as defined above is a list of clauses. One can easily
transform such a refutation in list form into one in tree form with resolution
as binary rule and factorization as unary rule.

Theorem 2.4 (completeness). If C is an unsatisfiable set of clauses, then
there exists a resolution refutation of C.

Definition 2.24 (ground instance). Let c be a clause and let σ be a sub-
stitution s.t. all variables of c are replaced by variable-free terms. Then cσ
is called ground instance of c.

Definition 2.25 (propositional resolvent). Let c = {L1, . . . , Ln}, d = {M1, . . . ,Mk}
be clauses s.t. L1 = M1, then

{L2, . . . , Ln,M1, . . . ,Mk}

is called propositional resolvent of c and d.
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Definition 2.26. Let C be a set of clauses. A list of clauses c1, . . . , cn is
called a ground resolution refutation of C if cn is the empty clause and for
all i = 1, . . . , n:

1. ci is a ground instance of a clause c ∈ C or

2. ci is a propositional resolvent of clauses cj, ck with j, k < i.

Theorem 2.5. If γ is a resolution refutation of a clause set C then there
exists a ground resolution refutation γ′ of C.

Proof Sketch. By computing a global most general unifier.

2.4 Cut-Elimination by Resolution (CERES)

Most cut-elimination methods, and in particular those based on the rewrite
system →G described in Section 2.2, have one common property: Being
based on syntactic reductions they preserve the ancestral structure of the
proof. In this section we will describe a more liberal cut-elimination method
that is based on a global logical analysis of a proof. The result of this first
phase of analysis is a description of key properties of the proof in the form of
a characteristic clause set. In a second phase a resolution refutation of this
clause set is generated and then serves as a skeleton of the cut-free proof.
This method: cut-elimination by resolution (CERES) has been introduced
in [8] and further developed in [10, 9, 3, 4].

Definition 2.27. Let ϕ be a skolemized LK-proof and let M be a closed
set of formula occurrences. We define the characteristic clause set CL(ϕ) of
ϕ w.r.t. M as follows:

1. If ϕ is an axiom sequent s, then

CLM (ϕ) := S(s,M)

2. If ϕ ends with a unary rule, let ϕ′ be the sub-proof of ϕ and let M ′

be the subset of M that occurs in ϕ′. Then

CLM (ϕ) := CLM ′(ϕ′)

3. If ϕ ends with a binary rule ρ, let ϕ1 and ϕ2 be the immediate sub-
proofs of ϕ and let M1 and M2 be the subsets of M that occur in ϕ1

and ϕ2 respectively.

(a) If the auxiliary occurrences of ρ are in M then

CLM (ϕ) := CLM1(ϕ1) ∪CLM2(ϕ2)
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(b) If the auxiliary occurrences of ρ are not in Ω then

CLM (ϕ) := CLM1(ϕ1)× CLM2(ϕ2)

Let Ω(ϕ) denote the set of all ancestors of cut occurrences in ϕ. We define
CL(ϕ) := CLΩ(ϕ)(ϕ).

Example 2.6. Consider the following proof ϕ =

(ϕ1) (ϕ2)

(∀x)(P (x)→ Q(x)) ⊢ P (a)→ (∃y)Q(y)
cut

where ϕ1 =

P (u) ⊢ P (u) Q(u) ⊢ Q(u)

P (u), P (u)→ Q(u) ⊢ Q(u)
→ : l

P (u)→ Q(u) ⊢ ¬P (u), Q(u)
¬: l

P (u)→ Q(u) ⊢ ¬P (u) ∨Q(u)
∨: r

P (u)→ Q(u) ⊢ (∃y)(¬P (u) ∨Q(y))
∃: r

(∀x)(P (x)→ Q(x)) ⊢ (∃y)(¬P (u) ∨Q(y))
∀: l

(∀x)(P (x)→ Q(x)) ⊢ (∀x)(∃y)(¬P (x) ∨Q(y))
∀: r

and ϕ2 =

P (a) ⊢ P (a)

P (a),¬P (a) ⊢
¬: l

Q(v) ⊢ Q(v)

P (a),¬P (a) ∨Q(v) ⊢ Q(v)
∨: l

P (a),¬P (a) ∨Q(v) ⊢ (∃y)Q(y)
∃: r

P (a), (∃y)(¬P (a) ∨Q(y)) ⊢ (∃y)Q(y)
∃: l

P (a), (∀x)(∃y)(¬P (x) ∨Q(y)) ⊢ (∃y)Q(y)
∀: l

(∀x)(∃y)(¬P (x) ∨Q(y)) ⊢ P (a)→ (∃y)Q(y)
→ : r

Here

CL(ϕ) = ({P (u) ⊢} × {⊢ Q(u)}) ∪ ({⊢ P (a)} ∪ {Q(v) ⊢})

= {P (u) ⊢ Q(u) ; ⊢ P (a) ; Q(v) ⊢}

where the product × comes from the→ : l-rule in ϕ1, the right union comes
from the ∨: l-rule in ϕ2 and the left union comes from the cut.

Theorem 2.6. Let ϕ be a skolemized LK-proof. Then CL(ϕ) is unsatisfi-
able.

Proof. A direct proof can be found in [8]. For an alternative argument see
Corollary 4.2.
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The above property of the unsatisfiability of CL(ϕ) is crucial: By the com-
pleteness of resolution (Theorem 2.4), there exists a refutation of CL(ϕ).

In addition to the unsatisfiability, the characteristic clause set has the prop-
erty that for each clause c ∈ CL(ϕ) there exists a cut-free proof of s◦c where
s is the end-sequent of ϕ. This proof is called the projection to c and can
easily be constructed from ϕ. The projections prove weaker statements than
ϕ as ◦ has the logical meaning of a disjunction, but they prove it without
cuts. Structurally this process of building the characteristic clause set and
the set of corresponding projections is a decomposition of the original proof
into its cut-free parts. One clause corresponds exactly to one such cut-free
part (the projection). Logically this clause is the difference between the full
end-sequent and the weaker statement proved by the cut-free part.

Theorem 2.7. Let ϕ be a skolemized LK-proof of a sequent s and let
c ∈ CL(ϕ). Then there exists a cut-free proof ψ of the sequent s ◦ c.

Proof. see [8].

Theorem 2.8 (cut-elimination by CERES). Let ϕ be a skolemized LK-
proof. Then there exists an LK-proof ϕ′ with only atomic cuts of the same
end-sequent.

Proof. By the unsatisfiability of CL(ϕ) and the completeness of resolution
there exists a resolution refutation γ of CL(ϕ). By Theorem 2.5 there exists
a ground resolution refutation γ′ corresponding to γ. Interpreting γ′ in LK
by replacing resolution by atomic cuts yields an LK-proof γ′′ of the empty
sequent with clauses d1, . . . , dn as initial sequents. But for each i = 1, . . . , n
there is a substitution σi and a clause ci ∈ CL(ϕ) s.t. ciσi = di. By replacing
these initial sequents of γ′′ by their respective projections ψci

σi we obtain a
proof of s ◦ . . . ◦ s with only atomic cuts. By applying contractions to the
end of this proof we obtain the end-sequent s.

The output of the CERES-method is proof that has only atomic cuts: an
atomic cut normal form. In the calculus used in this thesis, these atomic
cuts could easily be eliminated by employing the cut-reduction rules →G.
The proof projections have the property that no weakenings and no con-
tractions are applied to ancestors of the clause. Hence →G on the atomic
cut normal forms is strongly normalizing and confluent modulo rule permu-
tations. Furthermore the size of the proof strictly decreases. An atomic cut
normal form is therefore just another notation of a cut-free proof. Moreover,
the elimination of atomic cuts is – in principle – not possible in other (more
sophisticated) calculi. For example, the calculus LKe in [49] axiomatizes
equality by including atomic axiom sequents for the reflexivity and com-
patibility of = (symmetry and transitivity can be derived). In LKe only
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such cuts can be eliminated whose cut-formula is not of the form s = t.
Another example is the extension of the CERES-method in [4] to a calculus
LKDe which axiomatizes equality and the use of definitions – two forms
of reasoning that are very important for the formalization of mathematical
proofs.

One important advantage of the CERES-method is its high flexibility con-
cerning syntactic details of the calculus. The definition of the characteristic
clause set as well as the construction of the projections is not dependent
on wether the rules are multiplicative or additive, on wether weakening and
contraction are implicit or explicit, on wether a sequent is a pair of sets,
multisets or sequences, etc. It is even possible to eliminate pseudo-cuts:

Γ ⊢ ∆, A B,Π ⊢ Λ

Γ,Π ⊢ ∆,Λ
pscut

where A |= B. In this case the resolution refutation will “fill up the gap”
between A and B.

Another advantage of the CERES-method is that the underlying calculus
(resolution) is very redundancy-free (compared to the sequent calculus).
There exist powerful techniques for redundancy deletion in clause logic like
subsumption and tautology-deletion which proved very useful in automated
theorem proving.

In [10] it has been shown that every atomic cut normal form calculated
by a syntactic cut-elimination procedure is subsumed by one calculated by
CERES. Thus CERES is a generalization of syntactic cut-elimination à la
Gentzen. This is shown by analyzing the development of the characteristic
clause set under cut-elimination: If ϕ reduces to ϕ′, the characteristic clause
set CL(ϕ) subsumes CL(ϕ′).

Note that the projections are strictly smaller than the original proof and
that the size of the characteristic clause set is at most exponential in the
number of binary rules that work on ancestors of the end-sequent. It is a
well-known result that cut-elimination in first-order logic can yield a non-
elementary expansion of the size of the proof (see [47, 41, 43]). So the
main complexity of the method lies in finding a resolution refutation of the
characteristic clause set.



Chapter 3

The Proof Profile

In this chapter we will define the profile of a proof. It consists of four
components, each of them a clause set, which are closely related. The profile
is a refined and improved variant of the characteristic clause sets of the
CERES-method.

3.1 Definition of the Proof Profile

The four components of the profile will be called Ω,ΩT,Σ and ΣT where
Ω refers to the part of the proof consisting of ancestors of cut-formulas, Σ
refers to the part of the proof consisting of ancestors of the end-sequent and
the respective T-versions contain some additional tautological clauses.

Before defining the profile, we need some more technical notions for talking
about LK-proofs. For a proof ϕ an occurrence of a formula in the end-
sequent will be called end occurrence, an auxiliary occurrence of a cut-rule
will be called cut occurrence and if µ is either an end occurrence or a cut
occurrence it will be called terminal occurrence. Note that each occurrence
is ancestor of exactly one terminal occurrence.

Let M be a set of formula occurrences. M is called ancestor-closed if µ ∈
M ⇔ all ancestors of µ are in M . M is called cut-closed if for each instance
of the cut rule either both cut occurrences are in M or both are not in M .
M is called closed if it is ancestor-closed and cut-closed. If M is a closed set
of formula occurrence then for each rule ρ either all active occurrences are
in M or none of the active occurrences is in M - we say ρ operates on M in
the first case and ρ does not operate on M in the second. For a non-empty
set of formula occurrences M , the ancestor-closure of M , written as 〈M〉 is
defined as the set of all ancestors of occurrences from M .

Definition 3.1 (Ω-proof profiles). Let ϕ be an LK-proof, let M be a closed
set of formula occurrences. We define the proof profiles PΩ

M (ϕ) and PΩT
M (ϕ)

33
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by induction on ϕ as the following sets of labelled clauses:

1. ϕ is an axiom α with label l. Let µ1, . . . , µm be the literals in S(α,M):

PΩT
M (ϕ) := {{µ1, . . . , µm}{l}}

PΩ
M (ϕ) :=

{

∅ if S(α,M) = α
PΩT

M (ϕ) otherwise

For the rest of this definition let X ∈ {Ω,ΩT} to abbreviate the notation.

2. ϕ ends with a unary rule. Let ϕ′ be the immediate sub-proof of ϕ and
let M ′ be the subset of M that occurs in ϕ′. Then

PX
M (ϕ) := PX

M ′(ϕ′)

3. ϕ ends with a binary rule ρ. Let ϕ1 and ϕ2 be the immediate sub-
proofs of ϕ. Let M1 and M2 be the subsets of M that occur in ϕ1 and
ϕ2 respectively. We distinguish two cases

(a) ρ operates on M . Then

PX
M (ϕ) := PX

M1
(ϕ1) ∪ PX

M2
(ϕ2)

(b) ρ does not operate on M . Then

PX
M (ϕ) := PX

M1
(ϕ1)×L(ρ) PX

M2
(ϕ2)

Definition 3.2 (Σ-proof profiles). Let ϕ be an LK-proof, let N be a closed
set of formula occurrences. We define the proof profiles PΣ

N (ϕ) and PΣT
N (ϕ)

of ϕ by induction on ϕ as the following sets of labelled clauses:

1. ϕ is an axiom α with label l. Let ν1, . . . , νn be the literals in S(α,N).:

PΣT
N (ϕ) := {{ν1}{l}, . . . , {νn}{l}}

PΣ
N (ϕ) :=

{

{∅{l}} if S(α,N) = α

PΣT
N (ϕ) otherwise

For the rest of this definition let X ∈ {Σ,ΣT} to abbreviate the notation.

2. ϕ ends with a unary rule. Let ϕ′ be the immediate sub-proof of ϕ.
Let N ′ be the subset of N that occurs in ϕ′. Then

PX
N (ϕ) := PX

N ′(ϕ′)
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3. ϕ ends with a binary rule ρ. Let ϕ1 and ϕ2 be the immediate sub-
proofs of ϕ and let N1 and N2 be the subsets of N that occur in ϕ1

and ϕ2 respectively. We distinguish two cases

(a) ρ operates on N . Then

PX
N (ϕ) := PX

N1
(ϕ1)×L(ρ) PX

N2
(ϕ2)

(b) ρ does not operate on N . Then

PX
N (ϕ) := PX

N1
(ϕ1) ∪ PX

N2
(ϕ2)

Note that these sets are indeed clause sets because the axioms consist only of
atomic formulas. We will interpret the Ω-Profiles as universally quantified
conjunctive normal forms while the Σ-Profiles will be interpreted as exis-
tentially quantified disjunctive normal forms. For a proof ϕ we will denote
with Ω(ϕ) the closure of the set of cut occurrences and with Σ(ϕ) the clo-
sure of the set of end occurrences. We will abbreviate PΩ(ϕ) := PΩ

Ω(ϕ)(ϕ),

PΩT(ϕ) := PΩT
Ω(ϕ)(ϕ), PΣ(ϕ) := PΣ

Σ(ϕ)(ϕ) and PΣT(ϕ) := PΣT
Σ(ϕ)(ϕ). Note

that PΩ(ϕ) (as CL(ϕ)) has the important property of being unsatisfiable -
a fact that is at the core of the cut-elimination method CERES.

3.1.1 Duality

Definition 3.3 (proper partition). An ordered pair (M ;N) of sets of for-
mula occurrences from a proof ϕ is called proper partition of ϕ if

1. M = 〈M ′〉, N = 〈N ′〉 and

2. M ′ ∪N ′ contains all terminal occurrences and

3. N contains only end occurrences.

We will notate proper partitions also as M ⊎N instead of (M ;N).

Proposition 3.1. Let ϕ be an LK-proof. Then

PΩ(ϕ) = PΣ(ϕ) and PΣ(ϕ) = PΩ(ϕ)

Proof. We will show the following stronger statement by induction on ϕ:
Let M ⊎N be a proper partition of ϕ. Then

PΩ
M (ϕ) = PΣ

N (ϕ) and PΣ
N (ϕ) = PΩ

M (ϕ)

If ϕ is an axiom α with label l there are three cases: (1) If N = ∅ then
PΣ

N (ϕ) = ∅ and PΩ
M (ϕ) = ∅. (2) If M = ∅ then PΩ

M (ϕ) = {∅{l}} and
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PΣ
N (ϕ) = {∅{l}}. (3) If both M 6= ∅ and N 6= ∅ then there is a literal L s.t.

PΩ
M (ϕ) = {{L}{l}} and PΣ

N (ϕ) = {{L}{l}}.

If ϕ ends with a unary rule, the result follows immediately by the induction
hypothesis. If ϕ ends with a binary rule ρ, let ϕ1 and ϕ2 be the immediate
sub-proofs of ϕ and let M1(M2) and N1(N2) be the subsets of M and N
occurring in ϕ1(ϕ2). As M ⊎ N is a proper partition ρ either operates on
M or on N , so either

PΩ
M (ϕ) = PΩ

M1
(ϕ1) ∪ PΩ

M2
(ϕ2) and PΣ

N (ϕ) = PΣ
N1

(ϕ1) ∪ PΣ
N2

(ϕ2)

or

PΩ
M (ϕ) = PΩ

M1
(ϕ1)×L(ρ) PΩ

M2
(ϕ2) and PΣ

N (ϕ) = PΣ
N1

(ϕ1)×L(ρ) PΣ
N2

(ϕ2)

In both cases the induction hypothesis can be applied because M1 ⊎ N1 is
a proper partition of ϕ1 and M2 ⊎N2 is a proper partition of ϕ. The result
then follows from Lemma 2.4.

Definition 3.4. We define the profile P(ϕ) of the proof ϕ as the ordered
pair (PΩ(ϕ); PΣ(ϕ)).

Lemma 3.1. Let C and D be clause sets, F be a label selection formula,
let π be a permutation on labels and variables and let σ be a substitution.
Then dualization of clause sets has the following compatibility properties:

1. C ∪D = C ∪D

2. C ×D = C ×D

3. CF = C
F

4. C ×F D = C ×F D

5. Cσ = Cσ

6. Cπ = Cπ

The above lemma shows that these operations can be performed on the pair
P(ϕ) by performing it on a single component and then calculating the other
component by dualization.

3.2 Basic Properties

3.2.1 The Relation between the Ω-Sets

In this section we will show that PΩ(ϕ) and PΩT(ϕ) differ only by tautologies
and are thus logically equivalent.
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Definition 3.5 (tautology-deletion). Let C and D be sets of clauses. We
write C ≤T D if

1. C ⊆ D and

2. ∀c ∈ D \ C there is a literal L s.t. {L,L} ⊆ c.

For C ≤T D, the formulas ∀CNF(C) and ∀CNF(D) as well as ∃DNF(C)
and ∃DNF(D) are logically equivalent because D\C contains only tautology
clauses.

Lemma 3.2 (compatibility of ≤T). Let C,C ′,D,D′ be sets of clauses with
C ≤T C ′ and D ≤T D′ and let F be a label selection formula. Then

1. C ∪D ≤T C ′ ∪D′

2. C ×D ≤T C ′ ×D′

3. CF ≤T (C ′)F

4. C ×F D ≤
T C ′ ×F D

′

Proof. 1. As both C ′ \ C and D′ \ D contain only tautologies, so does
(C ′ ∪D′) \ (C ∪D) because (C ′ ∪D′) \ (C ∪D) ⊆ (C ′ \C)∪ (D′ \D).

2. Let c◦d ∈ (C ′×D′)\(C×D). Then c ∈ C ′\C or d ∈ D′\D (or both).
Assume w.l.o.g. c ∈ C ′ \ C. Then - as C ≤T C ′ - there is a literal L
s.t. {L,L} ⊆ c, so {L,L} ⊆ c ◦ d. Therefore C ×D ≤T C ′ ×D′

3. As every c ∈ C ′ \C is a tautology, so is every d ∈ (C ′)F \CF because
(C ′)F \ CF = (C ′ \ C)F ⊆ C ′ \ C.

4. Follows from 1-3.

Proposition 3.2. Let ϕ be an LK-proof and let M be a closed set of
formula occurrences. Then

PΩ
M(ϕ) ≤T PΩT

M (ϕ)

Proof. By induction on ϕ: If ϕ is an axiom sequent α then PΩ
M (ϕ) = PΩT

M (ϕ)
except if S(α,M) = α. In this case PΩ

M (ϕ) = ∅ and PΩT
M (ϕ) = {α}, but

then clearly PΩ
M(ϕ) ≤T PΩT

M (ϕ). If ϕ ends with a unary rule the result
follows directly from the induction hypothesis. If ϕ ends with a binary rule,
the result follows from the induction hypothesis and Lemma 3.2 in both
cases.
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3.2.2 The Relation between the Σ-Sets

In this section we show that PΣ(ϕ) and PΣT(ϕ) differ only by a simple kind
of redundancy are are thus also logically equivalent.

Definition 3.6 (redundancy-elimination). Let C and D be sets of labelled
clauses. We write C ≤R1

D if there are clauses c ∈ C, d1, d2 ∈ D with
d1 = c ∪ {A}, d2 = c ∪ {¬A} and a set of labelled clauses E with C =
E ⊎ {c},D = E ⊎ {d1, d2}. We write ≤R for the reflexive and transitive
closure of ≤R1

.

For C ≤R D the formulas ∀CNF(C) and ∀CNF(D) as well as ∃DNF(C) and
∃DNF(D) are logically equivalent. For technical reasons we introduce the
following relation describing a labelled redundancy-elimination.

Definition 3.7 (labelled redundancy-elimination). Let C and D be sets of
labelled clauses. We write C ≤R1

L D if there is an unlabeled clause γ, a label
l, a label set L and labelled clauses c ∈ C, d1, d2 ∈ D s.t. c = γL∪{l}, d1 =
γL ∪ {A}{l}, d2 = γL ∪ {¬A}{l} and C = E ⊎ {c},D = E ⊎ {d1, d2} for some

clause set E. We again write ≤RL for the reflexive and transitive closure of
≤R1

L.

Lemma 3.3. Let C,C ′,D,D′ be sets of clauses with C ≤RL C ′ and D ≤RL

D′ and let F be a label selection formula. Then

1. C ∪D ≤RL C ′ ∪D′

2. C ×D ≤RL C ′ ×D′

3. CF ≤RL (C ′)F

4. C ×F D ≤
RL C ′ ×F D

′

Proof. It suffices to show 1-4 with the assumption C ≤R1
L C ′ and D = D′.

The full result follows by induction and commutativity of ∪,× and ×L.
So we assume that there is an unlabeled clause γ, a label l, a label set
L and clauses c ∈ C, c1, c2 ∈ C ′ with c = γL∪{l}, c1 = γL ∪ {A}{l} and
c2 = γL ∪ {A}{l}.

1. Clearly also c ∈ C ∪D and c1, c2 ∈ C
′ ∪D.

2. For any d ∈ D we have c ◦ d ∈ C ×D and c1 ◦ d, c2 ◦ d ∈ C
′ ×D, so

C ×D ≤RL C ′ ×D.

3. As L(c) = L(c1) = L(c2) either c ∈ CF and c1, c2 ∈ (C ′)F and thus
CF ≤R1

L (C ′)F or c /∈ CF and c1 /∈ (C ′)F and c2 /∈ (C ′)F and thus
CF = (C ′)F .
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4. follows from 1-3.

Proposition 3.3. Let ϕ be an LK-proof and let N be a closed set of formula
occurrences. Then

PΣ
N (ϕ) ≤R PΣT

N (ϕ)

Proof. We will show PΣ
N (ϕ) ≤RL PΣT

N (ϕ) by induction on ϕ: If ϕ is an
axiom sequent α then PΣ

N (ϕ) = PΣT
N (ϕ) except if S(α,N) = α. In this

case PΣ
N (ϕ) = {∅{l}},P

ΣT
N (ϕ) = {{A}{l}, {¬A}{l}} and PΣ

N (ϕ) ≤R1
L PΣT

N (ϕ).
If ϕ ends with a unary rule, the result follows directly from the induction
hypothesis. If ϕ ends with a binary rule, the result follows from the induction
hypothesis and Lemma 3.3.

3.3 CERES with the Proof Profile

In this section we will show that the proof profile PΩ can replace the charac-
teristic clause set CL in the cut-elimination method CERES. This replace-
ment is an improvement of CERES in several respects: The clause set PΩ

always subsumes CL hence for each resolution refutation of CL of length l
there will exist one of PΩ of a length l′ ≤ l. Furthermore also the projec-
tions to the clauses in PΩ will be at most as large as those to the clauses of
CL. Moreover, there exist proof sequences that have a constant size normal
form with CERES with PΩ while all normal forms of CERES with CL are
of non-elementary size.

3.3.1 Subsumption

We will now show that the profile PΩT(ϕ) propositionally subsumes the
characteristic clause set CL(ϕ).

Proposition 3.4. Let ϕ be an LK-proof. Then PΩT(ϕ) E CL(ϕ)

Proof. By induction on the structure of ϕ we show the stronger statement
that PΩT

M (ϕ) E CLM (ϕ) for any closed set of formula occurrences M . The
only non-trivial case in proving this is the product case of the definitions of
these clause sets. But here the claim follows directly from the observation
that C ×L D E C ×D for all sets of labelled clauses C and D and for all
label sets L.

Corollary 3.1. Let ϕ be an LK-proof. Then PΩ(ϕ) E CL(ϕ).



CHAPTER 3. THE PROOF PROFILE 40

Proof. By Proposition 3.2 we have PΩ(ϕ) ≤T PΩT(ϕ) so in particular PΩ(ϕ) ⊆
PΩT(ϕ) which entails PΩ(ϕ) E CL(ϕ).

3.3.2 Projections

In order to describe the end-sequents produced by the projections (which
are all sub-sequents of the original end-sequent) we introduce a description
of sub-sets of the end-sequent based on clauses from the profile.

Definition 3.8 (restriction). Let N be a set of formula occurrences and let
L be a set of labels. We define the L-restriction of N as

RL(N) := {ν ∈ N | L(ν) ∩ L 6= ∅}

Let ϕ be an LK-proof and let M ⊎N be a proper partition of ϕ. Then for
every c ∈ PΩ

M(ϕ) we define

Rc(N) := RL(c)(N)

So the c-restriction Rc will only contain those formula occurrences in a proof
that are connected to c via an axiom. The projection of ϕ to the clause c
will only contain formulas that occur in the c-restriction. This restriction
ensures that rules can either be applied fully or not at all which is crucial
in the proof below.

Theorem 3.1. Let ϕ be a skolemized LK-proof, let M ⊎ N be a proper
partition of ϕ. Then ∀c ∈ PΩ

M (ϕ) ∃ψ s.t.

I) ψ is cut-free

II) ψ is a proof of S(s,Rc(N)) ◦ c

Proof.

1. If ϕ is an axiom, define
ψ := ϕ = s

I) is obvious, for II) consider that PΩ
M (ϕ) = {c} with c = S(s,M), that

Rc(N) = N and that s = S(s,M) ◦ S(s,N).

2. If ϕ ends with a unary rule ρ, let ϕ′ be ϕ without ρ and let M ′,N ′ be
the subsets of M,N occurring in ϕ′, let s′ be the end-sequent of ϕ′.
For c ∈ PΩ

M (ϕ) we also have c ∈ PΩ
M ′(ϕ′).
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(a) ρ does not operate on Rc(N). Then by the induction hypothesis
there is a ψ′ deriving S(s′,Rc(N

′)) ◦ c. Define

ψ := ψ′

which I) is cut-free. As ρ does not operate on Rc(N), S(s,Rc(N)) =
S(s′,Rc(N

′)). and II) ψ is a proof of S(s,Rc(N)) ◦ c.

(b) ρ operates on Rc(N). Let ν ∈ Rc(N) be the main formula of
ρ. We know that ρ is not a weakening (assume it would be,
then ν would not have any ancestor axiom and thus could not
be in Rc(N)). Furthermore, we know that ρ cannot be a strong
quantifier rule by the assumption that ϕ is skolemized. We make
a case distinction on the number of immediate ancestors of ν
which must be 1 or 2:

i. ν has exactly one immediate ancestor. This means that every
ν0 ∈ N has exactly one ancestor ν ′0 ∈ N and that furthermore
L(ν0) = L(ν ′0). By the induction hypothesis there is an LK-
proof ψ′ of S(s′,Rc(N

′)). Define

ψ :=
ψ′

ρ

which is I) cut-free and II) applying ρ to S(s′,Rc(N
′)) gives

the conclusion sequent S(s,Rc(N)) ◦ c.

ii. ν has exactly two immediate ancestors, call them ν1 and ν2.
As ν shares an ancestor axiom with c, we know that at least
one of ν1 and ν2 share an ancestor axiom with c, let w.l.o.g.
this be ν1. We make a case distinction on wether ν2 share an
ancestor axiom with c.

A. ν2 shares an ancestor axiom with c. By induction hypoth-
esis there is an LK-proof ψ′ of S(s′,Rc(N

′)) ◦ c. Define

ψ :=
ψ′

ρ

which I) is cut-free. Both ν1 and ν2 are in Rc(N
′) so

we can apply ρ to S(s′,Rc(N
′)) ◦ c and II) obtain ψ :

S(s,Rc(N)) because the context formulas ν0 ∈ Rc(N)
each have exactly one ancestor ν ′0 ∈ N

′ which is also in
Rc(N

′).

B. ν2 does not share an ancestor axiom with c. By induction
hypothesis there is a proof ψ′ of S(s′,Rc(N

′))◦c. Let ω be
a weakening rule that adds the formula of ν2 and define

ψ :=
ψ′

ωρ
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which I) is cut-free. As ψ′ derives S(s′,Rc(N
′)) ◦ c, ψ′

with ω derives S(s′,Rc(N
′)) ◦ c ◦ [ν2]. As ν1 shares an

ancestor axiom with c, it is in Rc(N
′) and application of

ρ gives II) the proof ψ of S(s,Rc(N)) ◦ c

3. If ϕ ends with a binary rule ρ, let s1, s2 be the end-sequents of the
immediate sub-proofs ϕ1, ϕ2 of ϕ and let M1,M2 and N1,N2 be the
subsets of M and N occurring in ϕ1, ϕ2.

(a) ρ does not operate on Rc(N). Then either ρ operates on M in
which case c ∈ PΩ

M1
(ϕ1) ∪ PΩ

M2
(ϕ2) or it operates on N \ Rc(N)

in which case even c ∈ PΩ
M1

(ϕ1)
¬L(ρ) ∪PΩ

M2
(ϕ2)

¬L(ρ). In any case

let w.l.o.g. be c ∈ PΩ
M1

(ϕ1). By induction hypothesis there is a
ψ′

1 deriving S(s′1,Rc(N1)) ◦ c. Define

ψ := ψ′
1

which I) is cut-free. For II) observe that Rc(N) does not con-
tain the main and auxiliary formulas of ρ. Furthermore, as c ∈
PΩ

M1
(ϕ1) the ancestor axioms of c are all from ϕ1 so c can-

not have an ancestor axiom in common with any formula from
ϕ2. Therefore S(s1,Rc(N1)) = S(s,Rc(N)) and hence ψ derives
S(s,Rc(N)) ◦ c.

(b) ρ operates on Rc(N). This means that c is a ρ-clause, so c = c1◦c2
where both, c1 and c2 are ρ-clauses. By induction hypothesis we
have ψ1 : s1\Rc1(N1) ◦ c1 and ψ2 : s2\Rc2(N2) ◦ c2. Define

ψ :=
ψ′

1 ψ′
2 ρ

which I) is cut-free because N contains no cut-occurrences and ρ
operates on N . As c1, c2 are ρ-clauses we know that Rc1(N1) and
Rc2(N2) contain the auxiliary formulas of ρ. So we can form ψ
which II) derives S(s,Rc(N))◦c because c = c1◦c2, the merging of
the context formulas from Rc1(N1) and Rc2(N2) gives the context
formulas in Rc(N) and the main formula of ρ is in Rc(N) and can
be derived by ρ because both auxiliary formulas are in Rc1(N1)
and Rc2(N2).

In comparing the profile to the characteristic clause set it is obvious that
the refutations of the profile have at most the size of those of the charac-
teristic clause sets by the subsumption result Corollary 3.1. Furthermore,
by analyzing the construction of the projections in the above proof one can
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also see that the projections to the clauses from the profile are at most the
size of those to the clauses from the characteristic clause set (the addition
of weakening rules is compensated by the fact that the formula we add by
weakening in the profile-projections has to be derived in the characteristic
clause set-projection)

3.3.3 Speed-Up

We will now show that using the profile can even result in a non-elementary
speed-up of the CERES method w.r.t. using the characteristic clause set.
The reason is that certain redundancies which are automatically detected in
the construction of the profile remain unnoticed in the construction of the
characteristic clause set.

Example 3.1. Let (ψn) be a sequence of proofs with non-elementary cut-
elimination (for examples of such sequences see [47, 41, 43]), let Xn :=
CL(ψn) and consider the following proof sequence ϕn =

A ⊢ A

A ⊢ A
C,A ⊢ A

w : l

(ψn,Xn)
⊢ F
D ⊢ F

w : l

C ∨D,A ⊢ A,F
∨: l[ρ]

A,C ∨D ⊢ A,F
cut

Then
CL(ϕn) = (Xn × {A ⊢}) ∪ {⊢ A}

and
PΩ(ϕn) = (Yn ×L(ρ) {A ⊢}) ∪ {⊢ A} = Yn ∪ {A ⊢} ∪ {⊢ A}

for some Yn with Yn E Xn. Then CL(ϕn) has only refutations of non-
elementary length whereas PΩ(ϕn) has a refutation consisting of a single
resolution step. The restricted product ×L(ρ) becomes a pure union because
neither Yn nor {A ⊢} contain ρ-clauses.



Chapter 4

Static Properties of the
Profile

In this chapter we will investigate the relation of the profile to various other
techniques for abstracting from details of formal proofs. We will investigate
proof nets, Herbrand-disjunctions and logical flow graphs.

4.1 The Relation to Proof Nets

The following analysis will be carried out for pseudo-proofs which are used
in Chapter 5 in the investigation of proofs transformations.

Definition 4.1 (pseudo-LK-proof). A pseudo-LK-proof (also called an
LKps-proof) is an LK-proof where the following rules are replaced:

1. Contraction by pseudo-contraction:

A,B,Γ ⊢ ∆

A,Γ ⊢ ∆
psc : l

Γ ⊢ ∆, A,B

Γ ⊢ ∆, A
psc : r

if A and B are logically equivalent (in first-order logic).

2. Cut by pseudo-cut:

Γ ⊢ ∆, A B,Π ⊢ Λ

Γ,Π ⊢ ∆,Λ
pscut

if A and B are logically equivalent (in first-order logic).

We need the technical notion of pseudo-LK-proofs, as many useful proof
transformations destroy the proof property in intermediary steps, but keep
this of a pseudo-proof. Moreover the analysis of proofs via profiles and

44
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characteristic clause sets can be generalized to pseudo-proofs without any
problems. The reduction relation →Gr can be carried over to LKps-proofs;
however →Gr is not capable of eliminating all cuts in LKps-proofs (in con-
trast to the CERES-method [8] which also eliminates pseudo-cuts).

From now on, we will also sometimes use another notation for the profile
which is more convenient for writing about sub-proofs.

Definition 4.2. Let χ[ϕ]µ be an LK-proof. Let M be the subset of Ω(χ)
that occurs in ϕ and let N be the subset of Σ(χ) that occurs in ϕ. We define

PΩ(χ).µ := PΩ
M (ϕ), PΣ(χ).µ := PΣ

N (ϕ) and

P(χ).µ := (PΩ(χ).µ; PΣ(χ).µ)

Lemma 4.1 (compatibility of P). Let χ[ϕ]µ be an LKps-proof, let ϕ′ be
another LK-proof with the same end-sequent as ϕ. Let σ1, . . . , σn be the
formula occurrences in the end-sequent of ϕ and let σ′1, . . . , σ

′
n be the cor-

responding formula occurrences in the end-sequent of ϕ′. Let θ be a substi-
tution whose domain is included in the set of eigenvariables of ϕ. We write
χ′ for χ[ϕ′]µ. If

1. P(χ′).µ = (P(χ).µ)θ and

2. for i = 1, . . . , n : L(σ′i) ∩ L(P(χ′).µ) = L(σi) ∩ L(P(χ).µ)

then
P(χ′) = P(χ)θ

Proof. Note that by 1 we have L(P(χ′).µ) = L(P(χ).µ). Let ν be a formula
occurrence in χ that is not in ϕ, let ν ′ be the corresponding formula occur-
rence in χ′. If ν is not on the path between µ and the end-sequent then we
clearly have L(ν ′) = L(ν). If it is then by induction on the length of this
path and by using 2 we have L(ν ′) ∩ L(P(χ).ν) = L(ν) ∩ L(P(χ).ν).

Now, using L(ν ′) ∩ L(P(χ).ν) = L(ν) ∩ L(P(χ).ν) we proceed by induction
on the length of the path between µ and the end-sequent. If the last rule
is unary then the induction step obviously extends to give P(χ′) = P(χ)θ.
If the last rule is binary, observe that θ cannot change variables of the part
that does not contain µ because its domain is restricted to the eigenvariables
of ϕ and the proof is regular, so also P(χ′) = P(χ)θ.

It is a well-known fact about the sequent calculus that the order of rule
applications can be permuted up to a high degree (see e.g. [33]). In this
section we will formally define these rule permutations and show that the
proof profile is not changed by permuting rules.
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Definition 4.3 (adjacent). Two rules in an LKps-proof are said to be
adjacent if one occurs immediately above the other.

Definition 4.4 (independent). Two adjacent rules in an LKps-proof are
said to be independent if neither

1. the main occurrence of the upper rule is an auxiliary occurrence of the
lower rule, nor

2. the lower rule is unary with two auxiliary occurrences that are split
by the binary upper rule, nor

3. the lower rule is a strong quantifier rule and the upper rule is a weak
quantifier rule introducing a term that contains the eigenvariable of
the lower rule

Definition 4.5 (permutation of independent rules). Let ϕ be an LKps-
proof whose last two rules are independent. Let ϕ′ be the proof that differs
from ϕ only by swapping the order of the last two rules. Then we write
ϕ ∼π ϕ

′.

We will denote with ≈π the reflexive, transitive and compatible closure of
the rule swapping relation ∼π.

The main result of this section is that proofs that are equivalent modulo ≈π

have the same profile. In order to show this we need a lemma on the algebraic
behavior of the restricted product ×L: Under certain circumstances it acts
in an associative way.

Lemma 4.2. Let C,D,E be sets of labelled clauses and let L1, L2 ⊆ L s.t.
C contains no L2-clauses and E contains no L1-clauses. Then

C ×L1 (D ×L2 E) = (C ×L1 D)×L2 E

Proof. We start with the left-hand side of the equation:

C ×L1 (D ×L2 E) = (CL1 × ((DL2 × EL2) ∪D¬L2 ∪ E¬L2)L1) ∪

C¬L1 ∪ ((DL2 ×EL2) ∪D¬L2 ∪ E¬L2)¬L1

by definition. Note that (X ∪ Y )L = XL ∪Y L for all sets of labelled clauses
X,Y and all label sets L, so we have:

(CL1 × ((DL2 × EL2)L1 ∪DL1∧¬L2 ∪ EL1∧¬L2)) ∪

C¬L1 ∪ (DL2 ×EL2)¬L1 ∪D¬L1∧¬L2 ∪ E¬L1∧¬L2

Distributing × over ∪ we get:

(CL1 × (DL2 × EL2)L1) ∪ (CL1 ×DL1∧¬L2) ∪ (CL1 × EL1∧¬L2) ∪

C¬L1 ∪ (DL2 × EL2)¬L1 ∪D¬L1∧¬L2 ∪ E¬L1∧¬L2
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As E contains no L1-clauses we can write (DL2 × EL2)L1 = DL1∧L2 × EL2

and (DL2 × EL2)¬L1 = D¬L1∧L2 × EL2 and obtain:

(CL1 × (DL1∧L2 × EL2)) ∪ (CL1 ×DL1∧¬L2) ∪ (CL1 × EL1∧¬L2) ∪

C¬L1 ∪ (D¬L1∧L2 × EL2) ∪D¬L1∧¬L2 ∪ E¬L1∧¬L2

As E does not contain L1-clauses, i.e. EL1 = ∅ also CL1 × EL1∧¬L2 = ∅.
Furthermore we can write E = E¬L1 and - as C does not contain L2-clauses
- also C = C¬L2. We obtain

(CL1∧¬L2 × (DL1∧L2 × E¬L1∧L2)) ∪

(CL1∧¬L2 ×DL1∧¬L2) ∪ (D¬L1∧L2 × E¬L1∧L2) ∪

C¬L1∧¬L2 ∪D¬L1∧¬L2 ∪ E¬L1∧¬L2

The right-hand side can be rewritten to the same expression in an analogous
way.

Proposition 4.1 (invariance under≈π). Let χ, χ′ be two LKps-proofs with
χ ≈π χ

′. Then
P(χ′) = P(χ)

Proof. By duality it suffices to show PΩ(χ′) = PΩ(χ) and by transitivity of
=, it suffices to show the invariance of PΩ for a single rule swapping. Let
µ be the position in χ where the rule swapping occurs, so we have ϕ ∼π ϕ

′

with χ = χ[ϕ]µ and χ′ = χ[ϕ′]µ.

We will first show PΩ(χ′).µ = PΩ(χ).µ.

If both swapped rules are unary rules, then we simply have

PΩ(χ).µ = C = PΩ(χ′).µ

For some clause set C.

If one of the swapped rules is a unary rule and one a binary rule, we have

PΩ(χ).µ = C ◦D

where ◦ = ∪ or ◦ = ×L(ρ) where ρ is the binary rule. In both cases also

PΩ(χ′).µ = C ◦D

because L(ρ) clearly is not changed by the swapping of two rules.

If both rules are binary then the last rules ρ1 and ρ2 of ϕ,ϕ′ have the form
(omitting the sequents and concrete rule types):

(ϕ1, C) (ϕ2,D)
ρ1 (ϕ3, E)

ρ2 and
(ϕ1, C)

(ϕ2,D) (ϕ3, E)
ρ2

ρ1
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From the existence of the left proof one can deduce that E does not contain
any clauses with labels from L(ρ1) because all labels in E refer to axioms
in ϕ3 and L(ρ1) cannot contain any labels from axioms in ϕ3 because it is
parallel to it. Symmetrically from the right proof one can deduce that C
does not contain any clauses with labels from L(ρ2).

For the profiles at µ we have

PΩ(χ).µ = (C ◦1 D) ◦2 E and PΩ(χ′).µ = C ◦1 (D ◦2 E)

for operators ◦1, ◦2 associated to the rules ρ1 and ρ2.

If both ◦1 = ∪ and ◦2 = ∪ then PΩ(χ).µ = OP(χ′).µ follows from asso-
ciativity of ∪. If ◦1 = ×L(ρ1) and ◦2 = ×L(ρ2) then with the observation
above we can apply Lemma 4.2 to obtain PΩ(χ).µ = PΩ(χ′).µ.

Now, let ◦1 = ×L(ρ1) and ◦2 = ∪. Then – abbreviating L(ρ1) as L – we have

C ×L (D ∪ E) = (CL × (D ∪ E)L) ∪ C¬L ∪ (D ∪E)¬L

= (CL × (DL ∪EL)) ∪ C¬L ∪D¬L ∪E¬L

but as E does not contain labels from L, EL = ∅ and E¬L = E and so

= (CL ×DL) ∪ C¬L ∪D¬L ∪ E

= (C ×L D) ∪ E

If ◦1 = ∪ and ◦2 = ×L(ρ2) the proof proceeds analogously using the obser-
vation that C does not contain labels from L(ρ2).

Condition 2 of Lemma 4.1 is fulfilled, because rule swappings do not change
the ancestor relation in the proof, so we can apply Lemma 4.1 and conclude
P(χ′) = P(χ).

In [44] E. Robinson defines proof nets for classical propositional logic and
shows [44, Proposition 6.2]:

Proposition 4.2. Two LK-proofs ϕ and ϕ′ (for classical propositional
logic) induce isomorphic proof nets iff ϕ ≈π ϕ

′.

Building on this and Proposition 4.1 we can easily conclude

Corollary 4.1. If two LK-proofs ϕ and ϕ′ (for classical propositional logic)
induce isomorphic proof nets then P(ϕ) = P(ϕ′).

R. McKinley defines in his PhD thesis [40] an extension of Robinson’s proof
nets to first-order classical logic by treating quantifiers with boxes. We
conjecture that the result of Corollary 4.1 also extends to this notion of
proof net.
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4.2 The Relation to Herbrand-Disjunctions

One of the most important results about first-order classical logic is Her-
brand’s Theorem: In its simplest version it says that if F is a quantifier-free
formula and if (∃x)F is a tautology, then there exists a finite disjunction
of instances of F that is also a tautology. There are other variants and
generalizations of this theorem (see e.g. [13]), in particular Gentzen’s proof-
theoretic version of it: the mid-sequent theorem which says that each cut-
free proof of a prenex sequent can be transformed into one s.t. no quantifier
rule appears above a propositional rule: The proof is divided into an upper
propositional part and a lower quantifier part. The sequent between these
two parts is called mid-sequent and is the generalization of the Herbrand-
disjunction. A mid-sequent has thus two main properties: 1) it is a propo-
sitional tautology and 2) it consits only of instances of the end-sequent.

For the analysis of concrete mathematical proofs in first-order logic the mid-
sequent is of high significance because it contains the term instances used
in the proof and it is in choosing these instances where the mathematical
creativity of a proof lies. From this point of view, the first property of
mid-sequents is less important than the second: In order to understand how
a concretely given proof establishes the truth of a theorem, understanding
which instances of quantified formulas are used is enough. The possibility
of isolating a list of such instances which form a propositional tautology (as
opposed to a first-order tautology) is secondary.

We will partition a proof containing cuts into two parts: one part containing
all the rules working on (ancestors of) the end-sequent and the other part
containing all the rules working on (ancestors of) cut formulas. For each of
the two parts we will show an analogue of the mid-sequent theorem, i.e. we
will give a construction of a formula that consists only of instances of the
end-sequent formulas (resp. cut-formulas) that occur in the proof and that is
a first-order tautology for the end-sequent part and unsatisfiable for the cut-
formulas part. It is not possible - in principle - to extract such a propositional
tautology from a proof with cuts. See [47, 41, 43] for examples of sequences of
proofs with cuts where the smallest such propositional tautology is of a size
that is not elementary in the size of the original proof. These constructions
are carried out by using the proof profile.

Definition 4.6 (LKj-proof). An LKj-proof is an LK-proof where in addi-
tion the following rule of juxtaposition can occur:

Γ ⊢ ∆ Π ⊢ Λ
Γ,Π ⊢ ∆,Λ

j(L)

where L is a set of labels.

If σ is a sequent occurrence in a proof and M is a set of formula occur-
rences, then S(σ,M) denotes the sub-sequent of σ consisting of the formula
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occurrences from M .

A formula is called prenex if no quantifier appears below a propositional
connective. A sequent is called prenex if all its formulas are prenex. A proof
is called prenex if all its sequents are prenex. The mid-sequent theorem is a
proof-theoretic version of Herbrand’s theorem and has first been shown by
Gentzen in [23].

Theorem 4.1 (mid-sequent theorem). Let ϕ be a cut-free prenex LK-proof.
Then there is a proof ϕ′ of the same end-sequent s.t. no quantifier rule occurs
above a propositional rule.

We will now give a proof of the mid-sequent theorem that is adapted to
LKj and will also allow to define a unique mid-sequent (which we will call
Herbrand-sequent) of a cut-free prenex LKj-proof.

Definition 4.7 (depth). Let ρ be a quantifier rule in an LKj-proof ϕ.
Then the depth of ρ, |ρ| is defined as the number of propositional, cut and
juxtaposition rules on the path from ρ to the root of ϕ.

Definition 4.8 (associated contraction). Let ϕ be an LKj-proof containing
a quantifier rule ρ with main occurrence µ. Every contraction rule below ρ
that has an auxiliary occurrence ν s.t. µ is ancestor of ν and the only active
formula occurrences this ancestor path passes through are active formula
occurrences of contraction rules is said to be associated to ρ.

Definition 4.9 (mid-sequent reduction). Let ϕ be a regular cut-free prenex
LKj-proof. We define the transformation →M permuting a quantifier rule
ρ with |ρ| > 0 downwards.

1. ρ is a ∀ : r-rule. Let τ be the first propositional or juxtaposition rule
below ρ and assume that there is no quantifier rule between ρ and τ
(If this is not the case, choose the quantifier rule that is in-between as
ρ).

(a) τ is a unary propositional rule. Then the subproof χ of ϕ at τ
has the following form: χ =

(ψ)
Γ ⊢ ∆, F{x← α}

Γ ⊢ ∆, (∀x)F
∀: r[ρ]

Γ′ ⊢ ∆′, (∀x)F
c : ∗,w : ∗[σ]

Γ′′ ⊢ ∆′′, (∀x)F
[τ ]

The premise of τ contains (∀x)F (as a descendant of the main
occurrence of ρ) because neither contraction nor weakening can
remove it. The propositional rule τ does not have this (∀x)F as
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auxiliary formula (assume it has, then the main formula G of τ
would not be prenex), so also the conclusion of τ contains this
(∀x)F .

Let σ′ be the contractions in σ that are associated to ρ and let Π
be the multiset that contains the formula (∀x)F exactly n times
where n is the number of contractions in σ′.

We define χ→M χ′ with χ′ =

(ψ)
Γ ⊢ ∆, F{x← α}

Γ′ ⊢ ∆′,Π, F{x← α}
c : ∗,w : ∗[σ \ σ′]

Γ′′ ⊢ ∆′′,Π, F{x← α}
[τ ]

Γ′′ ⊢ ∆′′,Π, (∀x)F
∀: r[ρ]

Γ′′ ⊢ ∆′′, (∀x)F
c : r ∗ [σ′]

The eigenvariable condition (of ρ in χ′) is fulfilled because α does
not occur in Γ,∆ and not in Γ′,∆′ (in particular it is not added
by a weakening in σ because the proof is regular).

(b) ν is a binary rule: analogous to 1a) because we use a multiplica-
tive sequent calculus.

2. ρ is a ∀ : l-rule: analogous to 1)

3. ρ is a ∃ : r-rule: analogous to 1)

4. ρ is a ∃ : l-rule: analogous to 1)

With→∗
M we will denote the reflexive and transitive closure of→M. We say

that a cut-free prenex proof ϕ is in mid-sequent normal form (abbreviated
M-NF) if there is no ϕ′ s.t. ϕ→M ϕ′. A proof inM-NF has |ρ| = 0 for all
quantifier rules ρ, i.e. there is no propositional or juxtaposition rule below a
quantifier rule: Such a proof can be split into two parts: An upper part con-
taining only propositional and structural rules (including juxtaposition) and
a lower part containing only quantifier rules, weakenings and contractions
(and neither juxtaposition nor propositional rules). However this splitting
is not unique: We can split the proof at any position between the lowest
propositional or juxtaposition rule and the highest quantifier rule. Between
these two rules is a sequence of contractions and weakenings. In order to
give a definition of a unique mid-sequent of a proof in M-NF we employ
usedness to take care of weakening and set-normalization to take care of
contraction.

A formula occurrence µ is called used if it has an ancestor in an axiom. For
a set of formula occurrences M we write U(M) for the subset of M that is
used. Note that a formula occurrence is not used iff all its ancestor paths
end in main occurrences of weakening rules.
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Definition 4.10 (Herbrand-sequent). Let ϕ be a cut-free prenex LKj-proof
in M-NF. Then ϕ has a lowest propositional rule ρ, i.e. ρ is on the path
between the end-sequent and any other propositional rule. Let s be the
conclusion sequent of ρ. We define the Herbrand-Sequent

H(ϕ) := set(U(s))

The Herbrand-sequent contains essential information about the cut-free proof.
Herbrand sequents have for example been used in [39] to extract explicit
bounds from proofs.

4.2.1 Global Characterization of Herbrand Sequents

Using U and set-normalization we have given a unique definition of the
mid-sequent of a proof inM-NF. ButM-reduction is not confluent, so it is
a-priori not clear how to uniquely define the mid-sequent of a proof which is
not inM-NF. But in this section we will show thatM-reduction is confluent
w.r.t. the Herbrand-sequent (i.e. allM-NFs of a certain proof have the same
Herbrand-sequent). This will allow us to speak about the Herbrand-sequent
of a cut-free prenex proof which is not in M-NF.

Definition 4.11. Let ϕ be an LKj-proof.

With Q(ϕ) we denote the set of quantifier rules in ϕ.

Let R be a set of rules. With A(R) we denote the set of auxiliary occurrences
of the rules in R.

Let M be a set of formula occurrences. With S(M) we denote the sequent
that is created from merging all formula occurrences from M .

Let s be a sequent. With P(s) we denote the sequent that contains exactly
the quantifier-free formulas of s.

Definition 4.12. Let ϕ be a cut-free prenex LKj-proof. We define the
sequent

Qp(ϕ) := P(S(U(A(Q(ϕ)))))

Let s be the end-sequent of ϕ. We define the sequent

sp(ϕ) := P(U(s))

Proposition 4.3. Let ϕ be a cut-free prenex LKj-proof and let ϕ∗ be any
M-NF of ϕ. Then

H(ϕ∗) = set(sp(ϕ) ◦ Qp(ϕ))

Proof. We proceed by induction on the length n of the M-reduction se-
quence of ϕ to ϕ∗.
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1. For n = 0 we have ϕ = ϕ∗ in M-NF and we show

H(ϕ) = set(sp(ϕ) ◦ Qp(ϕ))

by induction on the size of the quantifier part. Let ρ be the lowest
propositional rule and let s be its conclusion sequent. Then H(ϕ) =

set(U(s)). We can partition ϕ as
ϕp

ϕq
where ϕp ends with ρ and ϕq

consists only of quantifier rules, weakenings and contractions (which
are all unary). We proceed by induction on m, the number of rules in
ϕq: If m = 0 then Qp(ϕ) = ∅ and H(ϕ) = set(U(s)). If m > 0, let

ϕq =
ϕ′

q

ρ′
. By the induction hypothesis we know for ϕ′ =

ϕp

ϕ′
q

that

H(ϕ′) = set(sp(ϕ′) ◦ Qp(ϕ
′)). But H(ϕ) = H(ϕp) = H(ϕ′) and we

also have set(sp(ϕ
′) ◦ Qp(ϕ′)) = set(sp(ϕ) ◦ Qp(ϕ)) because if ρ′ is a

quantifier rule with an unused auxiliary occurrence or a contraction or
a weakening then set(sp(ϕ)) = set(sp(ϕ

′)) and Qp(ϕ) = Qp(ϕ
′) and if

ρ′ is a quantifier rule with a used auxiliary formula occurrence µ then
µ moves from sp(ϕ

′) into Qp(ϕ).

2. For the induction step (n > 0) we show that if ϕ →M ϕ′ then (a)
Qp(ϕ) = Qp(ϕ′) and (b) sp(ϕ) = sp(ϕ

′). (b) is obvious asM-reduction
does not modify the end-sequent and preserves usedness. For (a) ob-
serve that no quantifier rules are added, nor removed, so S(A(Q(ϕ))) =
S(A(Q(ϕ′))). But M-reduction also does not add nor remove weak-
enings and the ancestor relation in the modified parts is not modified,
so S(U(A(Q(ϕ)))) = S(U(A(Q(ϕ′)))) and thus Qp(ϕ) = Qp(ϕ′).

The above proposition allows to define the mid-sequent of a cut-free prenex
LKj-proof ϕ which is not in M-NF as H(ϕ) := set(sp(ϕ) ◦ Qp(ϕ)). This
shows that it is possible to calculate the Herbrand-sequent without explicitly
executing M-reduction steps by instead collecting all used propositional
auxiliary formulas of quantifier inferences. Note that H(ϕ) is a propositional
tautology and consists only of instance of formulas of the end-sequent of ϕ.

For two sequents s and t we write s ≤q t if there is an LK-proof ψ =

s....
t

consisting only of quantifier rules, weakenings and contractions. So if ϕ is a
cut-free prenex proof with end-sequent s then H(ϕ) ≤q s.

4.2.2 Partial Proofs and Partial Herbrand Sequents

In order to carry out a more fine-grained analysis we will use partial Herbrand-
sequents which are not tautological. We will define partial Herbrand-sequents



CHAPTER 4. STATIC PROPERTIES OF THE PROFILE 54

as Herbrand-sequents of partial proofs.

Definition 4.13 (partial proof). Let ϕ be an LKj-proof with end-sequent s
and let M be a closed set of formula occurrences. We define the LKj-proof
ϕ |M as follows: If M = ∅ then ϕ |M := ⊢, else we can assume that s
contains a formula occurrence from M or that ϕ ends with a binary rule and
both immediate sub-proofs contain formula occurrences from M (If this is
not the case, we define ϕ |M := χ |M where χ is the smallest sub-proof of
ϕ where this is true).

1. If ϕ is an axiom sequent α we define

ϕ |M := S(α,M)

2. If ϕ ends with a unary rule ρ, let s′ be its premise sequent, let ϕ′

be the immediate sub-proof of ϕ and let M ′ be the subset of M of
occurrences in ϕ′.

(a) If ρ operates on M we define

ϕ |M :=

(ϕ′ |M ′)
S(s′,M ′)

S(s,M)
ρ

(b) If ρ does not operate on M then S(s,M) = S(s′,M ′) and we
define

ϕ |M := ϕ′ |M ′

3. If ϕ ends with a binary rule ρ let s1, s2 be its premise sequents and
let ϕ1, ϕ2 be the proofs of s1 and s2 respectively. Let M1,M2 be the
subsets of M of occurrences in ϕ1, ϕ2 respectively.

(a) If ρ operates on M we define

ϕ |M :=

(ϕ1 |M1)
S(s1,M1)

(ϕ2 |M2)
S(s2,M2)

S(s,M)
ρ

(b) If ρ does not operate on M then S(s,M) = S(s1,M1)◦S(s2,M2).

i. If M1 6= ∅ and M2 6= ∅ then we define

ϕ |M :=

(ϕ1 |M1)
S(s1,M1)

(ϕ2 |M2)
S(s2,M2)

S(s,M)
j(L(ρ))

ii. If M1 = ∅ then we define

ϕ |M := ϕ2 |M2
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iii. If M2 = ∅ then we define

ϕ |M := ϕ1 |M1

Partial proofs as defined above are similar to the inner proofs of [14] in that
they consist of a subset of rule applications of the original, however they
are different in that they do not require the axioms to be complete. Thus
partial proofs in general do not end with a tautology as conclusion sequent.

Definition 4.14 (partial Herbrand-sequent). Let ϕ be an LKj-proof and
let µ be a prenex formula occurrence in ϕ. Let χ be the sub-proof of ϕ that
contains µ in its end-sequent. We define the partial Herbrand-sequent

H(µ) := H(χ | 〈µ〉)

Partial Herbrand-sequents are no longer tautologies. They contain the in-
formation which instances of a given formula have been used in the proof.

Example 4.1. Let F = (∀x)(∀y)(P (x, y)→ P (s(x), y)),
G = (∀x)(∀y)(P (x, y)→ P (x, s(y))) and ϕ be a proof of the sequent

F,G ⊢ P (0, 0)→ P (s(s(0)), s(s(s(0))))

and let µ1 (µ2) be the occurrence of F (G) in the antecedens of the end-
sequent of ϕ. The antecedens can be seen as axiomatizing a two-dimensional
grid. There are different cut-free proofs of this sequent. Given a concrete
such proof, it corresponds to a path in this grid. The partial Herbrand-
sequentH(µ1) describes all the steps in the x-direction whileH(µ2) describes
the steps taken in the y-direction in this path.

4.2.3 Inductive Characterization of Partial Herbrand Sequents

Definition 4.15. Let µ be an occurrence of a formula F in an LKj-proof.
We define the formula [µ] as

[µ] :=

{

F if µ occurs on the right side of the sequent
¬F if µ occurs on the left side of the sequent

Definition 4.16 (Herbrand-Clauses). Let ϕ be an LKj-proof and let µ be
a formula occurrence in ϕ. We define the set of Herbrand-clauses HC(µ) of
µ inductively as follows:

1. µ occurs in an axiom:
HC(µ) = {{[µ]}}

2. µ occurs in a rule:
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(a) µ has no immediate ancestor (i.e. µ is introduced by weakening):

HC(µ) = {∅}

(b) µ has exactly one immediate ancestor ν:

HC(µ) = HC(ν)

(c) µ has exactly two immediate ancestors ν1 and ν2:

i. ν1 and ν2 occur in the same sequent:

HC(µ) = HC(ν1)×HC(ν2)

ii. ν1 and ν2 occur in different sequents:

HC(µ) = HC(ν1) ∪HC(ν2)

We will now show that the Herbrand-clauses as defined above provide an
inductive characterization (up to propositional subsumption) of the conjunc-
tive normal form of a partial Herbrand-sequent.

Lemma 4.3. Let ϕ be an LK-proof and let µ be a prenex formula occur-
rence in ϕ. Then

HC(µ) E CNF(H(µ))

Proof. We assume w.l.o.g. that µ occurs in the end-sequent of ϕ and proceed
by induction on ϕ:

1. ϕ is an axiom sequent s. Then HC(µ) = {{[µ]}}, H(µ) = H(s | µ) =
S(s, µ) and as s is atomic CNF(S(s, µ)) = {{[µ]}}.

2. ϕ ends with a rule ρ:
If µ occurs in the context of ρ. Then µ has a unique immediate ancestor
ν and HC(µ) = HC(ν). But we also have CNF(H(µ)) = CNF(H(ν))
becauseH(µ) = H(ϕ | 〈µ〉) and as ϕ | 〈µ〉 is cut-free by Proposition 4.3
we can write H(ϕ | 〈µ〉) = set(sp(ϕ | 〈µ〉) ◦ Qp(ϕ | 〈µ〉)) and - by the
same argument - H(ϕ | 〈ν〉) = set(sp(ϕ | 〈ν〉) ◦ Qp(ϕ | 〈ν〉)). But we
have sp(ϕ | 〈µ〉) = sp(ϕ | 〈ν〉) as well as Qp(ϕ | 〈µ〉) = Qp(ϕ | 〈ν〉)
because µ and ν occur in the context of ρ.

So for the rest of this proof we assume that µ is the main occurrence
of ρ and we make a case distinction on the type of ρ:

(a) If ρ = w : l then HC(µ) = {∅} and - writing s for the conclusion
sequent of ρ - we have ϕ | 〈µ〉 =

⊢
S(s, µ)

w : l

and thus H(µ) = ⊢ and CNF(⊢) = {∅}. For ρ = w : r we proceed
analogously.
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(b) If ρ = c : l then µ has exactly two ancestors ν1 and ν2, HC(µ) =
HC(ν1) × HC(ν2) and by the induction hypothesis: HC(ν1) ×
HC(ν2)ECNF(H(ν1))×CNF(H(ν2)). By Proposition 4.3 we have
H(νi) = set(sp(ϕ | 〈νi〉)◦Qp(ϕ | 〈νi〉)) andH(µ) = set(sp(ϕ | 〈µ〉)◦
Qp(ϕ | 〈µ〉)).

i. If µ is quantifier-free then H(νi) = sp(ϕ | 〈νi〉) and H(µ) =
sp(ϕ | 〈µ〉). As [µ] = [ν1] = [ν2] there are two possible values
for CNF(H(µ)),CNF(H(ν1)) and CNF(H(ν2)): Either C :=
CNF([µ]) if the respective formula occurrence is used or {∅}
if it is not used. Now if µ is used, at least one of ν1, ν2 is
used and both C × {∅}EC and C ×C EC. If µ is not used
then both ν1, ν2 must not be used and {∅}× {∅}E {∅} again
holds.

ii. If µ contains a quantifier, then H(µ) = set(Qp(ϕ | 〈µ〉)) and
H(νi) = set(Qp(ϕ | 〈νi〉)). Note that - due to ν1 and ν2

being exactly the immediate ancestors of µ in ϕ - we have
Qp(ϕ | 〈µ〉) = Qp(ϕ | 〈ν1〉) ◦ Qp(ϕ | 〈ν2〉).

CNF(H(ν1))× CNF(H(ν2))

= CNF(set(Qp(ϕ | 〈ν1〉)))× CNF(set(Qp(ϕ | 〈ν2〉)))

= CNF(set(Qp(ϕ | 〈ν1〉)) ◦ set(Qp(ϕ | 〈ν2〉)))

E CNF(set(Qp(ϕ | 〈ν1〉) ◦ Qp(ϕ | 〈ν2〉)))

= CNF(H(µ))

For ρ = c : r we proceed analogously.

(c) If ρ = ∀ : l then µ has exactly one ancestor ν, HC(µ) = HC(ν)
and HC(ν) E CNF(H(ν)) by the induction hypothesis. Again by
Proposition 4.3 we write H(µ) = set(sp(ϕ | 〈µ〉) ◦ Qp(ϕ | 〈µ〉))
and H(ν) = set(sp(ϕ | 〈ν〉) ◦ Qp(ϕ | 〈ν〉)). But we have H(µ) =
H(ν) because sp(ϕ | 〈µ〉) = ⊢ and if ν contains a quantifier then
also sp(ϕ | 〈ν〉) = ⊢ and Qp(ϕ | 〈µ〉) = Qp(ϕ | 〈ν〉). On the other
hand, if ν is quantifier-free, then Qp(ϕ | 〈µ〉) = sp(ϕ | 〈ν〉) and
Qp(ϕ | 〈ν〉) = ⊢. For the other quantifier rules ∀ : r,∃ : l,∃ : r an
analogous argument applies.

(d) If ρ = ¬ : l then µ has exactly one ancestor ν. The result follows
from the induction hypothesis and CNF(¬F ⊢) = CNF(⊢ F )
(analogous for ρ = ¬ : r).

(e) If ρ = ∧ : l then µ has exactly two ancestors ν1, ν2 which are in the
same sequent. The result follows from the induction hypothesis
and CNF(A ∧ B ⊢) = CNF(A ⊢) × CNF(B ⊢) (analogous for
ρ = ∨ : r,→: r).
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(f) If ρ = ∧ : r then µ has exactly two ancestors ν1, ν2 which are
in different sequents. The result follows from the induction hy-
pothesis and CNF(⊢ A∧B) = CNF(A)∪CNF(B) (analogous for
ρ = ∨ : l,→: l).

4.2.4 Ω-Subsumption

The following Lemma is the technical key to Theorem 4.2. It establishes the
connection between CL and HC and therefore the connection between PΩ

and HC.

Lemma 4.4. Let ϕ be an LK-proof, let M be a set of terminal occurrences
and N be a set of end occurrences s.t. M ∩N = ∅. Then

CL〈M⊎N〉(ϕ) E CL〈M〉(ϕ) "ν∈N HC(ν)

Proof. By induction on ϕ: If ϕ is an axiom α, then CL〈M⊎N〉(ϕ) = {S(α,M)◦
S(α,N)} and CL〈M〉(ϕ) = {S(α,M)} and "ν∈NHC(ν) = {S(α,N)}. So for
the rest of this proof we assume that ϕ ends with a rule ρ. If ρ is a unary rule,
we denote with ϕ′ the immediate sub-proof of ϕ and with M ′(N ′) the set of
immediate ancestors of M(N). If ρ is a binary rule, we denote with ϕ1, ϕ2

the two immediate sub-proofs of ϕ and with M1,M2(N1,N2) the immediate
ancestors of M(N) in ϕ1, ϕ2.

1. If all ν ∈ N occur in the context of ρ then each ν ∈ N has exactly one
immediate ancestor ν ′ and thus HC(ν) = HC(ν ′).

(a) If ρ is a unary rule, then by the induction hypothesis

CL〈M ′⊎N ′〉(ϕ
′) E CL〈M ′〉(ϕ

′) "ν∈N ′ HC(ν)

and CL〈M ′⊎N ′〉(ϕ
′) = CL〈M⊎N〉(ϕ), CL〈M ′〉(ϕ

′) = CL〈M〉(ϕ) im-
mediately by definition and "ν∈NHC(ν) = "ν∈N ′HC(ν) by the
above observation that HC(ν) = HC(ν ′) for each ν ∈ N and its
unique ancestor ν ′.

(b) If ρ is a binary rule, let ⋄ = ∪ if ρ operates on 〈M〉 and ⋄ = ×
otherwise. By the induction hypothesis

CL〈M1⊎N1〉(ϕ1) ⋄CL〈M2⊎N2〉(ϕ2) E (CL〈M1〉(ϕ1) "ν∈N1 HC(ν)) ⋄

(CL〈M2〉(ϕ2) "ν∈N2 HC(ν))

But CL〈M1⊎N1〉(ϕ1) ⋄ CL〈M2⊎N2〉(ϕ2) = CL〈M⊎N〉(ϕ) and (A ×
B) ∪ (C ×D) E (A ∪ C)×B ×D and thus

CL〈M⊎N〉(ϕ)E(CL〈M1〉(ϕ1)⋄CL〈M2〉(ϕ2))"ν∈N1HC(ν)"ν∈N2HC(ν)
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But as all ν ∈ N have exactly one ancestor we obtain

CL〈M⊎N〉(ϕ) E CL〈M〉(ϕ) "ν∈N HC(ν)

2. The rule ρ has a main occurrence ν0 and ν0 ∈ N . Note that all
ν ∈ N \ {ν0} have a unique ancestor ν ′ and thus HC(ν) = HC(ν ′).

(a) If ν0 does not have an ancestor (ρ must be weakening) then by
the induction hypothesis

CL〈M ′⊎N ′〉(ϕ
′) E CL〈M ′〉(ϕ

′) "ν∈N ′ HC(ν)

The result follows from the observation that – due to HC(ν0) =
{∅} – "ν∈N ′HC(ν) = "ν∈NHC(ν).

(b) If ν0 has exactly one immediate ancestor then ρ must be unary,
all ν ∈ N have exactly one ancestor and the argument of case (1a)
applies.

(c) If ν0 has exactly two immediate ancestors ν1
0 , ν

2
0 and these oc-

cur in the same sequent, then ρ is unary and by the induction
hypothesis

CL〈M ′⊎N ′〉(ϕ
′) E CL〈M ′〉(ϕ

′) "ν∈N ′ HC(ν)

The result then follows from the observation that – due toHC(ν0) =
HC(ν1

0)×HC(ν2
0) – we have "ν∈N ′HC(ν) = "ν∈NHC(ν).

(d) If ν0 has exactly two immediate ancestors ν1
0 , ν

2
0 and these occur

in different sequents, then ρ is binary and operates on 〈M ⊎N〉
but not on 〈M〉. Let w.l.o.g. ν1

0 ∈ N1, ν
2
0 ∈ N2. By induction

hypothesis

CL〈M1⊎N1〉(ϕ1) ∪CL〈M2⊎N2〉(ϕ2) E (CL〈M1〉(ϕ1) "ν∈N1 HC(ν))

∪(CL〈M2〉(ϕ2) "ν∈N2 HC(ν))

But as CL〈M⊎N〉(ϕ) = CL〈M1⊎N1〉(ϕ1)∪CL〈M2⊎N2〉(ϕ2) and (A×
B) ∪ (C ×D) E (A ∪ C)×B ×D we have

CL〈M⊎N〉(ϕ) E ((CL〈M1〉(ϕ1)×HC(ν
1
0 ))

∪(CL〈M2〉(ϕ2)×HC(ν
2
0)))

"ν∈N1\{ν1
0}
HC(ν)

"ν∈N2\{ν2
0}
HC(ν)

As all ν ∈ N \ {ν0} have exactly one ancestor

"ν∈N1\{ν1
0}
HC(ν) "ν∈N2\{ν2

0}
HC(ν) = "ν∈N\{ν0}HC(ν)
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Again with (A×B) ∪ (C ×D) EA×C × (B ∪D) we have

(CL〈M1〉(ϕ1)×HC(ν
1
0)) ∪ (CL〈M2〉(ϕ2)×HC(ν

2
0)) E

CL〈M1〉(ϕ1)×CL〈M2〉(ϕ2)× (HC(ν1
0 ) ∪HC(ν2

0))

and as HC(ν0) = HC(ν1
0)∪HC(ν2

0) and CL〈M〉(ϕ) = CL〈M1〉(ϕ1)×
CL〈M2〉(ϕ2) we finally obtain

CL〈M⊎N〉(ϕ) E CL〈M〉(ϕ) "ν∈N HC(ν)

We are now ready to prove the first main theorem: PΩT(ϕ) propositionally
subsumes the natural composition of the conjunctive normal forms of the
partial Herbrand-sequents of the cut occurrences. This means that on the
first-order level these two clause sets are the same: The Ω-profile character-
izes exactly the used instances of the cut-formulas.

Theorem 4.2. Let ϕ be an LK-proof and let {ω+
1 , ω

−
1 , . . . , ω

+
n , ω

−
n } be the

cut occurrences ordered s.t. ω+
i and ω−

i are auxiliary occurrences of the
same cut. Then

PΩT(ϕ) E "n
i=1(CNF(H(ω−

i )) ∪ CNF(H(ω+
i )))

Proof. By Lemma 4.3 and the relation between PΩT and CL it suffices to
show

CL(ϕ) E "n
i=1(HC(ω

−
i ) ∪HC(ω+

i ))

We proceed by induction on n. If n = 0 then ϕ does not contain cuts,
CL(ϕ) = {∅} and the empty product is also {∅}. If n > 0 then we can
assume that ϕ ends with a binary rule ρ that either (1) is a cut or (2)
contains a cut in each of its immediate sub-proofs. For if ϕ does not end
with such a rule, observe that CL(ϕ) = CL(ψ[ϕ]) for each cut-free context
ψ[].

1. If ρ is a cut, let ϕ1, ϕ2 be the immediate sub-proofs of ϕ, let Ω1 =
{ω+

1 , ω
−
1 , . . . , ω

+
k , ω

−
k } and Ω2 = {ω+

k+1, ω
−
k+1, . . . , ω

+
n−1, ω

−
n−1} be the

occurrences of cut formulas of cuts in ϕ1 and ϕ2 and let ω+
n (ω−

n ) be
the occurrence of the cut formula of ρ in ϕ1 (ϕ2). Then by definition

CL(ϕ) = CL〈Ω1∪{ω
+
n }〉(ϕ1) ∪ CL〈Ω2∪{ω

−
n }〉(ϕ2)

Applying Lemma 4.4 and the induction hypothesis we obtain

CL(ϕ) E (("k
i=1(HC(ω

+
i ) ∪HC(ω−

i ))) ×HC(ω+
n )) ∪

(("n−1
i=k+1(HC(ω

+
i ) ∪HC(ω−

i )))×HC(ω−
n ))

The result then follows from (A×B) ∪ (C ×D) EA× C × (B ∪D).
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2. If ρ is not a cut, then by definition

CL(ϕ) = CL(ϕ1)×CL(ϕ2)

and as both ϕ1 and ϕ2 contain at least one cut, the result follows
immediately from the induction hypothesis.

4.2.5 Σ-Subsumption

In this section we investigate the Σ-profiles and we will show that PΣT(ϕ) is
propositionally subsumed by the disjunctive normal form of the partial Her-
brand sequent of the Σ-part. This partial Herbrand-sequent is the Herbrand-
sequent of the partial proof arising from ϕ by dropping all Ω-rules. Note
that the proof projections of the CERES-method (see [8]) can be gener-
ated from this partial proof by replacing juxtapositions by weakenings (and
completing the axioms). First some simple technical lemmas:

Lemma 4.5. Let ϕ,ϕ′ be LKj-proofs with ϕ→∗
M ϕ′. Then

1. PΣT(ϕ) = PΣT(ϕ′) and

2. H(ϕ) = H(ϕ′)

Proof Sketch. 1 Follows from the fact that →M moves only unary rules and
2 follows from Proposition 4.3.

Lemma 4.6. Let ϕ be a cut-free LKj-proof with quantifier-free end-sequent
s. Then there is a cut-free LKj-proof ϕ′ with quantifier-free end-sequent
U(s) s.t.

1. PΣT(ϕ) = PΣT(ϕ′) and

2. H(ϕ) = H(ϕ′)

Proof Sketch. By shifting weakening rules towards the end-sequent.

Lemma 4.7. Let ϕ be a cut-free LKj-proof with quantifier-free end-sequent
s. Then there is a cut-free LKj-proof ϕ′ with quantifier-free end-sequent
set(s) s.t.

1. PΣT(ϕ) = PΣT(ϕ′) and

2. H(ϕ) = H(ϕ′)

Proof Sketch. By adding contractions at the end of the proof.
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Now we will show that the Σ-profile of a part of the end-sequent depends
only on the partial proof of this part.

Lemma 4.8. Let ϕ be an LK-proof and let N be a set of end occurrences
of ϕ. Then

PΣT
〈N〉(ϕ) = PΣT(ϕ | 〈N〉)

Proof. We will proceed by induction on ϕ.

1. If ϕ is an axiom sequent α, then PΣT
〈N〉(ϕ) = S(α,N) = PΣT(ϕ | 〈N〉).

2. If ϕ ends with a unary rule ρ, let s′ be its premise sequent, let ϕ′ be
the immediate sub-proof of ϕ and let N ′ be the immediate ancestors of
N . As ρ is unary we immediately have PΣT

〈N〉(ϕ) = PΣT
〈N ′〉(ϕ

′) but also

PΣT(ϕ | 〈N〉) = PΣT(ϕ′ | 〈N ′〉) because either ϕ | 〈N〉 and ϕ′ | 〈N ′〉
are equal or they differ by just a unary rule.

3. If ϕ ends with a binary rule ρ, let s1, s2 be its premise sequents and let
ϕ1, ϕ2 be the proofs of s1, s2 respectively. Let N1,N2 be the immediate
ancestors of N in ϕ1 and ϕ2.

(a) If the main occurrence of ρ is inN , then PΣT
〈N〉(ϕ) = PΣT

〈N1〉
(ϕ1)×L(ρ)

PΣT
〈N2〉

(ϕ2). By the induction hypothesis PΣT
〈N〉(ϕ) = PΣT(ϕ1 | 〈N1〉)×L(ρ)

PΣT(ϕ2 | 〈N2〉), but as ϕ | 〈N〉 is ρ applied to ϕ1 | 〈N1〉 and ϕ2 | 〈N2〉
and as the label set of the copy of ρ at the end of ϕ | 〈N〉 is still
L(ρ) we obtain PΣT

〈N〉(ϕ) = PΣT(ϕ | 〈N〉).

(b) If ρ has no main occurrence (i.e. is a cut) or the main occurrence
is not in N then ρ does not operate on 〈N〉 and so PΣT

〈N〉(ϕ) =

PΣT
〈N1〉

(ϕ1) ∪ PΣT
〈N2〉

(ϕ2).

If both N1 6= ∅ and N2 6= ∅ then ϕ | 〈N〉 ends with a juxtaposition
rule which does not operate on Σ(ϕ | 〈N〉) and so PΣT(ϕ | 〈N〉) =
PΣT(ϕ1 | 〈N1〉)∪PΣT(ϕ2 | 〈N2〉). The result then follows from the
induction hypothesis.

If N1 = ∅ then ϕ | 〈N〉 = ϕ2 | 〈N2〉 and thus PΣT(ϕ | 〈N〉) =
PΣT(ϕ2 | 〈N2〉) and the result follows from the induction hypoth-
esis. If N2 = ∅ the same argument applies.

Now considering only the upper (propositional) part of a cut-free proof in
M-NF we show that the disjunctive normal form of the end-sequent of the
upper part propositionally subsumes the Σ-profile.
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Lemma 4.9. Let ϕ be a cut-free LKj-proof with quantifier-free end-sequent
s. Then

DNF(s) E PΣT(ϕ)

Proof. Define the relation EL between sets of labelled clauses as follows:
C EL D if ∀d ∈ D∃c ∈ C with set(c) ⊆ set(d) and L(c) ∩ L(d) 6= ∅. Clearly
C EL D implies C ED. We will show DNF(s) EL PΣT(ϕ) by induction on
ϕ.

If ϕ is an axiom sequent then DNF(s) = PΣT(ϕ). If ϕ ends with a unary rule
ρ, let ϕ′ be the immediate sub-proof of ϕ and let s′ be the end-sequent of
ϕ′. As ρ is unary PΣT(ϕ) = PΣT(ϕ′) and by using the induction hypothesis
it remains to show that DNF(s)EL DNF(s′). For the propositional rules ¬ :
l,¬ : r,∧ : l,∨ : r and→: r it can be easily checked that DNF(s) = DNF(s′)
by DNF-rewriting steps. If ρ is weakening then DNF(s) = D ∪ C and
DNF(s′) = D for some sets of labelled clauses C,D and D ∪C ELD. If ρ is
a contraction, then DNF(s) = D∪C and DNF(s′) = D∪C ′∪C ′′ where C,C ′

and C ′′ have exactly the same clauses modulo labels. Thus, let f ′(f ′′) be the
bijection mapping an atom occurrence in C to the same atom occurrence in
C ′(C ′′). Then for the labels we have L(a) = L(f ′(a)) ∪ L(f ′′(a)) and thus
D ∪ C EL D ∪C ′ ∪ C ′′.

If ϕ ends with a binary rule ρ, let ϕ1, ϕ2 be the two immediate sub-proofs
of ϕ and let s1, s2 be their respective end-sequents.

If ρ is a juxtaposition, then PΣT(ϕ) = PΣT(ϕ1)∪PΣT(ϕ2) and as s = s1 ◦s2
also DNF(s) = DNF(s1)∪DNF(s2) and the result follows from the induction
hypothesis.

If ρ is an ∧ : r-rule then it has the following form:

(ϕ1)
Γ ⊢ ∆, A

(ϕ2)
Π ⊢ Λ, B

Γ,Π ⊢ ∆,Λ, A ∧B
∧: r[ρ]

Abbreviating L(ρ) as L we have

PΣT(ϕ) = PΣT(ϕ1)×L PΣT(ϕ2)

= (PΣT(ϕ1)
L × PΣT(ϕ2)

L) ∪ PΣT(ϕ1)
¬L ∪ PΣT(ϕ2)

¬L

Furthermore

DNF(s) = DNF(Γ ⊢ ∆) ∪DNF(Π ⊢ Λ) ∪DNF(⊢ A ∧B)

and
DNF(s1) = DNF(Γ ⊢ ∆) ∪DNF(⊢ A)

and
DNF(s2) = DNF(Π ⊢ Λ) ∪DNF(⊢ B)
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We will now show that ∀d ∈ PΣT(ϕ)∃c ∈ DNF(s) s.t. set(c) ⊆ set(d) and
L(c) ∩ L(d) 6= ∅ by a case distinction:

1. d ∈ PΣT(ϕ1)
¬L: Then d ∈ PΣT(ϕ1) and by induction hypothesis there

is a c ∈ DNF(s1) with set(c) ⊆ set(d) and L(c) ∩ L(d) 6= ∅. But
s1 = Γ ⊢ ∆, A and c ∈ DNF(Γ ⊢ ∆) because if c ∈ DNF(⊢ A) then
L(c)∩L(d) = ∅ because L(c) ⊆ L and d ∈ PΣT(ϕ1)

¬L, so c ∈ DNF(s).

2. If d ∈ PΣT(ϕ2)
¬L we proceed analogously to the previous case.

3. If d = d1 ◦ d2 with d1 ∈ PΣT(ϕ1)
L and d2 ∈ PΣT(ϕ2)

L then by the
induction hypothesis there are c1 ∈ DNF(Γ ⊢ ∆, A) and c2 ∈ DNF(Π ⊢
Λ, B) with set(ci) ⊆ set(di) and L(ci) ∩ L(di) 6= ∅ for both i = 1, 2.
Now for both ci we have set(ci) ⊆ set(d) and L(ci) ∩ L(d) 6= ∅. If
c1 ∈ DNF(Γ ⊢ ∆), then c1 ∈ DNF(s) and if c2 ∈ DNF(Π ⊢ Λ)
then c2 ∈ DNF(s). So, assuming both c1 /∈ DNF(Γ ⊢ ∆) and c2 /∈
DNF(Π ⊢ Λ) we have c1 ∈ DNF(⊢ A) and c2 ∈ DNF(⊢ B). But then
c1 ◦ c2 ∈ DNF(⊢ A ∧ B) ⊆ DNF(s) and also set(c1 ◦ c2) ⊆ set(d) and
L(c1 ◦ c2) ∩ L(d) 6= ∅.

For the other binary rules we proceed analogously.

We can now establish a subsumption relation between the Σ-profile and the
instances of the end-sequent in a way that is analogous to the relation in
the Ω-part shown in Theorem 4.2.

Theorem 4.3. Let ϕ be an LK-proof with a prenex end-sequent and let σ
be the set of end occurrences. Then

PΣT(ϕ) D DNF(H(ϕ | 〈σ〉))

Proof. Let ϕ′ be the LKj-proof ϕ | 〈σ〉, then by Lemma 4.8 using N = σ
we have PΣT(ϕ) = PΣT(ϕ′). Let ϕ′′ be a mid-sequent normal form of ϕ′,
then by Lemma 4.5 PΣT(ϕ′′) = PΣT(ϕ′) and H(ϕ′′) = H(ϕ′). As ϕ′′ is a
mid-sequent normal form, there is a propositional or juxtaposition rule ρ s.t.
all other propositional or juxtaposition rules are above ρ and all quantifier
rules are below ρ. Let χ be the sub-proof of ϕ′′ ending with ρ. As all rules
below ρ are unary, we have PΣT(ϕ′′) = PΣT(χ) and H(ϕ′′) = H(χ).

By Lemma 4.6 there is an LKj-proof χ′ whose end-sequent is U(s) where
s is the end-sequent of χ. Applying Lemma 4.7 to χ′ gives an LKj-proof
χ′′ with end-sequent s′′ = set(U(s)) and PΣT(χ′′) = PΣT(χ). Applying now
Lemma 4.9 to χ′′ gives PΣT(χ′′) D DNF(s′′) but by definition s′′ = H(χ)
which concludes the proof.
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Figure 4.1: The Global Picture

4.2.6 Discussion

Summing up we have shown the relations as depicted in Figure 4.1 (for a
proof ϕ with end-sequent Γ ⊢ ∆, set of end occurrences σ, cut-formulas
A1, . . . , An and respective cut occurrences ω−

1 , ω
+
1 , . . . , ω

−
n , ω

+
n ). We have

shown the syntactic relations (noted on the outside), the semantic relations,
i.e. implication or equivalence (noted on the inside) hold as corollaries.
The left side of the figure contains the information of the end-sequent part
(clause sets here are interpreted as existentially quantified disjunctive nor-
mal forms), the right side contains the information of the cut-formulas part
where clause sets are interpreted as universally quantifier conjunctive nor-
mal form. The separation between quantifier inferences and propositional
inferences (on both sides) is clearly visible. The composition of the cut-
formulas:

∨n
i=1(¬Ai ∧ Ai) is obviously unsatisfiable and from this unsatis-

fiability it follows (going counterclockwise) that each element on the right
side is unsatisfiable and each element on the left side is valid. This gives an
alternative proof of the unsatisfiability of the characteristic clause set.

Corollary 4.2. Let ϕ be an LK-proof. Then CL(ϕ) is unsatisfiable.

Proof. By unsatisfiability of PΩ(ϕ) which follows from the relations depicted
in Figure 4.1.

The profiles PΩ(ϕ) and PΣ(ϕ) being exactly dual to each other constitute
the two sides of the boundary between the part of a proof that concerns the
end-sequent and the part that concerns the cut-formulas.
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The cut-elimination method CERES uses a resolution refutation of PΩ(ϕ) as
a skeleton of a cut-free proof in which parts of ϕ | 〈σ〉 are plugged in to obtain
the final cut-free proof (see [8] for details). The duality between PΣ(ϕ) and
PΩ(ϕ) allows to generate PΩ(ϕ) from the end-sequent part by generating
PΣ(ϕ) and negating it. Cut-elimination with CERES can thus be seen as
a method that works on ancestors of the end-sequent only, i.e. a method
transforming partial cut-free proofs into non-partial cut-free proofs. But not
all partial cut-free proofs can be transformed into non-partial cut-free proofs
because the end-sequent is not necessarily a tautology. The partial proofs
generated by dropping exactly the cut ancestors have - among all partial
proofs - the property that the dropped part is unsatisfiable (cf. the formula
∨n

i=1(¬Ai ∧Ai)) and thus the end-sequent part is valid having a tautology
as end-sequent.

By the duality of resolution the resolution refutation of PΩ(ϕ) can be seen
as a positive proof of PΣ(ϕ), so a normal form under cut-elimination is not
only a (cut-free) proof of Γ ⊢ ∆, but also a cut-free proof of H(ϕ | 〈σ〉) via
the Σ-profile. The converse holds for CERES, but not for reductive cut-
elimination procedures (à la Gentzen). This allows to discriminate normal
forms of a proof from other cut-free proofs of the same end-sequent.

Note that the assumption of prenex formulas is only relevant for the H-
operator, not for the profiles. As future work we plan to extend these results
to the case of non-prenex formulas with a Herbrand-sequent extraction as
in [6].

4.3 The Relation to Logical Flow Graphs

Logical flow graphs have been introduced in [12] in order to show that it is
undecidable wether a given formula has a proof of length less than a given
natural number k. Logical flow graphs, in particular those on the atom
occurrences in a proof (the atomic flow graphs), are a simple representation
of the abstract structure of a proof. They have interesting relations to
cut-elimination which have been extensively studied in [14, 15, 16, 17, 18],
see also [19]. In this chapter we will give a rather informal analysis of the
relation between the profile and a variant of logical flow graphs on a sequence
of proofs with exponential cut-elimination (taken from [7]).

Definition 4.17. Let P be a binary predicate symbol and f a unary func-
tion symbol. We define the abbreviations T for (∀x)(∀y)(∀z)((P (x, y) ∧
P (y, z)) → P (x, z)) and Ak(m,n) for P (fm(αk), f

n(αk)). We define a se-
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quence of proofs (ψk)k≥1 as follows: ψk :=

Ak(2k, 2k−1) ⊢1k Ak(2k, 2k−1) Ak(2k−1, 0) ⊢2k Ak(2k−1, 0)

Ak(2k, 2k−1), Ak(2k−1, 0) ⊢ Ak(2k, 2k−1) ∧Ak(2k−1, 0)
∧: r

Ak(2k, 0) ⊢3k Ak(2k, 0)

(Ak(2k, 2k−1) ∧Ak(2k−1, 0))→ Ak(2k, 0), Ak(2k, 2k−1), Ak(2k−1, 0) ⊢ Ak(2k, 0)
→ : l

T,Ak(2k, 2k−1), Ak(2k−1, 0) ⊢ Ak(2k, 0)
∀: l(3x)

T,Ak(2k, 2k−1), (∀x)P (f2
k−1

(x), x) ⊢ Ak(2k, 0)
∀: l

T, (∀x)P (f2
k−1

(x), x), (∀x)P (f2
k−1

(x), x) ⊢ Ak(2k, 0)
∀: l

T, (∀x)P (f2
k−1

(x), x) ⊢ Ak(2k, 0)
c : l

T, (∀x)P (f2
k−1

(x), x) ⊢ (∀x)P (f2
k

(x), x)
∀: r

where 1k, 2k and 3k are the labels of the axioms (depending on k). Based
on (ψk)k≥1 we define another sequence (τk)k≥0 as follows: τ0 :=

P (f(α0), α0) ⊢
30 P (f(α0), α0))

(∀x)P (f(x), x) ⊢ P (f(α0), α0)
∀: l

(∀x)P (f(x), x) ⊢ (∀x)P (f(x), x)
∀: r

T, (∀x)P (f(x), x) ⊢ (∀x)P (f(x), x)
w : l

and τk+1 :=

(τk)

T, (∀x)P (f(x), x) ⊢ (∀x)P (f2k

(x), x)

(ψk+1)

(∀x)P (f2k

(x), x), T ⊢ (∀x)P (f2k+1
(x), x)

T, T, (∀x)P (f(x), x) ⊢ (∀x)P (f2k+1
(x), x)

cut

T, (∀x)P (f(x), x) ⊢ (∀x)P (f2k+1
(x), x)

c : l

By analysis of these proofs one can calculate that:

PΩT(τ0) = {⊢30}

and

PΩT(τk+1) = {⊢30 A0(1, 0)}
k

⋃

l=1

Xk ∪X
′
k+1

where the unions arise from the cut rules and

Xk = ({Ak(2
k, 2k−1) ⊢1k} ×1k,2k

{Ak(2k−1, 0) ⊢2k})×1k,2k,3k
{⊢3k Ak(2

k, 0)}

= {Ak(2
k, 2k−1), Ak(2k−1, 0) ⊢1k,2k,3k Ak(2

k, 0)}

and

X ′
k = ({Ak(2k, 2k−1) ⊢1k} ×1k,2k

{Ak(2k−1, 0) ⊢2k})×1k,2k,3k
{⊢3k}

= {Ak(2
k, 2k−1), Ak(2k−1, 0) ⊢1k,2k,3k}
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with the products arising from the ∧: r- and → : l-rules in the ψk. The
difference between Xk and X ′

k lies only in the status of the positive atom
of the 3k-axiom: In Xk it is cut-ancestor, in X ′

k it is ancestor of the end-
sequent. Furthermore

PΣT(τ0) = {A0(1, 0) ⊢
30 A0(1, 0)}

and

PΣT(τk+1) = (· · · ({A0(1, 0) ⊢
30}×30,11,21Y1) . . .×3k−1,1k,2k

Yk)×3k ,1k+1,2k+1
Y ′

k+1

where the product arise from the cut rules and

Yk = {⊢1k Ak(2
k, 2k−1)} ∪ {⊢2k Ak(2

k−1, 0)} ∪ {Ak(2k, 0) ⊢3k}

= {⊢1k Ak(2
k, 2k−1) ; ⊢2k Ak(2

k−1, 0) ; Ak(2
k, 0) ⊢3k}

with the unions – as the products in Xk – coming from the binary rules in
ψk.

Y ′
k = {⊢1k Ak(2

k, 2k−1)} ∪ {⊢2k Ak(2
k−1, 0)} ∪ {Ak(2k, 0) ⊢3k Ak(2

k, 0)}

= {⊢1k Ak(2
k, 2k−1) ; ⊢2k Ak(2

k−1, 0) ; Ak(2
k, 0) ⊢3k Ak(2

k, 0)}

Calculating the value of the product of the Yk we obtain

PΣT(τk+1) =

k
⋃

l=0

Zk ∪ {Ak+1(2
k+1, 0) ⊢3k+1 Ak+1(2

k+1, 0)}

where

Zk = {Ak(2
k, 0) ⊢3k,1k+1 Ak+1(2

k+1, 2k) ; Ak(2
k, 0) ⊢3k,2k+1 Ak+1(2

k, 0)}

We will now show on this example sequence that the information present in
the profile determines the structure of a proof to a surprisingly large extent.
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Theorem 4.4. Let χ be an LK-proof with PΩT(χ) = PΩT(τk) and PΣT(χ) =
PΣT(τk) for a k ≥ 1, then χ has the following structure

A0(1, 0) ⊢ A0(1, 0)

A1(2, 1) ⊢ A1(2, 1)

A1(1, 0) ⊢ A1(1, 0) A1(2, 0) ⊢ A1(2, 0)

Ak(2k, 2k−1) ⊢ Ak(2k, 2k−1)

Ak(2k−1, 0) ⊢ Ak(2k−1, 0) Ak(2k, 0) ⊢ Ak(2k, 0)

�� ���� ��cut

•

�� ��
�� ��ΣΣ

�� ���� ��cut

•

�� ��
�� ��ΣΣ

·

·

22
22

22

		
		

		 ..
.
.
.
.
.
.
.
.
.
.
.
.
.

??
??

??
?

≥ 1

≤ 1

where this picture is to be interpreted as follows: All axioms occurring in
χ are shown, lines denote the ancestor relation, unary logical rules are not
shown, dots denote contractions, cut denotes a cut rule with the two entering
lines being the auxiliary formulas, ΣΣ denotes two binary rules working
on ancestors of the endsequent s.t. the main formula of the upper rule
is ancestor of an auxiliary formula of the lower rule and the three entering
lines are the two auxiliary formulas of the upper and the remaining auxiliary
formula of the lower rule, i.e. ΣΣ denotes a “ternary” rule. The dotted line
with ≥ 1 represents at least one ancestor path of the atom occurrences of
the rightmost axiom and the dotted line with ≤ 1 is at most one ancestor
path of the atom occurrences of the rightmost atom, i.e. the only freedom in
this graph concerns the question wether both atoms of the rightmost axiom
go into the rightmost ΣΣ-complex or just one.

Proof Sketch. As we are dealing with the profiles containing the tautologies
we know from counting the labels in the profile that χ must have 3 · k + 1
axioms. The number of binary rules of a proof with m axioms must be
m − 1, so χ has 3 · k binary rules. In PΩT(χ) there are k product clauses
with 3 labels each where the label sets are disjoint. Therefore for each of
these clauses there must be a distinct ternary rule (in the above sense).
Partitioning the product clauses of PΣT(χ) into label-disjoint sets we obtain
k pairs to each of which must correspond a cut (because of the disjointness
of the labels). By analyzing the labels of these pairs of products one sees
that 3j must be on one side of the cut and 1j+1 and 2j+1 must be on the
other side of the cut, but as the cut-formula on both sides must be the same
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there must be a contraction applied to descendents of the atoms from 1j+1

and 2j+1.

Hence we have k independent pairs of rules working on ancestors of the end-
sequent and k independent cuts, the connection to the axioms are derived
from the labels with the only uncertainty of wether ⊢3k Ak(2

k, 0) goes di-
rectly into the end-sequent or via an (already existing) rule because it does
not occur in the last Ω-product in X ′

k.

Note that the above proof shows that these profiles uniquely determine the
atomic flow graph of the occurrences that are ancestors of cut formulas.
The atomic flow graph of the ancestors of the end-sequent however is not
completely determined: Nothing can be said about contractions applied on
ancestors of the end-sequent. Indeed, in τk the main formulas of the ΣΣ-
rules (which is always the transitivity) are contracted into the end-sequent.
But there exist proofs χ s.t. these contractions do not take place or where
even different forms of writing transitivity are allowed (e.g. the negation
normal form of T ) at each instance of a ΣΣ-pair of rules.



Chapter 5

The Dynamics of the Profile

In this chapter we will investigate the effect of various proof transformations
on the profile.

5.1 Cut-Elimination

In [10] an analysis of the behavior of the original characteristic clause sets
under Gentzen’s cut-elimination procedure has been given. It has been
shown that, if ϕ is reduced to ϕ′ by cut-elimination steps, the characteristic
clause set of ϕ subsumes that of ϕ′. The subsumption relation consists of the
three basic parts of 1) duplication of clauses (including variable renaming),
2) instantiation of clauses and 3) deletion of clauses. However, due to the
nature of this cut-elimination procedure and the characteristic clause sets
these three parts occur in a mixed fashion at different cut-elimination steps.

In this section we carry out an analogous analysis but with the important
difference that we move from Gentzen’s original calculus (which is a mixture
of multiplicative and additive rules) to the purely multiplicative calculus
LKps and from the original characteristic clause sets to the proof profiles
defined in this paper. This allows to carry out the analysis of [10] in a
much “cleaner” fashion which will make it possible to use the lemmas in the
analysis of the effect of transformations defined by cut-elimination (as done
in Section 5.2.1). We will now show that

1. duplication of clauses arises iff a contraction rule is eliminated, that

2. instantiation of clauses arises iff a quantifier rule is eliminated and that

3. deletion of clauses arises iff a weakening rule is eliminated.

In all other cases the profile remains unchanged.

71
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Lemma 5.1 (rank-reduction).

χ→Gr χ
′ =⇒ P(χ′) = P(χ)

Proof. As rank-reduction →Gr is contained in the permutation of adjacent
independent rules ≈π, we can apply Proposition 4.1.

Lemma 5.2 (propositional reduction).

χ→Gp χ
′ =⇒ P(χ′) = P(χ)

Proof. By duality it is enough to show PΩ(χ′) = PΩ(χ). Let µ be the
position where the reduction is applied, so χ = χ[ϕ]µ and χ′ = χ[ϕ′]µ. We
first show PΩ(χ′).µ = PΩ(χ).µ by case distinction on the main connective
of the cut at µ:

1. Conjunction: Then ϕ has the form:

(ϕ1, C)
Γ ⊢ ∆, A

(ϕ2,D)
Π ⊢ Λ, B

Γ,Π ⊢ ∆,Λ, A ∧B
∧: r

(ϕ3, E)
A,B,Θ ⊢ Σ

A ∧B,Θ ⊢ Σ
∧: l

Γ,Π,Θ ⊢ ∆,Λ,Σ
cut

and ϕ′ has the form:

(ϕ2,D)
Π ⊢ Λ, B

(ϕ1, C)
Γ ⊢ ∆, A

(ϕ3, E)
A,B,Θ ⊢ Σ

B,Γ,Θ ⊢ ∆,Σ
cut

Γ,Π,Θ ⊢ ∆,Λ,Σ
cut

So we have
PΩ(χ).µ = (C ∪D) ∪ E

and
PΩ(χ′).µ = D ∪ (C ∪ E)

which are equal by commutativity and associativity of ∪.

2. Disjunction: analogous: by commutativity and associativity of ∪

3. Implication: analogous: by commutativity and associativity of ∪

4. Negation: analogous: by commutativity and associativity of ∪

Also condition 2 of Lemma 4.1 is fulfilled because →Gp does not change
the ancestor axioms of the formula occurrences in the end-sequent of the
rewritten part. So we can use Lemma 4.1 to conclude PΩ(χ′) = PΩ(χ).



CHAPTER 5. THE DYNAMICS OF THE PROFILE 73

Lemma 5.3 (quantifier reduction). Let χ be a regular LKps-proof and let

χ→Gq χ
′

where the substitution {α← t} is applied to the reduced sub-proof of χ.
Then

P(χ′) = P(χ){α← t}

Proof. By duality, it is enough to show PΩ(χ′) = PΩ(χ). Let µ be the
position where the reduction is applied, so χ = χ[ϕ]µ and χ′ = χ[ϕ′]µ. We
will show this only for the universal quantifier, for the existential quantifier
the proof is analogous:

Then ϕ has the form

(ϕ1, C)
Γ ⊢ ∆, B{x← α}

Γ ⊢ ∆, (∀x)B
∧: l

(ϕ2,D)
B{x← t},Π ⊢ Λ

(∀x)B,Π ⊢ Λ
∧: l

Γ,Π ⊢ ∆,Λ
cut

and ϕ′ has the form

(ϕ1{α← t}, C{α← t})
Γ ⊢ ∆, B{x← t}

(ϕ2,D)
B{x← t},Π ⊢ Λ

Γ,Π ⊢ ∆,Λ
cut

So we have
PΩ(χ).µ = C ∪D

and
PΩ(χ′).µ = C{α← t} ∪D

but α does not occur in D so

PΩ(χ′).µ = (PΩ(χ).µ){α← t}

And as the label sets of the formula occurrences in the sequent at µ do not
change we can apply Lemma 4.1.

The reduction of a weakening rule deletes a sub-proof and - by introducing
new weakening rules - makes some formula occurrences further down in the
proof weak that have not been weak before. This may have the result that an
auxiliary formula of a binary rule, that goes into the end-sequent, becomes
weak and thus this binary rule becomes superfluous (because it could be
replaced by a weakening). The effect of this transformation on the profile
is that of deletion of certain clauses: All clauses from the deleted sub-proof
as well as all clauses that share a label with a superfluous binary rule are
deleted.
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Lemma 5.4 (weakening reduction). Let χ be an LKps-proof and µ a po-
sition in χ of a cut that can be reduced by →Gw . Then

χ[ϕ]µ →Gw χ[ϕ′]µ

We write χ′ for χ[ϕ′]µ. Let D be the set of axiom labels of the sub-proof
deleted by this →Gw -step. Let furthermore σ1, . . . , σn be those binary Σ-
rules on the path between µ and the end-sequent of χ that each have an
auxiliary occurrence α1, . . . , αn with L(αi) ⊆ D. Let β1, . . . , βn be the other
auxiliary formula occurrences of these rules and abbreviate Li := L(βi).
Then

P(χ′) = P(χ)¬D∧¬L1∧...∧¬Ln

Proof. Again by duality it suffices to show PΩ(χ′) = PΩ(χ)¬D∧¬L1∧...∧¬Ln .
Let ν be a formula occurrence in χ but not in ϕ and let ν ′ be the corre-
sponding formula occurrence in χ′. Then one can easily show by induction
on the length l of the path between µ and the end-sequent of χ that:

(⋆) L(ν ′) = L(ν) \D

We abbreviateD∗ := ¬D∧¬L1∧. . .∧¬Ln and show PΩ(χ′) = PΩ(χ)D
∗

again
by induction on the length l of the path between µ and the end-sequent.

If l = 0 then n = 0. Furthermore, PΩ(χ) = X ∪ Y for sets of labelled
clauses X and Y and PΩ(χ′) = X. But X contains no labels from D while
Y contains only labels from D, so PΩ(χ′) = X = (X ∪ Y )¬D = PΩ(χ)¬D.

If l > 0 we make a case distinction according to the type of the last rule ρ
in χ: If ρ is unary then the result follows immediately from the induction
hypothesis. If ρ is a binary Ω-rule then PΩ(χ) = X ∪ Y and PΩ(χ′) =
XD∗

∪ Y , but Y contains no labels from D nor any from L1, . . . , Ln, so
Y = Y D∗

and thus PΩ(χ′) = XD∗
∪Y = XD∗

∪Y D∗
= (X∪Y )D

∗
= PΩ(χ)D

∗
.

If ρ is a binary Σ-rule, let α be the auxiliary occurrence on the path between
µ and the root. We distinguish two cases:

1. L(α) ⊆ D, i.e. α becomes weak after the reduction, so α = αn+1,
the other auxiliary occurrence is βn+1 and its labels L(βn+1) = Ln+1.
We have PΩ(χ) = X ×L(α)∪Ln+1

Y and by (⋆) and the induction hy-

pothesis that PΩ(χ′) = XD∗

×Ln+1 Y . By algebraic manipulations
one shows that PΩ(χ′) = (X ∪ Y )D

∗∧¬Ln+1 and PΩ(χ)D
∗∧¬Ln+1 =

X¬L(α)∧D∗∧¬Ln+1 ∪Y D∗∧¬Ln+1 . By our case assumption L(α) ⊆ D, so
¬L(α)∧D∗ can be simplified to D∗ because ¬D is contained in D∗ and
thus PΩ(χ)D

∗∧¬Ln+1 = XD∗∧¬Ln+1 ∪ Y D∗∧¬Ln+1 = (X ∪ Y )D
∗∧¬Ln+1 .

2. L(α) * D: In this case we have PΩ(χ) = X ×L Y for a set of labels L,
and by (⋆) and the induction hypothesis that PΩ(χ′) = XD∗

×L\D Y .
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Writing L\D as L∧¬D, using algebraic manipulations and simplifying
D∗ ∧L∧¬D to D∗∧L gives PΩ(χ′) = (XL×Y L)D

∗

∪XD∗∧¬(L∧¬D) ∪
Y ¬(L∧¬D). By further simplifications one shows that PΩ(χ′) = (XL ×
Y L)D

∗
∪ (X¬L)D

∗
∪ (Y ¬L)D

∗
= PΩ(χ)D

∗

Corollary 5.1. Let χ be an LKps-proof and µ a position in χ of a cut that
can be reduced by →Gw . Let D be the set of axiom labels of the sub-proof
deleted by this→Gw -step. If all formula occurrences in the deleted sub-proof
are ancestors of cut formulas then

P(χ′) = P(χ)

Proof. By applying Lemma 5.4 and observing that in this case there can be
no binary Σ-rule with an auxiliary formula α s.t. L(α) ⊆ D, thus n = 0
and P(χ′) = P(χ)¬D. But P(χ)D = ∅ because all axioms with labels from
D contain only Ω-formulas, hence the respective clause sets are ∅.

Lemma 5.5 (contraction reduction). Let χ be an LKps-proof and µ a
position in χ of a cut that can be reduced by →Gc . Then

χ[ϕ]µ →Gc χ[ϕ′]µ

Let D be the set of axiom labels of the sub-proof duplicated by this →Gc-
step and let π be the permutation on labels and variables applied to the new
copy of the duplicated sub-proof. We write χ′ for χ[ϕ′]µ. Then

P(χ′) = P(χ) ∪ P(χ)Dπ

Proof. By duality it is enough to show PΩ(χ′) = PΩ(χ) ∪ PΩ(χ)Dπ. Let ν
be a formula occurrence in χ but not in ϕ and let ν ′ be the corresponding
formula occurrence in χ′. Then one can show by induction on the length l
of the path between µ and the end-sequent of χ that:

(⋆) L(ν ′) = L(ν) ∪ (L(ν) ∩D)π

We show PΩ(χ′) = PΩ(χ) ∪ PΩ(χ)Dπ again by induction on the length l of
the path between µ and the end-sequent. If l = 0 then PΩ(χ) = X ∪ Y and
PΩ(χ′) = X ∪ Xπ ∪ Y but as (X ∪ Y )D = X we obtain PΩ(χ)Dπ = Xπ.
If l > 0 we make a case distinction according to the type of the last rule
ρ: If ρ is a unary rule then the result holds immediately by the induction
hypothesis. If ρ is a binary Ω-rule then PΩ(χ) = X∪Y and by the induction
hypothesis: PΩ(χ′) = X ∪XDπ ∪ Y but as Y contains no labels from D we
have PΩ(χ)Dπ = XDπ.
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If ρ is a binary Σ-rule then PΩ(χ) = X×LY and by the induction hypothesis
and (⋆): PΩ(χ′) = (X ∪XDπ) ×L∪(L∩D)π Y . By observing that neither X
nor Y contain any labels from the image of π and that thus for Z ∈ {X,Y }
and any label sets M,N : ZM∨Nπ = ZM and Z¬(M∨Nπ) = Z¬M one shows
that

PΩ(χ′) = PΩ(χ) ∪ ((XDπ)L∨(L∧D)π × Y L) ∪ (XDπ)¬(L∨(L∧D)π)

So it remains to show

PΩ(χ)Dπ = ((XDπ)L∨(L∧D)π × Y L) ∪ (XDπ)¬(L∨(L∧D)π)

As Y cannot contain any labels from D, we have

PΩ(χ)Dπ = ((XL × Y L)D ∪X¬L∧D)π = (XL∧Dπ × Y L) ∪X¬L∧Dπ

By algebraic manipulations concerning the variable and label permutation
π one shows the remaining equations:

XL∧Dπ = (XDπ)L∨(L∧D)π and X¬L∧Dπ = (XDπ)¬(L∨(L∧D)π)

5.2 Simple Transformations

Definition 5.1. Let A and B be formulas. Then any cut-free proof of A ⊢ B
is called a transformation of A to B (generally denoted by τA,B).

We define the effect of transformations on proofs via cut-elimination. To
this aim we define a refinement of →G and corresponding normal forms:

Definition 5.2. Let τA,B be a transformation, ϕ be a proof of a sequent
Γ ⊢ ∆, A and ψ be a proof of a sequent B,Π ⊢ Λ . We consider the proofs
T (ϕ, τA,B):

(ϕ)
Γ ⊢ ∆, A

τA,B

A ⊢ B

Γ ⊢ ∆, B
cut

and T (τA,B, ψ):
τA,B

A ⊢ B
ψ

B,Π ⊢ Λ

A,Π ⊢ Λ
cut

We mark in T (ϕ, τA,B)(T (τA,B, ψ)) all ancestors of the final cut and refine
→G to →Gt by the following restrictions:

(1) apply the reduction rules only cuts whose auxiliary formulas are marked.
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(2) apply the elimination rules for axioms only if all other →G-reduction
rules on marked formulas fail.

(3) Eliminate a cut between two (atomic) axioms by eliminating the axiom
coming from τA,B (i.e. the axiom with the labels coming from τA,B).
In more detail: replace the subproof

B{i} ⊢ B{i} B{j} ⊢ B{j}

B{i} ⊢ B{j}
cut

(where i is a label in the ϕ-part (in the ψ-part) and j is a label in the
τA,B-part) by

B{i} ⊢ B{i}.

Then by τA,B(ψ)((ϕ)τA,B) we denote the set of all →Gt-normal forms of
T (τA,B, ψ) (T (ϕ, τA,B)).

Note that Gentzen normal forms of proofs are not unique in general. There-
fore the elimination of the cut with the transformation τA,B may yield dif-
ferent proofs. So any element from the set (ϕ)τA,B can be considered as the
transformed proof.

Below we investigate a class of transformations τA,B where A is logically
equivalent to B:

Definition 5.3. Two formulas A, B are called V -equivalent if they contain
the same variables.

Definition 5.4. Let τ be a transformation τA,B and let A,B be V -equivalent.
Moreover let x1, . . . , xn be the bound variables in A (respectively in B).
Then τ is called Q-simple if

(a) For every variable xi there are exactly two quantifier introductions in
τ .

(b) If {xi ← αi} is a substitution corresponding to a strong quantifier in-
troduction on an ancestor of A then {xi ← αi} is also a substitution
corresponding to a weak quantifier introduction on an ancestor of B.

(c) If {xi ← αi} is a substitution corresponding to a strong quantifier in-
troduction on an ancestor of B then {xi ← αi} is also a substitution
corresponding to a weak quantifier introduction on an ancestor of A.

In a Q-simple transformation the strong substitutions for A are the weak
ones for B and vice versa. In particular, all quantifier introductions have
variable substitutions.
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Example 5.1. The following transformation τ is Q-simple:

P (α1, α2) ⊢ P (α1, α2)

⊢ ¬P (α1, α2), P (α1, α2)
¬: r

⊢ ¬P (α1, α2), (∃y)P (α1, y)
∃: r

⊢ (∀y)¬P (α1, y), (∃y)P (α1, y)
∧: r

⊢ (∃x)(∀y)¬P (x, y), (∃y)P (α1, y)
∃: r

⊢ (∃x)(∀y)¬P (x, y), (∀x)(∃y)P (x, y)
∧: r

¬(∀x)(∃y)P (x, y) ⊢ (∃x)(∀y)¬P (x, y)
¬: l

No transformation with end-sequent (∀x)Q(x) ⊢ (∃x)Q(x) is Q-simple.

Definition 5.5. A transformation τA,B is called simple if it is Q-simple and
does not contain structural rules.

Example 5.2. The transformation τ defined in Example 5.1 is simple.
Moreover the identical transformation I is simple. I can be defined in the
following way:

If A is an atom then I(A) = A ⊢ A. If A contains logical operators, then
I(A) can be defined inductively. We consider the cases A ≡ B → C and
A ≡ (∀x)B, the others are straightforward.

I(B → C) =

I(B)
B ⊢ B

I(C)
C ⊢ C

B,B → C ⊢ C
→ : l

B → C ⊢ B → C
→ : r

I((∀x)B) =

I(B{x← α})
B{x← α} ⊢ B{x← α}

(∀x)B ⊢ B{x← α}
∧: l

(∀x)B ⊢ (∀x)B
∧: r

Definition 5.6. Two formulas A, B are called strongly equivalent (notation
A ∼s B) if there exist simple transformations τA,B and τB,A.

Note that, in contrast to full logical equivalence, it is decidable whether two
formulas are strongly equivalent. This is clear as the number of inferences in
a simple transformation τA,B is bounded by the logical complexity of A ⊢ B.

Example 5.3. Note that the existence of a simple transformation from A
to B does not imply the existence of a simple transformation from B to A.
Let P (x) and Q be atom formulas. Then there is a simple transformation
from (∀x)P (x) ∧Q to (∀x)(P (x) ∧Q):

P (α) ⊢ P (α) Q ⊢ Q

P (α), Q ⊢ P (α) ∧Q
∧: r

(∀x)P (x), Q ⊢ P (α) ∧Q
∧: l

(∀x)P (x) ∧Q ⊢ P (α) ∧Q
∧: l

(∀x)P (x) ∧Q ⊢ (∀x)(P (x) ∧Q)
∧: r

But there is no simple transformation from (∀x)(P (x)∧Q) to (∀x)P (x)∧Q.
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Definition 5.7. A binary relation
`

on formulas is called compatible if, for
all formulas A and B, A

`
B implies C[A]λ

`
C[B]λ for any formula context

C[ ]λ.

Proposition 5.1. ∼s is a compatible equivalence relation on formulas.

Proof. reflexivity: Define τA,A as I(A); I(A) is simple for all A.

symmetry: immediate by definition.

transitivity:
Assume A ∼s B and B ∼s C. Then there exist simple transformations
τA,B and τB,C ; we may assume w.l.o.g. that τA,B and τB,C do not share
eigenvariables. By V (X) we denote the set of variables in X.

By definition of ∼s we have V (A) = V (B), V (B) = V (C) and thus V (A) =
V (C). We consider the proof ηAC :

τA,B

A ⊢ B
τB,C

B ⊢ C
A ⊢ C

cut

As τA,B and τB,C do not contain weakening and contractions, the same holds
for ηAC as well. Clearly ηAC is not a transformation; but it is enough to
show that any cut-elimination sequence Ψ on ηAC yields a transformation
which is also simple.

Let ηAC →
∗
G ξ. Then, by definition of the reduction rules for→G, ξ does not

contain weakenings and/or contractions (indeed no additional weakenings
and contractions are introduced by the cut-reduction rules). So let Ψ be
a cut-elimination sequence on ηAC ; then its result is a transformation τA,C

which is weakening- and contraction-free. It remains to show that τA,C is
also Q-simple.

Let us assume that X : {x1, . . . , xn} are the bound variables in A,B,C. As
τA,B is simple, X can be partitioned into two sets

{y1, . . . , ym} {z1, . . . , zk}

s.t. the yi are the strong variables of quantifier introductions on ancestors of
A, and the zj are the weak variables of quantifier introductions on ancestors
of A. Moreover, as τA,B is Q-simple, the yi are the weak variables of quan-
tifier introductions on ancestors of B, and the zj are the strong variables
of quantifier introductions on ancestors of B. Now let us list the vectors of
variables in the following order:

(1) strong, ancestor of A, (2) weak, ancestor of A,
(3) strong, ancestor of B, (4) weak, ancestor of B.

This way we obtain a tuple

XAB : < (y1, . . . , ym), (z1, . . . , zk), (z1, . . . , zk), (y1, . . . , ym) > .
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Now consider the tupleXAB under substitution of the bound variables by the
quantifier substitutions. Then we obtain the quantifier-introduction vector
for τA,B:

YAB : < (α1, . . . , αm), (β1, . . . , βk), (β1, . . . , βk), (α1, . . . , αm) > .

For τB,C we obtain (replacing A by B, B by C in the tuple notation)

XBC : < (y1, . . . , ym), (z1, . . . , zk), (z1, . . . , zk), (y1, . . . , ym) > .

and the quantifier introduction vector

YBC : < (β′1, . . . , β
′
m), (γ1, . . . , γk), (γ1, . . . , γk), (β

′
1, . . . , β

′
m) > .

Note that ηAC is regular and so the β′i are different from the βj .

Now let Ψ be a cut-elimination sequence on ηAC . According to the cut-
reduction rules for quantifiers, strong variables are replaced by weak terms.
As the proofs in Ψ do not contain weakenings and contractions, Ψ contains
exactly m+ k (= n) quantifier-elimination steps. Therefore these steps can
be characterized by the single substitution

{β′1 ← α1, . . . , β
′
m ← αm, β1 ← γ1, . . . , βk ← γk}.

Hence the quantifier introduction vector for the result τA,C of Ψ is

YAC : < (α1, . . . , αm), (γ1, . . . , γk), (γ1, . . . , γk), (α1, . . . , αm) > .

But this quantifier introduction vector is that of a Q-simple transformation.
Therefore τA,C is simple.

It remains to show that ∼s is compatible.

We proceed by induction on the logical complexity of the context. The case
of the empty context is trivial.

The induction hypothesis is C[A]λ ∼s C[B]λ whenever A ∼s B, for any C
of complexity ≤ n and any position λ in C.

Now let C be of complexity n+ 1. Then C is of one of the following forms

(a) C ≡ C1 ∧ C2, (b) C ≡ C1 ∨ C2, (c) C ≡ C1 → C2,

(d) C ≡ ¬C ′, (e) C ≡ (∀x)C ′, (f) C ≡ (∃x)C ′.

We only show the cases c,d,e, the others are analogous.

(c) We consider the formulas (C1 → C2)[A]µ and (C1 → C2)[B]µ. There
are two possibilities:

(c1) µ is an occurrence in C1, and
(c2) µ is an occurrence in C2.
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(c1) There exists a position λ in C1 (corresponding to µ in C) s.t.

C[A]µ = C1[A]λ → C2, C[B]µ = C1[B]λ → C2.

We define a transformation τ transforming C1[A]λ → C2 into
C1[B]λ → C2 (the other direction can be obtained by exchanging
A and B).

τ ′

C1[B]λ ⊢ C1[A]λ

I(C2)
C2 ⊢ C2

C1[B]λ, C1[A]λ → C2 ⊢ C2
→ : l

C1[A]λ → C2 ⊢ C1[B]λ → C2
→ : r

By the induction hypothesis a simple τ ′ exists, and I(C2) is sim-
ple; obviously τ itself is simple.

(c2) symmetric to (c1).

(d) We have to show (¬C ′)[A]µ ∼s (¬C ′)[B]µ. Again there exists a posi-
tion λ in C ′ with ¬C ′[A]λ = (¬C ′)[A]µ (the same for B). The desired
transformation τ is

τ ′

C ′[B]λ ⊢ C
′[A]λ

¬C ′[A]λ, C
′[B]λ ⊢

¬: l

¬C ′[A]λ ⊢ ¬C
′[B]λ

¬: r

By the induction hypothesis such a simple transformation τ ′ exists.
Clearly τ is also simple. The transformation from ¬C ′[B]λ into ¬C ′[A]λ
can be obtained by exchanging A and B.

(e) We have to prove ((∀x)C ′)[A]µ ∼s ((∀x)C ′)[B]µ. Again there must
be a position λ s.t. ((∀x)C ′)[A]µ = (∀x)C ′[A]λ (the same for B). We
define τ as

τ ′

C ′[A]λ{x← α} ⊢ C ′[B]λ{x← α}

(∀x)C ′[A]λ ⊢ C
′[B]λ{x← α}

∧: l

(∀x)C ′[A]λ ⊢ (∀x)C ′[B]λ
∧: r

A simple transformation τ ′ exists by induction hypothesis.
Let A′ = A{x← α}, B′ = B{x← α}. Then

C ′{x← α}[A′]λ = C ′[A]λ{x← α}, C ′{x← α}[B′]λ = C ′[B]λ{x← α}.

Clearly the complexity of C ′{x← α} is that of C ′ itself. It remains to
show that A′ ∼s B

′: consider a simple transformation τA,B. Either x is
a free variable in A and B or it does not occur in both of them. As α is
a variable not occurring in A and B, the transformation τA,B{x← α}
is also simple. Therefore the transformation τ above is simple as well.
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Example 5.4. ¬(∀x)(∃y)P (x, y) ∼s (∃x)(∀y)¬P (x, y):

we have shown in Example 5.1 that there exists a simple transformation of
¬(∀x)(∃y)P (x, y) to (∃x)(∀y)¬P (x, y). It is easy to construct a simple trans-
formation of (∃x)(∀y)¬P (x, y) to ¬(∀x)(∃y)P (x, y).

We give an example of logically equivalent formulas which are not strongly
equivalent:

(∀x)P (x)→ Q(a) 6∼s (∃x)(P (x)→ Q(a)).

Indeed, all transformations of (∀x)P (x) → Q(a) to (∃x)(P (x) → Q(a))
require the use of contractions and thus are not simple. In fact, the quantifier
(∀x) in

S : (∀x)P (x)→ Q(a) ⊢ (∃x)(P (x)→ Q(a)).

is strong in S and thus (going from the end-sequent to the axioms) must be
eliminated prior to (∃x) (which is weak in S). We see that, in general, the
quantifier shifting principles go beyond strong equivalence.

Definition 5.8. A formula A is in negation normal form (NNF) if it does
not contain → and ¬ occurs only immediately above atoms (i.e. for any
subformula ¬C of A, C is an atom).

Lemma 5.6. A formula is in negation normal from iff it is a normal form
under the rewrite rules R (applied to arbitrary occurrences of subformulas):

(1) ¬¬A⇒ A, (2) ¬(A ∧B)⇒ ¬A ∨ ¬B, (3) ¬(A ∨B)⇒ ¬A ∧ ¬B,

(4) A→ B ⇒ ¬A ∨B, (5) ¬(∀x)A⇒ (∃x)¬A, (6) ¬(∃x)A⇒ (∀x)¬A.

Moreover all formulas A can be transformed to a NNF B via R (we say that
B is the NNF of A).

Proof. In [2], proposition 4.6.

Proposition 5.2. A formula A is strongly equivalent to its negation normal
form.

Proof. It is enough to show that, for the rewrite rules defined in Lemma 5.6,
the left and right sides are strongly equivalent. Then the result follows from
Lemma 5.6 and the fact that ∼s is compatible and transitive (Proposi-
tion 5.1).

We give the simple transformations corresponding to the rules in R:

(1) ¬¬A ∼s A:
I(A)
A ⊢ A
⊢ A,¬A

¬: r

¬¬A ⊢ A
¬: l

I(A)
A ⊢ A
¬A,A ⊢

¬: l

A ⊢ ¬¬A
¬: r
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(2) ¬(A ∧B) ∼s ¬A ∨ ¬B:

I(A)
A ⊢ A

I(B)
B ⊢ B

A,B ⊢ A ∧B
∧: r

A,B,¬(A ∧B) ⊢
¬: l

A,¬(A ∧B) ⊢ ¬B
¬: r

¬(A ∧B) ⊢ ¬A,¬B
¬: r

¬(A ∧B) ⊢ ¬A ∨ ¬B
∨: r

I(A)
A ⊢ A
A,¬A ⊢

¬: l

I(B)
B ⊢ B
B,¬B ⊢

¬: l

A,B,¬A ∨ ¬B ⊢
∨: l

A ∧B,¬A ∨ ¬B ⊢
∧: l

¬A ∨ ¬B ⊢ ¬(A ∧B)
¬: r

(3) ¬(A ∨B) ∼s ¬A ∧ ¬B: symmetric to (2).

(4) A→ B ∼s ¬A ∨B:

I(A)
A ⊢ A

I(B)
B ⊢ B

A,A→ B ⊢ B
→ : l

A→ B ⊢ ¬A,B
¬: r

A→ B ⊢ ¬A ∨B
∨: r

I(A)
A ⊢ A
A,¬A ⊢

¬: l
I(B)
B ⊢ B

A,¬A ∨B ⊢ B
∨: l

¬A ∨B ⊢ A→ B
→ : r

(5) ¬(∀x)A ∼s (∃x)¬A:

I(A{x← α})
A{x← α} ⊢ A{x← α}

⊢ ¬A{x← α}, A{x← α}
¬: r

⊢ (∃x)¬A,A{x← α}
∃: r

⊢ (∃x)¬A, (∀x)A
∧: r

¬(∀x)A ⊢ (∃x)¬A
¬: l

I(A{x← α})
A{x← α} ⊢ A{x← α}

A{x← α},¬A{x← α} ⊢
¬: l

(∀x)A,¬A{x← α} ⊢
∧: l

(∀x)A, (∃x)¬A ⊢
∃: l

(∃x)¬A ⊢ ¬(∀x)A
¬: r

(6) ¬(∃x)A ∼s (∀x)¬A: symmetric to (5).

5.2.1 Invariance under Simple Transformations

In this section we will show that the application of simple transformations to
ancestors of cut-formulas does not modify the profile. The following lemma
is the technical key to the main result. It shows that simple transformations
applied to ancestors of cuts do not change the proof profile modulo vari-
able renaming. In particular, this holds for the transformation to negation
normal form.

Lemma 5.7. Let ϕ′ be a subproof of an LKps-proof ϕ s.t. ϕ′ is an LK-
proof of a sequent Γ ⊢ ∆, A at node ν, and A is an ancestor of a pseudo-cut.
Let τA,B be a simple transformation. Then, for any proof ψ in (ϕ′)τA,B,
P(ϕ[ψ]ν) = P(ϕ)π, where π is a permutation of eigenvariables.
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Remark 5.1. Note that, in general, ϕ[ψ]ν is a pseudo-proof, even if ϕ is a
proof, as the substitution of ψ for ϕ′ may violate cut- and contraction rules.
But note that ϕ′ must be an LK-proof!

Proof. We will treat only PΩ, the result for PΣ follows from duality. We
proceed by cut-elimination on the proof T (ϕ′, τA,B):

(ϕ′)
Γ ⊢ ∆, A

(τA,B)
A ⊢ B

Γ ⊢ ∆, B
cut

As in τA,B each axiom contains only ancestors of cuts in ϕ, PΩ(ϕ).νr = ∅
where νr is the position of the last rule of τA,B and thus PΩ(ϕ).ν = PΩ(ϕ).νl

where νl is the position of the last rule of ϕ′. Let L := L(τA,B). Then
PΩ(ϕ)L = ∅ because all axioms of τA,B contain only cut-ancestors.

We apply cut-elimination based on →Gt in two phases (as defined in Defi-
nition 5.2): in the first step we eliminate all marked cuts without applying
the elimination rule for axioms. In a second step we eliminate the atomic
cuts between axioms.

In every phase of cut-elimination by →Gt we distinguish a ϕ′-part (i.e. the
part labelled by the original label set of ϕ) and a τA,B-part. Indeed, every
cut appearing in a proof χ obtained by cut-elimination is of the form ξ:

(ρ)
Π ⊢ Λ, C

(σ)
C,Π′ ⊢ Λ′

Π,Π′ ⊢ Λ,Λ′ cut

where ρ is an (possibly instantiated) subproof of ϕ′, and σ one of τA,B. For
simplicity we assume that the ϕ′-part is to the left and the τA,B-part to the
right (in fact the sides may change by elimination on negated formulas).

We prove that for all χ with T (ϕ′, τA,B)→∗
Gt
χ ,we have

(⋆) PΩ(ϕ[χ]ν).ν = PΩ(ϕ)π,

where π is a permutation of eigenvariables.

We know by Lemmas 5.1 and 5.2 that →Gr and →Gp do not change the
profile, so we may assume that the cut in ξ is introduced (1) by weakening,
or (2) by contraction, or (3) by quantifier introductions on both sides. Let
us furthermore assume inductively that (⋆) holds for χ, we show that it also
holds for χ′, the reduct of χ.

(1) ξ is of the form

(ρ′)
Π ⊢ Λ

Π ⊢ Λ, C
w : r

(σ)
C,Π′ ⊢ Λ′

Π,Π′ ⊢ Λ,Λ′ cut



CHAPTER 5. THE DYNAMICS OF THE PROFILE 85

Indeed, weakening can only appear in the ϕ′-part, not in the τA,B-part
(as τA,B is simple). According to the rules of →Gt , ξ reduces to ξ′ for
ξ′ =

(ρ′)
Π ⊢ Λ

Π,Π′ ⊢ Λ,Λ′ w : ∗

From now on (for the remaining part of the proof) let us assume that
the root node of ξ is µ and χ′ = χ[ξ′]µ. Then, as Π′ and Λ′ contain
only ancestors of cuts, we may apply Corollary 5.1 and obtain

PΩ(ϕ[χ′]ν) = PΩ(ϕ[χ]ν)

(2) contraction: as in (1) contractions can only occur in the ϕ′-part, not
in the τA,B-part. So ξ is of the form

(ρ′)
Π ⊢ Λ, C,C

Π ⊢ Λ, C
c : r

(σ)
C,Π′ ⊢ Λ′

Π,Π′ ⊢ Λ,Λ′ cut

Then ξ →Gt ξ
′ for ξ′ =

(ρ′)
Π ⊢ Λ, C,C

(σ)
C,Π′ ⊢ Λ′

Π,Π′ ⊢ Λ,Λ′, C
cut

(σ′)
C,Π′ ⊢ Λ′

Π,Π′,Π′ ⊢ Λ,Λ′,Λ′ cut

Π,Π′ ⊢ Λ,Λ′ c : ∗

where σ′ is σ after renaming of eigenvariables and labels. Again, let
χ′ = χ[ξ′]µ. Then, by Lemma 5.5,

PΩ(ϕ[χ′]ν) = PΩ(ϕ[χ]ν) ∪ PΩ(ϕ[χ]ν)Dπ

but D ⊆ L and – as PΩ(ϕ)L = ∅ – we have

PΩ(ϕ[χ′]ν) = PΩ(ϕ[χ]ν)

(3) Elimination of a quantifier:

(3a) ξ =
(ρ′)

Π ⊢ Λ, A{x← t}

Π ⊢ Λ, (∃x)A
∃: r

(σ′)
A{x← α},Π′ ⊢ Λ′

(∃x)A,Π′ ⊢ Λ′ ∃: l

Π,Π′ ⊢ Λ,Λ′ cut
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Then ξ →Gt ξ
′ for ξ′ =

(ρ′)
Π ⊢ Λ, A{x← t}

(σ′{α← t})
A{x← t},Π′ ⊢ Λ′

Π,Π′ ⊢ Λ,Λ′ cut

Then, by Lemma 5.3,

PΩ(ϕ[χ′]ν) = PΩ(ϕ[χ]ν)π{α← t}.

but α does not occur in PΩ(ϕ[χ]ν)π so

PΩ(ϕ[χ′]ν) = PΩ(ϕ[χ]ν)π

(3b) ξ =
(ρ′)

Π ⊢ Λ, A{x← α}

Π ⊢ Λ, (∀x)A
∀: r

(σ′)
A{x← β},Π′ ⊢ Λ′

(∀x)A,Π′ ⊢ Λ′ ∀: l

Π,Π′ ⊢ Λ,Λ′ cut

As σ′ is a τA,B-part, the quantifier substitution for ∀ : l is of the
form {x← β} where β is an eigenvariable in the proof ϕ[ξ]ν . Note
that no substitution of an eigenvariable in the τA,B-part (see case
(3a)) can change the weak quantifier substitutions in this part,
because τA,B is simple. Now ξ →Gt ξ

′ for ξ′ =

(ρ′{α← β})
Π ⊢ Λ, A{x← β}

(σ′)
A{x← β},Π′ ⊢ Λ′

Π,Π′ ⊢ Λ,Λ′ cut

Again, by Lemma 5.3, we obtain

PΩ(ϕ[χ′]ν) = PΩ(ϕ[χ]ν)π{α← β}.

We know that β is a variable. But β cannot occur in PΩ(ϕ[χ]ν)π
(i.e. in the ϕ′-part of the proof) as β is an eigenvariable in the
τA,B-part and the proof χ is regular. So we obtain π{α← β} as
new permutation of eigenvariables.

We have seen that in all cases (1), (2), (3) the property (⋆) is preserved.
Thus it holds after the first phase of cut-elimination, before the axioms are
eliminated. It remains to investigate the elimination of the axioms. Let χ∗

be the normal form of T (ϕ′, τA,B) under the first phase of cut-elimination.
Then

PΩ(ϕ[χ∗]ν) = PΩ(ϕ)π
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where π is a permutation. Now the only cuts left in χ∗ are of the form ξ =

B{i} ⊢ B{i} B{j} ⊢ B{j}

B{i} ⊢ B{j}
cut

Where i is a label in the ϕ′-part and j is a label in the τA,B-part. Let
µ, µl, µr be the positions of the cut and of the axioms above it on the left
and right side. Then PΩ(ϕ).µr = ∅ because both atoms in B{j} ⊢ B{j} are
cut-ancestors and PΩ(ϕ[χ∗]ν).µ = PΩ(ϕ[χ∗]ν).µl According to the definition
of →Gt (Definition 5.2), ξ is replaced by ξ′ =

B{i} ⊢ B{i}.

Let χ′ = χ∗[ξ′]µ. Then

PΩ(ϕ[χ′]ν).µ = PΩ(ϕ[χ∗]ν).µ

and all labels occurring in this clause set are the same for the formula oc-
currences in the sequent at µ so by Lemma 4.1 we have

PΩ(ϕ[χ′]ν) = PΩ(ϕ)π

This procedure is repeated until all marked cuts are eliminated. Let us call
the resulting proof ψ, which does not contain any marked cuts. Then

P(ϕ[ψ]ν) = PΩ(ϕ)π.

.

Corollary 5.2. Let ϕ′ be a subproof of an LKps-proof ϕ s.t. ϕ′ is a proof
of a sequent B,Γ ⊢ ∆ at node ν, and B is an ancestor of a pseudo-cut.
Let τA,B be a simple transformation. Then, for any proof ψ in τA,B(ϕ′),
P(ϕ[ψ]ν) = P(ϕ)π, where π is a permutation of eigenvariables.

Proof. completely symmetric to the proof of Lemma 5.7.

Lemma 5.8. Let ϕ be an LK-proof and σ be a subproof of ϕ (at node ν)
of the form

(σ1)
Γ ⊢ ∆, A

(σ2)
A,Π ⊢ Λ

Γ,Π ⊢ ∆,Λ
cut

and let A be strongly equivalent to B. Then there exists an LK-proof ψ of
the form

(ψ1)
Γ ⊢ ∆, B

(ψ2)
B,Π ⊢ Λ

Γ,Π ⊢ ∆,Λ
cut

and a permutation of eigenvariables π s.t. ϕ[ψ]ν is an LK-proof and P(ϕ[ψ]ν) =
P(ϕ)π.
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Proof. Apply Lemma 5.7 to the subproof σ1 with the transformation τA,B.
The result is a pseudo-proof ϕ1 = ϕ[ρ]ν with P(ϕ1) = P(ϕ)π1 for a permu-
tation π1 and for ρ =

(ψ1)
Γ ⊢ ∆, B

(σ2)
A,Π ⊢ Λ

Γ,Π ⊢ ∆,Λ
pscut

Then apply Corollary 5.2 to σ2 (within ϕ1) and obtain a pseudo-proof ϕ2,
for ϕ2 = ϕ1[ψ]ν , with P(ϕ2) = P(ϕ1)π2 for a permutation π2 and for ψ =

(ψ1)
Γ ⊢ ∆, B

(ψ2)
B,Π ⊢ Λ

Γ,Π ⊢ ∆,Λ
cut

Then
P(ϕ2) = P(ϕ[ψ]ν) = P(ϕ)π1π2.

Clearly π1π2 is a variable permutation. Moreover ϕ2 is not only a pseudo-
proof but also a proof (note that ψ is a proof and has the same end-sequent
as σ).

The following theorem shows that we can transform the cuts in an LK-
proof into arbitrary strongly equivalent form without changing the proof
profile (indeed, variants that differ only by variable permutations can be
considered as equal). All these forms can thus be considered as equivalent
w.r.t. cut-elimination.

Theorem 5.1. Let ϕ be an LK-proof with cut formulas A1, . . . , An and
B1 ∼s A1, . . . , Bn ∼s An. Then there exists a proof ψ with cut formulas
B1, . . . , Bn and P(ψ) = P(ϕ)π for a variable permutation π.

Proof. We iterate the construction defined in Lemma 5.8, by transforming
the cuts with A1, . . . , An successively into cuts with B1, . . . , Bn. This way
we obtain a proof ψ and permutations π1, . . . , πn with

P(ψ) = P(ϕ)π1 . . . πn.

But π1 . . . πn is also a permutation.

Corollary 5.3. Let ϕ be a proof with cut formulas A1, . . . , An. Then there
exists a proof ψ with cut formulas B1, . . . , Bn, where the Bi are the negation
normal forms of the Ai and P(ψ) = P(ϕ)π for a permutation π.

Proof. By Proposition 5.2 and Theorem 5.1.
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Corollary 5.3 does not hold for prenex normal from in place of NNF. This is
based on the fact, that quantifier shifting does not preserve strong equiva-
lence in general (see Example 5.4); so Theorem 5.1 is not applicable in case
of prenex normal forms. Moreover, a proof transformation to prenex form,
under preservation of cut-homomorphism, is impossible in principle (see [7]).

In Section 4.1 we have shown that profiles define equivalence classes of proofs
at least as large as proof nets. Theorem 5.1 proves that the equivalence
classes defined by profiles are in fact larger, due to the strong abstraction
from the syntax of cuts.

Note that the invariance results from this section even hold for PΩT, see [31]
for details.

5.2.2 Discussion

We have shown that proofs with strongly equivalent cut-formulas (obtained
via simple transformations) have the same profile (under variable renaming)
and thus can be considered as equal w.r.t. cut-elimination. We defined
profiles as sets of labelled clauses, i.e. two clauses that differ only in their
labels are treated as two different clauses. If profiles are defined as sets
of clauses (dropping the labels after generation of the profile), the class
of equivalent proofs becomes even larger while still having the same set of
normal forms of the CERES method. Then, however, cut-elimination on
propositional proofs would not increase the profile (it can only shrink by
weakening), and thus would not express the duplication of subproofs.

In [20] Danos, Joinet and Schellinx give an elegant formulation of a class of
confluent and strongly terminating cut-elimination procedures for classical
logic. In [21] they build on this work to show that the normal forms are not
changed after application of transformations called computational isomor-
phisms. The work in this chapter is similar to [21] in its conceptual aims: to
isolate a class of transformations that have no effect on the cut-elimination
of a proof. However, the frameworks in which these analyses are carried
out are very different: [21] builds on the confluence (and termination) result
established in [20] to show that the normal form is preserved. In this paper,
we isolate a structural invariant, the proof profile whose preservation in-
duces the equality of the set of normal forms of the cut-elimination method
CERES. The former can be considered a restriction, the latter an extension
of Gentzen’s original cut-elimination procedure. In contrast to [21] however,
we have to restrict the application of our transformations to the parts of a
proof that go into cuts. We conjecture that our result also holds without this
restriction (it is easy to show that it holds for transformations to negation
normal form), but it is much harder to prove: indeed, if we apply a trans-
formation to a formula which goes to the end-sequent, the original formula
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changes its status (as it now goes to the cut with the transformation), and
the whole profile changes in a more complicated way.



Chapter 6

Analysis of Proofs

In this chapter we will show how the system CERES1 can be used for the
comparison and analysis of mathematical proofs. We will investigate differ-
ent proofs of a single proposition. We start with two different proofs, each
of them containing mathematically meaningful cuts. We will show that the
characteristic clause sets of these proofs already contain the key steps of
the mathematical argument. By applying the CERES-method to these two
proofs we will obtain cut-free proofs which contain different combinatorial
arguments. We will not use the characteristic clause sets directly but in-
stead apply the pruning operations of tautology-deletion and subsumption
before. This makes the clause sets easier to read but does not change their
logical meaning. In the cases under investigation, the pruned profile would
be the same as the pruned characteristic clause sets.

In addition to the rules of the calculus LK the following rules for the han-
dling of equality will appear in the examples in this chapter.

Γ1 ⊢ ∆1, s = t A[s]Λ,Γ2 ⊢ ∆2

A[t]Λ,Γ1,Γ2 ⊢ ∆1,∆2
= : l1

Γ1 ⊢ ∆1, t = s A[s]Λ,Γ2 ⊢ ∆2

A[t]Λ,Γ1,Γ2 ⊢ ∆1,∆2
=: l2

Γ1 ⊢ ∆1, s = t Γ2 ⊢ ∆2, A[s]Λ

Γ1,Γ2 ⊢ ∆1,∆2, A[t]Λ
= : r1

Γ1 ⊢ ∆1, t = s Γ2 ⊢ ∆2, A[s]Λ

Γ1,Γ2 ⊢ ∆1,∆2, A[t]Λ
= : r2

where Λ is a set of positions and A[s]Λ denotes the formula A with the term
s at all positions in Λ. The CERES-method can be extended to this calculus
in a very straightforward way, see [4].

The statement we will analyze is the following proposition:

Definition 6.1. An infinite tape is a function f : N→ N

Proposition 6.1. Let f be an infinite tape where every cell is labelled by
either 0 or 1. Then on f there exist two different cells with the same value.

1http://www.logic.at/ceres/
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Clearly this theorem is true and altough it is mathematically simple it is
substantial enough to allow different proofs, thus making it a good candidate
for this kind of analysis.

6.1 The Infinity Argument

The proof below is taken from [50]; it was formalized in LK and analyzed by
a former version of the system CERES in [3] and modified to a formalization
in LKDe, a sequent calculus extended by definitions and equality in [4].

Proof. First Proof of Proposition 6.1 (Infinity Argument): If f is
an infinite tape where every cell is labelled by either 0 or 1 then clearly there
must be infinitely many 0s or infinitely many 1s.

1. If there are infinitely many 0s choose two of them to obtain two dif-
ferent cells with the same value.

2. If there are infinitely many 1s – again – choose two of them to obtain
two different cells with the same value.

The formalization ϕ1 of this proof has the following shape:

(τ)
T ⊢ I0, I1

(ǫ0)
I0 ⊢ P

T ⊢ P, I1
cut

(ǫ1)
I1 ⊢ P

T ⊢ P
cut

where

T ≡ (∀x)(f(x) = 0 ∨ f(x) = 1),

P ≡ (∃p)(∃q)(p 6= q ∧ f(p) = f(q)),

I0 ≡ (∀x)(∃y)f(x+ y) = 0,

I1 ≡ (∀x)(∃y)f(x+ y) = 1.

The axioms used for the proof are the standard axioms of type A ⊢ A and
instances of ⊢ x = x, of commutativity ⊢ x + y = y + x, of associativity
⊢ (x+ y) + z = x+ (y + z), and of the axiom

x = x+ (1 + y) ⊢,

expressing that x+ (1 + y) 6= x for all natural numbers x, y.
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The characteristic clause set of ϕ1 is (after variable renaming)

CL(ϕ1) = { (C1) ⊢ f(x+ y) = 0, f(y + x) = 1;

(C2) f(x+ y) = 0, f(((x+ y) + 1) + z) = 0 ⊢;

(C3) f(x+ y) = 1, f(((x+ y) + 1) + z) = 1 ⊢ }.

Applying CERES to this proof results in the following resolution refutation
(generated by otter2) of CL(ϕ1): ψ1 :=

(C1)
⊢ f(y′ + x′) = 1, f(x′ + y′) = 0

(C2)
f(x+ y) = 0, f(((x+ y) + 1) + z) = 0 ⊢

D1 : f(((x + y) + 1 + z) = 0 ⊢ f(y + x) = 1
resσ1

where σ1 = {x′ ← x, y′ ← y}.

ψ2 :=

(C1)
⊢ f(y′ + x′) = 1, f(x′ + y′) = 0

(D1)
f(((x+ y) + 1) + z) = 0 ⊢ f(y + x) = 1

C4 :⊢ f(y + x) = 1, f(z + ((x + y) + 1)) = 1
resσ2

where σ2 = {x′ ← (x+ y) + 1, y′ ← z}.

ψ3 :=

(C4)
⊢ f(y′ + x′) = 1, f(z′ + ((x′ + y′) + 1)) = 1

(C3)
f(((x+ y) + 1) + z) = 1, f(x+ y) = 1 ⊢

D2 : f(x+ y) = 1 ⊢ f(y′ + x′) = 1
resσ3

where σ3 = {z ← (x′ + y′) + 1, z′ ← (x+ y) + 1}.

ψ4 :=

(C4)
⊢ f(y′′ + x′′) = 1, f(z′′ + ((x′′ + y′′) + 1)) = 1

(D2)
f(x+ y) = 1 ⊢ f(y′ + x′) = 1

⊢ f(y′′ + x′′) = 1, f(y′ + x′) = 1
resσ4

C5 :⊢ f(v + u) = 1
factor

where σ4 = {x← z′′, y ← (x′′ + y′′) + 1}.

ψ5 :=

(C5)
⊢ f(v + u) = 1

(C5)
⊢ f(v + u) = 1

(C3)
f(x+ y) = 1, f(((x+ y) + 1) + z) = 1 ⊢

f(((x + y) + 1) + z)) = 1 ⊢
resσ6

⊢
resσ5

where σ5 = {v ← (x+ y) + 1, u← z} and σ6 = {v ← x, u← y}.

2http://www.mcs.anl.gov/AR/otter/
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The projections are: ϕ1[C1] =

f(s) = 0 ⊢ f(s) = 0

⊢ t = s f(t) = 1 ⊢ f(t) = 1

f(s) = 1 ⊢ f(t) = 1
= : l

f(s) = 0 ∨ f(s) = 1 ⊢ f(s) = 0, f(t) = 1
∨: l

(∀x)(f(x) = 0 ∨ f(x) = 1) ⊢ f(s) = 0, f(t) = 1
∧: l

T ⊢ ∃p∃q(p 6= q ∧ f(p) = f(q)), f(s) = 0, f(t) = 1
w : r

where s = n0 + n1 and t = n1 + n0.

For i = 2, 3 the projection ϕ1[Ci] =

ψ ηi

f(s) = i, f(t) = i ⊢ s 6= t ∧ f(s) = f(t)
∧: r

f(s) = i, f(t) = i ⊢ ∃q(s 6= q ∧ f(s) = f(q))
∃: r

f(s) = i, f(t) = i, T ⊢ ∃p∃q(p 6= q ∧ f(p) = f(q))
∃: r

for s = n0 + k0, t = ((n0 + k0) + 1) + k1 and

ψ =

⊢ (n0 + k0) + (1 + k1) = ((n0 + k0) + 1) + k1 n0 + k0 = (n0 + k0) + (1 + k1) ⊢

n0 + k0 = ((n0 + k0) + 1) + k1 ⊢
= : l

⊢ ¬n0 + k0 = ((n0 + k0) + 1) + k1

¬: r

⊢ n0 + k0 6= ((n0 + k0) + 1) + k1

and ηi =

f(s) = i ⊢ f(s) = i

f(t) = i ⊢ f(t) = i ⊢ i = i

f(t) = i ⊢ i = f(t)
= : r

f(s) = i, f(t) = i ⊢ f(s) = f(t)
= : r

Putting together the resolution refutation with the projections we obtain the
atomic cut normal form ϕ′

1. From the point of view of the analysis of mathe-
matical proofs it is useful to transform this formal proof into a mathematical
argument in the usual textbook format. In this process – which is carried
out by hand – it is necessary to be more liberal than a formal calculus:
In particular we regard clauses modulo the negation-left and negation-right
rules (from sequent calculus), we read them – as it fits – as disjunctions or
implications, and we regard terms modulo simple arithmetical transforma-
tions like associativity and commutativity. The proof ϕ′

1 in a usual textbook
style is as follows:

Proof. First Combinatorial Proof of Proposition 6.1: Assume that
Proposition 6.1 does not hold, then for all cells x we would have (ϕ1[C2])
that f(x) = 0 implies that all cells behind x are different from 0 (C2) and
the same for 1 (ϕ1[C3]).
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But as the only values are 0 and 1 (C1) this would mean that f(x) = 1 or
all cells behind x are equal to 1 (C4). Now, in particular this means that
there is a cell with value 1 with index, say x′. But then all cells behind it
are different from 1, in particular all cells of the form u+(x′+1)+1 (resolve
C3, C4) so there is a cell behind u that is different from 1. So f(u) must
be 1 but u was arbitrary so all cells would have value 1 (C5). But we know
(C3) that there is a cell different from 1. Contradiction!

Note that in this proof ϕ′
1 the argument making the connection between the

value of a cell and the values behind it is absolutely essential. This argument
is contained in the clauses C2 (for the value 0) and C3 (for the value 1). It is
derived from the assumption that the proposition is false by the projections
ϕ[C2] and ϕ[C3]. Every cut-free proof originating from ϕ1 must make use of
this kind of argument because only by using both C2 and C3 we can arrive
at a contradiction. This connection between a cell x and all cells behind it
is the trace – in the cut-free proofs – of the form of the lemmas that are
eliminated: (∀n)(∃k)f(n+ k) = v. So although the lemma on the existence
of a value occurring an infinite number of times on the tape does no longer
occur in the cut-free proof, its traces are still present and can be described
by a detailed analysis of the cut-elimination process.

6.2 The Alternating Tape Argument

We will now analyze a second proof of the same proposition resulting both
in a different characteristic clause set and in different cut-free proofs.

Definition 6.2. An infinite tape f is called changing if each two adjacent
cells have different values (C := (∀x)f(x) 6= f(x+ 1)).

Definition 6.3. An infinite tape f is called alternating if it is changing and
for all positions x we have f(x) = f(x+ 2) (A := C ∧ (∀x)f(x) = f(x+ 2)).

Proof. Second Proof of Proposition 6.1 (Alternating Tape Argu-
ment): We make a case distinction on wether f is changing.

1. If f is changing then, as there are only two values, the tape is also
alternating. Now, as the tape is alternating, the cells at positions 0
and 2 have the same value.

2. If f is not changing then by definition there is a position x with f(x) =
f(x+ 1) but as x and x+ 1 are different, the proposition follows.
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The formalization ϕ2 of this proof is as follows:

(χ1)
T,C ⊢ A

(χ2)
A ⊢ P

T,C ⊢ P
cut

T ⊢ P,¬C
¬: r

(χ3)
¬C ⊢ E

(χ4)
E ⊢ P

¬C ⊢ P
cut

T ⊢ P
cut

where

T ≡ (∀x)(f(x) = 0 ∨ f(x) = 1),

P ≡ (∃p)(∃q)(p 6= q ∧ f(p) = f(q)),

C ≡ (∀x)f(x) 6= f(x+ 1),

A ≡ C ∧ (∀x)f(x) = f(x+ 2),

E ≡ (∃x)f(x) = f(x+ 1).

and the case distinction on wether C or ¬C is formalized as a cut on ¬C. The
proof χ1 shows that every changing tape is alternating by case distinctions
on cell values, χ2 shows that an alternating tape fulfills the proposition by
choosing the two cells 0 and 2, χ3 shows that on a tape that is not changing
there must be two adjacent cells with the same value and χ4 shows that in
this case the proposition is fulfilled.

The characteristic clause set of ϕ2 consists of 127 clauses. However after
application of a tautology-deletion and a subsumption operator (which can
easily be done fully automatically) the set collapses to the following three
non-redundant clauses:

C = { (C1) ⊢ f(x) = 0, f(x) = 1;

(C2) f(0) = f(2) ⊢;

(C3) f(y) = f(y + 1) ⊢ }.

This clause set shares the clause C1 with the clause set of the previous
proof CL(ϕ1). This clause contains the positive information axiomatizing
the tape situation: It is logically equivalent to T . The other two clauses,
however, are different: The clause C2 is generated from the proof χ2 (and
would contain other numerals if other cells would have been compared in
χ2), C3 is generated from χ3 and its structure clearly reflects the formula
C.

The resolution prover otter found the following refutation of C:
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ψ1 :=

(C1)
⊢ f(x) = 0, f(x) = 1

(C1)
⊢ f(x) = 0, f(x) = 1

⊢ 0 + 1 = 1
(C3)

f(y) = f(y + 1) ⊢

f(1) = f(0) ⊢
para{y←0}

f(0) = 1 ⊢ f(1) = 0
para{x←1}

C4 :⊢ f(0) = 0, f(1) = 0
res{x←0}

ψ2 :=

(C1)
⊢ f(x) = 1, f(x) = 0

(C1)
⊢ f(x) = 1, f(x) = 0

⊢ 0 + 1 = 1
(C3)

f(y) = f(y + 1) ⊢

f(1) = f(0) ⊢
para{y←0}

f(0) = 0 ⊢ f(1) = 1
para{x←1}

C5 :⊢ f(0) = 1, f(1) = 1
res{x←0}

ψ3 :=

(C1)
⊢ f(x) = 1, f(x) = 0

(C3)
f(y) = f(y + 1) ⊢

f(y) = 0 ⊢ f(y + 1) = 1
para{x←y+1}

(C2)
f(2) = f(0) ⊢

C6 : f(1) = 0, f(0) = 1 ⊢
para{y←1}

ψ4 :=

(C1)
⊢ f(x) = 0, f(x) = 1

(C4)
⊢ f(0) = 0, f(1) = 0

(C6)
f(1) = 0, f(0) = 1 ⊢

f(0) = 1 ⊢ f(0) = 0
res

C7 :⊢ f(0) = 0
res{x←0}

ψ5 :=

(C1)
⊢ f(x) = 1, f(x) = 0

(C5)
⊢ f(1) = 1, f(0) = 1

(C6)
f(0) = 1, f(1) = 0 ⊢

f(1) = 0 ⊢ f(1) = 1
res

C8 :⊢ f(1) = 1
res{x←1}

ψ6 :=

(C7)
⊢ f(0) = 0

(C1)
⊢ f(x) = 1, f(x) = 0

(C2)
f(0) = f(2) ⊢

f(0) = 0 ⊢ f(2) = 1
para{x←2}

C9 :⊢ f(2) = 1
res

ψ7 :=

(C9)
⊢ f(2) = 1

(C8)
⊢ f(1) = 1

(C3)
f(y) = f(y + 1) ⊢

f(2) = 1 ⊢
para{y←1}

⊢
res
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The projections are:

ϕ2[C1] :=

f(α) = 0 ⊢ f(α) = 0

f(α) = 0, T ⊢ f(α) = 0
w : l

f(α) = 1 ⊢ f(α) = 1

f(α) = 1, T ⊢ f(α) = 1
w : l

f(α) = 0 ∨ f(α) = 1, T, T ⊢ f(α) = 0, f(α) = 1
∨ : l

f(α) = 0 ∨ f(α) = 1, T ⊢ f(α) = 0, f(α) = 1
c : l

(∀x)(f(x) = 0 ∨ f(x) = 1), T ⊢ f(α) = 0, f(α) = 1
∀ : l

T ⊢ P, f(α) = 0, f(α) = 1
w : r, c : r

ϕ2[C2] :=

0 = 1 + 1 ⊢
⊢ ¬0 = 1 + 1

¬ : r

⊢ 0 6= 1 + 1 f(0) = f(1 + 1) ⊢ f(0) = f(1 + 1)

f(0) = f(1 + 1) ⊢ 0 6= 1 + 1 ∧ f(0) = f(1 + 1)
∧ : r

f(0) = f(1 + 1) ⊢ (∃y)(0 6= y ∧ f(0) = f(y))
∃ : r

f(0) = f(1 + 1) ⊢ (∃x)(∃y)(x 6= y ∧ f(x) = f(y))
∃ : r

f(0) = f(1 + 1), T ⊢ P
w : l

ϕ2[C3] :=

γ = γ + 1 ⊢

⊢ ¬γ = γ + 1
¬ : r

⊢ γ 6= γ + 1 f(γ) = f(γ + 1) ⊢ f(γ) = f(γ + 1)

f(γ) = f(γ + 1) ⊢ γ 6= γ + 1 ∧ f(γ) = f(γ + 1)
∧ : r

f(γ) = f(γ + 1) ⊢ (∃y)(γ 6= y ∧ f(γ) = f(y))
∃ : r

f(γ) = f(γ + 1) ⊢ (∃x)(∃y)(x 6= y ∧ f(x) = f(y))
∃ : r

f(γ) = f(γ + 1), T ⊢ P
w : l

The atomic cut normal form ϕ′
2 produced by CERES is then again (manually)

translated into a meaningful mathematical argument in textbook style:

Proof. Second Combinatorial Proof of Proposition 6.1: Assume
Proposition 6.1 does not hold, then f(0) 6= f(2) (ϕ2[C2]) and for all y we
would have f(y) 6= f(y + 1) (ϕ2[C3]).

As f(0) 6= f(1) (C3) and there are only two values (C1), one of these cells
must have value 0 (C4) and one of them must have value 1 (C5).

As two neighboring cells must be different (C3), we have that – in particular
– f(1) = 0 implies f(2) = 1. But as f(2) 6= f(0) (C2) then also f(0) 6= 1,
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i.e. f(1) = 0 implies f(0) 6= 1, so f(1) 6= 0 or f(0) 6= 1 (C6). So there must
be an i ∈ {1, 2} with f(i) = i.

But as one of f(0), f(1) must be 0 and one must be 1, the only possibility
is f(0) = 0 (C7) and f(1) = 1 (C8). And as f(0) = 0 and f(2) 6= f(0) (C2),
we must have f(2) = 1 (C9). But as f(1) = 1 and f(1) 6= f(2) (C3) we must
also have f(2) 6= 1. Contradiction!

This proof differs considerably from the combinatorial proof obtained from
the infinity-argument: Its building blocks are comparisons of concrete cell
values: (1) the values f(0) and f(2) and (2) two adjacent values at various
positions, the first kind of comparison arising from the clause C2, the second
from C3.

6.3 Discussion

The usual situation for a mathematical proof is that we have some back-
ground theory Γ and that we want to show that in this theory, some propo-
sition P holds3. Formally this means to construct a sequent calculus proof
of the sequent Γ ⊢ P or equivalently: Γ,¬P ⊢.

The characteristic clause set (as well as the profile) can be divided into two
different classes of clauses: Those that follow from Γ alone and are thus
true in the intended interpretation (of the theory) and those that follow
only from Γ ∧ ¬P and are thus false in the intended interpretation and so
form the basic building blocks of a proof-by-contradiction of P . Which case
applies to a specific clause can be read off from the projection to the clause.

The atomic cut normal forms produced by the CERES-method can thus
be interpreted as indirect mathematical proofs divided into two parts: In
the first part the clauses that are false in the intended interpretation are
derived from the axioms Γ and the negation of the proposition P , and the
true clauses are derived from the axioms alone; this corresponds to the
projections in CERES. In the second part, it is shown that a contradiction
can be derived from all these clauses and that thus P cannot be false (if
the truth of the axioms is to be maintained). This part corresponds to the
resolution refutation.

An analysis of the characteristic clause sets of different proofs of the same
theorem (without actually going through the whole cut-elimination process)
thus already reveals restrictions on the type of cut-free argument that can be
obtained. Although different combinatorial arguments can be obtained from
the same proof with cuts (see [3]) all the arguments obtained from a certain

3In our example Γ is T plus the simple arithmetical axioms that were used in the proofs

as atomic initial sequents: associativity and commutativity of +, etc.
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proof with cuts have in common that they have the same argumentative
building blocks at their disposal: the clauses of the characteristic clause set.

In the infinity argument this building block was a relation between the
value of a cell and the values of all cells behind it, in the alternating-tape
argument these building blocks where comparisons of the value of the cells 0
and 2 as well as of two adjacent cells in general. This means that although
the cuts are completely eliminated from the output proofs, the form of the
argument with cuts leaves its traces in the cut-free proofs by a restriction
on the form of cut-free proofs that can be obtained. This can be seen in the
above-mentioned division of the mathematical interpretation of an atomic
cut normal form as the fact that all combinatorial arguments obtained from
the same proof with cuts will have the same first part (that is the derivation
of the clauses from the axioms and the negated proposition) and will differ
only in their second part: The way the contradiction is derived from the
clauses.

This restriction on the form of cut-free proofs can be modelled with and read
off the characteristic clause set. Furthermore, due to the subsumption result
in [10] (and in Section 5.1 for the profile) this restriction is not specific to
the CERES-method but applies to all reductive cut-elimination procedures,
in particular Gentzen’s original.

The extraction of the characteristic clause set can always be done fully
automatically. In the examples given here the resolution refutations were
also generated automatically but in general – and in particular for larger
proofs – it seems necessary to generate the refutations in a semi-automatic,
interactive way. But the above considerations show that the extraction of
the characteristic clause set alone is already of a high mathematical value.
Thus the subdivision of the cut-elimination process into two phases, the first
being the extraction of the characteristic clause set and the second being its
refutation is a qualitative advantage of the CERES-method over reductive
cut-elimination methods because it provides information about the proof
with cuts that reductive methods cannot.



Chapter 7

Conclusion and Future Work

We have presented an improved variant of the characteristic clause sets of
the CERES-method: The profile of a proof. The profile is computationally
superior to the characteristic clause set: Due to the subsumption of the
characteristic clause set by the profile (Proposition 3.4) for any resolution
refutation of the characteristic clause set of length l there exists one of the
profile of length l′ ≤ l. This result justifies the replacement of the character-
istic clause set by the profile in the implementation of the CERES-method.
But the profile is even stronger in detecting certain kinds of redundancies
One can show that there exist sequences of proofs where all resolution refu-
tations of the characteristic clause set are of non-elementary length while
there is a refutation of the profile of a constant length (Example 3.1).

We have shown that the profile is invariant under permutation of indepen-
dent rules (Proposition 4.1) which shows that if two proofs have the same
proof net, they also have the same profile. In this sense the profile is a
generalization of the proof net: It abstracts from more details of the formal
proof.

In Section 4.2 we first gave different characterizations of the Herbrand-
disjunction (or -sequent) of a formal proof and of partial Herbrand-sequents.
This served as technical preparation for showing the main result of Chap-
ter 4: That there is an intimate relation between the two partial Herbrand-
sequents of a proof – the instances of the end-sequent and the instances
of the cut-formulas – to the two dual parts of the profile defined for the
respective parts of the proof (see Figure 4.2.6). The most involved part of
this result is showing that the two parts of the profile with tautologies in-
deed subsume (respectively are subsumed by) the conjunctive (respectively
disjunctive) normal form of the partial Herbrand-sequent of the respective
part of the proof. This demonstrates that the profile is a combination of two
different techniques for abstracting from formal details of a proof or of a for-
mula: of Herbrand-sequents on one hand for abstracting from details of the
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proof structure and of the CNF and DNF normal form transformations on
the other hand for abstracting from details of the representation of the for-
mulas in the Herbrand-sequents. Moreover, removing the tautologies yields
clause sets which contain the same logical information with considerably less
redundancy. The most surprising aspect of this result is that there exists
a simple duality between the partial Herbrand-sequent of the end-sequent
and the partial Herbrand-sequent of the cut-formulas, the first representing
the instances of formulas of the theorem shown in the proof and the second
representing the instances of the lemmas used in the proof for showing the
theorem.

In Section 5.1 we have given a detailed analysis of the effect of cut-elimination
on the profile. It turned out that it is extremely well behaved: Clauses are
removed if and only if a weakening rule is eliminated, clauses are duplicated
if and only if a contraction rule is eliminated and clauses are instantiated
if and only if a quantifier rules is eliminated. In all other cases the profile
remains unchanged.

We have defined a large class of proof transformations that can be applied
to cut-formulas and leave the profile invariant in Section 5.2. This not
only gives as corollary the invariance of the profile under certain important
specific transformations like e.g. the negation normal form transformation
but also gives general conditions that guarantee the invariance of the pro-
file. These simple transformations basically perform a rearrangement of the
proof without changing its size. Indeed, the most important structural re-
strictions are the absence of deletion and duplication operations while the
restriction on the term level amounts to allowing only variable permutations
as substitutions. This class of transformations has been defined by defining
a class of transformation proofs that are applied – by using cut-elimination
as an interpreter – to the proof to be transformed, a way of using formal
proofs not uncommon in the literature on the λ-calculus.

In Chapter 6 we have used the characteristic clause set for the analysis of
two different proofs (with cuts) of the same proposition. We have run the
CERES-method on both of these proofs to obtain – for each of them – a
purely combinatorial argument. Interestingly we could observe not only that
the two combinatorial arguments obtained this way are different, but it is
already possible by examination of the characteristic clause sets alone to
anticipate these differences. The clauses of the profile of a proof constitute
the argumentative building blocks of all cut-free proofs that can be obtained
from the original proof. This means that the profile provides qualitative
information about a proof that cannot be obtained in a different way, in
particular not by standard cut-elimination methods à la Gentzen. As the
extraction of the profile can be easily automated, this kind of computer-
aided proof analysis scales also to much larger proofs.
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Apart from the application of these methods to concrete mathematical
proofs, there exists also considerable potential for future theoretical work:
In Section 5.2 we have shown that simple transformations when applied to
cut-formulas do not change the profile. An obvious extension of this result
is to investigate also the effect of these transformations when applied to
the end-sequent. Altough this will be a more complicated situation – the
status of the transformed formula occurrences changes from being ancestor
of the end-sequent to being ancestor of a cut-formula – we still conjecture
that the same result, i.e. the invariance of the profile can be shown. An-
other interesting extension of this result is to consider systems of second-
and higher-order logic. Also for those systems rewrite relations performing
cut-elimination exist and can be used as a basis for the definition of simple
transformations. As the simple transformations do not use essential second-
order features (like comprehension), defining the profile as for the first-order
system will make it possible to carry out the invariance proofs in a similar
way.

The nice behavior of the profile under cut-elimination (see Section 5.1) to-
gether with the invariance under simple transformation suggests to consider
also other classes of transformations. For example allowing weakening to
be applied to the formula that is transformed might result in the profile
not staying completely invariant but instead losing certain (corresponding)
clauses. Similarly, one might conjecture that allowing contractions will ex-
actly duplicate certain clauses and allowing substitutions which are not only
variable permutations will exactly instantiate certain clauses.

For studying the combinatorics of the profile, it seems most rewarding to
perform a deeper analysis of the label sets that can be found in the clauses
of the profile. Each of these label sets corresponds to a set of axioms of the
original proof that is needed as a basis for a cut-free fragment of the original
proof: a projection. In this sense the projections of the CERES-method
are a decomposition of the original proof into its cut-free parts. Apart from
forming a basis for all cut-free proofs what does this decomposition tell us
about the structure of the original proof ? The analysis in Section 4.3 shows
that there is a remarkable connection to the logical flow graph of the proof
under consideration. It remains to be investigated how far this connection
can be extended.
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University of Paris, 1930.

[30] Stefan Hetzl. A Similiarity Criterion for Proofs (abstract). In Arnold
Beckmann, Ulrich Berger, Benedikt Löwe, and John V. Tucker, editors,
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of a formula, 5
terminal, 33
used, 51

otter, 93, 96

partial proof, 54, 66
prenex, 50
profile, 36, 43, 48, 65, 69, 88

Ω-profiles, 33
Σ-profiles, 34
compatibility, 45
in CERES, 39

projection, 31, 32, 40, 94, 98
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proof net, 48
proper partition, 35
pseudo-contraction, 44
pseudo-cut, 32, 44
pseudo-proof, 44

Q-simple, 77
quantifier

strong, 27
weak, 27

rank, 15
regular, 9
resolution, 27
resolution refutation, 28, 32, 93,

96
resolvent, 28
rule permutation, 46

sequent calculus, 5
simple transformation, 78, 83
skolemization, 27
strong equivalence, 78
subsumption, 25, 32, 39, 58, 61,

71, 91, 96
propositional, 25, 58, 63, 65

tautology-deletion, 32, 37, 91, 96
theory, 99

unification, 28
unifier, 27

V-equivalent, 77


