
[16:02 24/5/2014 exu030.tex] LogCom: Journal of Logic and Computation Page: 1 1–27

A multi-focused proof system isomorphic to
expansion proofs
KAUSTUV CHAUDHURI, INRIA, 1 rue Honoré d’Estienne d’Orves, 91120
Palaiseau, France.

STEFAN HETZL, Institute of Discrete Mathematics and Geometry, Vienna
University of Technology, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria.

DALE MILLER, INRIA and LIX/École Polytechnique, 1 rue Honoré d’Estienne
d’Orves, 91120 Palaiseau, France.

Abstract
The sequent calculus is often criticized for requiring proofs to contain large amounts of low-level syntactic details that can
obscure the essence of a given proof. Because each inference rule introduces only a single connective, sequent proofs can
separate closely related steps—such as instantiating a block of quantifiers—by irrelevant noise. Moreover, the sequential
nature of sequent proofs forces proof steps that are syntactically non-interfering and permutable to nevertheless be written
in some arbitrary order. The sequent calculus thus lacks a notion of canonicity: proofs that should be considered essentially
the same may not have a common syntactic form. To fix this problem, many researchers have proposed replacing the sequent
calculus with proof structures that are more parallel or geometric. Proof-nets, matings and atomic flows are examples of such
revolutionary formalizms. We propose, instead, an evolutionary approach to recover canonicity within the sequent calculus,
which we illustrate for classical first-order logic. The essential element of our approach is the use of a multi-focused sequent
calculus as the means for abstracting away low-level details from classical cut-free sequent proofs. We show that, among
the multi-focused proofs, the maximally multi-focused proofs that collect together all possible parallel foci are canonical.
Moreover, if we start with a certain focused sequent proof system, such proofs are isomorphic to expansion proofs—a well
known, minimalistic and parallel generalization of Herbrand disjunctions—for classical first-order logic. This technique
appears to be a systematic way to recover the ‘essence of proof’ from within sequent calculus proofs.

Keywords: Multi-focusing, expansion trees, canonicity.

1 Introduction

The sequent calculus, initially developed by Gentzen for classical and intuitionistic first-order
logic [11], has become a standard proof formalizm for a wide variety of logics. One of the chief
reasons for its ubiquity is that it defines provability in a logic parsimoniously and modularly, where
every logical connective is defined by introduction rules and where all other inference rules are either
structural rules (weakening/contraction) or identity rules (initial/cut). Sequent rules can thus be seen
as the atoms of logical inference. Different logics can be described simply by choosing different
atoms. For instance, linear logic [12] differs from classical logic by removing the structural rules of
weakening and contraction, and letting the multiplicative and the additive variants of introduction
rules introduce different connectives. The proof-theoretic properties of logics can then be derived by
analysing these atoms of inference. For example, the cut-elimination theorem directly shows that the
logic is consistent.

Yet, despite its success as a framework for establishing proof-theoretic properties, sequent proofs
themselves are syntactic monsters: they record the exact sequence of inferences rules even when such

© The Author, 2014. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oup.com
doi:10.1093/logcom/exu030

 Journal of Logic and Computation Advance Access published June 6, 2014
 at B

ibliothek der T
U

 W
ien on January 20, 2016

http://logcom
.oxfordjournals.org/

D
ow

nloaded from

http://logcom.oxfordjournals.org/

[16:02 24/5/2014 exu030.tex] LogCom: Journal of Logic and Computation Page: 2 1–27

2 A multi-focused proof system isomorphic to expansion proofs

details are not relevant to the essential high-level features of the proof. The most common approach
taken to avoid the syntactic morass of the sequent calculus is one of revolution. New proof formalizms
different from the sequent calculus are proposed that are supposedly free of syntactic bureaucracy.
Usually, such formalizms are more parallel or geometric than sequent proofs. The following list of
examples of such systems is not exhaustive.

(1) The mating method [2] and the connection method [5] represent proofs as a graph structure
among the literals in (an expansion of) a formula.

(2) Expansion trees [29] record only the instantiations of quantifiers using a tree structure.
(3) Proof-nets [12] eschew inference rules for more geometric representations of proofs in terms

of axiom and cut linkages.
(4) Atomic flows [14] track only the flow of atoms in a proof and can expose the dynamics of

cut-elimination.
(5) Even Gentzen’s natural deduction calculus [11, 34] is a more parallel representation of proofs

given that trees play a more intimate role in the structuring of inferences.

While such formalizms are capable of abstracting away from many low-level syntactic details,
it is worth noting that they are not without problems. At a basic level, showing when a proposed
structure is correct—that it actually represents a ‘proof’—requires checking global criteria such as
connectedness, acyclicity or well-scoping. Such formalizms generally lack local correctness criteria,
wherein a partial (unfinished) proof object can be ensured to have only correct finished forms. By
contrast, every instance of a rule in a (partial) sequent proof can easily be checked to be an instance
of a proper rule schema. A second and bigger issue with such revolutionary formalizms is that none
of them is as general as the sequent calculus. Proof-nets, to pick an example, are only well defined for
the unit-free multiplicative linear logic (MLL) [12]. Even adding the multiplicative units is tricky [24]
and for larger fragments such as MALL with units the problem of finding a polynomial time checkable
proof-net formalizm remains open.

In this article, we argue that many of the benefits of such revolutionary approaches can be achieved
directly in the sequent calculus tradition by using a more evolutionary approach that involves selecting
suitable abstractions. Our technique can be described using the following broad outline.

• We begin by limiting ourselves to cut-free focused proofs [1, 26]. Focusing is based on the
observation that it is sufficient for provability to consider only those cut-free sequent proofs
that are organized into an alternation of two kinds of phases for the principal formulas. Briefly,
in the positive phase, information—such as witnesses for existential formulas or multiplicative
splits of contexts—is added to the proof. This phase is inherently non-deterministic from a proof
search perspective. The other, negative phase is a choice-free reduction of a given sequent to
simpler premise sequents; this phase consumes no essential information. Once we commit to
focused proofs, we can ignore details such as the precise manner in which the steps inside a
phase are performed; only the boundaries between the phases are important.

• Focusing phases can sometimes permute over each other in a manner similar to the way
inference rules can permute over each other. If two phases have no inter-dependencies and
can be done in parallel, then it is possible to allow both phases to be merged into a single
phase. To describe such parallel phases in a proof, we generalize focusing to multi-focusing,
which enables the most important descriptive tool in our technique. Two multi-focused proofs
that are equivalent in terms of the underlying rule permutations of the sequent calculus might
nevertheless have different levels of parallelism in their phase structure. We choose to limit our
attention to those multi-focused proofs where the phases are as parallel as possible (reading

 at B
ibliothek der T

U
 W

ien on January 20, 2016
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/

[16:02 24/5/2014 exu030.tex] LogCom: Journal of Logic and Computation Page: 3 1–27

A multi-focused proof system isomorphic to expansion proofs 3

from the end-sequent upwards), which we call the maximally multi-focused proofs (or often
just maximal proofs).

• As a final step, we observe that if we choose the sequent rules carefully, then the maximal
multi-focused proofs are both unique and syntactically canonical in the following sense: two
permutatively equivalent multi-focused proofs have the same maximal form. It is important to
note that focusing, multi-focusing, and maximality are general concepts that may be applied
to essentially any cut-free sequent calculus: for example, in [7] these concepts are defined for
multiplicative-additive linear logic (MALL). The uniqueness of maximal proofs is, however,
sensitive to particular rule permutations.

In this article, we apply this technique to establish two new results.

(1) We give a multi-focused sequent calculus for classical first-order logic and show that the
maximal proofs obtained therefrom are unique representatives of their permutative equivalence
classes (Theorem 4.7). We give a precise condition for rule permutations under which such
uniqueness theorems can be proven for any focused sequent calculus.

(2) We then show that such maximal proofs are isomorphic to expansion proofs [29], a
generalization of Herbrand disjunctions for classical first-order (and even higher-order) logic.
This result is surprising because it is known that expansion trees can be exponentially more
compact than sequent proofs [4].

In Section 2, we give some background on the sequent calculus, on focusing, and on expansion trees.
Section 3 introduces the focused sequent calculus LKE that will be used to develop our connection
to expansion proofs. Section 4 then analyses the equivalence classes of sequent proofs that have the
same expansion proof. This leads to a reverse mapping from expansion proofs to sequent proofs,
called sequentialization (Section 4.3). Finally, Section 5 presents and discusses the isomorphism
between maximal proofs and expansion proofs. Some related work is discussed in Section 6.

2 Sequent calculus, focusing, and expansion proofs

We use the usual syntax for (first-order) formulas (A,B,...) and connectives drawn from
{�,∧,⊥,∨,¬,∀,∃}. Atomic formulas (a,b,...) are of the form p(t1,...,tn) where p represents a
predicate symbol and t1,...,tn are first-order terms (n≥0). Formulas are restricted to negation-
normal form (i.e. only atomic formulas can be ¬-prefixed) and two formulas are identical if they
are α-equivalent. We use the term literal to refer to either an atomic formula or a negated atomic
formula. We assume that all bound variables in a formula are pairwise distinct. We write (A)⊥ to
stand for the De Morgan dual of A, and [t/x]A for the capture-avoiding substitution of term t for x
in A. We also write ∃	x.A for ∃x1. ...∃xn.A, ∀	x.A for ∀x1. ...∀xn.A, and [t/	x] for [t1/x1]···[tn/xn] if
	x= (x1,...,xn) and 	t = (t1,...,tn).

2.1 Sequent calculus: LKN

We use one-sided sequents
 � in which � is a multiset of formulas. Figure 1 contains the inference
rules for our sequent calculus that we call LKN. There is no cut rule, the initial rule is restricted to
atomic formulas, and all the rules except for ∃ are invertible. Since invertible rules are associated
with the negative polarity in focusing, we use the N in LKN to highlight the fact that is a variant

 at B
ibliothek der T

U
 W

ien on January 20, 2016
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/

[16:02 24/5/2014 exu030.tex] LogCom: Journal of Logic and Computation Page: 4 1–27

4 A multi-focused proof system isomorphic to expansion proofs

Figure 1. Rules of LKN.

of Gentzen’s LK calculus in which most rules are invertible. The following rules are admissible in
LKN : in these rules, A can be any formula.

 �,A
 �,(A)⊥

 �

cut
 �,(A)⊥,A arbinit
 �

 �,A weak

 �

 [t/x]� subst

These admissible rules easily allow us to mimic any of the other standard inference rules for this
logic in LKN, including Gentzen’s original LK calculus, so completeness is immediate. Soundness
is equally trivial as every rule preserves classical validity under the interpretation of a sequent

 A1,...,An as the formula A1 ∨···∨An.

2.2 Focused sequent calculus: LKF

In the 1980s, logic programming was placed on strong proof-theoretic foundations by describing
the search for cut-free sequent proofs therein as an alternation of goal-reduction and back-chaining
phases [30]. Andreoli [1] subsequently generalized this treatment to identify a class of focused proofs
in the sequent calculus for classical linear logic. Comprehensive focused sequent calculi have since
been built for intuitionistic and classical logics [21, 26], and focusing is increasingly being seen as
a technique for unraveling the structure of proofs.

The LKF focused proof system, as presented in [26], deals with formulas in which the classical
connectives and constants are divided into two disjoint and dual polarity classes: the negatives
{t,&,f,

&

,∀} and the positives {1,⊗,0,⊕,∃}.1 A non-atomic formula is negative or positive if its
top-level connective is negative or positive, respectively. Polarity is extended to all formulas by
arbitrarily classifying atomic formulas as positive; hence, negated atoms are negative.

From the perspective of truth, there is no difference between the positive and the negative variants
of a single unpolarized connective; i.e. A⊗B and A&B are equiprovable with A∧B, as are A⊕B,
A

&

B and A∨B, etc . However, the introduction rules for the two polarized variants of a connective are
different, which leads to different proofs for different choices of polarized variants of a connective. In
general, the introduction rules for negative connectives are all invertible, meaning that the conclusion
of any of these introduction rules is equivalent to its premises. The introduction rules for the positive
connectives are not necessarily invertible.

Figure 2 contains a multi-focused variant of the LKF system from [26]. The two phases of such
LKF proofs are depicted using two different sequent forms: negative sequents of the form
 �⇑�

and positive sequents of the form
 �⇓�. In either form, � is a multiset of literals or positive

1We use the glyphs ⊗,

&

, etc . from linear logic even though their interpretation is classical.

 at B
ibliothek der T

U
 W

ien on January 20, 2016
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/

[16:02 24/5/2014 exu030.tex] LogCom: Journal of Logic and Computation Page: 5 1–27

A multi-focused proof system isomorphic to expansion proofs 5

Figure 2. Rules for the multi-focused version of LKF .

formulas, and � is a multiset of arbitrary formulas. In the positive sequent
 �⇓�, we say that
the formulas in � are its foci and we require � to be non-empty. (We write
 ��� to stand for
either sequent form when describing LKF proofs.) The rules for positive sequents define a positive
phase, and likewise those of the negative sequents define a negative phase. Mediating between the
phases are the structural rules decide and release. A positive phase begins (reading bottom up) with
a decide, followed by positive rules; eventually the foci become negative in which case the proof
enters the negative phase with release; the negative phase consists of negative introduction rules
for the negative connectives, or the store structural rule that transfers a literal or a positive formula
to the other zone. Notice that unlike LKN where contraction may be applied arbitrarily, contraction
is present in LKF only as part of the decide rule. As a result, the only formulas that are contracted
in LKF are positive formulas.

We formally state the soundness and completeness of LKF with respect to LKN (and hence to
Gentzen’s LK) in terms of an injection.

Definition 2.1
If B is a formula in LKF , then [B] denotes the formula in which all polarized variants of connectives
in B are mapped to their unpolarized variants, i.e. ⊗ and & to ∧, ⊕ and

&

to ∨, etc . If � is a multiset
of formulas then [�] is defined to be the multiset {[B] |B∈�}. If π is an LKF proof, we write [π]
for the LKN proof that:

• replaces all sequents of the form
 ��� with
 [�],[�] ;
• removes all instances of the rules store and release; and
• renames decide to contr in π .

Theorem 2.2 (LKF vs. LKN)
(1) If π is an LKF proof of
 ���, then [π] is an LKN proof of
 [�],[�] (soundness).
(2) If
 [�] is provable in LKN, then
 ·⇑� is provable in LKF (completeness).

 at B
ibliothek der T

U
 W

ien on January 20, 2016
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/

[16:02 24/5/2014 exu030.tex] LogCom: Journal of Logic and Computation Page: 6 1–27

6 A multi-focused proof system isomorphic to expansion proofs

Proof. Soundness is immediate by observing that [−] preserves LKN validity. Completeness follows
by observing that every singly focused proof in the LKF calculus of [26], which is complete for LK
(and hence also for LKN), is also a proof in the multi-focused version of the calculus in Figure 2. �

The LKF proof system can be seen as a framework for describing a range of focused proof systems
for classical logic. The ordinary (unpolarized) connectives {�,∧,⊥,∨} can be mapped to a positive
variant {1,⊗,0,⊕} or a negative variant {t,&,f,

&}. Indeed, each occurrence of each unpolarized
connective in a formula can be individually mapped to a positive or a negative variant in its polarized
form. Different choices of polarization do not affect provability but can greatly affect the structure
of proofs.

2.3 Expansion trees and expansion proofs

Herbrand’s theorem [17] tells us that recording how quantifiers are instantiated is sufficient to describe
a proof in classical first-order logic. Gentzen also noticed this for (cut-free) proofs of prenex normal
sequents via the mid-sequent theorem [11]. Miller defined expansion trees [29] for full higher-order
logic as a structure to record such substitution information without restriction to prenex normal form.
We shall use a first-order version of this notion here.

Definition 2.3
Expansion trees, eigenvariables and a function Sh (read shallow formula of) that maps an expansion
tree to a formula are defined as follows:

(1) If A∈{�,⊥}, or if A is a literal, then A is an expansion tree with top node A, and Sh(A)=A.
(2) If E is an expansion tree with Sh(E)=[y/x]A and y is not an eigenvariable of any node in E,

then E′ =∀x.A+y E is an expansion tree with top node ∀x.A and Sh(E′)=∀x.A. The variable
y is called an eigenvariable of (the top node of) E′. The set of eigenvariables of all nodes in an
expansion tree is called the eigenvariables of the tree.

(3) If {t1,...,tn} (with n≥0) is a set of terms and E1,...,En are expansion trees with pairwise disjoint
eigenvariable sets and with Sh(Ei)=[ti/x]A for i∈1..n, then E′ =∃x.A+t1 E1 ···+tn En is an
expansion tree with top node ∃x.A and Sh(E′)=∃x.A. The terms t1,...,tn are known as the
expansion terms of (the top node of) E′. The order of writing the expansions is immaterial; if
φ :1..n→1..n is a permutation, then

(∃x.A+t1 E1 ···+tn En
) = (∃x.A+tφ(1) Eφ(1) ···+tφ(n) Eφ(n)

)
.

(4) If E1 and E2 are expansion trees that share no eigenvariables and ◦∈{∧,∨}, then E1 ◦E2 is an
expansion tree with top node ◦ and Sh(E1 ◦E2)=Sh(E1)◦Sh(E2).

We consider the eigenvariables of an expansion tree to be bound over the entire expansion tree, so
systematic changes to eigenvariable names (α-conversion) result in equal trees. The requirement of
eigenvariables in different subtrees being disjoint ensures that no eigenvariable is used to instantiate
two different universal quantifiers within a given expansion tree. Sequent proofs are often described
with a similar condition, known as regularity, that demands that any eigenvariable used in the ∀ rule
be globally unique. Regularity is not essential for the sequent calculus because the correctness of
each proof is locally checkable, so the same eigenvariable might be used in different branches of
a proof. However, the correctness criterion for expansion trees (defined below) is global and hence
needs globally unique variable names.

 at B
ibliothek der T

U
 W

ien on January 20, 2016
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/

[16:02 24/5/2014 exu030.tex] LogCom: Journal of Logic and Computation Page: 7 1–27

A multi-focused proof system isomorphic to expansion proofs 7

There is a simple way to coerce a formula into an expansion tree: use the bound variable of a
universally quantified subformula as the eigenvariable of its corresponding expansion, and use the
empty set of terms to expand an existentially quantified formula. Whenever we use a formula to
denote an expansion tree, we shall assume that we use this coercion. It is also natural to include a
notion of sequents of expansion trees.

Definition 2.4
If E1,...,En are expansion trees with pairwise disjoint eigenvariable sets, then E =E1,...,En
is an LKN expansion sequent. The shallow sequent of E , written Sh(E), is the LKN sequent

 Sh(E1),...,Sh(En).

Example 2.5
Consider the formula D=∃x.(¬d(x)∨∀y.d(y)). The expression

D +c (¬d(c)∨(∀y.d(y)+u d(u))
) +u (¬d(u)∨(∀y.d(y)+v d(v))

)

is an expansion tree. Observe that the two eigenvariables u and v used to expand ∀y.d(y) are distinct,
even though u is used to expand an existential elsewhere. The nature of expansion trees becomes
more apparent if drawn as trees with labels on the arcs denoting eigenvariables or expansions terms:

Definition 2.6 (Labels and Dominators)
In the expansion tree ∀x.A+x E (resp. in ∃x.A+t1 E1 ···+tn En), we say that x (resp. ti) labels the top
node of E (resp. Ei, for any i∈1..n). A term t dominates a node in an expansion tree if it labels a
parent node of that node in the tree. An expansion term t in E is said to be a topmost term of E if its
corresponding existential expansion node is not dominated by any other expansion term in E

Expansion trees as described are only a basic data structure for storing quantifier instances; not
all of them denote proofs. We say that an expansion tree is correct if it indeed denotes a proof. The
shallow formula of an expansion tree discards all the quantifier instances and is therefore not suitable
for defining the correctness criterion; we will need the following representation that preserves the
instances.

Definition 2.7
For an expansion tree E, the quantifier-free formula Dp(E), called the deep formula of E, is defined as:

• Dp(E)=E if E ∈{�,⊥} or if E is a literal;
• Dp(E1 ◦E2)=Dp(E1)◦Dp(E2) for ◦∈{∧,∨};
• Dp(∀x.A+y E)=Dp(E); and
• Dp(∃x.A+t1 E1 ···+tn En)=Dp(E1)∨···∨Dp(En) if n>0, and Dp(∃x.A)=⊥.

We write Dp(E1,...,En) to mean Dp(E1)∨···∨Dp(En).

 at B
ibliothek der T

U
 W

ien on January 20, 2016
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/

[16:02 24/5/2014 exu030.tex] LogCom: Journal of Logic and Computation Page: 8 1–27

8 A multi-focused proof system isomorphic to expansion proofs

The correctness criterion also uses a dependency relation on expansion terms.

Definition 2.8
Let E be an expansion tree or expansion sequent and let <0

E be the binary relation on the occurrences of
expansion terms in E defined by t <0

E s if there is an x which is free in s and which is the eigenvariable
of a node dominated by t. Then <E , the transitive closure of <0

E , is called the dependency relation
of E .

Viewed as a sequent proof, the dependency t <E s means that all ∃ introductions with t as the
witness term must be lower in the proof than those with s as the witness.

Definition 2.9 (Correctness)
An expansion tree or an expansion sequent E is said to be correct if <E is acyclic and Dp(E) is a
tautology; we also say that E is an expansion proof of Sh(E).

Example 2.10
Let E be the expansion tree of Example 2.5. It has two expansion terms: c and u. Observe that c<E u
because the node labeled with c dominates the ∀-node with eigenvariable u. However u≮E c, so
<E is acyclic. Furthermore, Dp(E)=¬d(c)∨d(u)∨¬d(u)∨d(v), which is a tautology. So, E is an
expansion proof of the formula Sh(E)=∃x.(¬d(x)∨∀y.d(y)).

Theorem 2.11
Let E be an expansion proof containing at least one expansion term. Then, one of the topmost
occurrences of expansion terms of E is <E -minimal.

Proof. Let S be the set of topmost occurrences of expansion terms of E and suppose that none of
them is <E -minimal. That is, for every s∈S, there is an occurrence of an expansion term t in E such
that t <E s. Let s∈S be given and let t in E be such that t <E s. By Definition 2.8, every dominator t′
of t also satisfies t′ <E s. Since every occurrence of expansion terms in E is either in S or is dominated
by some term in S, it must follow that there is an s′ ∈S such that s′ <E s. Therefore, for every s∈S
there is a s′ ∈S such that s′ <E s, i.e. there is an infinite <E -descending chain in S. But S is finite and
<E is acyclic, so this is impossible. �

One important property of expansion proofs is that there is a straightforward mapping from LKN
(or even LK) proofs to expansion proofs, defined by induction on the structure of LKN proofs. For the
contracted formulas in instances of contr and the side formulas in instances of binary rules (i.e. ∧),
it will be necessary to merge two expansion trees of the same formula. To define merging formally,
we slightly generalize the syntax of expansion trees to add a new kind of merging node.

Definition 2.12
An expansion tree with merges is defined by the same inductive definition as expansion trees in
Definition 2.3 to which we add the following clause:

(5) If E1 and E2 are expansion trees with merges that share no eigenvariables and have the same
shallow formula, then E1 �E2 is an expansion tree with merges with top node � (called a merge
node), and Sh(E1 �E2)=Sh(E1).

Expansion sequents with merges are defined in the natural way.

We shall define a rewrite operation �→ on expansion trees with merges that removes the merge
nodes. Some care has to be taken in its definition, as illustrated by the following example.

 at B
ibliothek der T

U
 W

ien on January 20, 2016
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/

[16:02 24/5/2014 exu030.tex] LogCom: Journal of Logic and Computation Page: 9 1–27

A multi-focused proof system isomorphic to expansion proofs 9

Example 2.13
Consider this expansion sequent with merges:

(∀xA+u E1)�(∀xA+v E2),∃xB+f (u) F1 +f (v) F2.

When propagating the merge node into the subtrees of the two trees being merged, the two
eigenvariables u and v will need to be united, say to a new eigenvariable w. As eigenvariables are
global, the result of this union is that the two expansion terms f (u) and f (v) in the second element of
the sequent will also be identified, violating the set-nature of the expansions of an existential formula.
This will then require merging the two trees [w/u,w/v]F1 and [w/u,w/v]F2. Thus, reducing a merge
node might cause new merge nodes to appear in other parts of the expansion tree or expansion
sequent.

This example shows that not only do merges require changing eigenvariables, but also that
performing such changes might induce new merges. Thus, the rewrite �→ that removes merges
will generally need to traverse the tree several times before normalizing.

Definition 2.14 (Eigenvariable Substitution)
Let E be an expansion tree with merges. The expansion tree 〈w/u〉E stands for that tree with merges
that results from replacing the eigenvariable u with w. It is defined by structural induction on expansion
trees with merges as follows.

(1) If E ∈{�,⊥} or if E is a literal, then 〈w/u〉E =[w/u]E (ordinary substitution).
(2) For ◦∈{∧,∨,�}, 〈w/u〉(E1 ◦E2)=〈w/u〉E1 ◦〈w/u〉E2
(3) Let {s1,...,sk} be {[w/u]t1,...,[w/u]tn}. Then,

〈w/u〉(∃x.A+t1 E1 ···+tn En
)=

∃x.〈w/u〉A +s1
⊔

i∈1..n[w/u]ti=s1

〈w/u〉Ei ··· +sk
⊔

i∈1..n[w/u]ti=sk

〈w/u〉Ei.

(4) 〈w/u〉(∀x.A+v E)=∀x.[w/u]A+[w/u]v 〈w/u〉E.

The merge operation is then defined in terms of the following rewrite on expansion trees (or
expansion sequents) with merges.

Definition 2.15 (Expansion Contexts)
An expansion context, written as E[·], denotes an expansion tree or an expansion sequent with merges
containing a single occurrence of a hole ·. If E is an expansion tree with merges that does not share
any eigenvariables with E[·], then E[E] stands for that expansion tree or expansion sequent with
merges where the hole is replaced by E.

Definition 2.16
The merge rewrite operation �→ is generated from the following cases.

(1) If E ∈{�,⊥} or if E is a literal, then E[E�E] �→E[E].
(2) E[(E1 ◦E2)�(E′

1 ◦E′
2)] �→E[(E1 �E′

1)◦(E2 �E′
2)] for ◦∈{∧,∨}.

(3) E[(∀x.A+u E)�(∀x.A+w E′)] �→〈w/u〉E[∀x.A+w (E�E′)].

 at B
ibliothek der T

U
 W

ien on January 20, 2016
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/

[16:02 24/5/2014 exu030.tex] LogCom: Journal of Logic and Computation Page: 10 1–27

10 A multi-focused proof system isomorphic to expansion proofs

(4) Suppose {s1,...,sm}∩{t1,...,tn}=∅. Then,

E[
(∃x.A+r1 E1 ···+rl El +s1 F1 ···+sm Fm)

� (∃x.A+r1 E′
1 ···+rl E′

l +t1 G1 ···+tn Gn)
] �→

E[∃x.A+r1 (E1 �E′
1)···+rl (El �E′

l)+s1 F1 ···+sm Fm +t1 G1 ···+tn Gn
]
.

This definition is extended to expansion sequents with merges in the natural way.

Theorem 2.17
The reduction system �→ on expansion trees or sequents with merges is confluent and strongly
normalizing. Its normal forms have no merge nodes.

Proof. There are no critical pairs, so the reduction system is locally confluent. The system is strongly
normalizing because every rewrite either reduces the number of eigenvariables or reduces a merge
node to a finite number of simpler merge nodes for strict subtrees. Finally, it is immediate by inspection
that all subtrees rooted at merge nodes can be reduced. �
Definition 2.18 (Substitution and Merging)
If E1 and E2 are expansion trees that have the same shallow formula and that share no eigenvariables,
then their merge, written E1 ∪E2, is the unique (up to renaming of eigenvariables) normal form of
E1 �E2 under �→. If E is an expansion tree, then [w/u]E is defined to be the unique normal form of
〈w/u〉E under �→. These constructions are lifted to expansion sequents in the natural way.

We can now use merges to define an explicit function from LKN proofs to expansion proofs.

Definition 2.19
The expansion sequent of an LKN proof π , written Exp(π), is given by induction on the structure
of π . It has the following cases.

(1) If π is a proof of
 � by init or �, then Exp(π)=� (using the trivial coercion of formulas to
expansion trees).

(2) Suppose π =
πA
 �,A

πB
 �,B

 �,A∧B

∧, Exp(πA)=EA,EA, and Exp(πB)=EB,EB, where EA (resp. EB)

is the expansion tree corresponding to A (resp. EB to B), and EA (resp. EB) is the expansion
sequent corresponding to � in the left (resp. right) premise. Then, Exp(π)=EA ∪EB,EA ∧EB.

(3) Suppose π =
πA
 �,A

 �,∀x.A
∀, Exp(πA)=E,E where E is the expansion tree corresponding to A

and E is the expansion sequent corresponding to � in the premise. Let y be an eigenvariable
that does not occur in E . Then, Exp(π)=E,∀x.A+y [y/x]E.

(4) Suppose π =
πA
 �,[t/x]A

 �,∃x.A ∃ and Exp(πA)=E,E where E is the expansion tree corresponding

to [t/x]A and E is the expansion sequent corresponding to � in the premise. Then, Exp(π)=
E,∃x.A+t E.

(5) Suppose π =
π ′

 A1,...,An,�

 A1,...,An
contr where � contains ki copies of Ai (for i∈1..n). Further

suppose that Exp(π ′)=E1,...,En,F1,1,...,F1,k1 ,...,Fn,1,...,Fn,kn where Ei is the expansion
tree corresponding to Ai, and Fi,1,...,Fi,ki are the expansion trees corresponding to the ki copies

 at B
ibliothek der T

U
 W

ien on January 20, 2016
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/

[16:02 24/5/2014 exu030.tex] LogCom: Journal of Logic and Computation Page: 11 1–27

A multi-focused proof system isomorphic to expansion proofs 11

of Ai in � (for i∈1..n). Then,

Exp(π)=E1 ∪
⋃

j∈1..k1

F1,j, ..., En ∪
⋃

j∈1..kn

Fn,j.

(6) If π ends with a ∨ or a ⊥ introduction rule, then Exp(π) is defined in the obvious way.

The expansion sequents constructed in this fashion have no merge nodes. We can extend this
definition to LKF by setting E(π)=E([π]) (Definition 2.1) for any LKF -proof π .

Theorem 2.20
If π is an LKN or an LKF proof, then Exp(π) is an expansion proof.

Proof. That Dp(Exp(π)) is a tautology can be shown by structural induction on π and following
Definition 2.19. Acyclicity of <Exp(π) follows from the side condition of the ∀-rule in LKN
(or LKF) and the appropriate choice of variable names in Definition 2.19. �

3 Representing expansion proofs: LKE

The previous section ended with a mapping Exp from any sequent proof, focused or not, to expansion
proofs. There is a dual operation, called sequentialization, that produces a sequent proof from an
expansion proof. Expansion trees contain only the quantifier instances, so an expansion proof might
be sequentialized to many different proofs that are all themselves mapped back to that proof by Exp.
Indeed, the merge operation used to define Exp combines duplicated subproofs which can cause an
exponential decrease in the size of the smallest proof [4].

The multi-focused LKF proof system has nearly all the ingredients for defining such
a sequentialization operation. Because expansion trees elide the propositional structure, the
corresponding sequent proofs cannot allow choice in the inference rules used to introduce the
propositional connectives. In terms of LKF this means that all but the existential connectives must
be treated as negative (i.e. invertible). The phases of the LKF proofs would then be an alternation
of existential instantiations, which correspond to the expansions, and of a pure reduction of the
sequent based on the other logical connectives which corresponds to the non-expansion arcs in the
expansion tree.

Although this intuition is simple, it has some issues that break the isomorphism between expansion
proofs and arbitrary LKF proofs restricted to negative connectives.

(A) In LKF there is only a single proof of
 ·⇑¬p(a),∃x.p(x):

 ¬p(a),∃x.p(x)⇓p(a) init

 ¬p(a),∃x.p(x)⇓∃x.p(x)
∃

 ¬p(a),∃x.p(x)⇑· decide

 ·⇑¬p(a),∃x.p(x)
store×2

All the steps in the proof are forced; in particular, the proof must finish with an init after applying
decide, which prevents all but the single instance of the existential formula. However, there
are infinitely many expansion proofs of ¬p(a)∨∃x.p(x) that simply differ in their expansions
of the existential formula.

 at B
ibliothek der T

U
 W

ien on January 20, 2016
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/

[16:02 24/5/2014 exu030.tex] LogCom: Journal of Logic and Computation Page: 12 1–27

12 A multi-focused proof system isomorphic to expansion proofs

(B) Similarly, in LKF there is only (essentially) a single proof of
 ·⇑t,∃x.¬p(x), which does
not instantiate the existential formula, but there are infinitely many expansion proofs of �∨
∃x.¬p(x) with different instances of the existential.

(C) In every expansion proof of p(a)∨∃x.¬p(x), the existential is expanded by a set of witnesses,
i.e. each of its expansions corresponds to a different witness term. On the other hand,
in an LKF proof of
 ·⇑p(a)∨∃x.¬p(x) it is possible to have the intermediate sequent

 p(a),∃x.¬p(x),¬p(b),¬p(b)⇑· which corresponds to expanding the existential by the same
witness term b twice:

 p(a),∃x.¬p(x),¬p(b),¬p(b)⇑·

 p(a),∃x.¬p(x)⇑¬p(b),¬p(b)

store×2

 p(a),∃x.¬p(x)⇓¬p(b),¬p(b) release

 p(a),∃x.¬p(x)⇓∃x.¬p(x),∃x.¬p(x)
∃×2

 p(a),∃x.¬p(x)⇑· decide

 ·⇑p(a),∃x.¬p(x)
store×2

In other words, issues (A) and (B) indicate that expansion proofs can contain more irrelevant ‘junk’
than the LKF proofs, while issue (C) illustrates that LKF proofs inherently treat the expansions as
a multiset rather than as a set.

Focusing in LKF is aggressive by design. Issues (A) and (B) demonstrate that we need to dampen
the effects of focusing in LKF somewhat: in particular, the init and t introduction rules finish the
proof too early, before the existentials in the context can be instantiated. To relax these rules, we use
the standard mechanism of delaying connectives that end the phase instead of the proof (by release
or store, as appropriate) so that the formulas in the context can be focused on.

Definition 3.1 (Delays)
The unary connectives

∂

(−) or ∂(−), standing for positive delays or negative delays respectively, are
defined as follows

∂

(A) = ∃x.A ∂(A) = ∀x.A

where x is selected in some systematic fashion to be not free in A.

All subformulas of A are also subformulas of

∂

(A) or ∂(A); moreover,

∂

(A) and ∂(A) are equi-
provable and [

∂

(A)]≡ [∂(A)] (Definition 2.1). If ∂(A) is present in the focus of a positive sequent,
then no further positive rules are applicable to it; eventually, after release is applied, the vacuous
universal quantifier will be removed before further negative processing of A. Likewise, if

∂

(A) is
present to the right of ⇑ in a negative sequent, then the only rule applicable to it is store, after which
a subsequent decide on it will copy

∂

(A) before instantiating the vacuous existential quantifier and
further positive processing of A. Observe that ∂(A) where A is already negative has essentially the
same behaviour as A; likewise for

∂

(A) where A is already positive.
We will only use ∂(−) for our purposes. Formally we define a pair of encodings from unpolarized

(LKN) formulas to polarized (LKF) formulas that track where in the sequent the formula would end
up in an LKF proof.

 at B
ibliothek der T

U
 W

ien on January 20, 2016
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/

[16:02 24/5/2014 exu030.tex] LogCom: Journal of Logic and Computation Page: 13 1–27

A multi-focused proof system isomorphic to expansion proofs 13

Definition 3.2
The pair of maps (−)l and (−)r from unpolarized to polarized formulas are recursively defined as
follows.

(A∨B)l =(A)l

&

(B)l (A∨B)r =(A)r

&

(B)r

(⊥)l = f (⊥)r = f

(A∧B)l =(A)l &(B)l (A∧B)r =(A)r &(B)r

(�)l =1 (�)r =∂(1)

(∀x.A)l =∀x. (A)l (∀x.A)r =∀x. (A)r

(∃x.A)l =∃x. (A)r (∃x.A)r =∃x. (A)r

(a)l =a (a)r =∂(a)

(¬a)l =¬a (¬a)r =¬a

These maps are naturally lifted to multisets of formulas.

These definitions are based on the intuition that LKF proofs of sequents of the form
 (�)l�(�)r

will correspond to expansion proofs. Existential formulas, atoms, and � are the only formulas that
are translated to positive formulas, and the latter two are only positive in the (−)l translation, i.e.
to the left of �. Because (a)r =∂(a), whenever (a)r occurs among the foci, the init rule of LKF is
prevented and it will eventually have to be released (after removing the ∂) and then the atom a
(which is the same as (a)l) is stored. This solves issue (A), because, in the example above, the ∃
introduction rule is now followed by release instead of init, which enables future decides on the
existential formula. Issue (B) is solved similarly by preventing t from occurring in the image of the
translation; whenever ∂(1) appears on the right in a negative sequent, it will need to be stored (after
stripping the ∂).

This leaves just issue (C). In the unfocused calculus LKN, where contraction is freely available, it
is never necessary to instantiate an existential formula the same way twice, as one can simply contract
the instantiated version instead. Expansion trees therefore treat the expansions (i.e. instantiations) of
existential formulas as a set rather than as a multiset. It is a simple matter to add a restriction to the
∃ introduction rule of LKN that prevents duplicated copies:

[t/x]A /∈�
 �,[t/x]A

 �,∃x.A

In the focused setting, such a restriction would break completeness because the foci themselves are
not necessarily contractible. Consider, for instance, the formula ∃x.∃y.¬p(x,y). In LKN, one could
instantiate the outer existential with a to get ∃y.¬p(a,y) which is then contracted and instantiated
with b and c to get ¬p(a,b) and ¬p(a,c). In LKF , we would instead have to contract the outermost
existential formula twice and instantiate the vector (x,y) with (a,b) and (a,c), which repeats the
instantiation of x by a.

Nevertheless, it is possible to recover a kind of non-redundant instantiation of existentials in LKF
if we restrict the release rule to check that a block of existentials from a formula that was decided
on have not been instantiated in the same way more than once, either in the same or in an earlier
positive phase. To make this restriction formal we would require naming and tracking subformula
relationships in the proof system, which is tedious but straightforward. Instead of taking this formal
approach, we simply stipulate that all LKF proofs mentioned in the rest of the article implicitly have

 at B
ibliothek der T

U
 W

ien on January 20, 2016
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/

[16:02 24/5/2014 exu030.tex] LogCom: Journal of Logic and Computation Page: 14 1–27

14 A multi-focused proof system isomorphic to expansion proofs

Figure 3. Rules of LKE.

this restriction on the release rules. (We state this restriction as a side condition to the release rule
in the LKF -related proof system LKE in Figure 3.) As with LKN, this restriction does not break
completeness: contraction is available for the context � in
 ���, so one can always reuse the
instances.

The reader may wonder why issue (C) is not dealt with by using a variant definition of expansion
trees that uses multisets or lists of expansions as in [29]. We use sets for the following reason: we
heavily rely on Theorem 4.2 (proved in the next section) which states that rule permutations do not
change the associated expansion proof. This result would not be true in a setting of expansion trees
based on multisets or lists. Consider the following rule permutation:

π1
 �,A,[t/x]C
π2
 �,B,[t/x]C

 �,A∧B,[t/x]C ∧

 �,A∧B,∃x.C ∃ ∼

π1
 �,A,[t/x]C

 �,A,∃x.C ∃

π2
 �,B,[t/x]C

 �,B,∃x.C ∃

 �,A∧B,∃x.C
∧

In the proof on the left, there is only one instance of ∃x.C, but there are two in the proof on the right.
Because we want to admit this permutation, the common expansion tree representing both proofs
must ignore the order and the multiplicity of the expansions.

While we can in principle continue using LKF and this encoding as our proof system, it will
serve our purposes better to define a version of LKF , which we call LKE, specialized for the above
encodings (−)r and (−)l. The rules of LKE are displayed in Figure 3. Like LKF , the rules of LKE can
be divided into three classes. The propositional rules contain almost all the negative rules of LKF ,
except for t (which does not exist in the image of the encodings). Every propositional rule has at least
one premise, and no atomic sub-formulas are lost when moving from conclusion to premises.

The positive phase of LKF is present in LKE in only a degenerate existential phase consisting of a
single rule. The remaining connectives, viz. positive atoms and 1, have specialized rules incorporating
their focused LKF behaviour; in either case, the formula must be the sole principal formula of an
LKF decide instance, after which the proof branch must immediately terminate with init or the
1 (i.e. (�)l) introduction rule, respectively. These derived positive LKF phases are added as new
structural rules to LKE. The decide rule in LKE therefore only copies existential formulas into the

 at B
ibliothek der T

U
 W

ien on January 20, 2016
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/

[16:02 24/5/2014 exu030.tex] LogCom: Journal of Logic and Computation Page: 15 1–27

A multi-focused proof system isomorphic to expansion proofs 15

foci, possibly more than once. The remaining structural rules of store and release are the same as
in LKF .

Theorem 3.3
The LKE sequent
 ��� is derivable in LKE iff the LKF sequent
 (�)l�(�)r is derivable
in LKF .

Proof. A simple induction on the structure of proofs in LKE of the sequent
 ��� yields a proof in
LKF of the sequent
 (�)l�(�)r. The converse is similarly proved by an induction on the structure
of LKF proofs of sequents of the form
 (�)l�(�)r. �
Definition 3.4
For any LKE proof π , we write [π] for that LKN proof that:

• replaces all sequents of the form
 ��� with
 �,�;
• removes all instances of the rules store and release; and
• renames decide to contr in π .

Theorem 3.5 (LKE vs. LKN)
(1) If π is an LKE proof of
 ���, then [π] is an LKN proof of
 �,� (soundness).
(2) If
 � is provable in LKN, then
 ·⇑� is provable in LKE (completeness).

Proof. A corollary of Theorems 2.2 and 3.3. �

4 Permutations, maximality and sequentialization

4.1 Permutations

Because expansion proofs record only the quantifier instances, they are more syntactically canonical
than LKN proofs: two LKN proofs that only differ in a trivial order of inference rules are mapped
by Exp to the same expansion tree. The pre-image of Exp defines an equivalence class of LKN
proofs that are all represented by the same expansion proof. These equivalence classes correspond
to a phenomenon that is well studied in the literature on the sequent calculus, that of permutations
of inference rules in a sequent proof.

Definition 4.1 (Permutations in LKN)
Two proofs π and π ′ of the same LKN sequent are permutatively equivalent, written π ∼π ′, if
the equivalence can be established as the reflexive-transitive-symmetric-congruence closure of the
following local rule permutations.

(1) Permutations of introduction rules: these are permutations where the order of two neighbouring
introduction rules can be locally switched. The following is a characteristic example, where an ∃
following a ∧ introduction can be rewritten to an ∧ introduction following two ∃ introductions.

π1
 �,A,[t/x]C
π2
 �,B,[t/x]C

 �,A∧B,[t/x]C ∧

 �,A∧B,∃x.C ∃ ∼

π1
 �,A,[t/x]C

 �,A,∃x.C ∃

π2
 �,B,[t/x]C

 �,B,∃x.C ∃

 �,A∧B,∃x.C
∧

 at B
ibliothek der T

U
 W

ien on January 20, 2016
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/

[16:02 24/5/2014 exu030.tex] LogCom: Journal of Logic and Computation Page: 16 1–27

16 A multi-focused proof system isomorphic to expansion proofs

(2) Permutations of structural rules: the contr rule permutes with other contr rules and can also
be used to merge two neighbouring instances into one common instance:

 �,�,�

 �,�
contr

 �
contr ∼
 �,�,�

 �
contr ∼

 �,�,�

 �,�
contr

 �
contr

As a restriction, we prevent the init and contr rules from permuting, i.e.

 �,�,a,¬a init

 �,a,¬a contr �∼
 �,a,¬a init

(3) Permutations of introduction and structural rules: when an introduction rule switches places
with a contraction, the contraction may need to be duplicated.

π1
 �,�,A
π2
 �,�,B

 �,�,A∧B
∧

 �,A∧B contr ∼

π1
 �,�,A

 �,A contr

π2
 �,�,B

 �,B contr

 �,A∧B
∧

Note that in the instance of contr in the left derivation, �⊆set �,A∧B, while in those of the
right derivations, �⊆set (�,A) and �⊆set (�,B). So, in general only �⊆set �.
As a restriction, we prevent � introduction from permuting with contr, i.e.

 �,�,� �

 �,� contr �∼
 �,� �

Observe that the two restricted permutations, init/contr and �/contr, would otherwise be the
only permutations that could delete a contracted copy of a formula (and its associated subproof)
from an LKN proof. As contractions are used to implement decides in LKF and LKE, which are in
turn the representatives of expansions, allowing permutations to delete contractions would break the
following important theorem.

Theorem 4.2
If π1 ∼π2, then Exp(π1)=Exp(π2).

Proof. By inspection of Definitions 2.19 and 4.1, each local permutation preserves Exp. We give
here a representative case of ∧/∃ permutations, with:

π1 =

πA
 �,A,[t/x]C
πB
 �,B,[t/x]C

 �,A∧B,[t/x]C ∧

 �,A∧B,∃x.C ∃ and π2 =

πA
 �,A,[t/x]C

 �,A,∃x.C ∃

πB
 �,B,[t/x]C

 �,B,∃x.C ∃

 �,A∧B,∃x.C
∧

We have, by the inductive hypotheses, that Exp(πA)=E,EA,E[t/x]C and Exp(πB)=F,FB,F[t/x]C
where EA is an expansion tree for A; EB is an expansion tree for B; E[t/x]C and F[t/x]C are expansion
trees for [t/x]C; and E and F are expansion sequents for �. We then have Exp(π1)=E ∪F,EA ∧
FB,∃x.C+t (E[t/x]C ∪F[t/x]C)=Exp(π2). �

 at B
ibliothek der T

U
 W

ien on January 20, 2016
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/

[16:02 24/5/2014 exu030.tex] LogCom: Journal of Logic and Computation Page: 17 1–27

A multi-focused proof system isomorphic to expansion proofs 17

The converse is not true. For example, consider these two LKN proofs.

 p(a),¬p(a) init

 ∃x.p(x),¬p(a)
∃
 p(b),¬p(b) init

 ∃x.p(x),¬p(b)
∃

 ∃x.p(x),¬p(a)∧¬p(b)
∧

 p(a),p(b),¬p(a) init
 p(a),p(b),¬p(b) init

 p(a),p(b),¬p(a)∧¬p(b)
∧

 ∃x.p(x),∃x.p(x),¬p(a)∧¬p(b)
∃×2

 ∃x.p(x),¬p(a)∧¬p(b) contr

Exp maps both proofs to the same expansion sequent (∃x.p(x)+a p(a)+b p(b)),¬p(a)∧¬p(b).
However, the proofs are not permutatively equivalent because there is no local permutation that
can change the order of the ∃ and ∧ rules in the left derivation. Indeed, the numbers of contracted
formulas are different in the two proofs, but none of our permutations can delete contracted copies.
It is fairly obvious, therefore, that LKN simply has too many proofs if we want the permutative
equivalence to characterize the identifications made by Exp.

We can also define an equivalence over LKF and LKE proofs in terms of rule permutations.
Defining local permutations directly in the focused setting is difficult because cases such as
decide/store are simply impossible, so the permutations will have to be written in a so called
synthetic form [6, 7]. This would be a technical and unilluminating detour for this article, so we just
exploit Definition 2.1 to bootstrap the LKF and LKE permutative equivalence.

Definition 4.3
Two LKF or LKE proofs π1 and π2 of the same sequent are permutatively equivalent, written
π1 ∼π2, iff [π1]∼ [π2] (see Definitions 2.1, 3.4 and 4.1).

This is not the only equivalence on focused proofs: there is at least one other equivalence that we
can define based on just the phase structure of a focused proof. To motivate this definition, consider
an LKE proof of
 �⇑·. Assuming the sequent is not proved by init or � introduction, it must be
proved by a decide, which will enter the existential phase, then (after release) the propositional
phase, and finally be back to sequents of the form
 �′⇑· after a number of stores. We can view this
as an action (sometimes also called a synthetic rule or bipole) between LKE sequents of the form

 �⇑·, where we simply ignore all the rules except decide, init and �. Two LKE proofs that have
the same action structure should be considered action equivalent.

Definition 4.4
Two LKE proofs π1 and π2 of the same sequent are action equivalent, written π1 ∼=π2, iff they are
tree-isomorphic for the instances of the decide, init and � rules.

Action equivalence gives us a different notion of the essence of an LKE proof that is independent
of expansion trees and permutations. Because two action equivalent proofs have the same decide
rules, one can reason about such proofs by induction on the decision depth—i.e. the nesting depth of
the decide rules—in the LKE proof. If from a proof we simply elide all but the decide rules, and
record the existential witnesses along with these instances of decide, we would obtain a so called
synthetic proof using synthetic rules [6].

4.2 Maximality

How are these two notions of equivalence related? One direction is obvious.

Theorem 4.5
If π1 and π2 are LKE proofs of the same sequent, then π1 ∼=π2 implies π1 ∼π2.

 at B
ibliothek der T

U
 W

ien on January 20, 2016
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/

[16:02 24/5/2014 exu030.tex] LogCom: Journal of Logic and Computation Page: 18 1–27

18 A multi-focused proof system isomorphic to expansion proofs

Proof. Up to local permutations, there is only a single way to derive an action. As π1 and π2 have
the same actions, they must be permutatively equivalent. �

In the other direction, two permutatively equivalent LKE proofs need not be action equivalent as
they may perform the decide steps in a different order or with different foci. To illustrate, here are two
permutatively equivalent LKE proofs that are not action equivalent (where �=∃x.p(x),∃y.¬p(f (y))):

 �,p(f (c)),¬p(f (c))⇑· init

 �,p(f (c))⇓∃y.¬p(f (y))
∃,release,

store

 �,p(f (c))⇑· decide

 �⇓∃x.p(x)
∃,release,

store

 �⇑· decide

 �,p(f (c)),¬p(f (c))⇑· init

 �⇓∃x.p(x),∃y.¬p(f (y))
∃×2,release,

store×2

 �⇑· decide

However, each permutative equivalence class of LKE proofs does have a canonical (i.e. up to action
equivalence) form where, intuitively, the foci of each decide rule are selected to be as numerous as
possible. The proof on the right above, for example, has an instance of decide with more foci than
the one on the left.

Definition 4.6 (Maximality)
Given an LKE proof π that ends in an instance of decide, let foci(π) stand for the multiset of foci in
the premise of that instance of decide. We say that this instance of decide is maximal iff for every
π ′ ∼π , it is the case that foci

(
π ′)⊆multiset foci(π). An LKE proof is maximal iff every instance of

decide in it is maximal.

It follows directly from the definition that maximality is preserved by action equivalence. The two
main properties of maximal proofs are that permutatively equivalent maximal proofs are also action
equivalent, and that for every proof there is a permutatively equivalent maximal proof. Thus, the
maximal proofs are canonical (action equivalent) representatives of their permutative equivalence
classes.

Theorem 4.7 (Canonicity)
(1) Every LKE proof has a permutatively equivalent maximal proof.
(2) Two permutatively equivalent maximal LKE proofs are action equivalent.

Proof. Because init/contr and �/contr permutations are disallowed in LKN, equivalent proofs
have the same multiset union of all the foci of their decide rules. Using contr/contr permutations,
the foci of the instances of decide can be divided or combined as needed. Therefore, there is a focus
maximalization operation that, starting from the bottom of an LKE proof and going upwards, permutes
and merges foci into the lowermost decide instances by splitting them from higher instances. This
merge operation obviously terminates (by induction on the decision depth); moreover, the result is
maximal by Definition 4.6.

To see that two given permutatively equivalent maximal proofs are action equivalent, suppose the
contrary. Then there is a lowermost instance of decide in the two proofs that have an incomparable
multiset of foci (if they were comparable, then either one of the proofs is not maximal or they
are action equivalent). Since the proofs are permutatively equivalent, these two decide instances
themselves permute; hence, their foci can be merged, contradicting our assumption that they are
maximal. �

 at B
ibliothek der T

U
 W

ien on January 20, 2016
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/

[16:02 24/5/2014 exu030.tex] LogCom: Journal of Logic and Computation Page: 19 1–27

A multi-focused proof system isomorphic to expansion proofs 19

Similar theorems have appeared in [6, 7] for various fragments of multiplicative additive linear
logic. It is an important feature of this proof that its argument is generic. It holds for any permutation
system for a focused sequent calculus that can guarantee that foci are never deleted as part of a
permutation.

Definition 4.8
We write max(π) for the unique action equivalence class of maximal proofs that are permutatively
equivalent to π (which exists by Theorem 4.7).

An example of the use of the canonicity theorem is Herbrand’s theorem [17] for existential prenex
formulas, which is a simple corollary of the completeness of LKE for classical first-order logic:

Corollary 4.9
The formula ∃	x.A, where A is quantifier-free, is valid if and only if there is a sequence of vectors of
terms 	t1,...,	tn such that the disjunction [t1/	x]A∨···∨[tn/	x]A is valid.

Proof. The if-direction is trivial. For proving the only if-direction, suppose ∃	x.A is valid, i.e. the
LKN sequent
 ∃	x.A is provable. By Theorem 3.5
 ·⇑∃	x.A is provable in LKE, i.e.
 ∃	x.A⇑·
is provable as only store applies to the former. Because A is quantifier-free, the decide rule
can only apply to ∃	x.A; thus, the equivalent maximal proof (which exists by Theorem 4.7)
performs only (at most) a single decide at the bottom, producing a number of focused copies
of ∃	x.A. In the existential phase, the ∃s are removed from the foci to give the required term
vectors. �

4.3 Sequentialization

Thus far, we have shown that if π1 ∼π2, then Exp(π1)=Exp(π2) (Theorem 4.2) and max(π1)=
max(π2) (Theorem 4.7). In fact, we can show more: Exp(π) and max(π) are isomorphic. To do this,
we will require a means of extracting LKE proofs from expansion proofs. We will directly extract
a maximal LKE proof from an expansion proof, a step we call sequentialization. The definition
consists of two phases: first we translate an expansion proof to a proof in an intermediate calculus
LKEE which has the structure of LKE but uses expansion sequents instead of ordinary sequents.
Secondly we map an LKEE proof π to an LKE proof Sh(π) which is defined by applying Sh to
every expansion tree appearing in the LKEE proof. This operation will yield a valid LKE proof as
the Sh image of an LKEE rule will be an LKE rule.

In slightly more detail, the sequents of LKEE are of the form
 E �F where E,F is an expansion
sequent. All the other rules of LKE except decide are adapted to expansion sequents in the natural
way. To illustrate, here are the ∧ and ∃ introduction rules in LKEE :

 E ⇑F,E
 E ⇑F,F

 E ⇑F,E∧F

∧
 E ⇓F,E

 E ⇓F,∃x.A+t E
∃

The init and � rule of LKEE are also restricted to:

 E,a,¬a⇑· init
 E,�⇑· �

where E contains only �s, literals, or trivial existential trees i.e. trees of the form ∃x.A. Finally, for
the decide rule for LKEE , we will use the following notational device.

 at B
ibliothek der T

U
 W

ien on January 20, 2016
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/

[16:02 24/5/2014 exu030.tex] LogCom: Journal of Logic and Computation Page: 20 1–27

20 A multi-focused proof system isomorphic to expansion proofs

Definition 4.10 (Expansion Vectors)
The block notation ∃	x.A+	t1 E1 ···+	tn En (where A is not an existential formula) is used to abbreviate
those expansion trees where each 	ti is a vector of expansion terms for 	x, and Ei is an expansion
tree for [ti/	x]A. For example, the expansion tree ∃x.∃y.p(x,y)+t (∃y.p(t,y)+s1 p(t,s1)+s2 p(t,s2))
in the ordinary notation can be abbreviated as ∃(x,y).p(x,y)+(t,s1) p(t,s1)+(t,s2) p(t,s2). Each 	ti in
E =∃	x.A+	t1 E1 ···+	tn En is said to be an expansion vector of (the top node of) E. We say that an
expansion vector (t1,...,tn) is topmost in an expansion tree if t1 is a topmost expansion term of the
tree.

Definition 4.11
The relation <E on occurrences of expansion terms (Definition 2.8) is lifted to occurrences of
expansion vectors in the natural way, i.e. 	t <E 	s iff for every t ∈	t and s∈	s it is the case that t <E s.

Theorem 2.11 generalizes to occurrences of expansion vectors.

Theorem 4.12
Let E be an expansion proof containing at least one expansion term. Then, one of the topmost
occurrences of expansion vectors is <E -minimal.

Proof. Observe that the <E relation lifted to occurrences of expansion vectors remains acyclic.
Hence, the argument of Theorem 2.11 is just as applicable to expansion vectors. �

The decide rule of LKEE is modified to focus on as many foci as possible as determined by
the dependency relation on the expansion sequent in the conclusion. We will show below that this
corresponds to maximal LKE proofs. Formally, the decide rule of LKEE is the following:

 L,G⇓F

 L,E ⇑· decide

where:

(i) L contains only �s and literals;
(ii) E =E1,...,En where for every i∈1..n,

Ei =∃	x.Ai +	si,1 Fi,1 ···+	si,di Fi,di +	ti,1 Gi,1 ···+	ti,ui Gi,ui

and Ai is not an existential formula;
(iii) F =F1,...,Fn where for every i∈1..n,

Fi =
(∃	x.Ai +	si,1 Fi,1

)
,...,

(∃	x.Ai +	si,di Fi,di

);
(iv) G =G1,...,Gn where for every i∈1..n,

Gi =∃	x.Ai +	ti,1 Gi,1 ···+	ti,ui Gi,ui ;

(v) and for each i∈1..n,j∈1..di, the expansion vector 	si,j is <L,E -minimal (Definition 4.11).

Intuitively, the decide rule selects for focus those existential expansion trees from the conclusion
sequent that corresponds to the minimal expansion vector, and then removes these expansion vectors
from consideration in a subsequent decide above.

 at B
ibliothek der T

U
 W

ien on January 20, 2016
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/

[16:02 24/5/2014 exu030.tex] LogCom: Journal of Logic and Computation Page: 21 1–27

A multi-focused proof system isomorphic to expansion proofs 21

Theorem 4.13
If E =E1,...,En is an expansion proof, then:

(1)
 ·⇑E is derivable in LKEE , and
(2)
 ·⇑Sh(E1),...,Sh(En) is derivable in LKE.

Proof. (2) follows from (1) as Sh maps LKEE proof rules to LKE proof rules. To show (1), we
observe that an LKEE proof can be reconstructed for the end-sequent
 ·⇑E without any non-
deterministic choices. The instances of decide are determined by the dependency relation, and the
instantiations of the ∃-inferences of LKEE are determined by the expansion trees in their respective
conclusion sequents. As each rule of LKEE has the property that if the conclusion is an expansion
proof then so is each individual premise (which is easily shown by inspection of the rules), since
the end-sequent is an expansion proof it follows that every sequent in the LKEE derivation will
also be an expansion proof. When the proof being reconstructed has no expansion terms, only the
propositional phase applies which simply reduces the compound expansion trees to literals and �;
since these rules preserve the tautology of deep formulas, eventually each premise must have a �
or a dual pair of literals, which are the basic tautologies. These branches can then be closed by �
introduction or init.

Therefore, it suffices to show that we can always use a decide and the subsequent existential phase
to remove at least one expansion term (if one exists) from the conclusion of the form
 F ⇑· of an
LKEE proof, so that the reconstruction can make progress. But, decide will always be applicable in
this case by Theorem 4.12, as there is always at least one topmost expansion term that is <F -minimal.
In our case, these topmost terms are the expansion terms of topmost existential nodes in F . �
Definition 4.14 (Sequentialization)
Every expansion proof E has an LKEE proof πE of
 ·⇑E by Theorem 4.13. The LKE proof
π =Sh(πE) is called a sequentialization of E , written Seq(E,π).

Sequentialization is designed to produce only maximal proofs.

Theorem 4.15
For any expansion proof E , if Seq(E,π) then π is maximal.

Proof. Suppose Seq(E,π0) and π0 is not maximal. Then, π0 contains a subproof π ending with an
instance of decide that is not maximal, i.e. there exists a proof π ′ ∼π and foci(π)⊂multiset foci

(
π ′).

This must mean that there is an existential formula ∃x.A in foci
(
π ′)\foci(π) for which there is an

expansion term t in E . Since the instance of ∃ for this formula was permutable by local permutations
down to the instance of decide in π ′, it must be that t does not mention any of the eigenvariables in
π introduced between this instance of decide and the instance of ∃ on ∃x.A. This in turn means that
the term t is <F -minimal where F is the expansion sequent in the conclusion of the LKEE proof
that corresponds to π . Hence, it must have been one of the expansion terms selected by decide in
the LKEE proof, contradicting our assumption that the corresponding ∃x.A /∈ foci(π). �

5 Equivalence

We have seen in the canonicity theorem that every LKE proof is permutatively equivalent to a unique
action equivalence class of maximal proofs. In this section we will show that these action equivalence
classes are isomorphic to expansion proofs. Hence maximality identifies the same sequent proofs as
are identified by expansion proofs, i.e. by the pre-image of Exp.

 at B
ibliothek der T

U
 W

ien on January 20, 2016
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/

[16:02 24/5/2014 exu030.tex] LogCom: Journal of Logic and Computation Page: 22 1–27

22 A multi-focused proof system isomorphic to expansion proofs

5.1 Proof homomorphisms

First, let us make precise our notion of isomorphism. We will consider mappings of proofs to proofs
which are homomorphisms with respect to the rules of LKE. Note that this approach is different from
categorical semantics of proofs where the proofs are interpreted as morphisms. For the purposes of
this article, proofs are considered as objects. If ϕ is a homomorphism from LKE proofs to some data
structure S, then for each rule of LKE, φ must map every instance of that rule to an instance of an
operation in S. For example, if we have this LKE proof:

π =
πA
 �⇑�,A

πB
 �⇑�,B

 �⇑�,A∧B

∧

then there must be an operation
 in S such that ϕ(π)=ϕ(πA)
ϕ(πB).
Concretely, we will consider Exp :LKE→EP as our homomorphism where EP stands for the set

of all expansion proofs, and the operations on EP are those of Definition 2.19.

Lemma 5.1
For all E ∈EP , if Seq(E,π) then Exp(π)=E .

Proof. By a straightforward induction on E . �
Thus, Exp has a right-inverse that, for every E ∈EP , picks some π such that Seq(E,π) (which is

possible by Theorem 4.5). Hence, Exp is a surjective homorphism.

5.2 Action equivalence classes

To establish the isomorphism between action equivalence classes of maximal proofs and expansion
proofs, we shall lift Exp, Seq and max to action equivalence classes by quotienting over ∼=.

(i) As permutations do not affect Exp (Theorem 4.2) and action equivalence implies permutative
equivalence (Theorem 4.5), it follows that the mapping Ẽxp :LKE�∼=→EP is well defined.

The operations on LKE�∼= are the rules of LKE applied to permutative equivalence classes of
LKE. Ẽxp is a homomorphism with respect to these operations.

(ii) In the other direction, S̃eq :EP →LKE�∼= is immediately defined by mapping E to the action
equivalence class of some π for which Seq(E,π).

(iii) Finally, we can lift max :LKE→LKE to m̃ax :LKE�∼=→LKE�∼= in the natural way, which is
possible by Theorem 4.5. As maximality is preserved by action equivalence, it follows that
m̃ax is idempotent.

5.3 Maximal proofs

Let LKEM stand for that fragment of LKE where every proof is maximal and whose end-sequent is
of the form
 �⇑·.
Lemma 5.2
If �∈LKEM�∼=, then �= S̃eq(Ẽxp(�)).

 at B
ibliothek der T

U
 W

ien on January 20, 2016
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/

[16:02 24/5/2014 exu030.tex] LogCom: Journal of Logic and Computation Page: 23 1–27

A multi-focused proof system isomorphic to expansion proofs 23

Proof. Suppose π ∈�. We show that Seq(Exp(π),π) by induction on the decision depth of π . The
cases where π ends with � introduction or init are trivial. Otherwise, the bottom-most action in π

has this form:

π1
 �,�1 ⇑· ···
πm
 �,�m ⇑·....

 �⇑[t1/	x1]A1,...,[tn/	xn]An

 �⇓[t1/	x1]A1,...,[tn/	xn]An
release

....
 �⇓∃	x.A1,...,∃	x.An

 �⇑· decide

where the Ai (for i∈1..n) are non-existential formulas and Seq(Exp(πj),πj) (for j∈1..m) by the
induction hypothesis. The expansion vectors 	ti are all <Exp(π)-minimal because π is the Sh image
of an LKEE proof (Definition 4.14). Moreover, all the <Exp(π)-minimal topmost terms occur among
the 	ti, for otherwise there would be a permutatively equivalent LKE proof to π with more foci,
contradicting the assumption that π is maximal. Therefore, Seq(Exp(π),π). �
Theorem 5.3
Ẽxp :LKEM�∼=→EP is an isomorphism with inverse S̃eq.

Proof. We have already observed that Ẽxp is a homomorphism. By Lemma 5.1 we have
Ẽxp(S̃eq(E))=E for all E ∈EP . Together with Lemma 5.2, this shows that Ẽxp has both a left
and a right inverse, both of which are S̃eq. �

Let us consider some concrete consequences of this isomorphism. We have seen that a maximal
proof corresponding to π can be obtained via rule permutations as in the first part of Theorem 4.7.
Reading off an expansion tree from π and then re-sequentializing this tree gives an alternative way
to compute a maximal proof as the following theorem shows.

Theorem 5.4
For any π ∈LKE, S̃eq(Exp(π))=max(π).

Proof. We have Exp(π)= Ẽxp(max(π)) by Theorem 4.2. Therefore, by Theorem 5.3,
S̃eq(Exp(π))= S̃eq(Ẽxp(max(π)))=max(π). �

Furthermore, the abstractions of LKE proofs provided by expansion trees and by maximal multi-
focusing are the same.

Theorem 5.5
For π1,π2 ∈LKE, Exp(π1)=Exp(π2) iff max(π1)=max(π2).

Proof. For the left-to-right direction let E =Exp(π1)=Exp(π2). Theorem 5.4 then implies that
max(π1)= S̃eq(E)=max(π2). The right-to-left direction follows directly from Theorem 4.2. �

6 Related work

It is generally believed that classical logic lacks a denotational semantics for proofs akin to
Cartesian-closed categories (CCC) for intuitionistic logic or
-autonomous categories for linear
logic. For example, if one tries to enrich the usual CCC semantics for intuitionistic logic with an

 at B
ibliothek der T

U
 W

ien on January 20, 2016
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/

[16:02 24/5/2014 exu030.tex] LogCom: Journal of Logic and Computation Page: 24 1–27

24 A multi-focused proof system isomorphic to expansion proofs

involutive negation, then the CCC degenerates into a poset that equates all proofs of a formula
(Joyal’s paradox) [25]. In terms of the sequent calculus, this problem manifests as follows: cut-
elimination using Gentzen’s cut-reduction rules is neither confluent nor strongly normalizing for LK
proofs [3, 13, 19]. To force confluence, for instance, one would have to equate all cut-free proofs of
a formula which again trivializes the semantics.

There have been both syntactic and semantic approaches to identifying classes of sequent proofs
where such collapses do not occur. Of the syntactic approaches, one can recover confluence (up
to a small equivalence relation) as well as strong normalization by fixing particular cut-reduction
strategies in the sequent calculus [8]. If one refrains from fixing a reduction strategy one may
still obtain a strongly normalizing though non-confluent system by using sufficiently strong local
reductions [38, 39]. Another approach is to carry out cut-elimination in a more abstract formalizm,
similar to a proof-net, on the level of quantifiers [15, 28]. The reduction in such a setting is typically
not confluent and strong normalization is open [28] or known not to hold [15]. Confluence (up to the
equivalence relation of having the same expansion tree) as well as normalization can be recovered
for a class of proofs [20] by considering a maximal abstract reduction based on tree grammars [18]
which contains all concrete reductions. Extension of these results to all proofs is open.

From the semantic end, briefly, there are two principal approaches. The first approach rejects the
involutive negation, which results in negation having a computational content that can be reified in
the λμ calculus with a semantics in terms of control categories (see [16] for a survey). The second
approach rejects the Cartesian structure for conjunctions, which requires a variant of proof-nets called
flow graphs for the proofs and a semantics in terms of enriched Boolean categories [23, 37].

There are also a number of alternative answers to the question of when two cut-free sequent proofs
are identical. Generally speaking, such answers are limited to the propositional fragment, and are
primarily concerned with abstracting the propositional structure of sequent proofs [13, 22, 24, 27, 33,
35]. In the first-order case, it is more common to ignore the propositional structure and instead consider
only the first-order content of proofs. Expansion trees [29], which are a generalization of Herbrand
disjunctions, are perhaps the most minimalistic of such approaches as they record only the quantifier
instances in a tree structure. (Indeed, the notion of expansion trees generalizes readily to even
higher-order logic, which is the domain where it was initially developed.) The correctness criterion
for expansion trees—that the deep formula is a tautology—is in co-NP. Specialized techniques
such as the mating method [2] or the connection method [5] have been developed to represent
these tautological checks using graph structures, but the worst case complexity of these techniques
remains high.

To our knowledge, there has been only a single attempt to produce canonical proof structures
directly in the sequent calculus, in this case for propositional MALL (with a certain restriction on
�) [7, 36]. This attempt also used multi-focusing as its abstraction mechanism, and it is actually the
first place where the concept of maximal proofs appears in the literature. Multi-focusing was first
proposed in [9, 31] as a natural extension of Andreoli’s focusing system [1] for linear logic, and a
similar concept has been independently developed in game semantics [32]. Although we have shown
that maximal proofs are isomorphic to expansion proofs in this article, they can be exponentially
larger than expansion proofs [4]. However, correctness of any sequent proof is easy to check as one
simply needs to check that every inference in the proof is an instance of a proper rule schema. Indeed,
even open (unfinished) sequent proofs can be seen to be correct, while the correctness condition for
expansion trees only makes sense for completed proofs.

It is important to note that the notion of maximal proof strictly generalizes existing canonical
forms in other contexts. For example, for intuitionistic logic, if one uses the focused sequent calculus
LJF [26] with just the two negative connectives of implication and universal quantification and with

 at B
ibliothek der T

U
 W

ien on January 20, 2016
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/

[16:02 24/5/2014 exu030.tex] LogCom: Journal of Logic and Computation Page: 25 1–27

A multi-focused proof system isomorphic to expansion proofs 25

negative atomic formulas, then maximal proofs are the same as singly focused proofs. Moreover,
they are isomorphic to the β-normal η-long forms of the typed λ-calculus [10].

7 Conclusion

We have illustrated that, instead of discarding the sequent calculus in search of canonical proof
systems, sequent proofs can be systematically abstracted into more canonical forms. In this paper,
we have imposed a particular focusing discipline on classical sequent proofs—negatively polarized
propositional connectives with minor use of delays—and have then showed that maximal multi-
focusing in the sequent calculus yields the parallel and minimalistic notion of proofs based on
expansion trees.

We leave untouched the question of maximality for the unrestricted permutations, i.e. without
preventing �/contr or init/contr permutations. It is easy to show that, although maximal proofs
do exist in this larger setting, they are not unique, and therefore the natural notion of equality for
maximal proofs (action equivalence) does not provide canonical representatives for the permutative
equivalence classes of maximal proofs. It is worth investigating the properties of such non-canonical
maximal proofs. For example, are there natural geometric structures that correspond to maximal
proofs in more permutatively permissive systems? Similar questions can be asked about the full
LKF system, with both positive and negative propositional connectives, and for the related focused
sequent calculi for intuitionistic logic and linear logic.

Acknowledgments

This research has been funded in part by the ERC Advanced Grant ProofCert and by the ANR-FWF
project STRUCTURAL.

References
[1] J.-M. Andreoli. Logic programming with focusing proofs in linear logic. Journal of Logic and

Computation, 2, 297–347, 1992.
[2] P. B. Andrews. Theorem proving via general matings. Journal of ACM, 28, 193–214, 1981.
[3] M. Baaz and S. Hetzl. On the non-confluence of cut-elimination. Journal of Symbolic Logic,

76, 313–340, 2011.
[4] M. Baaz, S. Hetzl, and D. Weller. On the complexity of proof deskolemization. Journal of

Symbolic Logic, 77, 669–686, 2012.
[5] W. Bibel. Matrices with connections. Journal of the ACM, 28, 633–645, 1981.
[6] K. Chaudhuri. Focusing strategies in the sequent calculus of synthetic connectives. In LPAR:

International Conference on Logic, Programming, Artificial Intelligence and Reasoning,
vol. 5330 of LNCS, I. Cervesato, H. Veith, and A. Voronkov, eds, pp. 467–481. Springer, 2008.

[7] K. Chaudhuri, D. Miller, and A. Saurin. Canonical sequent proofs via multi-focusing. In Fifth
International Conference on Theoretical Computer Science, vol. 273 of IFIP, G. Ausiello,
J. Karhumäki, G. Mauri, and L. Ong, eds, pp. 383–396. Springer, 2008.

[8] V. Danos, J.-B. Joinet, and H. Schellinx. A new deconstructive logic: linear logic. Journal of
Symbolic Logic, 62, 755–807, 1997.

[9] O. Delande and D. Miller. A neutral approach to proof and refutation in MALL. In 23th Symp.
on Logic in Computer Science, F. Pfenning, ed, pp. 498–508. IEEE Computer Society Press,
2008.

 at B
ibliothek der T

U
 W

ien on January 20, 2016
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/

[16:02 24/5/2014 exu030.tex] LogCom: Journal of Logic and Computation Page: 26 1–27

26 A multi-focused proof system isomorphic to expansion proofs

[10] A. Felty. Transforming specifications in a dependent-type lambda calculus to specifications
in an intuitionistic logic. In Logical Frameworks. G. Huet and G. D. Plotkin, eds, Cambridge
University Press, 1991.

[11] G. Gentzen. Investigations into logical deduction. In The Collected Papers of Gerhard Gentzen,
M. E. Szabo, ed., pp. 68–131. North-Holland, 1969. Translation of articles that appeared in
1934-35.

[12] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50, 1–102, 1987.
[13] J.-Y. Girard. A new constructive logic: classical logic. Mathematical Structures in Computer

Science, 1, 255–296, 1991.
[14] A. Guglielmi, T. Gundersen, and M. Parigot. A proof calculus which reduces syntactic

bureaucracy. In Proceedings of the 21st International Conference on Rewriting Techniques
and Applications (RTA 2010), vol. 6 of Leibniz International Proceedings in Informatics
(LIPIcs), C. Lynch, ed., pp. 135–150, Edinburgh, United Kingdom, July 2010. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik.

[15] W. Heijltjes. Classical proof forestry. Annals of Pure and Applied Logic, 161, 1346–1366,
2010.

[16] H. Herbelin and A. Saurin. λ-calculus and �-calculus: a capital difference. Unpublished
manuscript, 2010.

[17] J. Herbrand. Recherches sur la Théorie de la Démonstration. PhD Thesis, University of Paris,
1930.

[18] S. Hetzl. Applying tree languages in proof theory. In Language and Automata Theory
and Applications (LATA) 2012, vol. 7183 of LNCS, A.-H. Dediu and C. Martín-Vide, eds,
pp. 301–312. Springer, 2012.

[19] S. Hetzl. The computational content of arithmetical proofs. Notre Dame Journal of Formal
Logic, 53, 289–296, 2012.

[20] S. Hetzl and L. Straßburger. Herbrand-confluence for cut-elimination in classical first-order
logic. In Computer Science Logic (CSL) 2012, vol. 16 of Leibniz International Proceedings in
Informatics (LIPIcs), P. Cégielski and A. Durand, eds, pp. 320–334. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2012.

[21] J. M. Howe. Proof Search Issues in Some Non-Classical Logics. PhD Thesis, University of St
Andrews, Dec. 1998. Available as University of St Andrews Research Report CS/99/1.

[22] D. J. D. Hughes. Proofs without syntax. Annals of Mathematics, 143, 1065–1076, 2006.
[23] F. Lamarche and L. Straßburger. Naming proofs in classical propositional logic. In Typed

Lambda Calculi and Applications, TLCA 2005, vol. 3461 of LNCS, P. Urzyczyn, ed.,
pp. 246–261. Springer, 2005.

[24] F. Lamarche and L. Straßburger. From proof nets to the free *-autonomous category. Logical
Methods in Computer Science, 2, 1–44, 2006.

[25] J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic. Cambridge
University Press, 1986.

[26] C. Liang and D. Miller. Focusing and polarization in linear, intuitionistic, and classical logics.
Theoretical Computer Science, 410, 4747–4768, 2009.

[27] R. McKinley. Expansion nets: proof-nets for propositional classical logic. In LPAR: Logic for
Programming, Artificial Intelligence, and Reasoning, vol. 6397 of LNCS, C. G. Fermüller and
A. Voronkov, eds, pp. 535–549, Yogyakarta, Indonesia, Oct. 2010. Springer, 2010.

[28] R. McKinley. Proof nets for Herbrand’s theorem. ACM Transactions on Computational Logic,
14, 2013. To appear.

[29] D. Miller. A compact representation of proofs. Studia Logica, 46, 347–370, 1987.

 at B
ibliothek der T

U
 W

ien on January 20, 2016
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/

[16:02 24/5/2014 exu030.tex] LogCom: Journal of Logic and Computation Page: 27 1–27

A multi-focused proof system isomorphic to expansion proofs 27

[30] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a foundation for logic
programming. Annals of Pure and Applied Logic, 51, 125–157, 1991.

[31] D. Miller andA. Saurin. From proofs to focused proofs: a modular proof of focalization in linear
logic. In CSL 2007: Computer Science Logic, vol. 4646 of LNCS, J. Duparc and T.A. Henzinger,
eds, pp. 405–419. Springer, 2007.

[32] S. Mimram. Focusing in asynchronous games. In CiE: Programs, Proofs, Processes, vol. 6158
of LNCS, F. Ferreira, B. Löwe, E. Mayordomo, and L. M. Gomes, eds, pp. 331–341. Springer,
2010.

[33] N. Novaković. Sémantique Algébrique des Ressources pour la Logique Classique. PhD Thesis,
Institut National Polytechnique de Lorraine, 2011.

[34] D. Prawitz. Natural Deduction. Almqvist & Wiksell, 1965.
[35] E. P. Robinson. Proof nets for classical logic. Journal of Logic and Computation, 13, 777–797,

2003.
[36] A. Saurin. Une étude logique du contrôle (appliquée à la programmation fonctionnelle et

logique). PhD Thesis, Ecole Polytechnique, Sept. 2008.
[37] L. Straßburger. What is the problem with proof nets for classical logic? In Programs, Proofs,

Processes, 6th Conference on Computability in Europe (CiE 2010), vol. 6158 of LNCS,
F. Ferreira, B. Löwe, E. Mayordomo, and L. M. Gomes, eds, pp. 406–416, Ponta Delgada,
Azores, Portugal, June 2010. Springer.

[38] C. Urban. Classical Logic and Computation. PhD Thesis, University of Cambridge, 2000.
[39] C. Urban and G. M. Bierman. Strong normalisation of cut-elimination in classical logic.

Fundamenta Informaticae, 45, 123–155, 2001.

Received 21 December 2012 at B
ibliothek der T

U
 W

ien on January 20, 2016
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

http://logcom.oxfordjournals.org/

	A multi-focused proof system isomorphic to expansion proofs
	1 Introduction
	2 Sequent calculus, focusing, and expansion proofs
	3 Representing expansion proofs: LKE
	4 Permutations, maximality and sequentialization
	5 Equivalence
	6 Related work
	7 Conclusion

