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Induction plays a key role in reasoning in many areas of mathematics and computer 
science. A central problem in the automation of proof by induction is the non-
analytic nature of induction invariants. In this paper we present an algorithm 
for proving universal statements by induction that separates this problem into 
two phases. The first phase consists of a structural analysis of witness terms of 
instances of the universal statement. The result of such an analysis is a tree grammar 
which induces a quantifier-free unification problem which is solved in the second 
phase. Each solution to this problem is an induction invariant. The arguments 
and techniques used in this paper heavily exploit a correspondence between tree 
grammars and proofs already applied successfully to the generation of non-analytic 
cuts in the setting of pure first-order logic.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Induction is a reasoning principle of fundamental importance in many areas of mathematics and computer 
science. It is indispensable already for the definition of basic data structures such as lists, trees, programs, 
etc. and for reasoning about these structures. Induction has also a prominent place in proof theory since, 
at least, Gentzen’s proof of the consistency of Peano Arithmetic [16].

Due to the ubiquity of induction in computer science there is a large interest in devising algorithms which 
find proofs by induction automatically. This field, inductive theorem proving, has produced a remarkable 
range of systems and techniques such as ACL2 [29,28], rippling [8,9], or implicit induction (e.g. the Spike 
theorem prover [1]). More recent techniques include cyclic proofs [7] (and the cyclist prover [6]), the Zeno 
prover [31] and approaches based on forward reasoning like inductive theory formation (IsaCoSy [27] and 
HipSpec [30]).
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A fundamental problem of inductive theorem proving is the non-analytic nature of invariants. Very 
often, already for quite simple practical cases, the induction invariant needed for proving a theorem is not 
that theorem itself, nor a subformula nor an instance of it. Instead, what is needed is a generalisation 
of the theorem. In which direction or what way the theorem needs to be generalised however strongly 
depends on the theorem and it is hence difficult to develop uniform methods capable of introducing the 
right generalisation.

In this paper we present a new approach to inductive theorem proving which attacks this problem by 
separating it into two phases. When searching for a proof of a universal statement we first compute proofs 
of a few small instances. In a first phase we then decompose the witness terms of these proofs in a way 
that is induced by an induction proof. This first phase can be described and solved without any reference 
to logic as a problem of finite sets of terms and structures describing such sets: tree grammars. A tree 
grammar then determines the instantiation-structure of an induction-proof and induces a quantifier-free 
second-order unification problem. Each solution to this unification problem is an induction invariant. In the 
second, independent, phase we compute a solution to this unification problem. Such solutions are typically 
not analytic.

The idea of first considering instances of a universal statement in order to prove this statement is not 
new. In the context of inductive theorem proving, this can for example be found in the work [3] on the 
constructive omega-rule. Similar ideas also exist in other contexts, for example bounded model checking [4]. 
What our work adds to this basic idea is a thorough proof-theoretic analysis of the relationship between the 
proofs of the instances and the proof of the universal statement based on techniques like Herbrand’s theorem, 
tree grammars and certain second-order unification problems. This leads to new methods for computing 
invariants which succeed in typical test cases.

This overall two-phased strategy has already proved very effective in the related context of generating 
non-analytic lemmas for abbreviating and structuring proofs in pure first-order logic, i.e. without induction. 
The basic techniques have been introduced in [19], the cut-introduction method for a single Π1-cut has 
first been defined in [22] and extended to the introduction of an arbitrary number of Π1-cuts in [21]. The 
paper [20] describes how to extend the method to proofs modulo equality and cuts using blocks of quantifiers. 
It also contains a comprehensive empirical evaluation of an implementation.

Let us give an outline of the paper.
In Section 2, we present the main results of [21]. Also, many notations of [21] will be introduced since 

they are reused in this paper.
In Section 3, we describe the form of the induction proof our algorithm tries to find. We call proofs of 

this form simple induction proofs. We will allow just one application of induction over ν for a formula of 
the form ∀yF [ν, y] with F quantifier-free followed immediately by a cut. While this is quite restricted from 
a proof-theoretic point of view, it covers a large class of practically relevant cases including many classical 
examples of inductive theorem proving.

In Section 3, we also make connections between various notions of provability which are of relevance 
to this paper: provability by simple induction proofs, by induction-free proofs using iterated cuts with a 
uniform cut formula, and by cut- and induction-free proofs. In addition a close connection between tree 
grammars and proofs is established and explained.

In Section 4, our algorithm IndProof is sketched. As input it takes a finite set of Herbrand sequents 
of instances of a universal statement and, if it terminates, it returns a simple induction proof of this 
universal statement. The algorithm is composed of two steps, FindGram and FindFml. FindGram searches for 
regularities between the Herbrand sequents which are the input of IndProof. For this aim Herbrand sequents 
are interpreted as tree languages, and then techniques of language compression by grammars are used. 
Relying on the found regularities, FindFml generates induction invariants in a systematic way. In Sections 5
and 6, IndProof is defined precisely.
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Finally, in Section 7, IndProof is applied to test cases. It succeeds to find inductive proofs for two classical 
examples: the associativity of addition and the equivalence of the two definitions of the factorial by head-
and tail-recursion. Remarkably, in both cases very natural analytic proofs of only two instances of the 
universal statements are sufficient as input of IndProof.

2. Previous results

In order to present the results of [21] some theoretical background has to be given.

Notation 2.1. For variables x1, . . . , xn, we write t[x1, . . . , xn] to denote a term t possibly containing occur-
rences of x1, . . . , xn. For terms u1, . . . , un, we write t[x1\u1, . . . , xn\un] for the term obtained from t by 
substituting xi by ui for 1 ≤ i ≤ n. For simplicity, we normally just write t[u1, . . . , un] instead. We use 
standard vector notation for variables and terms, e.g. as in t[x] or t[u]. If the length of the vector is irrele-
vant or clear from the context it is not mentioned explicitly. Analogous notations are used for formulas. We 
typically use Roman letters x, y, z, . . . for bound variables and Greek letters α, β, γ, . . . for free variables.

The results of this paper do not depend on the syntactic details of the employed calculus. Indeed, most 
results will be formulated based on formulas or sequents being tautologies or quasi-tautologies2 without 
mention of their actual proofs. The one exception to this negligence of the shape of proofs concerns the use 
of cut and induction about which we will be very explicit. Nevertheless, for the sake of precision, let us fix 
a calculus to work in.

Notation 2.2. A sequent is a pair of multisets of formulas, written as Γ ⇒ Δ. As our logical system, we use 
a sequent calculus consisting of the following rules:

• Axioms

A ⇒ A ⇒ t = t

for any atom A and any term t.
• Logical Rules

A,Γ ⇒ Δ
A ∧B,Γ ⇒ Δ

∧l1
B,Γ ⇒ Δ

A ∧B,Γ ⇒ Δ
∧l2

Γ ⇒ Δ, A Γ ⇒ Δ, B

Γ ⇒ Δ, A ∧B
∧r

Γ ⇒ Δ, A

Γ ⇒ Δ, A ∨B
∨r1

Γ ⇒ Δ, B

Γ ⇒ Δ, A ∨B
∨r2

A,Γ ⇒ Δ B,Γ ⇒ Δ
A ∨B,Γ ⇒ Δ

∨l

A,Γ ⇒ Δ, B

Γ ⇒ Δ, A → B
→r

Γ ⇒ Δ, A B,Γ ⇒ Δ
A → B,Γ ⇒ Δ

→l

Γ[t], s = t ⇒ Δ[t]
Γ[s], s = t ⇒ Δ[s]

=1
Γ[s], s = t ⇒ Δ[s]
Γ[t], s = t ⇒ Δ[t]

=2

A[t],Γ ⇒ Δ
∀xA[x],Γ ⇒ Δ ∀l

Γ ⇒ Δ, A[α]
Γ ⇒ Δ, ∀xA[x] ∀r

Γ ⇒ Δ, A[t]
Γ ⇒ Δ, ∃xA[x] ∃r

A[α],Γ ⇒ Δ
∃xA[x],Γ ⇒ Δ ∃l

where the usual side conditions apply: α is a variable which does not appear in the conclusion of the 
inference and all substitutions are assumed to be capture-avoiding.

2 A quasi-tautology is a quantifier-free formula or sequent which is valid in predicate logic with equality.
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• Structural Rules

Γ ⇒ Δ
A,Γ ⇒ Δ

wl
Γ ⇒ Δ

Γ ⇒ Δ, A
wr

A,A,Γ ⇒ Δ
A,Γ ⇒ Δ

cl
Γ ⇒ Δ, A,A

Γ ⇒ Δ, A
cr

Γ ⇒ Δ, A A,Γ ⇒ Δ
Γ ⇒ Δ cut

We denote the resulting system by LK. When we speak of proofs without induction or just of proofs, we 
always refer to LK proofs. Proofs with induction additionally are allowed to contain the following rule for 
F [x, y] a quantifier-free formula.

Γ ⇒ ∀yF [0, y],Δ Γ, ∀yF [ν, y] ⇒ ∀yF [sν, y],Δ
Γ ⇒ ∀yF [α, y],Δ ind

A sequent Γ ⇒ Δ of the form

∀x1F1, . . . ,∀xnFn ⇒ ∃y1G1, . . . ,∃ymGm

with F1, . . . , Fn, G1, . . . , Gm quantifier-free is called a Σ1 sequent. Weak and strong quantifiers are defined 
as usual. For a formula of the form QxF [x] with Q = ∀, ∃ and terms t, the formula F [t] is called an instance 
of QxF [x].

Definition 2.3 (Herbrand sequent). A Herbrand sequent of the Σ1 sequent Γ ⇒ Δ is a quasi-tautology of the 
form Γ′ ⇒ Δ′ where Γ′ consists of instances of Γ and Δ′ of instances of Δ, i.e. for every A′ ∈ Γ′ there is 
A ∈ Γ s.t. A′ is an instance of A and analogously for Δ′ and Δ.

In this paper we will often rely on the following version of Herbrand’s theorem [18].

Theorem 2.4. A Σ1 sequent Γ ⇒ Δ is valid in first-order logic with equality iff it has a Herbrand sequent.

Proof Sketch. Let Γ ⇒ Δ be a valid sequent and π be a cut-free proof of Γ ⇒ Δ. By carrying out rule 
permutations one can transform π to a proof π′ in mid-sequent form, i.e. π′ contains a quantifier-free 
sequent Γ′ ⇒ Δ′ s.t. there are only propositional, structural and equality inferences above Γ′ ⇒ Δ′ and 
only structural and quantifier inferences below Γ′ ⇒ Δ′. Hence Γ′ ⇒ Δ′ is a Herbrand sequent.

For the other direction, let Γ′ ⇒ Δ′ be a Herbrand sequent. Being a quasi-tautology there is a proof 
π0 of Γ′ ⇒ Δ′ (which contains only propositional, structural and equality inferences). As Γ′ ⇒ Δ′ consists 
of instances of Γ ⇒ Δ there is a proof π1 of Γ ⇒ Δ from Γ′ ⇒ Δ′ (which consists only of structural and 
quantifier inferences). Concatenating π0 and π1 gives a proof of Γ ⇒ Δ. �

Note that the above proof induces straightforward algorithms for reading off a Herbrand sequent from 
a given cut-free proof and, vice versa, for computing a cut-free proof from a given Herbrand sequent, see 
e.g. [23] for more information. For the techniques used in this paper and also in [19,21] it is crucial to view 
Herbrand sequents in addition as sets of terms.

Notation 2.5. For technical reasons, we work with function symbols possibly containing formulas as 
subindices. For a function symbol r, and distinct formulas C, D the function symbols r, rC , rD are assumed 
to be pairwise different.

In this paper we are only interested in Herbrand sequents of Σ1 sequents Γ ⇒ Δ with Δ containing a 
single quantifier-free formula. Accordingly, the set of terms TH of a Herbrand sequent H, which will be 
defined in the following, only contains terms corresponding to instances of formulas in Γ.
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Definition 2.6 (Set of terms of Herbrand sequent). Let H be a Herbrand sequent of the Σ1 sequent 
∀x1F1[x1], . . . , ∀xnFn[xn] ⇒ Δ. Then the set of terms TH of H is defined as follows:

• Assume that the instance Fi[t] of the formula ∀xiFi[xi] occurs in H for an i ∈ {1, . . . , n}. Then, the 
term r∀xiFi[xi](t) occurs in TH . If xi is empty, r∀xiFi[xi] has arity zero.

• TH does not contain any other elements.

In the following, we often identify the set of terms TH of a Herbrand sequent with that Herbrand 
sequent H.

We are now going to define the tree grammars needed in this paper. For a term signature Σ let T (Σ)
denote the set of all terms built from symbols in Σ.

Definition 2.7 (Regular tree grammar). A regular tree grammar is a tuple 〈τ, N, Σ, P 〉 where N is a finite 
set of non-terminal symbols with arity 0 s.t. τ ∈ N . Furthermore, Σ is a finite set of terminal symbols of 
arbitrary arities, i.e. a term signature, satisfying N ∩ Σ = ∅. The productions P are a finite set of rules of 
the form γ → t where γ ∈ N and t ∈ T (Σ ∪N).

The non-terminal τ is called the axiom of G = 〈τ, N, Σ, P 〉. A derivation of a term t in G is a list t1, . . . , tn
of terms s.t. t1 = τ , tn = t and for every i ∈ {1, . . . , n −1} there is a rule γ → s ∈ P s.t. ti+1 is obtained from ti
by replacing one occurrence of γ by s. The language of G is defined as L(G) = {t ∈ T (Σ) | t derivable in G}. 
For more background on tree languages, the interested reader is referred to [14,10].

Definition 2.8 (Rigid acyclic tree grammar). Rigid acyclic tree grammars restrict regular tree grammars by 
imposing the following additional conditions.

• In each derivation, for each non-terminal γ only a single rule of the form γ → t is allowed to occur.
• There is a total order < on the non-terminals N such that for each rule γ → t in P , only non-terminals 

larger than γ occur in t.

The notion of rigid tree language has been introduced by Jacquemard, Klay, and Vacher in [25,26]. In 
the following, we often silently assume that grammars are rigid acyclic tree grammars.

Let us give a detailed overview of [19,21] and explain the main notions. First, let us note that the logical 
setting of [19,21] is predicate logic without equality. Nevertheless, all results can be extended to predicate 
logic with equality in the style of [20]. This is why we present an extension of [19,21] to predicate logic with 
equality in this section. In addition, we will adapt some of the notations and definitions used in [19,21] to 
our setting.

In [19,21], LK proofs are analysed which contain at most cuts with cut-formulas of the form ∀xC[x] with 
C quantifier-free and whose conclusion is a Σ1 sequent Θ. We call such proofs simple proofs. We call cuts of 
this form Π1 cuts, and their cut formulas Π1 cut formulas. Gentzen’s cut-elimination procedure [15] applied 
to a simple proof of a Σ1 sequent Θ yields a cut-free proof of Θ, giving rise to a Herbrand sequent of Θ
as in the proof of Theorem 2.4. In [19,21], the relation between the original proof π of Θ with cuts and 
its cut-free version is analysed using grammars. In [19] Definition 19, a grammar G(π) is defined for each 
simple proof π. Let us sketch a version of this definition adapted to our setting.

For simplicity, we assume that the conclusion of π has the form ∀xF [x] ⇒ for F quantifier-free. The 
general case of arbitrary Σ1 sequents is treated similarly. Rules of the form τ → r∀xF [x](s) are added to 
G(π) for the instances F [s] of the weak quantifier block in ∀xF [x]. If the quantifier block ∀x is empty, the 
rule τ → rF will be added where rF has arity 0. In addition, for each eigenvariable u of a Π1 cut formula 
∀xC[x], u is introduced as non-terminal of G(π). A rule u → t is added to G(π) for each instance C[t] of 
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simple induction proof π
Definition 3.3

Definition 3.5

ind.-free instance proof πn

[19], Definition 19

schematic grammar G(π)
Definition 3.7

instance grammar G(π)n

Diagram 1. Dependencies between grammars and proofs.

the occurrence of the cut formula ∀xC[x] containing the weak universal quantifier. The following theorem 
proved in [19,21] demonstrates the relevance of grammars of simple proofs. It can be easily extended to 
arbitrary Σ1 sequents as conclusions of simple proofs.

Theorem 2.9. Let π be a simple proof of ∀xF [x] ⇒ for F quantifier-free. Then L(G(π)) is a Herbrand-sequent 
of ∀xF [x] ⇒.

The previous theorem and the fact that each simple proof has a corresponding grammar allow us to find 
Herbrand sequents of ∀xF [x] ⇒ directly from simple proofs of the same sequent. Therefore, calculating the 
language produced by a rigid acyclic tree grammar replaces cut-elimination. However, the main goal of [21]
is to allow the opposite transition, i.e. the production of a proof of ∀xF [x] ⇒ containing Π1 cuts from a 
Herbrand sequent of ∀xF [x] ⇒ or a cut-free proof of ∀xF [x] ⇒, respectively.

Let us sketch the algorithm CI (cut introduction) executing this task, which is presented in [21]. The 
input of CI is a cut-free proof of a Σ1 sequent Θ. Again, assume for simplicity that Θ has the form ∀xF [x] ⇒.

• From the cut-free proof of Θ, we find a Herbrand sequent T of Θ.
• Considering T as a set of terms, we construct a rigid, acyclic tree grammar G with a minimal number 

of rules such that T = L(G).
• From G, which fixes the occurring instances of the cut-formulas, one can easily obtain cut-formulas 

yielding a simple proof of ∀xF [x] ⇒ with grammar G.
• The cut-formulas are simplified with respect to their length. This yields a shorter simple proof of 

∀xF [x] ⇒. The grammar of the original simple proof is not changed by these simplifications since it 
only depends on the occurring instances of the cut-formulas.

The algorithm CI sketched above has been tested in large scale experiments in [20]. The results show that CI
significantly compresses a high percentage of proofs from the TSTP-library (see [32]). This library collects 
typical proofs occurring in applications in computer science.

3. Induction proofs and grammars

We are interested in proofs containing induction in a restricted way which we call simple induction proofs. 
Most importantly, only Π1 induction formulas are allowed. In addition we only allow a single induction on 
a formula which implies the conclusion of the proof. An adaptation of our techniques to more complex 
induction formulas depends on progress in the analysis of proofs with more complex cut formulas by gram-
mars. This is a goal for future research. Nevertheless, already simple induction proofs are highly relevant for 
applications in computer science because they cover the prototypical situation of a conjecture which needs 
a step of generalisation in order to find a proof by induction.

In this section, we will give the theoretical foundations for our algorithm, and connect simple induction 
proofs with tree grammars. This is achieved by defining and explaining the commutative Diagram 1.
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Definition 3.1 (Simple induction proofs). The following proof is a simple induction proof (in short: s.i.p.) if 
all of the following conditions hold.

πb[α, β]
Γ0[α, β] ⇒ F [α, 0, β]
∀Γ ⇒ ∀yF [α, 0, y]

∗

πs[α, ν, γ]
Γ1[α, ν, γ],

∧
1≤i≤n F

[
α, ν, ti[α, ν, γ]

]
⇒ F [α, sν, γ]

∀Γ, ∀yF [α, ν, y] ⇒ ∀yF [α, sν, y]
∗

∀Γ ⇒ ∀yF [α, α, y] ind

πc[α]
Γ2[α],

∧
1≤i≤m F

[
α, α, ui[α]

]
⇒ B[α]

∀Γ, ∀yF [α, α, y] ⇒ B[α]
∗

∀Γ ⇒ B[α]
cut

• α, β, ν, γ are variables occurring only where indicated.
• We have n, m ∈ N with n, m ≥ 1. ti for 1 ≤ i ≤ n and ui for 1 ≤ i ≤ m denote terms.
• F and B are quantifier-free formulas.
• Γi for 0 ≤ i ≤ 2 only contains quantifier-free formulas.
• πb, πs, and πc each are cut-free LK proofs of the sequent displayed below them.
• ∀Γ only contains formulas of the form ∀xG[x] for G quantifier-free.
• In each of the displayed proof branches, the inferences labelled with ∗ are a concatenation of several 

contractions, weakenings and universal quantifier introductions.

In practice, an s.i.p. will often be followed by a ∀r-inference inferring ∀xB[x]. We refer to an s.i.p. 
given as above by the letter π. In the context of a particular s.i.p. π, we will also often use the notations 
πb, πs, πc, Γ0, Γ1, Γ2, ti, ui, . . . to refer to the respective parts of π. We use the notations π∗

b , π∗
s and π∗

c to 
refer to the proof πb, πs and πc followed by the respective ∗-inferences.

For practical applications we also cover the case of a quantifier-free induction formula: instead of intro-
ducing a vacuously binding ∀y, it is technically more convenient to let n = m = 0. We will call that case 
degenerate and mention it explicitely whenever it requires special attention.

Example 3.2. In this example, we define an s.i.p. π of the equivalence of the definitions of the factorial by 
head- and tail-recursion.3 The first definition of the factorial is the usual one, given by head-recursion for 
n ∈ N:

f(0) := 1

f(n + 1) := (n + 1)f(n)

The second definition by tail-recursion uses an auxiliary function g given as follows for all n, m ∈ N.

g(m, 0) := m

g(m,n + 1) := g
(
m · (n + 1), n

)
Then the statement we would like to show by induction is f(n) = g(1, n) for all n ∈ N.

Our background theory ∀Γ consists of the universal closures of the following formulas which axiomatise 
the two above definitions of the factorial function and some basic properties of multiplication:

3 Tail-recursion plays an important role in functional programming as it allows to reduce stack usage to a constant amount. 
Therefore, proving the equivalence of a tail-recursive definition to a (usually more straightforward) head-recursive definition is a 
type of verification problem of high practical importance.
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f(0) = 1 (f0)
f(sx) = sx · f(x)

(
fST (x)

)
g(x, 0) = x

(
g0(x)

)
g(x, sy) = g(x · sy, y)

(
gST (x, y)

)
x · 1 = x

(
1R(x)

)
1 · x = x

(
1L(x)

)
(x · y) · z = x · (y · z)

(
ASSO(x, y, z)

)
The right column above defines abbreviations of these formulas which we will use throughout the paper. The 
s.i.p. π is a proof of ∀Γ ⇒ g(1, α) = f(α) and uses the induction formula ∀yF (ν, y) := ∀y g(y, ν) = y · f(ν). 
Note that the induction formula is more general than the conclusion. The induction premises and the 
cut-premises of π are derived as follows:

πb

f0, g0(β), 1R(β) ⇒ g(β, 0) = β · f(0)
∀Γ ⇒ ∀yF [0, y]

∗

πs

fST (ν), gST (γ, ν),ASSO
(
γ, sν, f(ν)

)
, g(γ · sν, ν) = (γ · sν) · f(ν) ⇒ g(γ, sν) = γ · f(sν)

∀Γ,∀yF [ν, y] ⇒ ∀yF [sν, y]
∗

πc

1L
(
f(α)

)
, g(1, α) = 1 · f(α) ⇒ g(1, α) = f(α)

∀Γ,∀yF [α, y] ⇒ g(1, α) = f(α)
∗

Note that the actual proofs πb, πs, and πc are irrelevant for our method and are therefore not specified.

The next lemma follows immediately from the fact that induction up to a numeral n can be unfolded by 
n iterated cuts.

Definition 3.3. Let π be a simple induction proof as in Definition 3.1. Then for each n ∈ N we define the 
n-th instance proof πn as follows:

π∗
b [n, γ0]

∀Γ ⇒ ∀yF [n, 0, y]
π∗
s [n, 0, γ1]

∀Γ,∀yF [n, 0, y] ⇒ ∀yF [n, s0, y]
∀Γ ⇒ ∀yF [n, s0, y] cut

....
∀Γ ⇒ ∀yF [n, n− 1, y]

π∗
s [n, n− 1, γn]

∀Γ,∀yF [n, n− 1, y] ⇒ ∀yF [n, n, y]
∀Γ ⇒ ∀yF [n, n, y]

cut π∗
c [n]

∀Γ,∀yF [n, n, y] ⇒ B[n]
∀Γ ⇒ B[n]

cut

We refer to the collection of instance proofs as πn≥0.

The previous definition fixes an operation producing from a simple induction proof a simple proof with 
iterated cuts by eliminating induction. This yields the upper right arrow in Diagram 1. Because of the 
described elimination of induction, a simple induction proof π can be seen as a finite representation of 
infinitely many simple instance proofs πn≥0. Schematic grammars which will be defined in the following 
have a similar role as simple induction proofs on the level of grammars: They come with variables whose 
suitable replacement yields the grammar G(πn) of the instance proof πn for each n ∈ N.

Definition 3.4 (Schematic grammar). Let N be given as {τ, α, β, ν, γ, γend}. Let Σ be a term signature 
disjoint from N . Then, the grammar 〈τ, N, Σ, P 〉 is a schematic grammar if each of its production rules is 
of one of the following forms:
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• τ → t[α, β]
• τ → t[α, ν, γ]
• γ → t[α, ν, γ]
• γend → t[α]

The non-terminals α, β, ν will correspond to the respective eigenvariables of the same name in an s.i.p. 
(see Definition 3.1). The non-terminal τ does not occur on the right-hand side of any production rule – it 
will take the role of the axiom from which the instances of ∀Γ that constitute a Herbrand sequent can be 
derived. In an s.i.p. the strong quantifier with eigenvariable γ has two corresponding weak quantifiers: the 
one in πs and the one in πc. The former will correspond to the non-terminal γ in a schematic grammar and 
the latter to the non-terminal γend. The choice of the non-terminals allowed on the right-hand side of the 
production rules is explained by the position of eigenvariables in π: in πb the variables α and β occur, in πs

the variables α, ν, and γ occur and in πc only α occurs. The next definition shows in detail how an s.i.p. 
induces a schematic grammar.

Definition 3.5 (From simple induction proofs to schematic grammars). Let π be an s.i.p. as in Definition 3.1, 
let ∀Γ = ∀x1F1[x1], . . . , ∀x�F�[x�] and let Σ be the signature of π. Furthermore, for all i ∈ {1, . . . , �}
let r∀xiFi[xi] be a function symbol whose arity is the length of xi and let si,1, . . . , si,ki

be the instances 
of ∀xiFi[xi] in Γ0 ∪ Γ1 ∪ Γ2. Then the schematic grammar of π is G(π) = 〈τ, {τ, α, β, ν, γ, γend}, Σ ∪
{r∀x1F1[x1], . . . , r∀x�F�[x�]}, P 〉 where

P =
{
τ → r∀xiFi[xi](si,j) | 1 ≤ i ≤ �, 1 ≤ j ≤ ki

}
∪
{
γ → ti[α, ν, γ] | 1 ≤ i ≤ n

}
∪
{
γend → ui[α] | 1 ≤ i ≤ m

}
.

The previous definition yields the arrow from simple induction proofs to schematic grammars in Dia-
gram 1.

Example 3.6. For π being the s.i.p. defined in Example 3.2 let us calculate G(π) in the following. We introduce 
constants

rf0, r∀xfST(x), r∀xg0(x), r∀x∀ygST(x,y), r∀x1R(x), r∀x1L(x), r∀x∀y∀zASSO(x,y,z)

of arity being equal to the number of universal quantifiers occurring in their index. Then, we introduce the 
following rules depending on the axiom instances occurring in the quasi-tautologies:

τ → rf0 | r∀xg0(x)(β) | r∀x1R(x)(β) |
r∀xfST(x)(ν) | r∀x∀ygST(x,y)(γ, ν) | r∀x∀y∀zASSO(x,y,z)

(
γ, sν, f(ν)

)
|

r∀x1L(x)
(
f(α)

)
To obtain rules with left side γ, we have to check which instance (or instances) of the induction hypothesis 
is/are used in πs. We obtain the following rule:

γ → γ · sν

To obtain rules of the form γ → t[α], we have to check which instance (or instances) of the induction formula 
is/are used in πc. We obtain the following rule:

γend → 1

This completes the description of G(π).
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A schematic grammar G has to be thought of as inducing not a single language but instead a sequence of 
instance grammars which in turn induces a sequence of languages. If G is produced from a simple induction 
proof π these instance grammars will be the grammars of the instance proofs of π (in the sense of the 
definition described on p. 669). Note that while schematic grammars are cyclic, due to the production γ →
t[α, ν, γ] the grammars of instance proofs are acyclic. This breaking of cycles in the grammars corresponds 
to the replacement of the induction by cuts in the proof. Also note that instance grammars only give 
information about the used instances of cut formulas but not about the cut formulas themselves. Accordingly, 
the schematic grammar G does not determine the induction formula F of its simple induction proof π.

We define the operation from schematic grammars to instance grammars given as the lower right arrow 
in Diagram 1.

Definition 3.7 (From schematic grammars to instance grammars). Let G = 〈τ, N, Σ, P 〉 be a schematic 
grammar given as in Definition 3.4. Then for any n ∈ N we define the n-th instance grammar as the rigid 
acyclic tree grammar Gn = 〈τ, Nn, Σ, Pn〉 where Nn = {τ, γ0, . . . , γn} and

Pn =
{
τ → t[n, γ0] | τ → t[α, β] ∈ P

}
∪
{
τ → t[n, i, γi+1] | τ → t[α, ν, γ] ∈ P, 0 ≤ i ≤ n− 1

}
∪
{
γi → t[n, i, γi+1] | γ → t[α, ν, γ] ∈ P, 0 ≤ i ≤ n− 1

}
∪
{
γn → t[n] | γend → t[α] ∈ P

}
We call the collection Gn≥0 instance grammars of G.

Example 3.8. Let π be the s.i.p. defined in Example 3.2. Its grammar G(π) has been described in Example 3.6. 
Its instance grammar G(π)2 = 〈τ, N2, Σ, P2〉 where N2 = {τ, γ0, γ1, γ2} and P2 =

τ → rf0 | r∀xg0(x)(γ0) | r∀x1R(x)(γ0) |
r∀xfST(x)(0) | r∀x∀ygST(x,y)(γ1, 0) | r∀x∀y∀zASSO(x,y,z)

(
γ1, s0, f(0)

)
|

r∀xfST(x)(s0) | r∀x∀ygST(x,y)(γ2, s0) | r∀x∀y∀zASSO(x,y,z)
(
γ2, ss0, f(s0)

)
|

r∀x1L(x)
(
f(ss0)

)
γ0 → γ1 · s0
γ1 → γ2 · ss0
γ2 → s0

Let π2 be the 2nd instance proof of π as in Definition 3.3. Then we have G(π)2 = G(π2) as the interested 
reader is invited to verify. Moreover, by Theorem 2.9, we know that L(G(π)2) = L(G(π2)) is a Herbrand 
sequent of ∀Γ ⇒ g(1, 2) = f(2).

The algorithm sketched on p. 669 maps each simple proof π to a grammar G(π) whose language corre-
sponds to a Herbrand sequent of the conclusion of π, which is stated as Theorem 2.9 in this paper. This 
yields the missing down arrow on the right in Diagram 1. The commutativity of Diagram 1 is now easy to 
see.

Proposition 3.9. Diagram 1 commutes.

Consider the extension of Diagram 1 for a simple induction proof π of Γ ⇒ B[α] to Diagram 2. The 
additional upper horizontal arrow denotes non-erasing Gentzen cut elimination which produces a normal 
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π
Definition 3.3

Definition 3.5

πn

[19], Definition 19

n.e. cut-el.
qcut-free proof

Herbrand’s theorem

G(π)
Definition 3.7

G(π)n
language

L(G(πn))

Diagram 2. Dependencies between grammars and proofs.

form which is free of cuts with quantifier inferences (qcut-free). From such proofs the standard technique 
(see Theorem 2.4) can be used to read off a Herbrand sequent of linear size. Moreover, all normal forms 
of this non-erasing reduction have the same Herbrand sequent, see [24] for details. The additional lower 
horizontal arrow denotes language production in the sense of rigid, acyclic tree grammars. The down arrow 
denotes the usual operation to obtain a Herbrand sequent from a cut-free proof of a Σ1 sequent as in the 
proof of Theorem 2.4. Then, the next proposition follows immediately from the results of [19,21].

Proposition 3.10. Diagram 2 commutes.

Let π be a simple induction proof. By eliminating induction according to Definition 3.3 we obtain the 
simple proofs πn≥0. Applying cut-elimination to them yields a Herbrand sequent L(G(πn)) of Γ ⇒ B[n] for 
each n ∈ N. In this paper, we aim at inverting this operation, i.e. at producing a simple induction proof from 
a finite sub-sequence of a sequence of Herbrand sequents of instances of a Σ1 sequent. It is an immediate 
corollary of Gödel’s second incompleteness theorem that this is impossible in full generality:

Proposition 3.11. There is a Σ1 sequent Γ ⇒ B[α] with B quantifier-free such that:

• There is a collection HS(n)n≥0 of Herbrand sequents of Γ ⇒ B[n].
• There is no simple induction proof of Γ ⇒ B[α].

Proof Sketch. An obvious example for such a Σ1 sequent contains B[x] expressing that x is not a proof of 
0 = 1 in a consistent logical system comprising Peano arithmetic with Γ containing the recursion equations 
for several primitive recursive functions which together allow a coding of metamathematics. For this sequent 
the statement follows immediately from Gödel’s second incompleteness theorem. �

On the other hand, if there is a simple induction proof then there is a corresponding sequence of Herbrand 
sequents. Now, what is the difference between such sequences of Herbrand sequents which do and such 
which do not correspond to simple induction proofs? On a high level the answer is clear: the former have 
a uniformity which the latter lack. Of which nature exactly this uniformity is and how to characterise it 
combinatorially is much less clear. One obvious consequence of the considerations described in this section 
is that a sequence generated by a simple induction proof is also generated by a schematic grammar. And 
indeed, for constructing a situation as in Proposition 3.11 it is enough to consider a sequent which cannot 
be proved by Herbrand sequents producible by a schematic grammar. In the below Proposition 3.13 we 
strengthen Proposition 3.11 in the sense that not even the two right arrows at the bottom of Diagram 2 can 
be inverted. To that aim it will be helpful to first make a simple observation on the growth of the instance 
languages of a schematic grammar.

Lemma 3.12. Let G = 〈τ, N, Σ, P 〉 be a schematic grammar. Then there is a k ∈ N such that |L(Gn)| ≤ kn+3.

Proof. Let k1 = |{τ → t[α, β] ∈ P}|, k2 = |{τ → t[α, ν, γ] ∈ P}|, k3 = |{γ → t[α, ν, γ] ∈ P}|, and 
k4 = |{γend → t[α] ∈ P}|. For a non-terminal δ let L(Gn, δ) = {t ∈ T (Σ) | t derivable from δ in Gn}. We 
obtain
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∣∣L(Gn, γl)
∣∣ ≤ kn−�

3 k4 for all � ∈ {0, . . . , n}

directly from the definition of Gn. Furthermore we have

∣∣L(Gn, τ)
∣∣ ≤ k1k

n
3 k4 +

n−1∑
i=0

k2k
n−(i+1)
3 k4 ≤ (k1 + k2)k4

n∑
i=0

ki3

from which, by letting k = min{2, max{k1 + k2, k3, k4}}, we obtain |L(Gn)| ≤ kn+3. �
Proposition 3.13. There is a Σ1 sequent Γ ⇒ B[α] with B quantifier-free such that:

• There is a collection HS(n)n≥0 of Herbrand sequents of Γ ⇒ B[n].
• There is no schematic grammar G such that its instance grammars Gn produce Herbrand sequents of 

Γ ⇒ B[n] for all n ∈ N.

Proof. Let F represent the usual axioms for the factorial f defined by head-recursion given in Example 3.2, 
and let M and A represent usual axioms for multiplication and addition. Let P be a predicate variable. We 
define the sequent Γ ⇒ B[α] as

F,M,A, P (0), ∀x
(
P (x) → P (sx)

)
⇒ P

(
f(α)

)
.

For all n ∈ N, a Herbrand sequent of Γ ⇒ B[n] is given by

F ′,M ′, A′, P (0), P (0) → P (1), . . . , P (n! − 1) → P (n!) ⇒ P
(
f(n)

)
,

where F ′, M ′, and A′ consist of the instances of F , M , and A respectively which are necessary to derive 
the equation f(n) = n!. Note that this Herbrand sequent is minimal w.r.t. the number of instances of 
∀x(P (x) → P (sx)) as the following lemma shows.

Lemma 3.14. If Γ′ ⇒ P (f(n)) is a Herbrand sequent of Γ ⇒ P (f(n)) then Γ′ contains at least n! instances 
of ∀x(P (x) → P (sx)).

Proof. W.l.o.g. we can assume that Γ′ contains only ground formulas. Hence every term t occurring in Γ′

has a value |t| ∈ N given by the standard interpretation of 0, s, +, ·, and f . Let

P (t1) → P (st1), . . . , P (tk) → P (stk)

be the instances of ∀x(P (x) → P (sx)) in Γ′. Suppose that k < n!, then there is a c ∈ {0, 1, . . . , n! − 1} s.t. 
there is no i ∈ {1, . . . k} with |ti| = c. Define the structure M = (N, I) where I(0), I(s), I(+), I(·) and I(f)
are the respective standard interpretations and I(P ) = {0, . . . , c}. Then M � F , M � M , M � A, and 
M � P (0). Furthermore M � P (ti) → P (sti) for |ti| < c because M � P (ti) and M � P (sti). But we also 
have M � P (ti) → P (sti) for |ti| > c because M � P (ti) and M � P (sti). Hence M � Γ′ but M � P (f(n))
and thus Γ′ ⇒ P (f(n)) is not a Herbrand sequent of Γ ⇒ P (f(n)). �

This immediately implies that there is no schematic grammar with instance grammars producing the 
necessary sequence of Herbrand sequents since, by Lemma 3.12, the size of the languages produced by the 
instance grammars Gn grows only exponentially in n. �

At this point it is not yet clear whether a situation as in Proposition 3.11 can arise in a way different from 
Proposition 3.13. Or, phrased differently, while the existence of a schematic grammar is clearly necessary 
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for a sequence of Herbrand sequents to be generated by an s.i.p. it is not yet clear whether it is sufficient. 
We will see later, in Proposition 6.7, that this is not the case.

4. Searching for a simple induction proof

Despite the negative results about the general case shown above, a computation of a simple induction 
proof from a sequence of Herbrand sequents is possible provided this sequence is sufficiently uniform.

In this short section, we sketch our algorithm IndProof for constructing an inductive proof of a universal 
statement based on given proofs of instances of this statement. The assumption that proofs of instances 
of a universal statement are easily available is practically justified since typically the instances are prov-
able without induction and hence powerful methods from automated deduction like term rewriting [2] or 
SMT-solving [11] can be used.

Let us explain the behaviour of our algorithm using Diagram 2: suppose we want to prove a statement 
of the form Γ ⇒ B[α] for a free variable α only occurring in B. We first obtain proofs of Γ ⇒ B[n] for 
n ∈ M where M is a finite test-set of natural numbers. From these proofs, we obtain Herbrand sequents 
HS(n) of Γ ⇒ B[n] for n ∈ M . In the diagram they are located at the right side at the bottom. IndProof
consists of two major steps, FindGram and FindFml. FindGram produces from the given Herbrand sequents 
HS(n) for n ∈ M a schematic grammar G with HS(n) ⊆ L(Gn) for all n ∈ M . The algorithm FindGram
thus reverses the two lower right arrows in the diagram. FindFml produces from a schematic grammar G
with HS(n) ⊆ L(Gn) for all n ∈ M a simple induction proof of Γ ⇒ B[α] with schematic grammar G, thus 
reversing the down arrow on the left.

We will describe FindGram in Section 5 and FindFml in Section 6.

5. Finding a schematic grammar

In this section, we define the algorithm FindGram. It relies on the algorithms ConstKeys, ConstFml, 
SolveSAT, and EvalToFml which will be given in detail in the following.

Notation 5.1. Let Θ[α] := ∀Γ ⇒ B[α] be a Σ1 sequent with α only occurring in the quantifier-free formula B. 
Let M ⊆ N and let HS(n) be a Herbrand sequent of Θ[n] for all n ∈ M . Let G be a schematic grammar. 
Then, G is called a schematic grammar for (HS(n))n∈M if HS(n) ⊆ L(Gn) for all n ∈ M .

Algorithm 1. FindGram
Input: List of Herbrand sequents HS(i1), . . . , HS(iq) of Θ[i1], . . . , Θ[iq] for i1, . . . , iq ∈ N where Θ is a Σ1

sequent given as in Notation 5.1.
Output: A schematic grammar G for HS(i1), . . . , HS(iq) with a minimal number of rules among all 
schematic grammars for HS(i1), . . . , HS(iq).
Execution: Apply the following four algorithms consecutively: ConstKeys, ConstFml, SolveSAT, and 
EvalToFml.

end

We sketch the steps of FindGram which will be detailed later:

1. ConstKeys produces from the input of FindGram a decomposition list of the terms of 
⋃

1≤j≤q HS(ij). 
Its entries will contain all terms possibly occurring as right sides of a minimal schematic grammar for 
HS(i1), . . . , HS(iq).
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2. ConstFml translates the output of ConstKeys into a propositional formula F s.t. every evaluation of F to 
true will give rise to a specific selection of rules, and will completely determine a schematic grammar. The 
purpose of this translation is to allow the application of optimised algorithms from the SAT community.

3. SolveSAT searches an evaluation E of F to true evaluating a minimal number of so-called counting atoms 
to true. Such an evaluation corresponds to a schematic grammar with a minimal number of production 
rules.

4. Finally, EvalToFml transforms E into the schematic grammar which is given as output.

The algorithm FindGram relies on algorithms and techniques presented in [12]. Let us briefly cite some 
important results of [12]: An efficient algorithm Decomp is presented there for the decomposition of an 
input language into a minimal rigid, acyclic tree grammar. The computational difficulty in finding a small 
grammar G producing an input language L is that a priori an enormous number of different terms k might 
occur as right side of rules of G. In fact, the number of terms k possibly occurring in a derivation of a 
term t ∈ L is exponential in the size of t. In [12], we proved that to obtain a grammar G of minimal size 
producing an input language L, we can restrict ourselves to terms k in a certain normal form as right side of 
rules of G. The number of such terms is only polynomial in the size of L. The problem of finding an optimal 
set of right sides of rules is then translated into a weighted SAT problem for which efficient algorithms are 
known.

Let us discuss how these results and techniques can be applied to our setting. The input of FindGram
is a list of Herbrand sequents HS(i1), . . . , HS(iq) for i1, . . . , iq ∈ N. Note that the instance grammars of 
the searched schematic grammar are rigid acyclic tree grammars. Nevertheless, in the case of induction 
proofs, the additional difficulty is that these instance grammars depend on each other since they are in-
stance grammars of the same schematic grammar. Therefore, it does not make sense to minimise their size 
individually.

Nevertheless, also in the case of induction proofs the restriction of the terms possibly occurring as right 
side of rules of the schematic grammar is crucial. To this aim, we will introduce an adapted notion of normal 
form, the so-called restricted normal form. Then, analogously as in [12], it can be shown that we can limit 
ourselves to terms in restricted normal form as right sides of rules of the searched schematic grammar. Then, 
again as in [12], the problem of choosing an optimal set of terms in restricted normal form as right sides of 
rules is transformed into a weighted SAT problem.

5.1. Keys in restricted normal form

We now introduce the concepts of [12] necessary for the definition of FindGram. To present the crucial but 
involved definition of a key in normal form, we have to introduce some notation and auxiliary definitions.

Notation 5.2. We always use τ to denote the axiom and α1, α2, . . . to denote the remaining non-terminals 
of a grammar. Terms not containing non-terminals are called closed. Finite sets of closed terms are called 
languages.

For a term k containing at most non-terminals α1, . . . , αn, for closed terms t1, . . . , tn and a closed term 
q we write

k ◦α1,...,αn

⎛
⎜⎝ t1

...
tn

⎞
⎟⎠ = q

for k[α1\t1, . . . , αn\tn] = q. We call t1, . . . , tn the rests of the decomposition of q by k. More specifically, 
ti is the rest of αi. Note that since t1, . . . , tn are closed the above displayed substitutions can be applied in 
any order. Note that the terms t1, . . . , tn are uniquely determined by the pair k, q.
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For a term k containing at most non-terminals α1, . . . , αn and closed terms t1,1, . . . , t1,n, . . . , tm,1, . . . , tm,n

we write

k ◦α1,...,αn

⎧⎪⎨
⎪⎩
⎛
⎜⎝

t1,1
...

t1,n

⎞
⎟⎠ , . . . ,

⎛
⎜⎝

tm,1
...

tm,n

⎞
⎟⎠
⎫⎪⎬
⎪⎭

for ⎧⎪⎨
⎪⎩k ◦α1,...,αn

⎛
⎜⎝

ti,1
...

ti,n

⎞
⎟⎠ : 1 ≤ i ≤ m

⎫⎪⎬
⎪⎭

Definition 5.3 (Key of a language). A term k containing at most non-terminals α1, . . . , αn is called key of a 
language M if there is a set R of vectors of closed terms such that k ◦α1,...,αn

R = M .

Notation 5.4. A term k is called key of a grammar/schematic grammar G exactly if G contains a rule with 
right side k.

Notation 5.5. For a set of terms M , let st(M) denote the set of subterms of terms in M .

Proposition 5.6. Let G be a grammar. Every key k of G is key of a language Lk ⊆ st(L(G)).

Proof. Let γ → k be a production of G and τ = t1, t2, . . . , tn = t a derivation of a closed term t in G
which uses γ → k. Let l be the index of the first application of γ → k, then tl = r[γ]p and tl+1 = r[k]p for 
some position p. Then k is key of the singleton set {t|p} ⊆ st(L(G)) as the derivation tl+1|p, . . . , tn|p of G
shows. �

The above proof shows that every key k of a grammar G is even a key of a singleton language contained 
in st(L(G)). When trying to find small grammars the challenge consists in finding keys of languages with as 
many elements as possible. A central result of [12], and the basis for the decomposition algorithm presented 
there, is that for a minimal decomposition of an input language L only a small number of all keys of subsets 
of st(L) suffices.

Definition 5.7 (Induced substitution). Let k be a key with non-terminals α1, . . . , αn for a language M . Let 
q ∈ M and

k ◦α1,...,αn

⎛
⎜⎝ t1

...
tn

⎞
⎟⎠ = q.

Then we write σk,q for the following substitution:

[α1\t1, . . . , αn\tn]

We often write σq if the key k is clear from the context.

Definition 5.8. Let k be a key with non-terminals α1, . . . , αn for the language M . Let t0, t1 be terms 
containing at most the non-terminals α1, . . . , αn. We say that M satisfies the equation t0 = t1 for k if for 
all t ∈ M :

t0σk,t = t1σk,t.
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If M does not satisfy an equation t0 = t1 for k, then there is a term t ∈ M s.t. t0σk,t �= t1σk,t. In that 
case we say that t falsifies the equation t0 = t1.

Example 5.9. Let M = {f(g(c), g(c)), f(g(d), g(d))} and k = f(α1, g(α2)) be a key of M . We have

• σk,f(g(c),g(c)) = [α1\g(c), α2\c] and
• σk,f(g(d),g(d)) = [α1\g(d), α2\d].

Accordingly, M fulfils the equation α1 = g(α2).

Notation 5.10. We call an equation trivial if it is of the form s = s for a term s.

Definition 5.11 (Normal form of decomposition key). Assume that k is a key with non-terminals α1, . . . , αn

for the language M . Then k is in normal form relative to M exactly if the following condition holds:
For any non-trivial equation of the form αi = q for 1 ≤ i ≤ n for q being a subterm of k or a closed term 

there is a term t ∈ M falsifying it.

Intuitively, keys in normal form do not contain idle non-terminals: If M satisfies an equation of the form 
αi = q for a key k given as above, it is easy to see that the key k[αi\q] decomposes M as well and that 
k[αi\q] contains one non-terminal less than k.

Example 5.12. Let k and M be given as in Example 5.9. Then k is not in normal form relative to M because 
M satisfies the equation α1 = g(α2) for k and g(α2) is a subterm of k. However, the key k[α1\g(α2)] =
f(g(α2), g(α2)) is in normal form relative to M . Let M ′ = M ∪ {f(g(c), g(d))}. Then k is in normal form 
relative to M ′ as, in particular, M ′ no longer satisfies the equation α1 = g(α2) for k.

Notation 5.13. Let G be a grammar. The size of G, written as |G|, is defined as the number of rules of G.

Definition 5.14 (Marked term). An n-marked term t is a pair 〈n, t′〉 where n ∈ N and t is a term.

Definition 5.15 (Marked language). An n-marked language is a finite set of n-marked closed terms.

Remark 5.16. FindGram will interpret its input language HS(n) as an n-marked language.

Notation 5.17.

• For an n-marked term t = 〈n, t′〉 in notations and concepts referring to terms, we often write t instead 
of t′. E.g. we write that k is in normal form relative to {t} meaning that k is in normal form relative to 
{t′}.

• We use Ln for n ∈ N to refer to an n-marked language.

Notation 5.18. Let T = {〈n1, t1〉, . . . , 〈nm, tm〉} be a set of marked terms. Then, extending Notation 5.5, we 
write st(T ) for the following set of marked terms:

{
〈n, u〉 | ∃〈n, t〉 ∈ T such that u ∈ st

(
{t}

)}
.

Recall that we are in the process of defining the algorithm FindGram whose input is a list HS(i1), . . . ,
HS(iq) of Herbrand sequents and whose output is a schematic grammar G with HS(ij) ⊆ L(Gij ) for 
all j ∈ {1 . . . , q}. Let us give some motivation for the following definition of the restricted normal form. 
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We will be interested in sets M ⊆ st(T ) for the set of marked terms T :=
⋃

1≤j≤q HS(ij). Since in a 
schematic grammar, the non-terminals α, ν, γ have a special interpretation, we can restrict the terms that 
can be possibly substituted for them. E.g. for a term t ∈ HS(ij) for 1 ≤ j ≤ q in each derivation of t in an 
instance grammar Gij of a schematic grammar G, α will be replaced by ij where n is the numeral of n ∈ N. 
Similar restrictions apply to ν. The restriction of the normal form makes sure that only keys respecting this 
special interpretation of the non-terminals are considered.

Definition 5.19 (Restricted normal form of decomposition key). A key k containing at most non-terminals 
α, ν, γ of a set of closed marked terms M is in restricted normal form relative to M exactly if the following 
conditions hold.

• k is in normal form relative to M .
• For all 〈j, t〉 ∈ M with j > 0 we have ασk,t = j and νσk,t = i for some i ∈ {0, . . . , j − 1}.
• For all 〈0, t〉 ∈ M we have ασk,t = 0 and ν does not occur in k.

The next lemma is proved analogously to the previously mentioned result in [12].

Lemma 5.20. Let Li1 , . . . , Liq be marked languages for i1, . . . , iq ∈ N. Let G be a schematic grammar with 
Lij ⊆ L(Gij ) for all 1 ≤ j ≤ q. Then there is a schematic grammar G′ with |G′| ≤ |G| such that

1. Lij ⊆ L(G′
ij

) for all 1 ≤ j ≤ q and
2. For each key k[α, ν, ζ] of G′ with ζ ∈ {β, γ} there is an M ⊆ st(

⋃
1≤j≤q Lij ) such that k[α, ν, γ] is in 

restricted normal form relative to M .

The previous lemma implies that we only have to consider schematic grammars containing exclusively 
keys in restricted normal form. FindGram will collect such keys into a decomposition list.

Definition 5.21 (Decomposition list for 3 nonterminals). Let T be a set of closed marked terms. D is a 
decomposition list for 3 non-terminals of T exactly if the following property holds.

For all M ⊆ st(T ) with M = {t1, . . . , tm} and u with non-terminals α, ν, γ in restricted normal form 
relative to M with u ◦α,ν,γ S = M and S of the form⎧⎨

⎩
⎛
⎝ s1,1

s1,2
s1,3

⎞
⎠ , . . . ,

⎛
⎝ sm,1

sm,2
sm,3

⎞
⎠
⎫⎬
⎭

D contains an entry 
(
ti, u,

(
si,1
si,2
si,3

))
for each 1 ≤ i ≤ m.

In addition, D does not contain other entries.

Lemma 5.22. Let Li1 , . . . , Liq be marked languages for i1, . . . , iq ∈ N. Let G be a schematic grammar with 
Lij ⊆ L(Gij ) for all 1 ≤ j ≤ q. Then there is a schematic grammar G′ with |G′| ≤ |G| such that

1. Lij ⊆ L(G′
ij

) for all 1 ≤ j ≤ q and
2. G′ contains only keys k[α, ν, ζ] with ζ ∈ {β, γ} such that k[α, ν, γ] occurs as second component of an 

entry in the decomposition list for 3 non-terminals of 
⋃

1≤j≤q Lij .

Proof. By Lemma 5.20 there is a schematic grammar G′ with 1 s.t. for every key k[α, ν, ζ] of G′ with 
ζ ∈ {β, γ} there is an M ⊆ st(

⋃
1≤j≤q Lij ) s.t. k[α, ν, γ] is in restricted normal form relative to M . Thus by 

Definition 5.21 the decomposition list D contains an entry with k[α, ν, γ] as second component hence 2. �
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We are now able to define the first step ConstKeys of FindGram in detail.

Algorithm 2. ConstKeys
Input: Marked languages Li1 , · · · , Liq with i1, . . . , iq ∈ N (intended input: Herbrand sequents).
Output: Decomposition list for 3 non-terminals of 

⋃
1≤j≤q Lij .

Execution:
Clearly, a decomposition list of 

⋃
1≤j≤q Lij for 3 non-terminals can be produced in exponential time in ⋃

1≤j≤q Lij . Nevertheless, a slight modification and adaptation of the algorithm ConstNF presented in [12]
allows the production of the searched decomposition list in polynomial time in our case. Due to space 
constraints we refrain from describing this adaptation here.

end

We call the output decomposition list of ConstKeys D. The non-terminals of the keys in D are α, ν, γ.

5.2. Decomposition list as propositional formula

Next, we present the second step ConstFml of FindGram which converts D into a propositional formula car-
rying equal information. The rationale of this translation is to allow the application of optimised algorithms 
from the SAT community for finding a minimal schematic grammar.

Algorithm 3. ConstFml
Input: Marked languages L�1 , . . . , L�q with �1, . . . , �q ∈ N, decomposition list D of 3 non-terminals of ⋃

1≤k≤q L�k

Output: Propositional formula ConstFml(L�1 , . . . , L�q , D) defined in Definition 5.27.
end

The formula F := ConstFml(L�1 , . . . , L�q , D) will be constructed such that each assignment of truth values 
to the atoms of F satisfying F will correspond to a schematic grammar whose instance grammars derive all 
terms in the marked languages L�1 , . . . , L�q . Moreover, the size of this schematic grammar is the number of 
certain so-called counting atoms of F which are set to true by the evaluation. First, we will sketch F and 
describe the strategy to build it. Then, we will define F precisely in Definition 5.27.

Notation 5.23. In the following, we denote propositional atoms by xs,t for strings s and t. If strings s′, t′ are 
syntactically different from s, t, we assume that the atom xs,t is different from xs′,t′ .

F will be composed of two sorts of atoms. The first sort of atoms are of the form xt,γi
where t is a 

subterm of a term in one of the input marked languages and i ∈ N. The second sort of atoms (the counting 
atoms) are of the form xpremise,k where premise is one of the strings start–β, start–γ, step, or end and k is 
a key which occurs as second component of an entry of the input decomposition list D.

As mentioned above, each evaluation E of the atoms of F satisfying F corresponds to a schematic 
grammar GE whose instance grammars derive the input marked languages. Accordingly, each assignment of 
the truth value true to an atom xs,t of F by E fixes some properties of GE. We will say that xs,t expresses 
this property in the following.

Atoms of the form xt,γi
with t being an �j-marked term for 1 ≤ j ≤ q express that t occurs as the γi−1

rest (see Notation 5.2) of a derivation of a term in L�j in the instance grammar GE,�j of the schematic 
grammar GE for 1 ≤ i ≤ �j +1. For i = 0 it expresses t ∈ Lij , i.e. it has to be assigned true by all evaluations 
E satisfying F for t ∈ Lij .
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The meaning of the other sort of atoms becomes clearer if we describe the form of F : F will be a large 
conjunction of subformulas which are roughly of the form

xt,γi
→ (xpremise1,key1 ∧ xt′1,γi+1) ∨ · · · ∨ (xpremiseκ,keyκ

∧ xt′κ,γi+1).

They have to be interpreted as follows for i > 0: If t occurs as the γi−1 rest of a derivation, then for some 
1 ≤ ζ ≤ κ the schematic grammar GE must contain a rule which is completely determined by premiseζ and 
keyζ , and as the result of applying this rule to decompose t, we receive as rest a new term t′ζ to decompose. 
Let us detail how pairs of premise and k[α, γ, ν] fix the mentioned rules of GE :

• For premise = start–β, xpremise,k expresses that GE contains the rule τ → k[α, β, ν].
• For premise = start–γ, xpremise,k expresses that GE contains the rule τ → k[α, γ, ν].
• For premise = step, xpremise,k expresses that GE contains the rule γ → k[α, γ, ν].
• For premise = end, xpremise,k expresses that GE contains the rule γend → k[α] (≡ k[α, γ, ν] in this case).

Note how these four possibilities correspond to the four types of productions in a schematic grammar 
(Definition 3.4). Keeping this motivation in mind, the definition of the formula F is an easy but tedious 
exercise in bookkeeping. We prepare its definition by some technically motivated auxiliary definitions.

Notation 5.24. Let a decomposition list D be given. We define D as {k : ∃x, y〈x, k, y〉 ∈ D}.

The following definition will allow to treat keys of D containing different subsets of the non-terminal 
α, γ, ν separately. This will make the definition of F more comprehensive.

Definition 5.25. Let a decomposition list D be given. Then the disjoint subsets D1, D2, D3, D4 of D are 
defined as follows.

D1 := {k ∈ D : kcontains at most the non-terminal α}
D2 := {k ∈ D : kcontains exactly the non-terminals α, ν}

∪ {k ∈ D : k contains exactly the non-terminal ν}
D3 := {k ∈ D : k contains exactly the non-terminals α, γ}

∪ {k ∈ D : k contains exactly the non-terminal γ}
D4 := {k ∈ D : k contains at least the non-terminals ν, γ}

For an input n-marked term t, the decomposition list D gives rise to various decompositions. The col-
lection of these decompositions will be described by disjunctions of the form DisD,t,·,· which will be defined 
in the following. The third subscript of DisD,t,·,· will determine how the non-terminal ν has to be replaced 
in the keys used for the mentioned decompositions. The fourth subscript of DisD,t,·,· will determine the 
non-terminals which may appear in the keys of the mentioned decompositions following the above Defini-
tion 5.25.

Definition 5.26. Let a decomposition list D be given. Let t be an n-marked term for n ∈ N and let i ∈
{1, . . . , n}. Then, we define

DisD,t,0,1 :=
∨

k∈D1,t=k[n]

xstart–γ,k

DisD,t,i,1 :=
∨

xstep,k

k∈D1,t=k[n]
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DisD,t,n+1,1 :=
∨

k∈D1,t=k[n]

xend,k

DisD,t,0,2 :=
∨

k∈D2,0≤m≤n−1,t=k[n,m]

xstart–γ,k

DisD,t,i,2 :=
∨

k∈D2,t=k[n,i−1]

xstep,k

DisD,t,n+1,2 := ⊥

DisD,t,0,3 :=
∨

k∈D3,t=k[n,r]

(
(xstart–β,k ∧ xr,γ1) ∨

n+1∨
j=2

(xstart–γ,k ∧ xr,γj
)
)

DisD,t,i,3 :=
∨

k∈D3,t=k[n,r]

xstep,k ∧ xr,γi+1

DisD,t,n+1,3 := ⊥

DisD,t,0,4 :=
∨

k∈D4,0≤m≤n−1,t=k[n,r,m]

xstart–γ,k ∧ xr,γm+2

DisD,t,i,4 :=
∨

k∈D4,t=k[n,r,i−1]

xstep,k ∧ xr,γi+1

DisD,t,n+1,4 := ⊥

Finally, we are in the position to give the definition of the formula F := ConstFml(L�1 , . . . , L�q , D).

Definition 5.27 (Formula ConstFml(L�1 , . . . , L�q , D)). For a decomposition list D, and a set of marked 
languages L�1 , . . . , L�q the formula ConstFml(L�1 , . . . , L�q , D) is defined as

∧
1≤j≤q

∧
t∈L�j

∧
0≤i≤�j+1

(
xt,γi

→
∨

1≤κ≤4
DisD,t,i,κ

)
∧

∧
1≤j≤q

∧
t∈L�j

xt,γ0

It is easy to see that the size of the formula ConstFml(L�1 , . . . , L�q , D) is polynomial in the size of its 
input and that the algorithm ConstFml can be executed in polynomial time.

It has to be explained yet, how evaluations of F to true correspond to schematic grammars with instance 
grammars producing the input languages. The following lemma delivers the missing connection.

Lemma 5.28. Let HS(i1), · · · , HS(iq) be Herbrand sequents of a Σ1 sequent and let

F = ConstFml
(
HS(i1), · · · ,HS(iq),ConstKeys

(
HS(i1), · · · ,HS(iq)

))
.

Then, the following two assertions hold.

• For each evaluation E with E(F ) = true which evaluates exactly n counting atoms as true there is a 
schematic grammar G for HS(i1), · · · , HS(iq) with |G| = n.

• For each schematic grammar G for HS(i1), · · · , HS(iq) with |G| = n there is an evaluation E with 
E(F ) = true which evaluates exactly n counting atoms as true.

Proof. Let E be given. Now, the searched schematic grammar G is produced by adding rules corresponding 
to the counting atoms evaluated true as follows:
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• If E(xstart–β,k[α,γ]) = true, the rule τ → k[α, β] is added to G.
• If E(xstart–γ,k[α,γ]) = true, the rule τ → k[α, γ] is added to G.
• If E(xstep,k[α,ν,γ]) = true, the rule γ → k[α, ν, γ] is added to G.
• If E(xend,k[α]) = true, the rule γend → k[α] is added to G.

The second assertion follows from Lemma 5.22 using again the correspondence between rules and atoms. �
Note that the formula ConstFml(HS(i1), · · · , HS(iq), ConstKeys(HS(i1), · · · , HS(iq))) is satisfiable due to 

the existence of a trivial schematic grammar for HS(i1), · · · , HS(iq) using only the non-terminal τ .

Remark 5.29. The proof of the previous lemma establishes a transformation T of evaluations E with E(F ) =
true into schematic grammars. T will be used for the definition of the fourth step EvalToFml of FindGram.

5.3. The complete algorithm for finding a schematic grammar

Let us now define the last two steps SolveSAT and EvalToFml of FindGram.

Algorithm 4. SolveSAT
Input: Satisfiable propositional formula F composed of atoms indexed like outputs of ConstFml.
Output: Evaluation E of F to true, evaluating a minimal number of counting atoms as true.
Execution: Apply an efficient weighted max-sat algorithm to F with suitably weighted clauses (see [17]
for an example of such an algorithm).

end

Algorithm 5. EvalToFml
Input: Satisfiable propositional formula F composed of atoms indexed like outputs of ConstFml, evaluation 
E with E(F ) = true.
Output: Schematic grammar.
Execution: Translate E into a schematic grammar according to transformation T described in the proof 
of Lemma 5.28.

end

The precise definition of all steps of FindGram allows to prove its correctness.

Lemma 5.30. The algorithm FindGram satisfies its specification given on p. 677.

Proof. The lemma immediately from Lemma 5.22, Lemma 5.28, and the proof of Lemma 5.28 assuming 
that the sketched ConstKeys fulfils its specification. �

Our aim is to produce a schematic grammar G such that its instance grammar Gn produces a Herbrand 
sequent of a Σ1 sequent ∀Γ ⇒ B[n] for all n ∈ N, e.g. a schematic grammar of N for ∀Γ ⇒ B[α]. However, 
from our finite input we do not know whether a Herbrand sequent of ∀Γ ⇒ B[n] exists for each n ∈ N. 
In addition even if this is the case, because of Proposition 3.13 a schematic grammar with the above 
mentioned property might not exist. Nevertheless, FindGram always produces an output which has to be 
seen as a candidate for a schematic grammar G of the entire N.

In [13], we proved that it is undecidable for an input schematic grammar with sequent Θ[α] whether 
for all n ∈ N the instance grammar Gn produces a Herbrand sequent of Θ[n]. This immediately implies 
that it is undecidable whether FindGram from a certain input in fact produced a schematic grammar of N. 
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Therefore, the algorithm IndProof will just use the output of FindGram, implicitly assuming that it is a 
schematic grammar of N for Σ without checking this property.

Let us explain how to choose the input collection of Herbrand sequents, and why we do not just search 
a schematic grammar for a single Herbrand sequent HS(n) for n ∈ N.

The flexibility in choosing the input collection allows us to search for minimal schematic grammars first 
for a small test-collection of Herbrand sequents. Nevertheless, for small test-collections HS(n1), . . . , HS(nm)
with small ni ∈ N there is the problem that these might be special cases, and therefore the minimal schematic 
grammar of {n1, . . . , nm} might not be a schematic grammar of larger subsets of natural numbers. Taking 
a larger test-collection instead might solve this problem. This explains why it is crucial for FindGram to be 
applicable to an arbitrary (finite) test-collection of marked languages.

Example 5.31. Recall the two definitions of the factorial given in Example 3.2. We sketch a natural sequence 
of Herbrand sequents with right side g(1, n) = f(n) for n ∈ N. They give rise to a schematic grammar using 
the algorithm FindGram.

A natural way to prove the equation g(1, n) = f(n) for n ∈ N is to start an equation chain from 
g(1, n) which successively decreases the second argument of g, and multiplies the first one. One arrives at 
g(1 · n · (n − 1) · · · · · 1, 0) and continues with 1 · n · (n − 1) · · · · · 1. From there, calculation rules for 1 and 
f(0) allow us to reach (1 ·n · (n − 1) · · · · · 1) · f(0). Rules for the factorial and associativity allow us to reach 
(1 · n · (n − 1) · · · · · 2) · f(1). By continuing analogously, we reach 1 · f(n). Calculation rules for 1 deliver 
f(n) which finishes the equation chain.

The described strategy determines a collection of proofs only containing atomic cuts for g(1, n) = f(n). 
They give rise to a Herbrand sequent HS(n) of the form In ⇒ g(1, n) = f(n) for each n ∈ N where In
contains instances of arithmetic axioms and the axioms for f and g as given in Example 3.2. Let us have a 
closer look at In:

• gST is instantiated by the following pairs of terms:

〈1, n− 1〉, 〈1 · n, n− 2〉, 〈1 · n · n− 1, n− 3〉, . . . , 〈1 · n · n− 1 · · · · · 2, 0〉

• fST is instantiated by the following terms:

0, 1, 2, . . . , n− 1

• ASSO is instantiated by the following triples of terms:

〈
1 · n · n− 1 · · · · · 2, 1, f(0)

〉
,
〈
1 · n · n− 1 · · · · · 3, 2, f(1)

〉
· · ·

〈
1, n, f(n− 1)

〉
Also all other instances can be obtained from the above sketched proofs easily.

Let us now present a schematic grammar G only using keys in restricted normal form. We will argue 
that G is the minimal schematic grammar with HS(2) ⊆ L(G2) and HS(3) ⊆ L(G3). It is easy to see that 
we even have HS(n) = L(Gn) for all n ∈ N. The grammar G contains exactly the following rules:

• τ → rf0 | rg0(β) | r1R(β)
• τ → rfST (ν) | rgST (ν, γ)
• τ → r1L(f(α)) | rASSO(γ, sν, f(ν))
• γ → γ · sν
• γend → 1
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Lemma 5.32. The grammar G defined above is the only schematic grammar G′ with HS(2) ⊆ L(G′
2) and 

HS(3) ⊆ L(G′
3) and |G′| ≤ 9.

Proof. Assume that there is a schematic grammar G′ containing 9 or less rules fulfilling the above mentioned 
condition. Instances of all the mentioned axioms occur in HS(n) for n > 0, therefore G′ contains one rule 
of the form τ → rAx(· · ·) for Ax = f0, g0, . . . , ASSO. HS(2) and HS(3) contain 2, respectively 3 pairwise 
different terms of the form rgST(· · ·). Let us call these terms s1, s2 and t1, t2, t3, respectively. The rule of the 
form τ → rgST(· · ·) contained in G′ must contain β or γ since otherwise t1, t2, t3 cannot be produced with 
only two additional rules. In addition, the structure of the terms t1, t2, t3 implies that a rule of the form 
τ → rgST (β, ·) or τ → rgST (γ, ·) must occur in G′. Since t3 equals rgST (1, ·), the rule γend → 1 has to be 
contained in G′. But now the only possible way to produce t1, t2, t3 by adding a single additional rule is to 
add the rule γ → γ · sν.

By similar arguments, it can be seen that all rules of the form τ → · · · in G′ are also contained in G
and vice versa. Especially, we have to argue with HS(2) and HS(3) since otherwise the use of the variable 
α would not be necessary. �

From the correctness of FindGram and the previous lemma, we deduce that the output of FindGram
applied to HS(2), HS(3) is the grammar G defined above.

6. Computing an induction formula

In this section we will invert the left down arrow of Diagram 2. Note that the arrow inversion process that 
the algorithm IndProof executes starts with Herbrand sequents of a given Σ1 sequent Θ. FindGram produces 
a schematic grammar G which will be assumed to be a schematic grammar of N for Θ, as we explained on 
p. 685. The algorithm FindFml detailed in this section will make use of this assumption and the sequent 
Θ which we call sequent of G in the following. Accordingly, in this section we assume that each schematic 
grammar has its sequent which will often not be mentioned explicitly if it is clear from the context.

Note that a schematic grammar G gives us much information about the conclusions of πb, πs, πc of the 
simple induction proofs π having G as grammar. In particular, the instances of the left side formulas, the 
step terms, and the cut terms are fixed by G. The right side of the conclusion of π is fixed by the right side 
of the sequent of G. Using this, we can produce a schematic form of the simple induction proof S having 
as only unknown the quantifier-free part of the induction formula. Then, candidates for induction formulas 
are generated systematically and checked. If a correct candidate C is found, a simple induction proof with 
induction formula C is built completing S. This proof is returned.

In this section we will define two algorithms: FindFmlc and FindFmlh. FindFmlc is complete in the sense 
that if S can be completed to a simple induction proof, FindFmlc will find the missing induction formula, 
and return the completed simple induction proof. However, FindFmlc is not feasible. FindFmlh is a heuristic 
which checks a limited amount of systematically produced induction formulas but is much more efficient and 
succeeds to find induction formulas in typical examples. Note that it is undecidable whether a schematic 
s.i.p. can be completed to a simple induction proof, see [13]. Therefore, if FindFmlc is given a schematic s.i.p. 
which cannot be completed to an s.i.p. it will not terminate.

Remember that FindFml produces from an input schematic grammar a schematic s.i.p. S. Then FindFml
searches for induction formulas completing S to a simple induction proof. In the first subsection, we will 
define schematic s.i.p.s in a rigorous way. In the second subsection, we discuss their solvability, which is the 
possibility of completing the scheme to a simple induction proof. In the rest of the section, we precisely 
define FindFmlc and FindFmlh.
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6.1. Schematic simple induction proofs

We will see that each schematic grammar induces a schematic s.i.p. defined as follows.

Definition 6.1 (Schematic s.i.p.). Let α, β, ν, γ be variables only occurring where indicated. Let Γ0[α, β],
Γ1[α, ν, γ], Γ2[α] only contain quantifier-free formulas. Let B[α] be a quantifier-free formula. Let ti[α, ν, γ]
for 1 ≤ i ≤ n, and ui[α] for 1 ≤ i ≤ m be terms. Assume n, m ≥ 1. Let X be a ternary predicate variable. 
Then, the list of the following three sequents is a schematic s.i.p. where it is assumed that formulas not 
containing any of β, ν, γ either occur in all or no left side formulas:

• Γ0[α, β] ⇒ X[α, 0, β]
• Γ1[α, ν, γ], 

∧
1≤i≤n X[α, ν, ti[α, ν, γ]] ⇒ X[α, sν, γ]

• Γ2[α], 
∧

1≤i≤m X[α, α, ui[α]] ⇒ B[α]

Note that a schematic s.i.p. is determined completely by the side formulas Γ0, Γ1, Γ2, B, the so-called 
step-terms ti for 1 ≤ i ≤ n, and the so-called cut-terms ui for 1 ≤ i ≤ m.

There is a natural way to obtain a schematic s.i.p. from a schematic grammar.

Definition 6.2 (From a schematic grammar to a schematic s.i.p.). Let G be a schematic grammar and Θ its 
sequent. Then, its schematic s.i.p. S has the following side formulas Γ0, Γ1, Γ2, B, induction step terms, and 
cut terms. We assume that α, β, ν, γ are displayed whenever they occur.

• For each rule of the form τ → r∀xF [x](t[α, β]), we add the side formula F [t[α, β]] to Γ0.
• For each rule of the form τ → r∀xF [x](t[α, ν, γ]), we add the side formula F [t[α, ν, γ]] to Γ1.
• For each rule of the form τ → r∀xF [x](t[α]), we add the side formula F [t[α]] to Γ0, Γ1, Γ2.
• B is the right side of Θ.
• For each rule of the form γ → t[α, ν, γ] we include the term t into the set of step terms.
• For each rule of the form γend → t[α] we include the term t into the set of cut terms.
• If the grammar G does not contain a rule of the form γ → t we include the term 0 into the set of step 

terms. If the grammar G does not contain a rule of the form γend → t we include the term 0 into the 
set of cut terms.

Note that for rules of the form τ → c for c not containing any of β, ν, γ, corresponding side formulas are 
added to Γ0, Γ1 and Γ2. The addition of 0 to the step-, respectively cut-terms guarantees that the schematic 
s.i.p. contains at least one step- and at least one cut-term. This gives them the right shape to be completable 
to simple induction proofs by FindFml which typically will not contain occurrences of z in their induction 
formula F [x, y, z]. Schematic grammars without rules of the form γ → t and γend → t are relevant since 
they correspond to quantifier-free induction formulas.

Definition 6.3 (Solution of schematic s.i.p.). Assume that a schematic s.i.p. S is given. Assume that there 
is a quantifier-free formula F [x, y, z] such that the three sequents of S with X replaced by F are quasi-
tautological. Then, we call F a solution of S.

Notation 6.4. Let G be a schematic grammar and let S be its associated schematic s.i.p. given in Def-
inition 6.1. Then each formula F occurring in S is an instance of a formula occurring as a subindex of 
a constant of G. We call this formula ∀F . For 0 ≤ i ≤ 2, assume Γi := A1, . . . , An. Then we denote 
∀A1, . . . , ∀An by ∀Γi.
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Lemma 6.5. Let S be a schematic s.i.p. consisting of sequents S1[X], S2[X], S3[X]. Let F be a solution of S. 
Then, there is an s.i.p. π of

∀Γ0, ∀Γ1, ∀Γ2 ⇒ B[α]

such that the conclusion of πb is S1[X\F ], the conclusion of πs is S2[X\F ], and that the conclusion of πc

is S3[X\F ]. We arbitrarily fix one of these proofs and denote it by S[X\F ].

Proof. Since the premises of S with X replaced by F are quasi-tautological, they have cut-free proofs. Next, 
we introduce universal quantifiers which yields the required induction premises and the cut-premise. Finally, 
by applying induction and executing a cut, we obtain the searched simple induction proof. �
Lemma 6.6. Let G be a schematic grammar containing rules of the form γ → · · · and γend → · · ·. Let S
be its schematic s.i.p. Assume that F is a solution of S. Then G is the schematic grammar of the simple 
induction proof S[X\F ].

Proof. By the construction of Lemma 6.5 the s.i.p. S[X\F ] consists of πb: S1[X\F ], πs: S1[X\F ], and 
πc: S3[X\F ]. These three sequents are the instances of the schematic s.i.p. S1[X], S2[X], S3[X] of G which 
in turn determine G. �

The previous lemma reduces the problem of finding a simple induction proof yielding a given schematic 
grammar G, which is the inverse of the left down arrow in Diagram 2, to solving a schematic s.i.p.

6.2. Solvability of schematic simple induction proofs

Not every schematic s.i.p. S is solvable, which follows immediately from the fact that the formula B in 
S is not restricted in any way. However, for our paper only the case is relevant where S is produced from a 
schematic grammar G whose instance grammars Gn produce Herbrand sequents of its sequent for all n ∈ N

because this is a necessary condition for the solvability of S. However, as shown in Proposition 6.7 below, 
it is not a sufficient condition. The below Proposition 6.7 together with Proposition 3.13 is best thought of 
as an elaboration of Proposition 3.11 as follows: while Proposition 3.11 shows that, in general, the path in 
Diagram 2 from π to L(G(πn)) cannot be inverted, Proposition 3.13 gives one reason for that: un-invertibility 
of the path from G(π) to L(G(πn)) while Proposition 6.7 will give another reason: un-invertibility of the 
arrow from π to G(π).

In [13] we have shown that it is undecidable for an input schematic s.i.p. whether it is solvable even if 
it is produced from a grammar satisfying the condition stated in Proposition 6.7 of this paper. This result 
immediately implies Proposition 6.7. Here we give a simpler direct proof of Proposition 6.7.

Proposition 6.7. There is a Σ1 sequent ∀Γ ⇒ B[α] with B quantifier-free and a schematic grammar G with 
sequent ∀Γ ⇒ B[α] such that

• L(Gn) is a Herbrand sequent of ∀Γ ⇒ B[n] for all n ∈ N, but
• the schematic s.i.p. of G does not have a solution.

Proof. Consider the following schematic grammar G.

• τ → rP (0)
• τ → r∀x(P (x)→P (sx))(γ)
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• γ → sγ
• γend → 0

It is easy to see that for each n ∈ N its instance grammar Gn produces the Herbrand sequent

P (0), P (0) → P (1), . . . , P (n− 1) → P (n) ⇒ P (n)

of

P (0),∀x
(
P (x) → P (sx)

)
⇒ P (n).

Its schematic s.i.p. S is given as follows.

• P (0) ⇒ X[α, 0, β]
• P (0), P (γ) → P (sγ), X[α, ν, sγ] ⇒ X[α, sν, γ]
• P (0), X[α, α, 0] ⇒ P (α)

In the following, we prove that S is not solvable. Towards a contradiction, assume that a solution F [x, y, z]
of S exists which means that the premises of S with X replaced by F are quasi-tautological.

We substitute ν and γ successively as follows in the second sequent of S[X\F ] for n ∈ N where we write 
sn(·) for s · · · s︸ ︷︷ ︸

n times

(·) for n ∈ N:

[
ν\ν, γ\sn−1γ

]
,
[
ν\sν, γ\sn−2γ

]
, . . . ,

[
ν\sn−1ν, γ\γ

]
From the quasi-tautologies resulting by the substitutions, we easily derive the following sequent Θ(n) for 
any n ∈ N.

P (0), P (γ) → P (sγ), P (sγ) → P (ssγ), . . . , P
(
sn−1γ

)
→ P

(
snγ

)
, F

[
α, ν, snγ

]
⇒ F

[
α, snν, γ

]
For the further argumentation, we will w.l.o.g. assume that F [x, y, z] is given as conjunction of the formulas

EQ1 → F1, · · · , EQn → Fn

where EQi is a conjunction only containing (possibly negated) atoms of the form s = t, and Fi is a 
disjunction only containing (possibly negated) atoms of the form P (·).

From now on, we argue in the models of signature {0, s, P} with universe N and zero and the successor 
interpreted as usual. We say that a formula F is true in M if it holds in all of these models. Note that the 
models only diverge in their interpretation of the predicate P .

Let us analyse the structure of the true equations in M. First, note that all terms of M have the form 
sn(u) for u = 0 or u being a variable. Equations of the form sn(p) = sm(q) for n < m are true exactly if 
p = sm−n(q). This implies the following property:

(A): For any d ∈ N, and terms sn(x), sm(x) with n, m ∈ N and a variable x, we have sn(k) = sm(�)
exactly if sn(k + d) = sm(� + d).

Let m ∈ N be an upper bound for the depth of terms occurring in F . We will prove the following auxiliary 
lemma.

Lemma 6.8. For all q1, q2, n ∈ N with q1, q2 > 2n and n > m the following properties hold.

• EQi[q1, q1, 0] ↔ EQi[q2, q2, 0] is true in M for all 1 ≤ i ≤ n.
• EQi[q1, q1 − n, n] ↔ EQi[q2, q1 − n, n] is true in M for all 1 ≤ i ≤ n.
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Proof. Assume k ∈ N. For i = 1, 2, no equations of the form sk(qi) = c are true in M where c is a closed term 
of F [x, y, z] since the depth of c is bounded by n. Assume k, � ∈ N. For equations of the form sk(u) = s�(v)
of F [x, y, z] where u = x, y and v = x, y sk(q1) = s�(q1) is true in M exactly if sk(q2) = s�(q2) is true in M
because of property (A). For equations of the form sk(u) = s�(z) of F [x, y, z] where u = x, y the equation 
sk(qi) = s�(0) is not true in M since the depth of the term at the right side is bounded by n. In total this 
implies the first property. For the second property, we argue similarly. �

We choose arbitrary q1, q2, n ∈ N with q2 > q1 > 2n, and n > m, and consider Θ(n)[α\q1][ν\q1 − n][γ\0]. 
Both, F [q1, q1 − n, n] and F [q1, q1, 0] can be replaced by conjunctions of the form Fi1 ∧· · ·∧Fik which yields 
the formula Θ′, true in M only containing atoms of the form P (·). We replace all occurrences of N in Θ′

with q1 ≤ N by N + q2 − q1, and obtain a formula which is still true in M since the models evaluate P on 
different numerals independently. Note that on the left side of Θ′ exactly atoms are replaced which have 
been produced by replacing α. On the right side of Θ′ exactly atoms are replaced which have been produced 
by replacing α or ν. Because of the special choice of q1, q2, n, and the previous lemma we deduce that the 
formula Θ′′ given as

P (0), P (0) → P (1), P (1) → P (2), . . . , P (n− 1) → P (n), F [q2, q1 − n, n] ⇒ F [q2, q2, 0]

is true in M. For n, m ∈ N, we abbreviate

P (n) → P (n + 1), P (n + 1) → P (n + 2), . . . , P (m− 1) → P (m)

as propagP (n, m −1). A similar unfolding of the induction step premise as we used before to obtain Θ yields

P (0), propagP (n, q1 − 1) ⇒ F [q2, q1 − n, n].

Together with Θ′′ we deduce

P (0), propagP (0, q1 − 1) ⇒ F [q2, q2, 0]

which finally yields using the cut premise

P (0), propagP (0, q1 − 1) ⇒ P (q2)

which is clearly not true in M. This is a contradiction which rejects the assumption that the schematic 
s.i.p. S obtained from G can be solved. �

Let us conclude, however, with the following positive result.

Lemma 6.9. Let G be a schematic grammar such that there is a simple induction proof π with G(π) = G. 
Then the schematic s.i.p. of G has a solution.

Proof. Clearly, the non-quantified induction formula of π is a solution of the schematic s.i.p. of G. �
6.3. The complete algorithm FindFmlc

In this section we will define the algorithm FindFmlc which is a complete algorithm in the sense that it 
succeeds in solving each schematic s.i.p. which has a solution.
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Definition 6.10. Let S be a schematic s.i.p. with premises given as in Definition 6.1. Then, the collection of 
formulas CS,q[x, z]q≥0 is defined by recursion as follows.

CS,0[x, z] :=
∧

Γ0[x, z]

CS,q+1[x, z] :=
∧

Γ1[x, q, z] ∧
∧

1≤i≤n

CS,q

[
x, ti[x, q, z]

]

CS,q[x, z] is called the q-th canonical solution of S.

Remark 6.11. Note that the canonical solutions of this paper are similar to the canonical solutions of [21, 
Definition 8]. Both can be seen as being solutions for a sequence of predicate variables in a proof containing 
iterated Π1 cuts. In the case of this paper, this proof is obtained by unfolding induction by iterated Π1 cuts. 
Nevertheless, some important differences occur. The form of the proof with iterated Π1 cuts is much more 
restricted in our case. This has of course also an effect on the variable conditions of the mentioned proof, 
and causes the q-th canonical solution to contain at most two variables for all q ∈ N. A similar restriction 
cannot be made for the canonical solutions in [21]. In addition, they cannot be defined in such a uniform 
way as the canonical solutions of this paper.

Lemma 6.12. Let S be a schematic s.i.p. Then, for any solution F of S and any q ∈ N, the q-th canonical 
solution CS,q[x, z] logically implies F [x, q, z].

Proof. The lemma is proved by induction on q. It holds for q = 0 since we have Γ0[x, z] ⇒ F [x, 0, z] for the 
solution F of S. Let us prove the claim for q + 1. We have

Γ1[x, q, z],
∧

1≤i≤n

F
[
x, q, ti[x, q, z]

]
⇒ F [x, q + 1, z]

since F is a solution of S. By induction hypothesis, we have that CS,q[x, ti[x, q, z]] implies F [x, q, ti[x, q, z]]
for each 1 ≤ i ≤ n. Then the claim for q + 1 immediately follows from the definition of CS,q+1. �

The previous lemma justifies the following definition of FindFmlc.

Algorithm 6. FindFmlc

Input: Schematic grammar G with sequent Θ.
Output: The algorithm is partial. If an output is given, it is a simple induction proof of Θ.
Execution:
• Construct the schematic s.i.p. S of G.
• Calculate CS,0[x, z].
• For all logical consequences C ′[x, z] of CS,0[x, z] having the same signature as CS,0[x, z] plus possibly 

equations:
– For each subset Q of occurrences of 0 in C ′[x, z]:

– Replace all occurrences in Q by y, yielding a formula C̃[x, y, z]. If C̃[x, y, z] is a solution of S
(which is check-able since S is quantifier-free), break the for-loops.

• Find proofs πb, πs, and πc of the quasi-tautologies of S[X\C̃] and complete them in the obvious way 
to a simple induction proof of Θ.

end
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The proofs πb, πs, and πc of the quasi-tautologies in S[X\C̃] might be large. Therefore, for implementations 
of the algorithm, we will content ourselves with guarantees of quasi-tautology checkers that they are in fact 
quasi-tautologies.

Theorem 6.13. Let G be a schematic grammar such that there is an s.i.p. π with G(π) = G. Then FindFmlc(G)
is a simple induction proof and if G is non-degenerate then G(FindFmlc(G)) = G.

Proof. Let π be an s.i.p. and G = G(π). Then by Lemma 6.9 the schematic s.i.p. S of G has a solution, 
say F . By Lemma 6.12 we know that CS,0[x, z] logically implies F [x, 0, z]. As FindFmlc enumerates all logical 
consequences of CS,0[x, z] and, in each of them, abstracts all subsets of occurrences of 0 by y it eventually 
finds C̃[x, y, z] = F [x, y, z] which is a solution and from which, by Lemma 6.5, an s.i.p. π′ is obtained. 
Since S[X\F ] and hence FindFmlc(G) induce the same schematic grammar as S via Definition 3.5 we have 
G(FindFmlc(G)) = G. �

Note that this is a completeness result in the sense that an s.i.p. can be found once its schematic grammar 
has been found. Referring to Diagram 2 this means that there is a partial computable function inverting 
the left down arrow. However, note that because of Proposition 6.7 FindFmlc does not terminate on some 
input schematic grammars even if their instance grammars all produce Herbrand sequents.

6.4. The heuristic algorithm FindFmlh

The algorithm FindFmlc defined in the previous section, although complete, is quite inefficient. Therefore, 
in this section we define a heuristic algorithm FindFmlh which is more efficient but still succeeds in typical 
examples. The algorithm FindFmlh uses a similar strategy as the previously presented FindFmlc. Nevertheless, 
it is much more efficient because instead of producing all logical consequences of canonical solutions it only 
produces all consequences obtained by applying forgetful resolution and forgetful paramodulation. This 
heuristic is a generalisation of a similar approach used in the context of cut-introduction [22] that has 
proved useful in large-scale experiments, see [20].

Definition 6.14. Propositional resolution is the following inference rules on clauses:

C ∨ p C ∨ ¬p
C ∨D

Propositional paramodulation is the following inference rule on clauses

C ∨ t0 = t1 D[x\ti]
C ∨D[x\tj ]

for 0 ≤ i, j ≤ 1 and i �= j.

Let C1, C2 be two clauses, then we denote the set of clauses that can be obtained from C1, C2 by resolution 
by res(C1, C2) and the set of clauses that can be obtained from C1, C2 by paramodulation by para(C1, C2). 
Letting F be a formula with conjunctive normal form (CNF) {Ci}i∈I we define

F(F ) =
{
C ∧

∧
i∈I\{j,k}

Ci

∣∣∣ C ∈ res(Cj , Ck) ∪ para(Cj , Ck)
}
.

We can now present an auxiliary algorithm FindConseq. Using the operation F , it produces consequences 
of a canonical solution CS,n, then recurses upon those consequences which pass a certain quasi-tautology 
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check, finally returning a set of formulas from which candidates for induction formulas will be produced. 
FindConseq depends on a schematic s.i.p. S given as in Definition 6.1 and a natural number n. The intended 
input of FindConseqS,n is the canonical solution CS,n in CNF.

Algorithm 7. FindConseqS,n
Input: Formula A in CNF.
Output: A set of logical consequences of A.

function FindConseqS,n(A: formula in CNF)
M ← {A}
for F ∈ F(A) do

if Γ2[n], 
∧

1≤i≤m F [n, ui[n]] ⇒ B[n] is a quasi-tautology then
M ← M ∪ FindConseqS,n(F )

end if
end for
return M

end function
end

For the intended input, the quasi-tautology test sorts out logical consequences C of CS,n which are too 
weak to make the third sequent of S tautological. No further logical consequences of C have to be produced 
in this case.

Note that in general FindConseq is not feasible since it uses a forking recursion. Nevertheless, many 
branches of the recursion might not be treated because of the quasi-tautology criterion. Large scale experi-
ments in [20] suggest good running times for a very similar algorithm defined in [20].

Let us define FindFmlh in detail.

Algorithm 8. FindFmlh

Input: Schematic grammar G with sequent Θ, n ∈ N.
Output: Simple induction proof π of Θ, or error output.
Execution:
• Produce the schematic s.i.p. S of G.
• Calculate CS,n.
• Calculate FindConseqS,n(CS,n).
• Starting from the formulas in FindConseq(CS,n) consisting only of a single clause progressing to the 

ones consisting of several clauses, a certain (user-defined) number of candidate induction formulas 
are produced by inserting a second variable y for subsets of occurrences4 of n. It is checked for each 
candidate induction formula C̃ whether it solves S using an efficient quasi-tautology checker.
– If this is the case for a candidate C̃ find proofs πb, πs, and πc of the quasi-tautologies of S[X\C̃]. 

Output the corresponding simple induction proof, and break the algorithm.
– If this is not the case for all of the produced candidates, we continue with the next formula in 

FindConseqS,n(CS,n).
• Output error.

end

4 There are systematic ways of reducing the number of subsets of occurrences of n for which it makes sense to replace them 
by y. Put informally, we recommend only to replace occurrences of n by y if they are obtained by replacing occurrences of ν of the 
schematic s.i.p. when calculating CS,n.



S. Eberhard, S. Hetzl / Annals of Pure and Applied Logic 166 (2015) 665–700 695
As for FindFmlc, the equation G(π) = G does not hold for a degenerate grammar. Again, we will 
content ourselves with guarantees of quasi-tautology checkers that the sequents of S[X\C̃] are in fact 
quasi-tautologies instead of asking for proofs of them.

7. Examples

We test the algorithm IndProofh on two typical examples from the literature. Remember that IndProofh

uses the version FindFmlh of FindFml. IndProofh will succeed to find simple induction proofs for the associa-
tivity of addition and the equivalence of the two definitions of the factorial by head- and tail-recursion.

7.1. Example: two definitions of the factorial

Recall the two definitions of the factorial used in Example 3.2. To test the performance of IndProofh

on the Herbrand sequents displayed there, we only have to apply FindFmlh to the output G of FindGram
described in Example 5.31. We will execute FindFmlh on input G, 0. First, FindFmlh produces the schematic 
s.i.p. S from G which is given as follows:

• f(0) = 1, g(β, 0) = β, β · 1 = β ⇒ X[0, β]
• sν · f(ν) = f(sν), g(γ, sν) = g(γ · sν, ν), (γ · sν) · f(ν) = γ · (sν · f(ν)), X[ν, γ · sν] ⇒ X[sν, γ]
• 1 · f(α) = f(α), X[α, 1] ⇒ g(1, α) = f(α)

CS,0[z] is given as

f(0) = 1 ∧ g(β, 0) = β ∧ β · 1 = β.

FindFmlh carries out paramodulations between g(β, 0) = β and β = β · 1. There are 5 resulting formulas. 
4 of them do not pass the quasi-tautology test. The formula which passes is

g(β, 0) = β · 1 ∧ 1 = f(0).

Between f(0) = 1 and g(β, 0) = β paramodulation cannot be applied. Paramodulation between f(0) = 1
and β · 1 = β delivers as unique resulting formula

g(β, 0) = β ∧ β · f(0) = β.

The only possible further paramodulation delivers g(β, 0) = β · f(0) as unique formula passing the quasi-
tautology test. This is the only produced formula containing a single clause.

Next, FindFmlh substitutes subsets of occurrences of 0 by y yielding 4 candidates for induction formulas. 
For the candidate C[y, z] := g(z, y) = z · f(y) it can be easily checked (by a quasi-tautology check) that 
it is a solution of S. No other candidate is a solution of S. FindFmlh therefore outputs the natural simple 
induction proof for the equivalence of the two definitions of the factorial given in Example 3.2.

It can be seen easily that FindFmlh yields the same output independent of its second input, so it is not 
necessary to fix it as zero as we did before. Let us remark that this section together with Example 5.31 shows 
that IndProofh applied to only two of the natural Herbrand sequents of g(1, n) = f(n) from Example 5.31
yields a simple induction proof of the universal statement.
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7.2. Example: associativity of addition

Let us sketch how our algorithm deals with the following special case of associativity of addition given as

(∀x)
(
x + (x + x) = (x + x) + x

)
.

This formula itself is not inductive but a slight generalisation of it is. We write sn(·) for s · · · s︸ ︷︷ ︸
n times

(·) for n ∈ N. 

Let us describe a natural proof strategy for

n + (n + n) = (n + n) + n

for n ∈ N to fix the input Herbrand sequents of IndProof:
Starting with n + (n + n), we repeatedly decrease the first summand which yields

s
(
n− 1 + (n + n)

)
, ss

(
n− 2 + (n + n)

)
, . . . , sn

(
0 + (n + n)

)
.

We obtain sn(n + n), and from this sn((0 + n) + n).
We repeatedly shift the s in front of the first summand which yields

• sn−1(s(0 + n) + n), sn−1((1 + n) + n)
• sn−2(s(1 + n) + n), sn−2((2 + n) + n)
• . . .

• s(n− 1 + n) + n, (n + n) + n

This concludes the proof sketch for the single instances. As for the factorial this uniform strategy fixes a 
collection of Herbrand sequents HS(n) of

Γ ⇒ n + (n + n) = (n + n) + n

where Γ contains the universal closures of the following formulas.

s(x + y) = sx + y s−Ax,

0 + y = y 0−Ax

The following instances of s−Ax are used for the sketched proof of n + (n + n) = (n + n) + n for n ∈ N:

• 〈n− 1, n + n〉, 〈n− 2, n + n〉, . . . , 〈0, n + n〉
• 〈n− 1 + n, n〉, 〈n− 2 + n, n〉, . . . , 〈0 + n, n〉
• 〈n− 1, n〉, 〈n− 2, n〉, . . . , 〈0, n〉

The used instances of 0−Ax are n + n and n. The following schematic grammar G has the property that 
its instance grammars Gn produce HS(n) for all n ∈ N.

• τ → rs−Ax(ν, α + α) | rs−Ax(ν + α, α) | rs−Ax(ν, α)
• τ → r0−Ax(α + α) | r0−Ax(α)

Note that the schematic grammar is degenerate since it does not contain rules for β and γ. It can be seen 
easily that G is of minimal size among the schematic grammars G′ with HS(2) ⊆ L(G′

2) and HS(3) ⊆ L(G′
3). 

Its schematic s.i.p. S is given as follows.
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• 0 + (α + α) = α + α, 0 + α = α ⇒ X[α, 0, β]
• 0 +(α+α) = α+α, 0 +α = α, s(ν+(α+α)) = sν+(α+α), s((ν+α) +α) = s(ν+α) +α, s(ν+α) = sν+α, 

X[α, ν, 0] ⇒ X[α, sν, γ]
• 0 + (α + α) = α + α, 0 + α = α, X[α, α, 0] ⇒ α + (α + α) = (α + α) + α

By using paramodulation on the clauses of CS,0 we obtain 0 + (α + α) = (0 + α) + α. Inserting ν for 0
delivers the following correct candidate induction formula C̃ given as follows.

C̃[x, y, z] := y + (x + x) = (y + x) + x.

The example shows that IndProofh fully automatically finds a proof of a special case of associativity of 
addition from natural cut-free proofs of instances.

8. Evaluation

In this short section we discuss merits and drawbacks of our approach to inductive theorem proving.

8.1. Analyticity

What we view as its principal merit is that it breaks the tight relationship between conclusion and induc-
tion invariant which is typical for bottom-up proof search techniques. It constructs a schematic grammar 
from instance proofs using only methods from the combinatorics of finite sets of first-order terms. Once 
a suitable schematic grammar is found, it is – at least in principle – possible to find an inductive proof 
(cf. Theorem 6.13). Thus our approach attacks the central problem of inductive theorem proving – the 
inherent non-analytic nature of induction invariants – by reducing it to a problem in the combinatorics of 
finite sets of terms and a quantifier-free logical unification problem.

8.2. Completeness

Due to Proposition 3.11, a trivial corollary of Gödel’s second incompleteness theorem, it was clear a 
priori that there are sequences of Herbrand sequents which do not correspond to simple induction proofs. 
Therefore, only restricted completeness statements make sense. Theorem 6.13 is a restricted completeness 
theorem which shows that we can compute (by FindFmlc) an s.i.p. from a schematic grammar G s.t. there 
is an s.i.p. π with G(π) = G. It would be desirable to push this restricted completeness result further to 
the right of Diagram 2 by proving that it is possible to compute an s.i.p. from a finite subsequence (Hi)ni=0
of a sequence of Herbrand sequents (Hi)i≥0 s.t. there is an s.i.p. π with L(G(πi)) ⊇ Hi for all i ≥ 0. Our 
algorithm FindGram does not achieve this but we believe it is possible to devise an algorithm which does 
based on our approach by requiring a more sophisticated search goal than the minimisation of the number 
of production rules of the schematic grammar.5

8.3. Algorithmic complexity

The primary drawback of our approach is that is consists of a number of independent phases, each 
of which can fail independently. First, the instance proofs can be too irregular.6 While this seems to be 
the most fundamental obstacle there are techniques to counter it, for example to work modulo a suitable 

5 Note that this problem has a trivial solution not requiring any input as the set of simple induction proofs is computably 
enumerable. The challenge is to find a complete and (reasonably) efficient algorithm.
6 However, not finding instance proofs does not seem to be a danger, at least for the class of examples treated in the literature.
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theory (see Section 8.5) which reduces the number of possible instance proofs or to compute more than 
one instance proof for each n. Secondly, even if the instance proofs are sufficiently regular, the schematic 
grammar algorithm can fail to produce a solvable grammar (but this seems avoidable, see Section 8.2). 
Thirdly, even if a solvable grammar is produced it may be infeasible to actually compute the solution. How 
important an obstacle this is in practice is hard to say without experimental data. In principle, the large 
body of existing work on the computation of quantifier-free loop invariants (see e.g. [5]) should be adaptable 
to this context.

8.4. Practical value

Another consequence of the above-mentioned algorithmic complexity is that the implementation requires 
a relatively large amount of work. However, for assessing the practical value of the presented algorithm its 
implementation and evaluation on a library of test problems is mandatory. This will be carried out in future 
research within the gapt system.7 We are optimistic that IndProofh will yield satisfactory results because of 
the following reasons:

First, we have applied our algorithm to typical examples from the literature with pencil and paper (as 
described in Section 7) and the small sizes of the search spaces show that a reasonable implementation can 
solve them automatically.

Secondly, a similar algorithm has already been implemented in gapt and tested quite extensively with 
good results: in [20] an algorithm CI (cut-introduction) which contracts cut-free proofs by introducing Π1

cuts achieved good results in compressing proofs from the TSTP-library (see [32]). The algorithm IndProofh

presented in this paper uses very similar techniques as CI to guess induction formulas. As CI , IndProof
decomposes a language, and then solves a similar quantifier-free logical unification problem. The fact that 
IndProof in contrast to CI deals with induction does not essentially increase the complexity of the algorithm 
but instead causes IndProof to be partial. The test results for CI are therefore good evidence that also 
IndProof should succeed in finding inductive proofs for a high percentage of natural test problems.

8.5. Extendability

This paper has only treated simple induction proofs but the overall approach is more general. Each proof 
shape (e.g. a nested induction, an induction on another algebraic data type, another induction rule, . . . ) 
induces a corresponding notion of schematic grammar.8

Independently, it is quite straightforward to extend this approach to work modulo equational theories: the 
only part which requires some non-trivial insights on the theoretical level is the generalisation of FindGram
to compress equivalence classes of terms instead of literal terms. On the practical level, a reasonable im-
plementation of FindFml must assume the existence of efficient solvers for quantifier-free formulas in that 
equational theory (which puts a certain limit on the theories for which such an extension will be practically 
useful).

9. Conclusion

The strategy of this paper is comparable to the strategy of [21]: Starting from Herbrand sequents, by 
inverting productions of grammars, one tries to obtain non-analytic proofs. The results of the paper show 

7 http :/ /www .logic .at /gapt/.
8 Note that already in this paper the presence/absence of γ-productions determines the presence/absence of the ∀y-quantifier in 

the induction formula. In the associativity example the algorithm determines automatically that this quantifier is not necessary 
by finding a schematic grammar without γ-productions.

http://www.logic.at/gapt/
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that the correspondence between proofs and grammars which was exploited heavily in [21], can also be 
fruitfully used in the setting of induction.

Nevertheless, in the setting of induction, new and essential problems occur. Propositions 3.11, 3.13, 
and 6.7 imply that each algorithm inverting the arrows of Diagram 2 must be partial. This is in contrast 
to [21] where the reversal of the arrows in the corresponding diagram is always possible, even if the resulting 
non-analytic proof is not always shorter than the cut-free proof corresponding to the input Herbrand sequent.

Despite of the problems mentioned above, we managed to construct an algorithm IndProof able to au-
tomatically compute induction formulas in typical examples. Therefore, we believe that our paper makes a 
valuable contribution to the difficult field of inductive theorem proving.
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