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Abstract We investigate the development of terms during cut-elimination in
first-order logic and Peano arithmetic for proofs of existential formulas. The form of
witness terms in cut-free proofs is characterized in terms of structured combinations
of basic substitutions. Based on this result, a regular tree grammar computing witness
terms is given and a class of proofs is shown to have only elementary cut-elimination.

Keywords Cut-elimination · Herbrand’s theorem · Peano arithmetic

Mathematics Subject Classification (2000) 03F05 · 03F07 · 03F30

1 Introduction

Cut-elimination is a tool of central importance for proof theory. It has traditionally been
used to prove meta-theorems, in particular consistency-results. The situation is similar
for related methods like normalization [30], Gödel’s Dialectica interpretation [20] or
Hilbert’s ε-calculus [23]. However, these methods can also be applied to formalized
mathematical proofs to extract constructive information, for example a program, from
them [24,33]. Gentzen’s original cut-elimination proof [15] consists essentially of a
set of proof rewrite rules and a terminating strategy for applying these rules. The same
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530 S. Hetzl

is true about most cut-elimination theorems since: apart from the strategy of picking
an uppermost cut for reduction as in [15], also picking a lowermost cut [16] or one
of maximal logical complexity [35] turned out to be useful for obtaining termination.
Several restrictions of the general proof rewrite rules with the aim of obtaining, in addi-
tion to termination, a confluence property have also been investigated [10,11]. Each
restriction of the full set of proof rewrite rules has the (sometimes intended) effect of
limiting the obtainable results. However, recent work [1] has shown that the number of
(significantly different) normal forms may increase non-elementarily in the size of the
original proof. An investigation of cut-elimination as non-deterministic computation
can be found in [37,38], including a case study of a non-confluent proof in [37]. A
cut-elimination method which produces even more normal forms than any method
based on proof rewriting is [5], with case studies exhibiting non-confluent behavior
in [2,3]. Another investigation extracting different algorithms from a classical proof
is [32]. In general it is far from clear which cut-free proofs can and which cannot be
obtained from a given proof with cuts. The present investigation is motivated by the
interest in a characterization of the obtainable cut-free proofs.

The first aspect of this question to be dealt with is to make precise what is to
be characterized as clearly there are aspects of formal proofs which are mathemat-
ically uninteresting. Here we will—along the lines of Herbrand’s theorem—restrict
our attention to the term level of a first-order proof. Let F = ∃x1 · · · ∃xn A(x1, . . . , xn)

be a valid existential formula and t̄1, t̄2, . . . be an enumeration of all n-tuples of
variable-free terms in the considered language, then

H(F) = { {A(t̄i ) | i ∈ I } | I ⊆ N,
∨

i∈I

A(t̄i ) tautology}

is an upper semi-lattice with the set of all instances of A(x̄) as the unique maximal
element and those sets of instances as minimal elements where removing a single
formula renders them a non-tautology. Each proof π of F with cuts induces a set of
points in H(F): the cut-free proofs reachable by cut-elimination from π . What shall
be characterized then is the least upper bound of the reachable proofs: it represents
the content of π on an elementary level (in the sense of the subformula property) but
at the same time it considers π in its full generality (as no particular proof has been
pre-determined by the choice of a cut-elimination procedure). The second aspect is to
fix in terms of what this least upper bound is to be characterized: being interested in
a set of term-tuples, what has to be sought is a characterization based on a pure term
formalism that does not refer to proofs.

In this paper we give a characterization of a non-trivial (but not the least) upper
bound in terms of a regular tree grammar [9,14]. As an application we obtain a cer-
tain class of proofs having only elementary cut-elimination. In the second part of the
paper these results are extended to Peano arithmetic and demonstrated on the formal-
ization of a short proof in number theory. From the algorithmic point of view, this
method provides a new way of computing witness terms that circumvents cut-elimi-
nation.
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2 Cut-Elimination and Herbrand-Disjunctions

Definition 1 A sequent is a pair of multisets of formulas. A proof is a tree that starts
with sequents of the form A → A for an atomic formula A and is built up using the
following rules.

�→ �, A �→ �, B
�,�→ �,�, A ∧ B

∧r
A, �→ � B,�→ �

A ∨ B, �,�→ �,�
∨l

A, B, �→ �

A ∧ B, �→ �
∧l

�→ �, A, B
�→ �, A ∨ B

∨r
�→ �, A
¬A, �→ �

¬l
A, �→ �

�→ �,¬A
¬r

A(t), �→ �

(∀x)A(x), �→ �
∀l

�→ �, A(y)
�→ �, (∀x)A(x) ∀r

�→ �, A(t)
�→ �, (∃x)A(x) ∃r

A(y), �→ �

(∃x)A(x), �→ �
∃l

�→ �
A, �→ �

wl
�→ �
�→ �, A

wr
A, A, �→ �

A, �→ �
cl

�→ �, A, A
�→ �, A

cr

�→ �, A A,�→ �

�,�→ �,�
cut

The quantifier rules are subject to the usual conditions:

1. t must not contain a variable which is bound in A,
2. y is called eigenvariable and must not occur in � ∪� ∪ {A}

(eigenvariable condition).

For the sake of technical simplification, we restrict our attention to proofs of �1-
sentences, i.e. to sequents of the form→ ∃x F where F is quantifier-free and ∃x F
contains no free variables. As the following proposition shows, this is not a severe
restriction. Let |π | denote the number of sequents in the proof π .

Proposition 1 For any sequent s there is a �1-sentence F which is valid iff s is.
Furthermore, for each proof π of s there is a proof π ′ of F with |π ′| = O(|π |2).
Proof By skolemizing the proof π we obtain a proof π1 of a sequent s1 which does
not contain strong quantifiers and |π1| ≤ |π |, see [4]. The proof π ′ is defined by first
appending to π1 several ¬r- and ∨r-inferences to combine all formulas in s1 into a
single one and then cutting with quantifier shifts to arrive at the prenex form F . Free
variables in s are treated as constants in F and the result on the formulas follows from
skolemization being validity-preserving. �

For complexity-reasons it is advisable to carry out the above transformation by
skolemizing first and prenexifying afterwards (see [4]).

Definition 2 Let π be a proof of a �1-sentence and ψ be a subproof of π . The Her-
brand-set H(ψ, π) of ψ w.r.t. π is defined as follows. If ψ is a quantifier-free axiom
A→ A, then

H(ψ, π) := ∅.
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532 S. Hetzl

If ψ is of the form

(ψ ′)
�→ �, F(t)
�→ �, ∃x F(x)

∃r

where F is quantifier-free and ∃x F(x) is ancestor of the formula in the end-sequent
of π , then

H(ψ, π) := H(ψ ′, π) ∪ {F(t)}.

Ifψ ends with any other quantifier inference or ifψ ends with a unary inference which
is not a quantifier inference, let ψ ′ be the immediate subproof of ψ and define

H(ψ, π) := H(ψ ′, π).

If ψ ends with a binary rule, let ψ1 and ψ2 be the two immediate subproofs of ψ and
define

H(ψ, π) := H(ψ1, π) ∪ H(ψ2, π).

We write H(π) for H(π, π). For cut-free π , the formula
∨

H(π) is a tautology, which
is Gentzen’s form of Herbrand’s theorem, the mid-sequent theorem.

Example 1 Let P, Q, R be unary predicate symbols and define the proof π =

→ P(a), P(b)
→ ∃x P(x), P(b)

∃r

→ ∃x P(x), ∃x P(x)
∃r

→ ∃x P(x)
cr

P(α)→ Q( f (α))
P(α)→ ∃x Q(x)

∃r

P(α), Q(β)→ R(g(α, β))
P(α), Q(β)→ ∃x R(x)

∃r

P(α), ∃x Q(x)→ ∃x R(x)
∃l

P(α)→ ∃x R(x)
cl, cut

∃x P(x)→ ∃x R(x)
∃l

→ ∃x R(x)
cut

in the sequent calculus extended by the initial sequents of π as additional axiom
sequents. Then H(π) = {R(g(α, β))}.
It will turn out to be useful to have a mechanism that keeps track of variable names.
We assume that the set of free variables is partitioned into infinitely many classes,
each with infinitely many elements. Each class has exactly one distinguished element
which will be called initial variable. For a free variable x we write ι(x) to denote the
initial variable of the class x belongs to. As a convention, proofs at the beginning of
cut-elimination sequences will only contain initial variables.

A quantifier occurrence in a sequent is called strong if it is positive ∀ or negative ∃
and weak otherwise. A proof is called regular if the strong quantifier rules have pair-
wise different eigenvariables. Cut-elimination is a set of rewrite rules transforming

123
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regular proofs into regular proofs. If the cut formula is introduced by quantifier rules
on both sides immediately above the cut, then

(π1)
�→ �, A(t)
�→ �, ∃x A(x)

∃r

(π2)
A(y),�→ �

∃x A(x),�→ �
∃l

�,�→ �,�
cut

�→
(π1)

�→ �, A(t)
(π2[y← t])
A(t)�→ �

�,�→ �,�
cut

If the cut formula is introduced by a contraction in a proof π of the form

(π1)
�→ �, A, A
�→ �, A

cr
(π2)

A,�→ �

�,�→ �,�
cut
,

let {x1, . . . , xn} be the eigenvariables introduced by strong quantifier rules in π2, let
{x ′1, x ′′1 , . . . , x ′n, x ′′n } be fresh variables s.t. ι(x ′i ) = ι(x ′′i ) = ι(xi ) for i = 1, . . . , n and
define

π �→

(π1)
�→ �, A, A

(π2[xi ← x ′i ]ni=1)

A,�→ �

�,�→ �,�, A
cut

(π2[xi ← x ′′i ]ni=1)

A,�→ �

�,�,�→ �,�,�
cut

�,�→ �,�
c∗

.

As a convention, we assume that the x ′i and x ′′i are chosen so as to be fresh not only for
the current proof but for all proofs up to the current one in the cut-elimination sequence
under consideration. In addition to the above, �→ also contains the usual rules for per-
muting cuts upwards, removing propositional top-level symbols from the cut formula
and for removing cuts with axioms, for the complete list of rules see Appendix A.1.
With→we denote the compatible closure of �→ and with � the reflexive and transitive
closure of→.

For our purposes, it will be convenient to associate a set of substitutions to a cut-
elimination sequence as in [22]. If π → π ′ is a quantifier-reduction as above, we
associate the singleton set {[y ← t]} to this step which is written as π →{[y←t]} π ′.
If π → π ′ is a contraction-reduction of the above form, then the reduction with
associated substitution-set is π →{[xi←x ′i ]ni=1,[xi←x ′′i ]ni=1} π ′. To any other reduction
the singleton set {id} is associated. To a cut-elimination sequence π1 →�1 π2 →�2

· · · →�n πn+1 we associate � := �1 · · ·�n where the concatenation of two sets
of substitutions is defined as � := {σθ | σ ∈ �, θ ∈ } which is associative.
Similarly, the application of a set of substitutions � to a set of formulas F is defined
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534 S. Hetzl

F� := {Fσ | F ∈ F , σ ∈ �}. The crucial property of the substitution-set associated
to a cut-elimination sequence is that it captures all changes to the first-order level of
a proof in the following sense.

Proposition 2 Let π and π∗ be proofs of a �1-sentence with π �� π∗. Then
H(π∗) ⊆ H(π)�.

Proof By induction on the length of π �� π∗. If π = π∗, then H(π∗) = H(π)
and � = {id}. If π ��′ π ′ → π∗, make a case distinction on the type of the
step π ′ → π∗: if it is an axiom reduction, a rule permutation or the reduction of
a propositional connective, then H(π∗) = H(π ′), � = �′ and the result follows
from the induction hypothesis. If π ′ → π∗ is the reduction of a weakening, then
H(π∗) ⊆ H(π ′), � = �′ and the result follows from the induction hypothesis.

If π ′ → π∗ is the reduction of a contraction, let H(π ′) = H1 ∪ H2 where H1
contains the formulas occurring in1 the proof π1 (which contains the contraction) and
in the context of the reduction step and H2 those occurring in the proof π2 (that will
be duplicated). Then H(π∗) = H1∪H2[xi ← x ′i ]ni=1∪H2[xi ← x ′′i ]ni=1. On the other
hand, H(π ′) = H1[xi ← x ′i ]ni=1 ∪ H2[xi ← x ′i ]ni=1 ∪ H1[xi ← x ′′i ]ni=1 ∪ H2[xi ←
x ′′i ]ni=1 but due to the regularity of the proof, the xi do not appear in H1 and therefore
H(π∗) = H(π ′) from which the result follows by induction hypothesis.

Ifπ ′ → π∗ is the reduction of a quantifier, let H(π ′) = H1∪H2 where H1 contains
the formulas occurring in π1 and the context of the reduction step and H2 those occur-
ring in π2. Then H(π∗) = H1 ∪ H2[y← t] and H(π ′) = H1[y← t] ∪ H2[y← t]
but due to regularity, y does not appear in H1 and therefore H(π ′) = H(π∗) and the
result follows from the induction hypothesis. �

By inspecting the proof above, we can observe that the changes to the first-order
level of a proof are governed by two distinct but intertwined phenomena: duplication
and instantiation. The property we rely upon in the proofs to come is the possibility of
decomposing the first-order modifications into a chain of instantiations and duplica-
tions. This holds for a wide range of calculi including not only variants of the sequent
calculus but also, e.g. the normalization procedure of natural deduction. The scope of
the present analysis is thus quite general. This level of flexibility will also be crucial
for the extension to Peano Arithmetic described in Sect. 5.

3 Structured Terms

In this section we introduce a formalism for the explicit description of substitutions
on first-order terms which will be used as central technical tool in the analysis of
cut-elimination. We will use two different operations, substitution and injection, for
modeling duplication and instantiation respectively.

Definition 3 A structured term (sterm) is an expression built from first-order terms
and the symbols [, ],←, · as follows:

1 In this proof, and the following, we will in the context of a particular cut-elimination step use the proof-,
term- and formula-names of the definition of the cut-elimination step.
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On the form of witness terms 535

1. If t is a term, then t is an sterm.
2. If t is a term, n ≥ 1, x1, . . . , xn are distinct variables and T1, . . . , Tn are sterms,

then t · [x1 ← T1, . . . , xn ← Tn] is an sterm.

We often abbreviate [x1 ← T1, . . . , xn ← Tn] as [xi ← Ti ]ni=1.

3.1 Substitution and Injection

Definition 4 Let T be an sterm. The term T ◦, the evaluation of T , is defined as
follows:

1. If T = t then T ◦ := t .
2. If T = t · [xi ← Ti ]ni=1, then T ◦ := t[xi ← T ◦i ]ni=1

The variables of T are defined as follows:

1. If T = t , then V(T ) := V(t) where V(t) is the set of variables in t .
2. If T = t · [xi ← Ti ]ni=1, then V(T ) := V(t) ∪ {x1, . . . , xn}.
The locally free variables of T are defined as follows:

1. If T = t , then LFV(T ) := V(t).
2. If T = t · [xi ← Ti ]ni=1, then LFV(T ) := V(t) \ {x1, . . . , xn}.
Let σ be a substitution. The sterm Tσ is defined as follows:

1. If T = t , then Tσ := tσ .
2. If T = t · [xi ← Ti ]ni=1, then Tσ := t (σ�LFV(T )) · [xi ← Tiσ ]ni=1.

Let T = t ·[xi ← Ti ]ni=1 and S be sterms and let x be a variable. The sterm T�[x ← S],
the injection of S at x into T , is defined as follows:

1. If x /∈ LFV(T ), then T � [x ← S] := t · [xi ← Ti � [x ← S]]ni=1.
2. If x ∈ LFV(T ), then

T � [x ← S] := t · [x ← S, x1 ← T1 � [x ← S], . . . , xn ← Tn � [x ← S]].

Example 2 Let T = f (x, y) · [x ← a, y ← g(x)], then

T [x ← c] = f (x, y) · [x ← a, y ← g(c)]

and

T � [x ← c] = f (x, y) · [x ← a, y ← g(x) · [x ← c]].

Note that (T [x ← c])◦ = (T � [x ← c])◦ = f (a, g(c)).

The evaluation ◦ of an sterm, the application of a substitution, and the injection are
extended to sets of sterms T and sets of substitutions � by defining T ◦ := {T ◦ | T ∈
T }, T � := {Tσ | T ∈ T , σ ∈ �} and T �[x ← S] := {T�[x ← S] | T ∈ T }. For a
substitutionσ , the variable-range is defined as vrge(σ ) := {x | there is a y �= x s.t. x ∈
V(yσ)}, the variable-range of a set of substitutions � is vrge(�) :=⋃

σ∈� vrge(σ ).
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536 S. Hetzl

Lemma 1 Let T be an sterm, σ be a substitution with vrge(σ ) ∩ V(T ) = ∅, and T
be a set of sterms and � be a set of substitutions with vrge(�) ∩ V(T ) = ∅. Then
1. (Tσ)◦ = T ◦σ and 2. (T �)◦ = T ◦�.

Proof 1. is shown by a straightforward induction on the structure of T and 2. follows
from 1. �
Lemma 2 Let T, S be sterms, T be a set of sterms and x be a variable. Then 1. (T �
[x ← S])◦ = T ◦[x ← S◦] and 2. (T � [x ← S])◦ = T ◦[x ← S◦].
Proof 1. is shown by induction on T and 2. follows from 1. �

3.2 Normal and Regular Structured Terms

Definition 5 An sterm is called normal if each subexpression of the form t · [xi ←
Ti ]ni=1 satisfies {x1, . . . , xn} ⊆ V(t). A term t is called regular if for all x, y ∈ V(t):
ι(x) = ι(y) ⇒ x = y. An sterm is called regular if all terms appearing in it are
regular.

Given any sterm T , one can obtain a normal T ′ with T ◦ = T ′◦ by deleting parts of T .
The function ι(·) is extended from variables to terms by defining ι( f (t1, . . . , tn)) =
f (ι(t1), . . . , ι(tn)) and ι(c) = c. The role of normality and regularity is to serve as
preconditions for the following definition.

Definition 6 For a normal and regular sterm T define ι(T ), the projection of T to the
initial variables, as follows:

1. If T = t , then ι(T ) := ι(t).
2. If T = t · [xi ← Ti ]ni=1, then ι(T ) := ι(t) · [ι(xi )← ι(Ti )]ni=1.

Note that ι(t) · [ι(xi )← ι(Ti )]ni=1 is a well-defined sterm because i �= j ⇒ ι(xi ) �=
ι(x j ) by normality and regularity of T . The next two lemmas demonstrate that nor-
mality and regularity are preserved by substitution and injection in a manner which is
sufficient for our later purposes.

Lemma 3 Let T and S be normal sterms, x be a variable and σ be a substitution.
Then 1. Tσ is normal and 2. T � [x ← S] is normal.

Proof 1. is shown by induction on T observing that substitution does not change
locally bound variables. 2. is also shown by induction on T by elaborating that the
only changes to locally bound variables preserve normality. �
Lemma 4 Let T and S be regular sterms, x, x1, x ′1, . . . , xn, x ′n be variables with
ι(xi ) = ι(x ′i ) for i = 1, . . . , n. Then 1. T [xi ← x ′i ]ni=1 is regular and 2. T � [x ← S]
is regular.

Proof 1. is shown by induction on T based on the observation that substituting xi by
x ′i preserves regularity as ι(xi ) = ι(x ′i ). For 2. it suffices to observe that each term
appearing in T � [x ← S] appears in T or in S. �
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3.3 Properties of the Projection to Initial Variables

Lemma 5 Let T be a normal and regular sterm, let x1, x ′1, . . . , xn, x ′n be variables
with ι(xi ) = ι(x ′i ) for i = 1, . . . , n. Then T [xi ← x ′i ]ni=1 is normal and regular and
ι(T [xi ← x ′i ]ni=1) = ι(T ).
Proof Normality and regularity follow from Lemmas 3 and 4. The equality is then
shown by induction on T . �
For an sterm T = t · [xi ← Ti ]ni=1 or T = t , we call t the initial term of T .
A substitution is called base substitution if it is of the form [x ← t] and {x} ∪ V(t)
contains only initial variables. For a set B of base substitutions and an sterm T we say
that T is over B if for every subexpression x ← t of T we have [x ← t] ∈ B.

Lemma 6 Let B be a set of base substitutions. Let S and T be normal and regular
sterms with ι(S) and ι(T ) being over B and s being the initial term of S. Let x be
a variable with [ι(x) ← ι(s)] ∈ B. Then T � [x ← S] is normal and regular and
ι(T � [x ← S]) is over B.

Proof Normality and regularity follow from Lemmas 3 and 4. The claim is then shown
by induction on T demonstrating that all expressions of the from y ← t that appear
in ι(T � [x ← S]) either appear in ι(T ) or in ι(S) or are equal to ι(x)← ι(s). �

4 Witness Terms in First-Order Logic

Having laid the necessary groundwork above, we now return to proofs in first-order
logic. To each proof π we will associate a set of base substitutions, suitable combina-
tions of which will then serve to describe the witness terms obtainable by cut-elimi-
nation.

Definition 7 Let π be a proof and Q be a quantifier occurrence in π . Define a set
of terms t(Q) associated with Q as follows: if Q occurs in the main formula of a
weakening, then t(Q) := ∅. If Q is introduced by a quantifier inference from a term
t or a variable x , then t(Q) := {t} or t(Q) := {x} respectively. If Q occurs in the
main formula of a contraction and Q1, Q2 are the two corresponding quantifiers in the
auxiliary formulas of the contraction, then t(Q) := t(Q1) ∪ t(Q2). In all other cases
Q has exactly one immediate ancestor Q′ and t(Q) := t(Q′).

Let π be a proof, c be a cut in π . Write Q(c) for the set of pairs (Q, Q′) of quan-
tifier occurrences where Q is a strong occurrence in one cut-formula of c and Q′ the
corresponding weak occurrence in the other cut-formula. Define the set of base substi-
tutions of c as B(c) := ⋃

(Q,Q′)∈Q(c){[x ← t] | x ∈ t(Q), t ∈ t(Q′)}. For c1, . . . , cn

being the cuts in π define the base substitutions of π as B(π) :=⋃n
i=1 B(ci ).

Example 3 Letting π be the proof defined in Example 1 we have

B(π) = {[α← a], [α← b], [β ← f (α)]}.

The following auxiliary result is the analog of Proposition 2 for base substitutions.
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538 S. Hetzl

Lemma 7 Let π �� π∗ be a cut-elimination sequence. For all [x ← t] ∈ B(π∗)
there is [ι(x)← s] ∈ B(π) s.t. t ∈ s�.

Proof By induction on the length of π �� π∗. If π = π∗, then B(π∗) = B(π) and
� = {id}. If π ��′ π ′ → π∗ and  = {id}, then B(π∗) ⊆ B(π ′), � = �′ and the
result follows from the induction hypothesis.

If  = {[xi ← x ′i ]ni=1, [xi ← x ′′i ]ni=1} then for all [x ← t] ∈ B(π∗) there is
an [x ′ ← t ′] ∈ B(π ′) with t ∈ t ′ and x ∈ x ′ which implies ι(x) = ι(x ′). By
induction hypothesis there is [ι(x)← s] ∈ B(π) s.t. t ′ ∈ s�′, and thus t ∈ s�.

If  = {[y ← u]} then for all [x ← t] ∈ B(π∗) there is an [x ′ ← t ′] ∈ B(π ′) s.t.
t = t ′[y ← u] and by induction hypothesis there is [ι(x)← s] ∈ B(π) s.t. t ′ = s�′.
Therefore t ∈ s�. �
We are now in the position to prove the main technical lemma: each substitution asso-
ciated to a cut-elimination sequence starting at a proof π has the form of an sterm
whose projection to the initial variables is over B(π). In order to describe substitutions
by sterms we introduce a new function symbol C(·) which will represent the context
in a proof. Later, we will replace C(·) by those members of the Herbrand-set to which
the substitution shall be applied. For an sterm T with initial term t we say that T is
based on s if ι(t) = s.

Lemma 8 Letπ �� π∗ be a cut-elimination sequence, let {α1, . . . , αm} be the initial
variables occurring in π . Then there is a set T of normal and regular sterms based
on C(α1, . . . , αm) s.t. T ◦ = C(α1, . . . , αm)� and ι(T ) is over B(π).

Proof We abbreviate C(α1, . . . , αm) as C(ᾱ). The result is shown by induction on the
length ofπ �� π∗. Ifπ = π∗ then� = {id} and T := {C(ᾱ)}. Ifπ ��′ π ′ → π∗
then by induction hypothesis there is a set T ′ of normal and regular sterms based on
C(ᾱ) with T ′◦ = C(ᾱ)�′ and ι(T ′) being over B(π). If  = {id}, then � = �′ and
T := T ′.

If  = {[xi ← x ′i ]ni=1, [xi ← x ′′i ]ni=1}, define T := T ′ which is based on
C(ᾱ). By Lemma 5, T is normal and regular and ι(T ) = ι(T ′[xi ← x ′i ]ni=1) ∪
ι(T ′[xi ← x ′′i ]ni=1) = ι(T ′) which is therefore over B(π). Furthermore, the x ′i and
x ′′i are not in V(T ′) by the convention on the choice of variables at contraction-steps.
Therefore we can apply Lemma 1 to conclude T ◦ = T ′◦ = C(ᾱ)� from the
induction hypothesis.

If  = {[x ← t]}, then, as [x ← t] ∈ B(π ′), by Lemma 7 there is a [ι(x) ←
s] ∈ B(π) and σ ∈ �′ s.t. t = sσ . By induction hypothesis there is a S′ ∈ T ′ s.t.
S′◦ = C(ᾱ)σ . S′ being normal is of the form S′ = C(ᾱ) · [αi j ← S j ]lj=1. Define
S := s · [αi j ← S j ]αi j ∈V(s) and observe that S◦ = s[αi j ← S j

◦]αi j ∈V(s) = sσ = t .

Define T := T ′ � [x ← S] and observe that T ◦ = T ′◦[x ← S◦] = C(ᾱ)� by
Lemma 2 and the induction hypothesis. Furthermore S is normal and regular because
the S j are and the αi j appear in S, T ′ is normal and regular by induction hypothesis
and [ι(x)← ι(s)] ∈ B(π). Therefore, by Lemma 6, also T is normal and regular and
ι(T ) is over B(π). �
In order to describe the Herbrand-disjuncts and not just the witness-terms, we will treat
the logical connectives ∧,∨,¬ as well as the predicate symbols as part of the term
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signature. Then, sterms can be evaluated to formulas. The main result for first-order
logic is:

Theorem 1 Letπ be a proof of a�1-sentence andπ∗ be a cut-free proof withπ � π∗.
Then there is a set S of sterms over B(π) whose initial terms are elements of H(π)
s.t. H(π∗) = S◦.

Proof Let π �� π∗ and F∗ ∈ H(π∗); then by Proposition 2 there is F ∈ H(π) and
σ ∈ � s.t. F∗ = Fσ . By Lemma 8 there is a normal and regular sterm S based on C(ᾱ)
s.t. S◦ = C(ᾱ)σ and ι(S) is over B(π). Define the sterm T := F · S0 where S0 is S
after dropping C(ᾱ) and all top-level substitutions which refer to initial variables that
do not occur in F . Then T is over B(π) with initial term F and T ◦ = ι(Fσ) = ι(F∗)
and as π∗ is cut-free ι(F∗) = F∗. �
Every Herbrand-disjunct in a cut-free proof can thus be decomposed into a formula
from the Herbrand-set of the original proof π and an sterm built up from base substi-
tutions of π . This result gives the following upper bound.

Corollary 1 Let π be a proof of a �1-sentence F and let S be the set of sterms over
B(π) with initial term from H(π). Then

{H(π∗) | π∗ cut-free, π � π∗} ⊆ S◦

From the algorithmic point of view, the above result shows that we can compute an
Herbrand-disjunction from a proof π with cuts by successively generating sterms over
B(π) with initial term from H(π) until we find a tautology. An advantage of such a
procedure is that it allows complete freedom in the order of computation of witness
terms and thus to find e.g. the shortest Herbrand-disjunction or one where the size of
the witness of a certain quantifier is minimal.

Example 4 The upper bound on H(π∗) provided by Corollary 1 is not the least
upper bound. Letting π be the proof defined in example 1 and S be the set
of sterms having initial terms from H(π) and being over B(π), we have S◦ =
{R(g(a, a)), R(g(a, b)), R(g(b, a)), R(g(b, b))}. On the other hand, for all cut-free
π∗ with π � π∗ we obtain H(π∗) = {R(g(a, a)), R(g(b, b))}. This example shows
that cut-elimination does not generate all sterms but only such that satisfy certain
structural restrictions. Describing these restrictions is left to future work.

4.1 Tree Grammars

The above characterization of witness terms uses the somewhat non-standard notion
of structured term because it is well-adapted to the changes induced by cut-elimina-
tion. We will now derive from it a characterization in terms of a regular tree grammar.
Regular tree languages are a natural generalization of regular (string) languages and
are among the standard notions in the theory of formal languages [14]. A regular
tree language can be described in several different, but equivalent ways, in particular
as automaton or as grammar. We choose the presentation as grammar because the
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derivation of trees from a grammar closely resembles the effect of cut-elimination on
the Herbrand-set. We follow the notation of [9]. For � being a set of symbols with
associated arities, let T(�) denote the set of terms—or equivalently: trees—over �.

Definition 8 A regular tree grammar is a quadruple G = (α, N , F, R) composed of
an axiom α, a set N of non-terminal symbols with α ∈ N , a set F of terminal symbols
with F ∩ N = ∅ and a set R of production rules of the form β → t where β ∈ N and
t ∈ T(F ∪ N ).

Note that—in contrast to string grammars—a terminal symbol comes with an associ-
ated arity allowing the formation of trees. The non-terminal symbols however all have
arity 0. Given a regular tree grammar G = (α, N , F, R), the derivation relation→G

associated to G is defined for s, t ∈ T(F ∪ N ) as s →G t if there is a production
rule β → u and a context r [] s.t. s = r [β] and t = r [u]. The language generated
by G is L(G) := {t ∈ T(F) | α �G t} where �G is the reflexive and transitive
closure of→G . Given a proof π , let�(π) denote the set of symbols consisting of the
term-signature of π , the predicate-signature of π and the propositional connectives.

Definition 9 Let π be a proof of a �1-sentence containing the initial variables
{α1, . . . , αn}. The grammar G(π) = (ϕ, N , F, R) of π is defined by setting N =
{ϕ, α1, . . . , αn}, F = �(π) and

R = {ϕ→ F | F ∈ H(π)} ∪ {α→ t | [α← t] ∈ B(π)}.

Example 5 Lettingπ be the proof defined in Example 1 we have G(π) = (ϕ, N , F, R)
with axiom ϕ, non-terminal symbols N = {ϕ, α, β}, terminal symbols F =
{P, Q, R, f, g,∧,∨,¬} and production rules R = {ϕ → R(g(α, β)), α → a, α →
b, β → f (α)}.
Lemma 9 Let π be a proof of a �1-sentence. For any sterm T over B(π) with initial
term t we have t �G(π) T ◦.

Proof If T = t , the result is trivially true. If T = t · [xi ← Ti ]ni=1, then letting ti be
the initial term of Ti , we have ti �G(π) T ◦i by induction hypothesis. But there are
production rules xi → ti in G(π) and thus xi �G(π) T ◦i which when applied to all
occurrences of xi in t gives the result. �
Corollary 2 Let π be a proof of a �1-sentence. Let π∗ be a cut-free proof with
π � π∗. Then H(π∗) ⊆ L(G(π)).

Proof Let F∗ ∈ H(π∗), then by Theorem 1 there is an sterm T over B(π) with initial
term F ∈ H(π) s.t. F∗ = T ◦ and thus by Lemma 9, F �G(π) F∗ which—as π∗ is
cut-free—implies F∗ ∈ L(G(π)). �

Note that Theorem 1 is slightly stronger than Corollary 2 and differs from it on
terms containing several occurrences of the same variable. For example, if H(π) =
{F(α, α)} and B(π) = {[α← a], [α ← b]}, then the only sterms admitted by Theo-
rem 1 generate F(a, a) and F(b, b)while the grammar generates F(a, b) and F(b, a)
in addition.

123



On the form of witness terms 541

4.2 Acyclic and Directed Proofs

It is a well-known result that the worst-case complexity of cut-elimination is
non-elementary. Lower bounds have been given in [29,31,34]. In this section, we
will use Theorem 1 to show that a certain class of proofs, acyclic proofs, has an
only elementary cut-elimination. Upper bounds for the general problem based on the
depth of cut-formulas can be found in [33,19,6]. W. Zhang has improved these upper
bounds in [39] by using the number of nested quantifiers (nqf) instead and further
in [40] by using the number of alternations between ∀ − ∧ and ∃ − ∨-blocks (aqf).
These results have been further improved by P. Gerhardy in [17,18] by considering, in
addition to the cut-formulas, the way they are used in the proof: a part of a cut-formula
which is not contracted can be eliminated with only exponential expense, regardless
of the connectives that appear in this part. He introduced the measures of contracted
nested quantifier depth (cnqf) and contracted alternating quantifier depth (caqf). In
all of these cases, a fixed bound on the measure immediately translates to a fixed
bound on the number of iterations of the exponential function and thus to elementary
cut-elimination.

The following acyclicity-condition can also be viewed as extending the complex-
ity-analysis of cut-elimination from the cut-formulas to the way they are used in the
proof. Let B be a set of base substitutions and let x, y ∈ dom(B). Write y <1 x if
there is a σ ∈ B s.t. y ∈ V(xσ); write < for the transitive closure of <1. B is called
cyclic if there is an x ∈ dom(B) s.t. x < x and acyclic otherwise. A proof π is called
cyclic iff B(π) is.

Corollary 3 Let π be an acyclic proof of a �1-sentence and let π∗ be cut-free with
π � π∗. Then |H(π∗)| ≤ |π ||π ||π |+1

Proof If a variable x ∈ dom(B(π)) is <B(π)-minimal, then define rank(x) := 1, if
x is not <B(π)-minimal, define rank(x) := max{rank(y) | y <1

B(π) x} + 1. Due to
acyclicity, the rank of a variable is well-defined. Let r be the maximal rank of all vari-
ables of dom(B(π)). Let m be the maximal number of substitutions in B(π) having
the same left side and let v be the number of initial variables in π . We first find an
upper bound on Nk :=

max
x∈dom(B(π))

|{[x ← T ] | rank(x) = k, x · [x ← T ] normal sterm over B(π)}|

for k = 1, . . . , r . First N1 ≤ m; secondly, Nk+1 ≤ m ·N v
k because after having chosen

one of at most m possibilities for the leftmost substitution, it remains to choose, for

each of at most v different variables, an sterm with rank k. We obtain Nk ≤ m
∑k

i=1 v
i−1

.
Let now S be the set of all normal sterms over B(π) having initial terms from H(π).
Then

|S| ≤ |H(π)| · N v
r ≤ |H(π)| · m

∑r
i=1 v

i
.
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Now H(π) ≤ |π |, m ≤ |π | being bound by the number of weak quantifier inferences
corresponding to a certain quantifier in a cut, and r ≤ v ≤ |π | and thus

|S| ≤ |π | · |π |
∑|π |

i=1 |π |i ≤ |π ||π ||π |+1
.

Finally, by Theorem 1, |H(π∗)| ≤ |S|. �
The above result improves any upper bound based on the logical structure of cut-for-
mulas, in particular nqf and aqf, but also cnqf and caqf as follows: Let πn be any
worst-case sequence and define π ′n from πn by removing the term-level thus render-
ing every predicate nullary and every quantifier vacuous. The logical structure of the
cut-formulas (as well as the contractions in the proof) do not change but the set of
base substitutions becomes empty hence acyclic and thus π ′n is recognized as having
elementary cut-elimination.

In order to obtain a more meaningful comparison with the known upper bounds
we will now consider a class of formulas whose use for cuts induces only acyclic
proofs. A cut is called directed if its cut formula does not contain both strong and
weak quantifiers. A proof is called directed if all its cuts are.

Lemma 10 Every directed proof is acyclic.

Proof By induction on the number of cuts in the proof. All cut-free proofs are acyclic.
For the induction step, consider a proof π and let ι be the lowest binary inference
with subproofs π1 and π2 s.t. either 1. ι is a cut or 2. both π1 and π2 contain a cut.
In case 2, <π = <π1 ∪ <π2 which is acyclic by induction hypothesis. In case 1,
<1
π = <1

π1
∪ <1

π2
∪ <1

B(ι). By induction hypothesis, <π1 and <π2 are acyclic and
as ι is directed, also <B(ι) is acyclic. Therefore, a cycle in <π must be of the form
x1 ≤π1 x2 <B(ι) y1 ≤π2 y2 <B(ι) x1 where x1, x2 are eigenvariables of strong quan-
tifier inferences in π1 and y1, y2 of inferences in π2. However, as ι is directed, only
one of x2 <B(ι) y1 and y2 <B(ι) x1 is possible. �
Therefore the elementary upper bound of Corollary 3 applies to directed proofs. For
the sake of comparison we restrict our attention to formulas in negation normal form
and find for A with aqf(A) = 0 that A is directed. For each k > 0 one can find directed
formulas with aqf = k (by alternating ∀ and ∨, or ∃ and ∧ respectively) as well as
undirected formulas (by alternating ∀ and ∃). The measure nqf behaves analogously.
The bound on directed proofs thus improves the known upper bounds by exhibiting an
additional class of formulas that has only elementary cut-elimination. In how far the
restrictions on the use of contractions considered in [17,18] imply properties of the
graph (B(π),<1) and vice versa is an interesting question left open for future work.

Corollary 3 shows that, in particular, the worst case sequences of [29,31,34] with
cuts are cyclic. It is also interesting to compare this result with the one obtained by
A. Carbone in [8]: the logical flow graph of a short proof of the feasibility of a large
number must necessarily be cyclic. This property of logical flow graphs is not very
robust w.r.t. changes in the calculus. Indeed, in [7] a sequent calculus ALK (acyclic
LK) is defined in which all logical flow graphs are acyclic while ordinary LK-proofs
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can be translated to ALK-proofs with only elementary increase in length. The cyclic-
ity-property of the base substitutions is considerably more robust to changes of the
calculus, in particular the results of this paper also hold in ALK.

The base substitutions can be regarded as a flow graph-like structure if we consider
the graph whose vertices are the quantifier occurrences in a proof, and we draw a
(cut-)link between two quantifier occurrences if they are ancestors of the dual occur-
rences in the same cut (which corresponds to the definition of B(c) from Q(c)) and
an (axiom-)link between Q and Q′ if the term of the weak quantifier Q′ contains
the eigenvariable of the strong quantifier Q. Such a presentation in the framework of
proof-nets has been given in [21] and [27].

Another interesting aspect of the situation is that, even though an acyclic proof has
only short Herbrand-disjunctions, it may nevertheless have normal forms of arbitrary
size (this can easily be seen by incorporating the double-contraction example found
e.g. in [11,13,37] and in a similar form in [41] into an acyclic proof). The large normal
forms of acyclic proofs are therefore only due to repetitions of the same formulas and
thus mathematically meaningless. The analogous question for cyclic proofs is open:
it has been shown in [1] that a (cyclic) proof can have a non-elementary number of
reachable Herbrand-disjunctions. It is unclear however whether there exists a (cyclic)
proof having infinitely many reachable Herbrand-disjunctions.

5 Extension to Peano Arithmetic

In this section, the above results are extended to Peano arithmetic. The language con-
tains a symbol for every primitive recursive function. The calculus is extended by their
defining equations as additional axiom sequents. Terms of the form 0, 0′, 0′′, . . . are
called numerals; we use the notation n̄ for the numeral denoting the natural number
n. We further add the induction rule

�→ �, F(0) F(y),�→ �, F(y′)
�,�→ �,�, F(t)

ind

where F is an arbitrary formula, t is an arbitrary term and y is an eigenvariable, i.e.
it is not allowed to occur in �,� → �,�, F(t). For a variable-free term t , let |t |
denote its value in N. We also add the evaluation rules

�→ �, F(s)
�→ �, F(t)

vr and
F(s), �→ �

F(t), �→ �
vl

for variable-free terms s and t with |s| = |t |. Note that these rules are redundant w.r.t.
provability, i.e. F(s) → F(t) is also provable without them. However, these rules
(as well as the particular form of the induction rule above that differs from the one
in [36]) will permit some technical simplifications later on. The proof reduction steps
for cut-elimination are extended by the following rules for eliminating inductions: If
t is a variable-free term with |t | = 0, then
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(π1)
�→ �, F(0)

(π2)

F(y),�→ �, F(y′)
�,�→ �,�, F(t)

ind
�→

(π1)
�→ �, F(0)
�→ �, F(t)

vr

�,�→ �,�, F(t) w∗
.

If |t | = n+1, then let x1, . . . , xm be the eigenvariables of π2, let x (i)j for j = 1, . . . ,m

and i = 1, . . . , n be fresh variables s.t. ι(x (i)j ) = ι(x j ). Define θi := [y ← ī, x1 ←
x (i)1 , . . . , xm ← x (i)m ] for i = 0, . . . , n; then the same proof maps to

(π1)
�→ �, F(0)

(π2θ0)

F(0),�→ �, F(0′)
�,�→ �,�, F(0′) cut (π2θ1)

F(0′),�→ �, F(0′′)
�,�,�→ �,�,�, F(0′′) cut

�,�→ �,�, F(0′′) c∗
....

�,�→ �,�, F(n + 1)
�,�→ �,�, F(t)

vr

where the same freshness convention as in first-order logic is assumed for the x (i)j .
To the former reduction, we associate the singleton set of substitutions {id} and to the
latter we associate {θ0, . . . , θn}. In addition, we add proof rewrite steps for shifting
evaluation rules upwards, see Appendix A.2, to which we associate the substitution
set {id}. We restrict our attention to proofs of sequents of the form→ F where F
is a �0

1-sentence, i.e. a formula ∃x G(x) where G is quantifier-free and contains no
variable except x . We do not impose any restriction on the formulas used in inductions
and cuts.

Definition 10 The set t(Q) of terms associated to a quantifier occurrence Q in a
PA-proof π is defined as in Definition 7 with the following addition. If Q is in the
main occurrence F(t) of an induction inference, let Q1 be the corresponding quantifier
in F(0) and Q2 that in F(y′) and define t(Q) := t(Q1) ∪ t(Q2).

For the base substitutions we extend Definition 7 as follows. For an induction infer-
ence d write Q(d) for the set of pairs (Q, Q′) of quantifier occurrences s.t. Q is a strong
occurrence, Q′ is a weak occurrence and one of the following is true.

1. Q is in F(0) and Q′ is the corresponding occurrence in F(y)
2. Q is in F(y) and Q′ is the corresponding occurrence in F(0)
3. Q is in F(y) and Q′ is the corresponding occurrence in F(y′)
4. Q is in F(y′) and Q′ is the corresponding occurrence in F(y)

Define

B(d) := {[y← 0], [y ← y′]} ∪
⋃

(Q,Q′)∈Q(d)

{[x ← t] | x ∈ t(Q), t ∈ t(Q′)
}
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Let c1, . . . , cn be the cuts and d1, . . . , dm be the inductions in π and define

B(π) :=
n⋃

i=1

B(ci ) ∪
m⋃

i=1

B(di )

In arithmetical proofs, one is usually interested in the witness terms per se (instead
of, as in the case of first-order logic, in the whole Herbrand-disjunction). We will
therefore only follow the development of the witness terms during cut-elimination.
For a proof π of a �0

1-sentence, let Q be the existential quantifier in the end-sequent
and define W(π) := t(Q).

Example 6 Define π =

→ 20 = 1̄
→ ∃y 20 = y

∃r

(ψ)

2β = γ → 2β
′ = 2̄ · γ

2β = γ → ∃y 2β
′ = y

∃r

∃y 2β = y→ ∃y 2β
′ = y

∃l

→ ∃y 2α = y
ind

→ ∀x∃y 2x = y
∀r

where ψ is cut- and induction-free. Let π(α) denote π without its last rule. Then
W(π(α)) = {1̄, 2̄ · γ } and B(π(α)) = {[γ ← 1̄], [γ ← 2̄ · γ ], [β ← 0], [β ← β ′]}.
What follows now is an extension of the results that have been obtained for first-order
logic to Peano arithmetic.

Proposition 3 Let π be a PA-proof of a �0
1 -sentence. If π �� π∗, then W(π∗) ⊆

W(π)�.

Proof The induction base and those cases of the induction step referring to reduc-
tion rules of first-order logic are treated as in the proof of Proposition 2. It only
remains to extend the induction step to the proof rewrite steps specific to PA. So
let π ��′ π ′ → π∗, which by induction hypothesis gives W(π ′) ⊆ W(π)�′. If
π ′ → π∗ is the permutation of an evaluation, for example

�→ �, F(r, s)
�→ �, ∃x F(x, s)

∃r

�→ �, ∃x F(x, t)
vr

→
�→ �, F(r, s)
�→ �, F(r, t)

vr

�→ �, ∃x F(x, t)
∃r
,

let Q′ be the existential quantifier in the left proof and Q∗ the one in the right proof,
observe that t(Q∗) = t(Q′) = {r} and thus W(π∗) = W(π ′) from which the result
follows by induction hypothesis.

If π ′ → π∗ is an induction-elimination, let W(π ′) = W ∪ W1 ∪ W2 where
W contains the witnesses introduced by quantifier rules in the context of the reduc-
tion step, W1 and W2 those introduced in the proofs π1 and π2 above the induction
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inference. If |t | = 0, then W(π∗) = W ∪ W1 which is a subset of W(π)� by induc-
tion hypothesis. If |t | = n + 1, then  = {θ1, . . . , θn} where θi = [y ← ī, x1 ←
x (i)1 , . . . , xm ← x (i)m ] and W(π∗) = W ∪ W1 ∪ ⋃n

i=0 W2θi . On the other hand,
W(π ′) =⋃n

i=0(Wθi ∪W1θi ∪W2θi ) = W ∪W1 ∪⋃n
i=0 W2θi as, due to regularity,

y and the xi do not appear in W1. Therefore W(π∗) = W(π ′) ⊆ W(π)� by the
induction hypothesis. �
Lemma 11 Let π be a PA-proof and π �� π∗. For all [x ← t] ∈ B(π∗) there is
[ι(x)← s] ∈ B(π) s.t. t ∈ s�.

Proof As in the proof of Lemma 7 we proceed by induction on the length of π � π∗
and it only remains to treat the PA-specific reductions in the induction step. So assume
π →�′� π∗. If π ′ → π∗ is a permutation of an evaluation inference, then B(π∗) =
B(π ′) as the terms t(Q) associated to a quantifier Q do not change. As  = {id}, the
result follows immediately by the induction hypothesis.

If π ′ � π∗ is an induction-elimination with |t | = 0, then B(π∗) ⊆ B(π ′) and as
� = �′ the result follows immediately by the induction hypothesis, so let |t | = n+1.
To show the claim, it suffices to show for all [x ← t] ∈ B(π∗) that

(∗) there is a[x ′ ← t ′] ∈ B(π ′)s.t. ι(x) = ι(x ′)andt ∈ t ′,

for then, by induction hypothesis, there is a [ι(x)← s] ∈ B(π) with t ′ ∈ s�′ which
implies that t ∈ s�′ = s�. To prove (*), let d be the eliminated induction in π ′ and
observe that

B(π ′) = B ∪ B1 ∪ B2 ∪ B(d)

where B are the base substitutions associated to cuts and inductions in the context of the
reduction step and B1 and B2 are those of cuts and inductions inπ1 andπ2 respectively.
Furthermore, let  = {θ0, . . . , θn} where θi = [y ← ī, x1 ← x (i)1 , . . . , xm ← x (i)m ]
and let c0, . . . , cn be the cuts replacing the induction in π∗, then

B(π∗) = B∗ ∪ B1 ∪
n⋃

i=0

{[xθi ← tθi ] | [x ← t] ∈ B2} ∪
n⋃

i=0

B(ci )

where B∗ are the base substitutions associated to cuts and inductions in the context
of the reduction step in π∗. We will now prove (*) for each of the above subsets of
B(π∗).

If [x ← t] ∈ B1 or [x ← t] ∈ ⋃n
i=0{[xθi ← tθi ] | [x ← t] ∈ B2}, then (*) is

immediate from observing that ι(x) = ι(xθi ). Write Q′ for a quantifier in the end-
sequent of the reduction step in π ′ and Q∗ for the corresponding quantifier in the end-
sequent of the reduction step inπ∗. If Q′, Q∗ are in� or�, then t(Q∗) = t(Q′). If they
are in� or�, then t(Q∗) =⋃n

i=0 t (Q′)θi . If Q′, Q∗ are in F(t), let t(Q′) = T1 ∪ T2
where T1 are the terms from π1 and T2 those from π2 and observe that t(Q∗) = T2θn .
Putting these cases together, we obtain that for all t ∈ t(Q∗) there is a t ′ ∈ t(Q′) s.t.
t ∈ t ′ and therefore that (*) is true for all [x ← t] ∈ B∗.
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If [x ← t] ∈ B(c0), then this substitution is induced by a pair (Q, Q′) of quantifier
occurrences where Q is strong and Q′ is weak. If Q is in π1, then Q′ is in π2θ0 and
t = t ′θ0 where [x ← t ′] ∈ B(ι). If Q is in π2θ0, then Q′ is in π1, [x ← t] ∈ B(ι)
and tθi = t for all i by regularity. Let now [x ← t] ∈ B(ci ) for some i ∈ {1, . . . , n}
with quantifier-pair (Q, Q′) with Q strong and Q′ weak. If Q is in π2θi−1 and Q′ in
π2θi then there is a [x ′ ← t ′] ∈ B(ι) with t ′θi = t and x ′θi−1 = x , i.e. ι(x) = ι(x ′).
If, on the other hand, Q is in π2θi and Q′ in π2θi−1 then there is [x ′ ← t ′] ∈ B(ι)
with t ′θi−1 = t and x ′θi = x , i.e. ι(x ′) = ι(x). This concludes the proof of (*) for all
[x ← t] ∈ B(π∗) and thus the proof of the lemma. �
Lemma 12 Let π be a PA-proof and π �� π∗, let {α1, . . . , αm} be the initial vari-
ables occurring in π . Then there is a set T of normal and regular sterms based on
C(ᾱ) s.t. T ◦ = C(ᾱ)� and ι(T ) is over B(π).

Proof By induction on the length of π �� π∗. The induction base and the cases of
the induction step pertaining to pure first-order logic are analogous to the proof of
Lemma 8, where it is important to note that the case of quantifier reduction relies on
the extension of Lemma 7 to PA in form of the above Lemma 11. It remains to treat
the PA-specific cases. Let π ��′ π ′ → π∗, then by the induction hypothesis there
is a set T ′ of normal and regular sterms based on C(ᾱ) with T ′◦ = C(ᾱ)�′ and ι(T ′)
over B(π). If π → π∗ is a permutation of an evaluation or an induction-elimination
|t | = 0, let T := T ′ and observe that the result follows directly from� = �′. Let now
π ′ → π∗ be an induction-elimination with |t | = n+1 where = {θ0, . . . , θn}with
θi = [y ← ī, x1 ← x (i)1 , . . . , xm ← x (i)m ]. Define a sequence of sterms as S0 := 0
and Sk+1 := y′ · [y← Sk] and define

T :=
n⋃

i=0

{T [x j ← x (i)j ]mj=1 � [y← Si ] | T ∈ T ′}.

As T ′ is based on C(ᾱ), so is T . By Lemma 5, the T [x j ← x (i)j ]mj=1 are normal and

regular and ι(T [x j ← x (i)j ]mj=1) = ι(T ) which is therefore over B(π). Furthermore,
the Si are normal and regular, [ι(y) ← 0] as well as [ι(y) ← ι(y′)] are in B(π),
therefore the ι(Si ) are over B(π) and we can apply Lemma 6 to conclude that T is
normal and regular and ι(T ) is over B(π). Finally, by the convention on the choice of
fresh variables at elimination of an induction, the x (i)j do not appear in T ′ and we can
apply Lemma 1 to obtain

T ◦ =
n⋃

i=0

{T ◦[x j ← x (i)j ]mj=1[y← si (0)] | T ∈ T ′}

= T ′◦ = C(α)�. �

Observe that while the substitution-set associated to an induction-elimination-step
is a mixture of duplication and instantiation, it can be written as concatenation of
these two components. This is crucial for the above result to extend to PA without
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having to extend the framework on the level of structured terms. The main result and
its corollaries can then be proved as in the case of first-order logic.

Theorem 2 Let π be a PA-proof of a�0
1 -sentence and π∗ be a cut- and induction-free

proof with π � π∗. Then there is a set S of sterms over B(π) having initial terms
from W(π) s.t. W(π∗) = S◦.
The grammar of a PA-proof is defined as in the case of first-order logic with the only
difference of replacing H(π) by W(π).

Corollary 4 Letπ be a PA-proof of a�0
1 -sentence andπ∗ be a cut- and induction-free

proof with π � π∗. Then W(π∗) ⊆ L(G(π)).

These results can be applied to a proof π of a �0
2-sentence as follows: assume

w.l.o.g. that π ends with a ∀r-inference with eigenvariable α and denote with π(α)
the proof π without its last rule. We can obtain B(π(α)) and W(π(α)) just as
for a proof of a �0

1-sentence by regarding α as a constant symbol. For n ∈ N,
B(π(n̄)) and W(π(n̄)) are uniform in the sense that B(π(n̄)) = B(π(α))[α ← n̄]
and W(π(n̄)) = W(π(α))[α ← n̄] and therefore also the grammars and the lan-
guages induced by them are uniform in n, i.e. G(π(n̄)) = G(π(α))[α ← n̄] and
L(G(π(n̄))) = L(G(π(α)))[α← n̄].

The corollary about acyclic proofs of �1-sentences also holds in PA, however the
presence of an induction makes a proof cyclic. It would be possible to broaden the
scope of the corollary by deleting base substitutions (and thus: their cycles) that are
not reachable from the initial witness terms but we do not go into more detail here.

6 Application to a Concrete Proof

In this section, we apply the above techniques to a concrete example proof of a �0
2-

statement in number theory: We will prove that for m ≥ 2 and n ≥ 1 there is a number
between n and m2 · n which can be written as a sum of two squares. Let S(x) be a
quantifier-free formula s.t. S(n̄) is true iff there are n1, n2 ∈ N with n2

1 + n2
2 = n.

Define A(m, n, k) := n < k ∧ k ≤ m2 · n ∧ S(k). To simplify the exposition, we
formalize the hypotheses m ≥ 2 and n ≥ 1 by proving ∀m∀n∃k A(m′′, n′, k). Let
π :=

....
→ 1̄ < 2̄ ∧ 2̄ ≤ (μ′′)2 · 1̄ ∧ S(2̄)

→ ∃k A(μ′′, 1̄, k)
∃r

(IS)
∃k A(μ′′, ν′0, k)→ ∃k A(μ′′, ν′′0 , k)

∃l

→ ∃k A(μ′′, ν′, k)
ind

→ ∀m∀n∃k A(m′′, n′, k)
∀r,∀r

where IS :=

....
ν′′0 < κ, A(μ′′, ν′0, κ)→ A(μ′′, ν′′0 , κ)
ν′′0 < κ, A(μ′′, ν′0, κ)→ ∃k A(μ′′, ν′′0 , k)

∃r

A(μ′′, ν′0, κ)→ ∃k A(μ′′, ν′′0 , k),¬ν′′0 < κ
¬r

(IS′)
A(μ′′, ν′0, κ)→ ∃k A(μ′′, ν′′0 , k)

cut
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and IS′ :=
(IS′1) (IS′2) (IS′3)

¬ν′′0 < κ, A(μ′′, ν′0, κ)→ A(μ′′, ν′′0 , (μ′′)2 · κ)
∧∗l ,wl,∧∗r

¬ν′′0 < κ, A(μ′′, ν′0, κ)→ ∃k A(μ′′, ν′′0 , k)
∃r

and IS′1 proves ν′0 < κ → ν′′0 < (μ′′)2 · κ,

IS′2 proves ¬ν′′0 < κ → (μ′′)2 · κ ≤ (μ′′)2 · ν′′0 , and

IS′3 proves S(κ)→ S((μ′′)2 · κ).

For proving S(κ)→ S((μ′′)2 · κ) we may choose to rely on the characterization of
the sums of two squares due to Fermat and first proved by Euler [12]: n ∈ N is a sum
of two squares iff all primes p ≡ 3 (mod 4) have even exponent in the factorization
of n. We may also choose to prove this by a direct calculation showing that products
of sums of two squares are sums of two squares. It is important to note at this point
that we do not have to explicitly formalize its proof nor that of any other of the as of
now unproved statements to carry out the following analysis.

Let π(μ, ν) denote the above proof π without its last two ∀r-rules. The witness
terms for ∃k are W(π(μ, ν)) = {2̄, κ, (μ′′)2 · κ} and letting ι be the displayed induc-
tion, B(ι) = {[κ ← 2̄], [κ ← κ], [κ ← (μ′′)2 · κ], [ν0 ← 0], [ν0 ← ν′0]} and
B(π(μ, ν)) = B(ι) ∪ B∗ where B∗ contains the base substitutions of all cuts and
inductions in those parts of the proof that have not been formalized. We obtain a
grammar G(π(μ, ν)) = (τ, N , F, R) with τ, κ, ν0 ∈ N and R consisting of the rules

τ → 2̄ κ → 2̄ ν0 → 0

τ → κ κ → κ ν0 → ν′0
τ → (μ′′)2 · κ κ → (μ′′)2 · κ

plus those induced by B∗. By applying standard pruning techniques we can simplify
the above grammar: the only non-terminal symbols reachable from the axiom τ are
τ and κ , thus we can delete all rules whose left-hand side is different from τ and κ
including all those induced by B∗. The corresponding proof parts are computationally
irrelevant and only serve the purpose of verification. Secondly, observe that τ and
κ have the same right-hand sides, so we can identify them. Finally, we can delete
the unproductive loop rule τ → τ to obtain the grammar Gμ which is equivalent to
G(π(μ, ν)), has τ as axiom and only non-terminal symbol and

τ → 2̄ τ → (μ′′)2 · τ

as the only production rules.
Let now m ≥ 2 and n ≥ 1. By inspecting Gμ we can see that eliminating the cuts in

π(m − 2, n − 1)will produce a sum of two squares of the form 2 ·m2l for some l ∈ N.
What we have thus obtained is a restriction on possible witnesses which is indepen-
dent of the particular cut-elimination strategy chosen. From this restriction one can
see immediately that certain witnesses cannot be obtained from the above proof, for
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example odd sums of two squares or such that represent a Pythagorean triple. Also the
more immediate argument that between n and 2 · n (and thus below m2 · n) there is
always a power of two (which is a sum of two squares) cannot be obtained for m ≥ 3.

7 Conclusion

It is possible to extend the results of this paper to non-prenex sequents that contain only
weak quantifiers. For that purpose, it suffices to replace the Herbrand-set by a suitable
structure based on array formulas [4] or expansion trees [28]. An important direc-
tion for future work is to further tighten the constraints on the form of witness terms
towards a characterization of the least upper bound. The structured terms introduced
here provide an adequate technical basis for that purpose.

Another interesting prospect for further research consists in employing these gram-
mars, or similar structures, for the analysis of mathematical proofs in the spirit of
[25] and [26]. It would be very useful to obtain criteria on grammars that imply the
existence of an Herbrand-disjunction fulfilling the growth conditions of [25] as those
would guarantee that the Herbrand analysis provides a bound.

Acknowledgments I would like to M. Baaz, A. Carbone, P. Gerhardy, U. Kohlenbach, H. Schwichtenberg
and an anonymous referee for important suggestions.

A Appendix

A.1 Proof Reductions in First-Order Logic

The proof reduction rules for first-order logic consist of the those described in Sect. 2
for the quantifiers and for contraction and the following. For the case of the cut formula
being introduced by weakening,

(π1)
�→ �
�→ �, A

wr
(π2)

A,�→ �

�,�→ �,�
cut

�→
(π1)
�→ �

�,�→ �,�
w∗
.

If the cut formula appears in an axiom,

A→ A
(π)

A, �→ �

A, �→ �
cut �→

(π)
A, �→ �.
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If the cut formula is introduced by propositional rules on both sides immediately above
the cut, then

(π1)
�1 → �1, A

(π2)
�2 → �2, B

�1, �2 → �1,�2, A ∧ B
∧r

(π3)
A, B,�→ �

A ∧ B,�→ �
∧l

�1, �2,�→ �1,�2,�
cut

�→

(π2)
�2 → �2, B

(π1)
�1 → �1, A

(π3)
A, B,�→ �

B, �1,�→ �1,�
cut

�1, �2,�→ �1,�2,�
cut

.

The other propositional connectives are treated analogously. We now turn to the rule
permutations. For any unary rule ρ,

(π1)
�→ �, A

(π2)

A,�′ → �′
A,�→ �

ρ

�,�→ �,�
cut

�→
(π1)

�→ �, A
(π2)

A,�′ → �′
�,�′ → �,�′ cut

�,�→ �,�
ρ

which is a proof as regularity ensures that the eigenvariable condition cannot be vio-
lated. Similarly, for any binary rule ρ,

(π1)
�→ �, A

(π2)
A,�1 → �1

(π3)
�2 → �2

A,�→ �
ρ

�,�→ �,�
cut

�→

(π1)
�→ �, A

(π2)
A,�1 → �1

�,�1 → �,�1
cut (π3)

�2 → �2

�,�→ �,�
ρ
.

All the obvious symmetric variants of the above reductions are also included in �→.

A.2 Proof Reductions in Peano Arithmetic

The proof reduction rules for Peano arithmetic are those of first-order logic together
with those described in Sect. 5 for eliminating the inductions as well as the following
for shifting evaluations. If the auxiliary formula of the evaluation is main formula of
a unary rule, then (e.g. for ∃r)

�→ �, F(r, s)
�→ �, ∃x F(x, s)

∃r

�→ �, ∃x F(x, t)
vr

�→
�→ �, F(r, s)
�→ �, F(r, t)

vr

�→ �, ∃x F(x, t)
∃r
.
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If it is main formula of a binary rule except induction, then (e.g. for ∧r)

�→ �, A(s) �→ �, B(s)
�,�→ �,�, A(s) ∧ B(s)

∧r

�,�→ �,�, A(t) ∧ B(t)
vr

�→
�→ �, A(s)
�→ �, A(t)

vr
�→ �, B(s)
�→ �, B(t)

vr

�,�→ �,�, A(t) ∧ B(t)
∧r
,

possibly dropping one of the two new evaluation rules if s does not appear in one of
A, B. If it is main formula of a weakening, then

�→ �

�→ �, A(s)
wr

�→ �, A(t)
vr

�→ �→ �

�→ �, A(t)
wr
.

If it is main formula of a contraction, then

�→ �, A(s), A(s)
�→ �, A(s)

cr

�→ �, A(t)
vr

�→
�→ �, A(s), A(s)
�→ �, A(s), A(t)

vr

�→ �, A(t), A(t)
vr

�→ �, A(t)
cr
.

Furthermore, for any unary rule ρ,

�→ �, A(s)

�′ → �′, A(s)
ρ

�′ → �′, A(t)
vr

�→
�→ �, A(s)
�→ �, A(t)

vr

�′ → �′, A(t)
ρ

and similarly, for any binary rule ρ,

�1 → �1, A(s) �2 → �2

�→ �, A(s)
ρ

�→ �, A(t)
vr

�→
�1 → �1, A(s)
�1 → �1, A(t)

vr
�2 → �2

�→ �, A(t)
ρ
.

A normal form w.r.t. the rules for shifting evaluations is a proof where evaluations
appear only below axioms and below inductions.
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