
Cut-Elimination: Experiments with CERES�

Matthias Baaz1, Stefan Hetzl2, Alexander Leitsch2, Clemens Richter2, and
Hendrik Spohr2

1 Institute of Discrete Mathematics and Geometry (E104),
Vienna University of Technology, Wiedner Hauptstraße 8-10,

1040 Vienna, Austria
baaz@logic.at

2 Institute of Computer Languages (E185),
Vienna University of Technology, Favoritenstraße 9,

1040 Vienna, Austria
{hetzl|leitsch|richter|spohr}@logic.at

Abstract. Cut-elimination is the most prominent form of proof trans-
formation in logic. The elimination of cuts in formal proofs corresponds
to the removal of intermediate statements (lemmas) in mathematical
proofs. The cut-elimination method CERES (cut-elimination by resolu-
tion) works by constructing a set of clauses from a proof with cuts. Any
resolution refutation of this set can then serve as a skeleton of a proof
with only atomic cuts.
In this paper we present a systematic experiment with the implemen-
tation of CERES on a proof of reasonable size and complexity. It turns
out that the proof with cuts can be transformed into two mathematically
different proofs of the theorem. In particular, the application of positive
and negative hyperresolution yield different mathematical arguments. As
an unexpected side-effect the derived clauses of the resolution refutation
proved particularly interesting as they can be considered as meaningful
universal lemmas.
Though the proof under investigation is intuitively simple, the experi-
ment demonstrates that new (and relevant) mathematical information
on proofs can be obtained by computational methods. It can be con-
sidered as a first step in the development of an experimental culture of
computer-aided proof analysis in mathematics.

1 Introduction

Proof analysis is a central mathematical activity which proved crucial to the
development of mathematics. Indeed many mathematical concepts such as the
notion of group or the notion of probability were introduced by analyzing existing
arguments. In some sense the analysis and synthesis of proofs form the very core
of mathematical progress[7,8].

Cut-elimination introduced by Gentzen [4] is the most prominent form of
proof transformation in logic and plays an important role in automatizing the
� supported by the Austrian Science Fund (project no. P16264-N05)

F. Baader and A. Voronkov (Eds.): LPAR 2004, LNAI 3452, pp. 481–495, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

482 M. Baaz et al.

analysis of mathematical proofs. The removal of cuts corresponds to the elim-
ination of intermediate statements (lemmas) from proofs resulting in a proof
which is analytic in the sense, that all statements in the proof are subformulas
of the result. Therefore, the proof of a combinatorial statement is converted into
a purely combinatorial proof. Cut-elimination is therefore an essential tool for
the analysis of proofs, especially to make implicit parameters explicit. Cut free
derivations allow for

– the extraction of Herbrand disjunctions, which can be used to establish
bounds on existential quantifiers (e.g. Luckhardt’s analysis of the Theorem
of Roth [6]).

– the construction of interpolants, which allow for the replacement of implicit
definitions by explicit definitions according to Beth’s Theorem.

– the calculation of generalized variants of the end formula.

In a formal sense Girard’s analysis of van der Waerden’s proof [5] is the
application of cut-elimination to the proof of Fürstenberg/Weiss with the “per-
spective” of obtaining van der Waerden’s proof. Indeed an application of a com-
plex proof transformation like cut-elimination by humans requires a goal ori-
ented strategy. In contrast, as we demonstrate in this paper, the application of
purely computational methods on existing proofs may produce new interesting
proofs. Note that cut-elimination is non-unique, i.e. there is no single cut-free
proof which represents the analytic version of a proof with lemmas. Indeed, it
is non-uniqueness which makes computational experiments with cut-elimination
interesting. The experiments can be considered as a source for a base of proofs
in formal format which provide different mathematical and computational infor-
mation.

CERES [2] is a cut-elimination method that is based on resolution. The
method roughly works as follows: The structure of the proof containing cuts is
mapped to a clause term which evaluates to an unsatisfiable set of clauses C (the
characteristic clause set). A resolution refutation of C, which is obtained using
a first-order theorem prover, serves as a skeleton for the new proof which con-
tains only atomic cuts. In a final step also these atomic cuts can be eliminated,
provided the (atomic) axioms are valid sequents; but this step is of minor math-
ematical interest only. In the system CERES3 this method of cut-elimination
has been implemented. The system is capable of dealing with formal proofs in
LK, among them also very large ones.

In this paper we present a systematic experiment with CERES on a proof
defined in [9]. It turns out that the proof with cuts is transformed into two
mathematically different proofs of the theorem. In particular, the application of
positive and negative hyperresolution yield different mathematical arguments.
As the core of the method is resolution, which works on the characteristic clause
set, it is worthwhile to investigate also the resolution proof itself. In fact the
derived clauses of the proof can be considered as universal lemmas, which are
eventually instantiated in the procedure. As an unexpected side-effect also these
3 available at http://www.logic.at/ceres/

http://www.logic.at/ceres/

Cut-Elimination: Experiments with CERES 483

lemmas proved particularly interesting in the experiment. Though the proof un-
der investigation is intuitively simple, the experiment demonstrates that new
(and relevant) mathematical information on proofs can be obtained by compu-
tational methods. It can be considered as a first step in the development of an
experimental culture of computer-aided proof analysis in mathematics.

2 The System CERES

The system CERES is an implementation of the cut-elimination method CERES
which will be roughly explained below. Also a short description of the behavior
of the system will be given including some implementational details.

2.1 Short Description of the Method via an Example

The cut-elimination method by resolution (CERES) is demonstrated in this pa-
per by the following example. You can find an in-depth explanation of the method
itself and the underlying LK in [3], [2] and on the CERES web page4.

To simplify the understanding of the method all the premises (the auxiliary
formulas of the inferences) are put in bold face, the conclusions are underlined
and the ancestors of cut-formulas are marked with an asterisk in the following
input proof.

Now, let ϕ be the proof

ϕl ϕr

(∀x)(∀y)(P (x, y) ⊃ Q(x, y)) � (∃x)(∃y)(¬Q(x, y) ⊃ ¬P (x, y))
cut

where ϕl is

P (z, a)∗ � P (z, a)
� ¬P (z, a)∗, P (z, a)

¬ : r

� ¬P (z, a) ∨ Q(z, a)∗,P (z, a)
∨ : r1

Q(z, a) � Q(z, a)∗

Q(z, a) � ¬P (z, a) ∨ Q(z, a)∗
∨ : r2

P (z, a) ⊃ Q(z, a) � ¬P (z, a) ∨ Q(z, a)∗
⊃ : l

(∀y)(P (z, y) ⊃ Q(z, y)) � ¬P (z, a) ∨ Q(z, a)∗ ∀ : l

(∀x)(∀y)(P (x, y) ⊃ Q(x, y)) � ¬P (z, a) ∨ Q(z, a)∗
∀ : l

(∀x)(∀y)(P (x, y) ⊃ Q(x, y)) � (∃y)(¬P (z, y) ∨ Q(z, y))∗
∃ : r

(∀x)(∀y)(P (x, y) ⊃ Q(x, y)) � (∀x)(∃y)(¬P (x, y) ∨ Q(x, y))∗
∀ : r

4 The documentation and an online version of the system CERES are available at
http://www.logic.at/ceres/.

http://www.logic.at/ceres/

484 M. Baaz et al.

and ϕr is

P (b, v) � P (b, v)∗

¬P (b, v)∗,P (b, v) � ¬ : l

¬P (b, v)∗ � ¬P (b, v)
¬ : r

Q(b, v)∗ � Q(b, v)

¬Q(b, v),Q(b, v)∗ � ¬ : l

¬Q(b, v),¬P (b, v) ∨ Q(b, v)∗ � ¬P (b, v)
∨ : l′

¬P (b, v) ∨ Q(b, v)∗ � ¬Q(b, v) ⊃ ¬P (b, v)
⊃ : r

¬P (b, v) ∨ Q(b, v)∗ � (∃y)(¬Q(b, y) ⊃ ¬P (b, y))
∃ : r

¬P (b, v) ∨ Q(b, v)∗ � (∃x)(∃y)(¬Q(x, y) ⊃ ¬P (x, y))
∃ : r

(∃y)(¬P (b, y) ∨ Q(b, y))∗ � (∃x)(∃y)(¬Q(x, y) ⊃ ¬P (x, y))
∃ : l

(∀x)(∃y)(¬P (x, y) ∨ Q(x, y))∗ � (∃x)(∃y)(¬Q(x, y) ⊃ ¬P (x, y))
∀ : l

The extraction of the characteristic clause term happens top down starting
with those parts of the initial sequents that are marked as ancestors of cut for-
mulas which are now interpreted as sets. At every occurrence of a binary rule the
two clause terms resulting from the premises are connected by a binary operator.
Depending whether the auxiliary formulas of the inference were ancestors of cut
formulas or not the operator will either be ⊕ or ⊗. All unary inference rules
have no influence on the clause term and hence it remains unchanged.

For the example this yields the following characteristic clause term

Θ(ϕ) = (({P (z, a) �} ⊗ {� Q(z, a)}) ⊕ ({� P (b, v)} ⊕ {Q(b, v) �}))

which characterizes those parts of the axiom sequents which have been used to
derive the cut formula (on both sides).

The operator ⊕ of the clause term is interpreted as union and the operator
⊗ as merge, i.e. the antecedens and consequent parts of different sequents are
exchanged such that only one part is exchanged at once.

Hence by evaluation of Θ(ϕ) for the characteristic clause set |Θ(ϕ)| of ϕ we
obtain

|Θ(ϕ)| = {P (z, a) � Q(z, a), (C2)
� P (b, v), (C1)
Q(b, v) �}. (C3)

The characteristic clause set of an LK derivation is always unsatisfiable.
Therefore one can always find a resolution refutation of the characteristic clause
set.

Cut-Elimination: Experiments with CERES 485

In particular, we define a resolution refutation δ of |Θ(ϕ)|:

Q(b, v) �
� P (b, v) P (z, a) � Q(z, a)

� Q(b, a)
�

and a corresponding ground refutation γ of δ, i. e. γ = δσ:

Q(b, a) �
� P (b, a) P (b, a) � Q(b, a)

� Q(b, a)
�

with the ground substitution σ = {v �→ a, z �→ b}.

Now we have to reduce ϕ to projections of the clauses used as initial clauses
in the resolution refutation of |Θ(ϕ)|. A projection of ϕ w.r.t. a clause in |Θ(ϕ)| is
defined by skipping all inferences going into cuts, which leads to cut-free proof of
(a subsequent of) the end sequent extended by C. Projections may be understood
as projection schemes of the clauses in question modulo a corresponding ground
substitution.

Again, we start at the initial sequents (without those parts marked as ances-
tors of cut formulas and not necessary for the creation of the clause in question)
and apply all inference rules not operating on ancestors of cut formulas until all
such binary rules have been applied and at least one formula also occurring in
the end sequent has been composed.

The projection scheme of ϕ corresponding to the clause C1 is:

ϕ(C1) =
P (b, v) � P (b, v)
� P (b, v),¬P (b, v)

¬ : r

¬Q(b, v) � P (b, v),¬P (b, v) w : l

� ¬Q(b, v) ⊃ ¬P (b, v), P (b, v)
⊃: r

� (∃y)(¬Q(b, y) ⊃ ¬P (b, y)), P (b, v) ∃ : r

� (∃x)(∃y)(¬Q(x, y) ⊃ ¬P (x, y)), P (b, v) ∃ : r

and let the ground projection χ1 = ϕ(C1)σ.

The projection scheme of ϕ corresponding to the clause C2 is:

ϕ(C2) =
P (z, a) � P (z, a) Q(z, a) � Q(z, a)
P (z, a) ⊃ Q(z, a), P (z, a) � Q(z, a)

⊃: l

(∀y)(P (z, y) ⊃ Q(z, y)), P (z, a) � Q(z, a) ∀ : l

(∀x)(∀y)(P (x, y) ⊃ Q(x, y)), P (z, a) � Q(z, a) ∀ : l

486 M. Baaz et al.

and let the ground projection χ2 = ϕ(C2)σ.

The projection scheme of ϕ corresponding to the clause C3 is:

ϕ(C3) =
Q(b, v) � Q(b, v)
¬Q(b, v)Q(b, v) � ¬ : l

¬Q(b, v)Q(b, v) � ¬P (b, v)
w : r

Q(b, v) � ¬Q(b, v) ⊃ ¬P (b, v)
⊃: r

Q(b, v) � (∃y)(¬Q(b, y) ⊃ ¬P (b, y)) ∃ : r

Q(b, v) � (∃x)(∃y)(¬Q(x, y) ⊃ ¬P (x, y)) ∃ : r

and let the ground projection χ3 = ϕ(C3)σ.

Finally the ground projections can be composed to a cut-free proof of ϕ, i.e.
a proof of ϕ containing only atomic cuts, using its resolution refutation as a
skeleton.

(χ1)
� Y, P (b, a)

(χ2)
P (b, a),X � Q(b, a)

X � Y,Q(b, a)
cut (χ3)

Q(b, a) � Y

X � Y
cut

where X = (∀x)(∀y)(P (x, y)⊃Q(x, y)) and Y = (∃x)(∃y)(¬Q(x, y) ⊃ ¬P (x, y)).

2.2 Description of the Program

The cut-elimination program CERES is written in ANSI-C++5. There are two
main tasks. On the one hand to compute an unsatisfiable set of clauses C char-
acterising the cut formulas. This is done by automatically extracting the char-
acteristic clause term and computation of the resulting characteristic clause set.
On the other hand to evaluate the resolution refutation gained from an exter-
nal theorem prover6 and to compute the necessary projection schemes which
are properly instantiated and concatenated using the resolution refutation as a
skeleton of the cut-free proof, i.e. a proof without non-atomic cuts.

The input format and the output format are following the proof style7 of
LATEX with some extensions, and are translatable by any LATEX compiler. This
feature allows an easier input of proofs and reading of the output. Nevertheless
new approaches are planned (see section 4 for details).

5 The C++ Programming Language following the International Standard 14882:1998
approved as an American National Standard (see http://www.ansi.org).

6 The current version of CERES uses the automated theorem prover Otter (see
http://www-unix.mcs.anl.gov/AR/otter/), but any refutational theorem prover
may be used.

7 see http://research.nii.ac.jp/~tatsuta/proof-sty.html

http://www.ansi.org
http://www-unix.mcs.anl.gov/AR/otter/
http://research.nii.ac.jp/~tatsuta/proof-sty.html

Cut-Elimination: Experiments with CERES 487

3 Experiments with Resolution Refinements

The use of the resolution refutation of the characteristic clause set as a skeleton
for the cut-free proof makes it possible to change the mathematical character
of the resulting proof via different resolution refutations, e.g. using different
resolution refinements. Within these refutations universal lemmas, i.e. clauses
containing variables representing universal formulas, appear which do neither
occur in the original proof nor in the cut-eliminated proofs, where they are
already instantiated.

Now we are doing exactly such an interesting experiment using an input
proof already analyzed and defined as an LK-derivation in [9] with the program
CERES.

The proof deals with the following situation: We are given an infinite tape
where each cell contains either ‘0’ or ‘1’. We prove that on this tape there are
two cells with the same value. The contents of a cell of the tape is denoted by
f , s is the sucessor function and mx,y is the maximum of x and y.

Within this section the following formula abbreviations are used:

M1 = (∀y)(∀x)x ≤ mx,y

M2 = (∀y)(∀x)y ≤ mx,y

S = (∀x)(∀y)(s(x) ≤ y ⊃ x < y)
T = (∀i)(∀x)(∀y)((f(x) = i ∧ f(y) = i) ⊃ f(x) = f(y))
A = (∀x)(f(x) = 0 ∨ f(x) = 1)
P = (∃p)(∃q)(p < q ∧ f(p) = f(q))

∞0 = (∀n)(∃k)(n ≤ k ∧ f(k) = 0)
∞1 = (∀m)(∃l)(m ≤ l ∧ f(l) = 1)

moreover 1 is an abbreviation for s(0).

Then, let the proof ϕ be defined as follows.

ϕ =
(τ)

M1, M2, A � ∞0,∞1

(ε1)
∞1, S, T � P

M1, M2, S, T, A � P,∞0
cut

(ε0)
∞0, S, T � P

M1, M2, S, T, A � P
cut

For the subproofs of τ , ε0 and ε1 please see [9] and the appendix.

The characteristic clause term Θ(ϕ) extracted from ϕ is

Θ(ϕ) =((({� v ≤ mu,v} ⊕ ({� u ≤ mu,v} ⊕ ({� f(mu,v) = 0} ⊗ {� f(mu,v) = 1})))
⊕ (({s(u) ≤ v �} ⊗ {�}) ⊗ (({f(u) = 1 �} ⊗ {f(v) = 1 �}) ⊗ {�})))
⊕ (({s(u) ≤ v �} ⊗ {�}) ⊗ (({f(u) = 0 �} ⊗ {f(v) = 0 �}) ⊗ {�})))

488 M. Baaz et al.

and the corresponding characteristic clause set |Θ(ϕ)| obtained from Θ(ϕ) is

|Θ(ϕ)| = { � v ≤ mu,v, (C1)
� u ≤ mu,v, (C2)
� f(mu,v) = 0, f(mu,v) = 1, (C3)
s(u) ≤ v, f(u) = 1, f(v) = 1 �, (C4)
s(u) ≤ v, f(u) = 0, f(v) = 0 �} (C5)

The projection schemes obtained from ϕ for the five clauses above are the
following:
ϕ(C1) =

v ≤ mu,v � v ≤ mu,v

(∀x)v ≤ mx,v � v ≤ mu,v ∀ : l

(∀y)(∀x)y ≤ mx,y � v ≤ mu,v ∀ : l

ϕ(C2) =
u ≤ mu,v � u ≤ mu,v

(∀x)x ≤ mx,v � u ≤ mu,v ∀ : l

(∀y)(∀x)x ≤ mx,y � u ≤ mu,v ∀ : l

ϕ(C3) =

f(mu,v) = 0 � f(mu,v) = 0 f(mu,v) = 1 � f(mu,v) = 1
f(mu,v) = 0 ∨ f(mu,v) = 1 � f(mu,v) = 0, f(mu,v) = 1 ∨ : l

(∀x)(f(x) = 0 ∨ f(x) = 1) � f(mu,v) = 0, f(mu,v) = 1 ∀ : l

ϕ(C4) = ψ1

ϕ(C5) = ψ0

where ψj is defined:

ψj =

s(u) ≤ v � s(u) ≤ v u < v � u < v

s(u) ≤ v ⊃ u < v, s(u) ≤ v � u < v
⊃ : l

(∀y)(s(u) ≤ y ⊃ u < y), s(u) ≤ v � u < v
∀ : l

(∀x)(∀y)(s(x) ≤ y ⊃ x < y), s(u) ≤ v � u < v
∀ : l

ψ′
j

S, s(u) ≤ v, T, f(u) = j, f(v) = j � u < v ∧ f(u) = f(v)
∧ : r

S, s(u) ≤ v, T, f(u) = j, f(v) = j � (∃q)(u < q ∧ f(u) = f(q))
∃ : r

S, s(u) ≤ v, T, f(u) = j, f(v) = j � (∃p)(∃q)(p < q ∧ f(p) = f(q))
∃ : r

ψ′
j =

f(u) = j � f(u) = j f(v) = j � f(v) = j

f(u) = j, f(v) = j � f(u) = j ∧ f(v) = j
∧ : r

f(u) = f(v) � f(u) = f(v)

(f(u) = j ∧ f(v) = j) ⊃ f(u) = f(v), f(u) = j, f(v) = j � f(u) = f(v)
⊃ : l

(∀y)((f(u) = j ∧ f(y) = j) ⊃ f(u) = f(y)), f(u) = j, f(v) = j � f(u) = f(v)
∀ : l

(∀x)(∀y)((f(x) = j ∧ f(y) = j) ⊃ f(x) = f(y)), f(u) = j, f(v) = j � f(u) = f(v)
∀ : l

(∀i)(∀x)(∀y)((f(x) = i ∧ f(y) = i) ⊃ f(x) = f(y)), f(u) = j, f(v) = j � f(u) = f(v)
∀ : l

Cut-Elimination: Experiments with CERES 489

The resolution refutations yielding two mathematically different proofs of ϕ
are demonstrated in the following two subsections. The resulting cut-free proofs
have been ommited because of their sizes.

3.1 Positive Hyperresolution

Derivation of C6:

(C4σ1)

s(u′) ≤ v′, f(u′) = 1, f(v′) = 1 �
(C2σ2)

� u ≤ mu,w

f(u′) = 1, f(ms(u′),w) = 1 �
σ3 (C3)

� f(mu,v) = 0, f(mu,v) = 1

f(ms(mu,v),w) = 1 � f(mu,v) = 0
︸ ︷︷ ︸

CX

σ4

CX

(C3σ5)

� f(mu′,v′
) = 0, f(mu′,v′

) = 1

� f(mu,v) = 0, f(ms(mu,v),w) = 0
σ6

(C6)

where σ1 = {u �→ u′, v �→ v′}, σ2 = {v �→ w}, σ3 = {u �→ s(u′), v′ �→ ms(u′),w},
σ4 = {u′ �→ mu,v}, σ5 = {u �→ u′, v �→ v′} and σ6 = {u′ �→ s(mu,v), v′ �→ w}.

For arbitrary u, v and w either the cell with index i = mu,v is labelled ‘0’ or
the cell with index mi+1,w.

Derivation of C7:

(C5σ7)

s(u′) ≤ v′, f(u′) = 0, f(v′) = 0 �
(C1σ8)

� v ≤ mu′′,v

f(u′) = 0, f(mu′′,s(u′)) = 0 �
σ9

(C6)

� f(mu,v) = 0, f(ms(mu,v),w) = 0

f(mu′′,s(ms(mu,v),w)) = 0 � f(mu,v) = 0
︸ ︷︷ ︸

CY

σ10

CY

(C6σ11)

� f(mu′,v′
) = 0, f(ms(mu′,v′

),w′
) = 0

� f(mu,v) = 0, f(mu′,v′
) = 0

σ12

� f(mu,v) = 0
σ13

(C7)

where σ7 = {u �→ u′, v �→ v′}, σ8 = {u �→ u′′}, σ9 = {v �→ s(u′), v′ �→ mu′′,s(u′)},
σ10 = {u′ �→ ms(mu,v),w}, σ11 = {u �→ u′, v �→ v′, w �→ w′}, σ12 = {u′′ �→
s(mu′,v′

), w′ �→ s(ms(mu,v),w)} and σ13 = {u′ �→ u, v′ �→ v}.

490 M. Baaz et al.

For arbitrary u and v the cell with index i = mu,v is labelled ‘0’.

(C5)
s(u) ≤ v, f(u) = 0, f(v) = 0 �

(C2σ14)

� u′ ≤ mu′,v′

f(u) = 0, f(ms(u),v′
) = 0 �

σ15
(C7σ16)

� f(mu′,v) = 0

f(ms(mu′,v),v′
) = 0 �

σ17 (C7σ18)

� f(mu,v′′
) = 0

�
σ19

where σ14 = {u �→ u′, v �→ v′}, σ15 = {u′ �→ s(u), v �→ ms(u),v′}, σ16 = {u �→ u′},
σ17 = {u �→ mu′,v}, σ18 = {v �→ v′′} and σ19 = {u �→ s(mu′,v), v′′ �→ v′}.

For arbitrary u and v where u < v at least one of the cells with index u or
v should be labelled ‘1’ but again for arbitrary u′ and v′ the cell with index
i = mu′,v′

is labelled ‘0’. Hence choosing one time u as u′ and one time v as v′

leads to a contradiction.

3.2 Negative Hyperresolution

Derivation of C′
6:

(C1σ1)

� v′ ≤ mu,v′
(C4σ2)

s(v) ≤ u′, f(v) = 1, f(u′) = 1 �
f(v) = 1, f(mu,s(v)) = 1 �

σ3

(C′
6)

where σ1 = {v �→ v′}, σ2 = {u �→ v, v �→ u′} and σ3 = {u′ �→ mu,s(v), v′ �→ s(v)}.

If a cell with index v is labelled ‘1’ then no cell with an index bigger than v is
labelled ‘1’.

Derivation of C′
7:

(C2σ4)

� u′ ≤ mu′,v
(C5σ5)

s(u) ≤ v′, f(u) = 0, f(v′) = 0 �
f(u) = 0, f(ms(u),v) = 0 �

σ6

(C′
7)

where σ4 = {u �→ u′}, σ5 = {v �→ v′} and σ6 = {u′ �→ s(u), v′ �→ ms(u),v}.

If a cell with index u is labelled ‘0’ then no cell with an index bigger than u is
labelled ‘0’.

Cut-Elimination: Experiments with CERES 491

Derivation of C′
8:

(C3σ7)

� f(mu′,v′
) = 0, f(mu′,v′

) = 1

(C′
7)

f(u) = 0, f(ms(u),v) = 0 �
f(u) = 0 � f(ms(u),v′

) = 1
︸ ︷︷ ︸

C′
X

σ8

C′
X

(C′
6σ9)

f(v) = 1, f(mu′,s(v)) = 1 �
f(v) = 1, f(u) = 0 �

σ10
(C′

8)

where σ7 = {u �→ u′, v �→ v′}, σ8 = {u′ �→ s(u), v �→ v′}, σ9 = {u �→ u′} and
σ10 = {u′ �→ s(u), v′ �→ s(v)}.

If a cell with index v is labelled ‘1’ then there is no cell with index u labelled
‘0’, i.e. all cells are either only labelled ‘0’ or only labelled ‘1’.

Derivation of C′
9:

(C3σ11)

� f(mu′,v′
) = 0, f(mu′,v′

) = 1

(C′
7)

f(u) = 0, f(ms(u),v) = 0 �
f(u) = 0 � f(ms(u),v) = 1
︸ ︷︷ ︸

C′
Y

σ12

C′
Y

(C′
8σ13)

f(v′) = 1, f(u′) = 0 �
f(u) = 0, f(u′) = 0 �

σ14

f(u) = 0 �
σ15

(C′
9)

where σ11 = {u �→ u′, v �→ v′}, σ12 = {v′ �→ v, u′ �→ s(u)}, σ13 = {u �→ u′, v �→
v′}, σ14 = {v′ �→ ms(u),v} and σ15 = {u′ �→ u}.

No cell is labelled ‘0’.

Derivation of C′
10:

(C3σ16)

� f(mu′,v′
) = 0, f(mu′,v′

) = 1
(C′

8)
f(v) = 1, f(u) = 0 �

f(v) = 1 � f(mu′,v′
) = 1

︸ ︷︷ ︸

C′
Z

σ17

C′
Z

(C′
6σ18)

f(v′′) = 1, f(mu,s(v′′)) = 1 �
f(v) = 1, f(v′′) = 1 �

σ19

f(v) = 1 �
σ20

(C′
10)

492 M. Baaz et al.

where σ16 = {u �→ u′, v �→ v′}, σ17 = {u �→ mu′,v′}, σ18 = {v �→ v′′},
σ19 = {u′ �→ u, v′ �→ s(v′′)} and σ20 = {v′′ �→ v}.

No cell is labelled ‘1’.

(C3)
� f(mu,v) = 0, f(mu,v) = 1

(C ′
9σ21)

f(u′) = 0 �
� f(mu,v) = 1

σ22
(C ′

10σ23)
f(v′) = 1 �

�
σ24

where σ21 = {u �→ u′}, σ22 = {u′ �→ mu,v}, σ23 = {v �→ v′} and σ24 = {v′ �→
mu,v}.

The contradiction follows from the axiom that for arbitrary u and v the cell
with the index mu,v is either labelled with ‘0’ or with ‘1’ in combination with
the facts that no cell is labelled ‘0’ and no cell is labelled ‘1’.

4 Possible Extensions

We plan to develop the following extensions of CERES:

– Due to the central importance of equality in mathematical proofs an inves-
tigation of cut-elimination in proofs with equality is very important to the
application of cut-elimination. We intend to use the Gentzen calculus LK
with the paramodulation rule (we refer to [10]) and to extend CERES to
equality.

– As the cut-free proofs are often very large and difficult to interpret, we
intend to provide the possibility to analyse certain characteristics of the cut-
free proof (which are simpler than the proof itself). An important example
are Herbrand sequents which may serve to extract bounds from proofs (see
e.g. [6]). We plan to develop algorithms for extracting Herbrand sequents
(also from proofs of nonprenex sequents as indicated in [1]) and for comput-
ing interpolants.

– A great challenge in the formal analysis of mathematical proofs lies in pro-
viding a suitable format for the input and output of proofs. We plan to
develop an intermediary proof language connecting the language of mathe-
matical proofs with LK. Furthermore we will implement a proof editor with
a graphical user interface that allows for convenient input and analysis of
the output of CERES.

– In the present version CERES eliminates all cuts at once. But - for the ap-
plication to real mathematical proofs - only interesting cuts (i.e. lemmas)
deserve to be eliminated, others should be integrated as additional axioms.

Cut-Elimination: Experiments with CERES 493

5 Conclusion

The computer experiments with CERES described in this paper lead to the
following main consequences:

– even in the simple proof under consideration numerous formal variants of cut
free proofs condense to relatively few mathematically distinguishable vari-
ants.

– On the other hand, the number of mathematically distinguishable variants
is greater than one. This demonstrates, that the non-confluence of CERES
is not just a formality within LK.

– CERES does not eliminate the mathematical activity of cut-elimination, it
just supports it. In fact it is essential to interprete the resources and results
mathematically.

– New features of CERES, concerning the relation of resolution refutations of
the characteristic clause set and the proof projections, evolved in the course
of the computer experiments.

References

1. M. Baaz, A. Leitsch: On skolemization and proof complexity, Fundamenta Infor-
maticae, 20(4), pp. 353–379, 1994.

2. M. Baaz, A. Leitsch: Cut-Elimination and Redundancy-Elimination by Resolution,
Journal of Symbolic Computation, 29, pp. 149-176, 2000.

3. M. Baaz, A. Leitsch: Towards a Clausal Analysis of Cut-Elimination, Journal of
Symbolic Computation to appear.

4. G. Gentzen: Untersuchungen über das logische Schließen, Mathematische
Zeitschrift, 39, pp. 405–431, 1934–1935.

5. J.Y. Girard: Proof Theory and Logical Complexity, in Studies in Proof Theory,
Bibliopolis, Napoli, 1987.

6. H. Luckhardt: Herbrand-Analysen zweier Beweise des Satzes von Roth: polynomi-
ale Anzahlschranken. The Journal of Symbolic Logic, 54, pp. 234–263, 1989.

7. G. Polya: Mathematics and plausible reasoning, Volume I: Induction and Analogy
in Mathematics. Princeton University Press, Princeton, New Jersey, 1954.

8. G. Polya: Mathematics and plausible reasoning, Volume II: Patterns of Plausible
Inference. Princeton University Press, Princeton, New Jersey, 1954.

9. C. Urban: Classical Logic and Computation. Ph.D. Thesis, University of Cam-
bridge Computer Laboratory, 2000.

10. A. Degtyarev, A. Voronkov: Equality Reasoning in Sequent-Based Calculi, Hand-
book of Automated Reasoning, vol. I, ed. by A. Robinson and A. Voronkov, chapter
10, pp. 611-706, Elsevier Science, 2001.

494 M. Baaz et al.

APPENDIX

Input Proof

This is the proof8 used for the experiments in section 3. Again all the premises
(the auxiliary formulas of the inferences) are put in bold face, the conclusions
are underlined and the same formula abbreviations are used.

p =
(τ)

M1, M2, A � ∞0,∞1

(ε1)
∞1, S, T � P

M1, M2, S, T, A � P,∞0
cut

(ε0)
∞0, S, T � P

M1, M2, S, T, A � P
cut

τ =

v ≤ mu,v � v ≤ mu,v

(∀x)v ≤ mx,v � v ≤ mu,v ∀ : l

(∀y)(∀x)y ≤ mx,y � v ≤ mu,v ∀ : l

u ≤ mu,v � u ≤ mu,v

(∀x)x ≤ mx,v � u ≤ mu,v ∀ : l

(∀y)(∀x)x ≤ mx,y � u ≤ mu,v ∀ : l
(τ ′)

M1, A � u ≤ mu,v ∧ f(mu,v) = 0, f(mu,v) = 1
∧ : r

M1, M2, A � u ≤ mu,v ∧ f(mu,v) = 0, v ≤ mu,v ∧ f(mu,v) = 1
∧ : r

M1, M2, A � (∃k)(u ≤ k ∧ f(k) = 0), v ≤ mu,v ∧ f(mu,v) = 1
∃ : r

M1, M2, A � (∃k)(u ≤ k ∧ f(k) = 0), (∃l)(v ≤ l ∧ f(l) = 1)
∃ : r

M1, M2, A � (∀n)(∃k)(n ≤ k ∧ f(k) = 0), (∃l)(v ≤ l ∧ f(l) = 1)
∀ : r

M1, M2, A � ∞0, (∀m)(∃l)(m ≤ l ∧ f(l) = 1)
∀ : r

τ ′ =
f(mu,v) = 0 � f(mu,v) = 0 f(mu,v) = 1 � f(mu,v) = 1

f(mu,v) = 0 ∨ f(mu,v) = 1 � f(mu,v) = 0, f(mu,v) = 1
∨ : l

(∀x)(f(x) = 0 ∨ f(x) = 1) � f(mu,v) = 0, f(mu,v) = 1
∀ : l

ε0 =

(ε′0)
0 ≤ u ∧ f(u) = 0, s(u) ≤ v ∧ f(v) = 0, S, T � P

0 ≤ u ∧ f(u) = 0, (∃k)(s(u) ≤ k ∧ f(k) = 0), S, T � P
∃ : l

0 ≤ u ∧ f(u) = 0, (∀n)(∃k)(n ≤ k ∧ f(k) = 0), S, T � P
∀ : l

(∃k)(0 ≤ k ∧ f(k) = 0), (∀n)(∃k)(n ≤ k ∧ f(k) = 0), S, T � P
∃ : l

(∀n)(∃k)(n ≤ k ∧ f(k) = 0), (∀n)(∃k)(n ≤ k ∧ f(k) = 0), S, T � P
∀ : l

(∀n)(∃k)(n ≤ k ∧ f(k) = 0), S, T � P
c : l

8 specified and analyzed by Urban[9]

Cut-Elimination: Experiments with CERES 495

ε1 =

(ε′1)
1 ≤ u ∧ f(u) = 1, s(u) ≤ v ∧ f(v) = 1, S, T � P

1 ≤ u ∧ f(u) = 1, (∃l)(s(u) ≤ l ∧ f(l) = 1), S, T � P
∃ : l

1 ≤ u ∧ f(u) = 1, (∀m)(∃l)(m ≤ l ∧ f(l) = 1), S, T � P
∀ : l

(∃l)(1 ≤ l ∧ f(l) = 1), (∀m)(∃l)(m ≤ l ∧ f(l) = 1), S, T � P
∃ : l

(∀m)(∃l)(m ≤ l ∧ f(l) = 1), (∀m)(∃l)(m ≤ l ∧ f(l) = 1), S, T � P
∀ : l

(∀m)(∃l)(m ≤ l ∧ f(l) = 1), S, T � P
c : l

ε′j =

s(u) ≤ v � s(u) ≤ v u < v � u < v

s(u) ≤ v, s(u) ≤ v ⊃ u < v � u < v
⊃ : l

s(u) ≤ v, (∀y)(s(u) ≤ y ⊃ u < y) � u < v
∀ : l

s(u) ≤ v, (∀x)(∀y)(s(x) ≤ y ⊃ x < y) � u < v
∀ : l

(ε′′j)

f(u) = j, s(u) ≤ v, f(v) = j, S, T � u < v ∧ f(u) = f(v)
∧ : r

f(u) = j, s(u) ≤ v ∧ f(v) = j, S, T � u < v ∧ f(u) = f(v)
∧ : l

j ≤ u ∧ f(u) = j, s(u) ≤ v ∧ f(v) = j, S, T � u < v ∧ f(u) = f(v)
∧ : l

j ≤ u ∧ f(u) = j, s(u) ≤ v ∧ f(v) = j, S, T � (∃q)(u < q ∧ f(u) = f(q))
∃ : r

j ≤ u ∧ f(u) = j, s(u) ≤ v ∧ f(v) = j, S, T � (∃p)(∃q)(p < q ∧ f(p) = f(q))
∃ : r

ε′′j =

f(u) = j � f(u) = j f(v) = j � f(v) = j

f(u) = j, f(v) = j � f(u) = j ∧ f(v) = j
∧ : r

f(u) = f(v) � f(u) = f(v)

f(u) = j, f(v) = j, ((f(u) = j ∧ f(v) = j) ⊃ f(u) = f(v)) � f(u) = f(v)
⊃ : l

f(u) = j, f(v) = j, (∀y)((f(u) = j ∧ f(y) = j) ⊃ f(u) = f(y)) � f(u) = f(v)
∀ : l

f(u) = j, f(v) = j, (∀x)(∀y)((f(x) = j ∧ f(y) = j) ⊃ f(x) = f(y)) � f(u) = f(v)
∀ : l

f(u) = j, f(v) = j, (∀i)(∀x)(∀y)((f(x) = i ∧ f(y) = i) ⊃ f(x) = f(y)) � f(u) = f(v)
∀ : l

	Introduction
	The System CERES
	Short Description of the Method via an Example
	Description of the Program

	Experiments with Resolution Refinements
	Positive Hyperresolution
	Negative Hyperresolution

	Possible Extensions
	Conclusion

