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Abstract. Computer-generated proofs are usually difficult to grasp for
a human reader. In this paper we present an approach to understanding
resolution proofs through Herbrand’s theorem and the implementation
of a tool based on that approach.

The information we take as primitive is which instances have been
chosen for which quantifiers, in other words: an expansion tree. After
computing an expansion tree from a resolution refutation, the user is
presented this information in a graphical user interface that allows flex-
ible folding and unfolding of parts of the proof.

This interface provides a convenient way to focus on the relevant parts
of a computer-generated proof. In this paper, we describe the proof-
theoretic transformations, the implementation and demonstrate its use-
fulness on several examples.

1 Introduction

Computer-generated proofs are often difficult to understand for a human reader.
This is usually due to a combination of several factors such as the use of de-
duction formats more suited for proof search than for proof presentation, over-
whelming detail in formal proofs, insufficient user interfaces or also extreme proof
length. One of the key problems for understanding formal proofs is to distinguish
relevant information from irrelevant information.

In systems with quantifiers, such as classical first-order logic, the most im-
portant information is typically which instances have been chosen for which
quantifiers. On a purely logical level this insight is embodied by Herbrand’s the-
orem [1,2] which characterizes first-order validity in terms of quantifier instances
and propositional validity. In this paper we present an approach to understand-
ing computer-generated proofs through the lens of Herbrand’s theorem which
takes the information about which instances have been chosen for which quan-
tifiers in a proof as fundamental and thus abstracts from the propositional part
of the proof.
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A data structure which is well-suited for representing this information are ex-
pansion trees, introduced by Miller in [3]. A first step in distinguishing relevant
from irrelevant information is made by displaying an expansion tree instead of
a proof in, e.g., a resolution or a tableau calculus. This removes the proposi-
tional layer from a proof. However, not all quantifiers are equally important for
understanding a proof, for example often we want to consider a proof modulo a
simple theory and are hence not interested in the instances of the axioms of that
theory. As such distinctions between important and unimportant information
depend on the context and are difficult to automate, we let the user decide what
information he wants to see in a graphical user interface by allowing a flexible
folding and unfolding of expansion trees by point-and-click interactions.

We have implemented our tool in the GAPT-system1 which is a framework for
data structures, algorithms and user interfaces for analyzing and transforming
formal proofs. It contains data structures for example formulas, sequents, res-
olution proofs, sequent proofs and algorithms, e.g., unification, skolemization,
cut-elimination, cut-elimination by resolution [4].

The use of Herbrand’s theorem for understanding proofs is a well-established
technique. It plays the key role in Luckhardt’s (manual) analysis [5] of Roth’s the-
orem where it has been used to obtain polynomial bounds (which were obtained
independently and by purely mathematical as opposed to logical methods by
Bombieri and van der Poorten in [6]). The extraction and analysis of Herbrand-
sequents as described by Hetzl et al. [7] has also been used in the computer-
assisted analysis of Fürstenberg’s topological proof of the infinity of primes by
Baaz et al. [8] which yielded Euclid’s original argument via cut-elimination. Her-
brand’s theorem and methods based on it have furthermore also been used in a
number of smaller case studies such as [9] by Baaz et al. or [10] by Urban. In
the context of the GAPT-system, Herbrand’s theorem also plays a central role
for the development of techniques for lemma generation, see Hetzl et al. [11,12],
and the tool described in this paper is routinely used there.

The general problem of human-readable presentations of computer-generated
proofs is well known and a number of other approaches exist in the literature.
Horacek [13] presents an approach to transforming computer-generated proofs to
a structure that more closely resembles mathematical proofs in natural language.
The TRAMP-system by Meier [14] transforms resolution proofs into natural
deduction proofs at the assertion level. The interactive derivation viewer IDV by
Trac et al. [15] displays a derivation in the TPTP-format as a directed acyclic
graph. In [16], Denzinger and Schulz show how to obtain human-readable proof
presentations in the context of distributed equational reasoning.

Closest to our approach is the work of Pfenning [17,18], an algorithm for
extracting an expansion tree from a resolution refutation by doing grounding,
deskolemization and the change of deduction format from refutation to proof in
one pass. The contribution of this paper is twofold: we describe a more modular
algorithm that first changes the proof format from a resolution refutation to
a positive proof in the sequent calculus and only in a second step extracts an

1 Generic Architecture for Proof Transformations, http://www.logic.at/gapt

http://www.logic.at/gapt
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expansion tree from the sequent calculus proof thus generated. Aside from higher
modularity and less implementation effort in the context of the GAPT-system,
this procedure has the practical advantage of allowing a translation to a dag-
like sequent calculus proof in case grounding of the resolution refutation is too
expensive. Secondly we describe the theory and implementation of a convenient
graphical user interface for displaying expansion trees which is available on the
web.

2 Expansion Trees

The language of first-order logic we consider consists of variables and n-ary
function- and predicate- symbols. As usual, terms are built from variables and
function symbols in an inductive fashion. 0-ary function symbols are called con-
stants. Formulas are built from predicates and the connectives �,�,�,�,�, �.
A substitution is a function mapping variables to terms and its application is
extended to terms and formulas in the usual way.

Let A be a formula, an occurrence of a subformula B in A is called negative if
it is in the scope of an odd number of occurrences of � and it is called positive
otherwise. A quantifier occurrence in a formula A is called strong if it is a positive
universal or a negative existential and weak otherwise. So in other words: the
strong quantifiers are exactly those that a transformation to negation normal
form would turn into universal quantifiers.

Expansion trees were introduced by Miller in [19,3]. These structures record
the substitutions for quantifiers in the original formula and the formulas resulting
from instantiations. Informally, an expression QxA�x	
t1 E1


t2 � � �
tn En is an
expansion tree, where Q � �, �� and t1, . . . , tn are terms such that Ei is again
an expansion tree representing A�ti	 for all i � 1, . . . , n.

We deviate from [3] in that we define expansion trees for blocks of quantifiers
as this is more natural for display purposes. A vector �x1, . . . , xk	 of variables is
often abbreviated as �x. Also in contrast to [3] we only consider expansion trees
of formulas that do not contain strong quantifiers. In our context of automated
deduction, strong quantifiers are removed by Skolemization. As Skolem functions
often possess a natural mathematical interpretation (see e.g. [8]), we opt for
displaying expansion trees that still include the Skolem functions in order to
increase their readability.

Definition 1 (Expansion tree). Expansion trees and a function Sh (for shal-
low) which maps an expansion tree to a formula are defined inductively as
follows:

– A is an atomic expansion tree for A being an atom and Sh�A	 � A.
– If E1, E2 are expansion trees, then so are �E1, E1�E2, E1�E2 and E1 � E2

with Sh��E1	 � �Sh�E1	, Sh�E1 �E2	 � Sh�E1	 � Sh�E2	, etc.
– Let A��x	 be a formula and �t1, . . . , �tn (n � 1) be a list of (vectors of) terms.

Let E1, . . . , En be expansion trees with Sh�Ei	 � A��ti	 for 1 � i � n and
let Q � �, ��, then Q�xA��x	 
 �t1 E1 


�t2 � � � 
�tn En is an expansion tree with
Sh�Q�xA��x	 
 �t1 E1 


�t2 � � � 
�tn En	 � Q�xA��x	.
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We now define another function Dp (for deep) which maps an expansion tree
to a quantifier-free formula: its full expansion.

Definition 2. Dp maps an expansion tree to a formula as follows:

Dp�E	 � E for an atomic expansion tree E,

Dp��E	 � �Dp�E	,

Dp�E1 �E2	 � Dp�E1	 �Dp�E2	 for � � �,�,��,

Dp���xA

�t1 E1 


�t2 � � � 

�tn En	 � Dp�E1	 � � � � �Dp�En	,

Dp���xA

�t1 E1 


�t2 � � � 

�tn En	 � Dp�E1	 � � � � �Dp�En	.

In [3], a notion of expansion proof was defined from expansion trees using two
conditions: acyclicity and tautology. The acyclicity condition ensures that there
are no cycles between the strong quantifier nodes in the expansion tree. Since
we deal with formulas that do not contain strong quantifiers, there is no need
for this condition.

Definition 3 (Expansion proofs). An expansion tree E is called an expansion
proof of a formula A without strong quantifiers if Sh�E	 � A and Dp�E	 is a
tautology.

The meaning of expansion proofs is that they encode a proof of validity of the
formula they represent. Expansion proofs can be directly translated into sequent
calculus or natural deduction proofs, see e.g. [3].

Theorem 1 (Soundness & Completeness). A formula without strong quan-
tifiers has an expansion proof iff it is valid.

Proof. In [3]. ��

3 Display Expansion Trees

In this section we formally define the data structure of display expansion tree, a
structure that builds on expansion trees by allowing a flexible degree of unfolding.
While an expansion tree E induces only the two formulas Sh�E	 and Dp�E	, the
display expansion trees based on E turn span the whole spectrum between Sh�E	
and Dp�E	. In our tool, the user will then be able to navigate this spectrum
through a comfortable point-and-click interface.

Each quantifier node in a display expansion tree will have one of three states:
open, closed and expanded.

Definition 4 (Display expansion tree). Display expansion trees are defined
as follows:

– A is an atomic display expansion tree for an atom A.
– If E1, E2 are display expansion trees, then so are �E1, E1 � E2, E1 � E2

and E1 � E2.
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– Let A��x	 be a formula and �t1, . . . , �tn (n � 1) be a list of (vectors of) terms.
Let E1, . . . , En be display expansion trees with Sh�Ei	 � A��ti	 for 1 � i � n
and let Q � �, ��, then:
1. Qc�xA��x	 
 �t1 E1 


�t2 � � � 
�tn En is a display expansion tree (this block of
quantifiers is called closed).

2. Qo�xA��x	 
 �t1 E1 

�t2 � � � 
�tn En is a display expansion tree (this block of

quantifiers is called open).
3. Qe�xA��x	 
 �t1 E1 


�t2 � � � 
�tn En is a display expansion tree (this block of
quantifiers is called expanded).

Under the global side condition: If Q�x is open or expanded, then all quanti-
fiers between Q�x and the root must be expanded.

The differences in the status of these quantifier blocks will be apparent once
we explain how to show a display expansion tree to a user. To that aim we first
define the notion of display formula.

Definition 5 (display formula). Display formulas are defined inductively as
follows:

– If A is an atom, then A is a display formula.
– If A,B are display formulas, then so are �A, A�B, A�B and A� B.
– If A��x	 is a display formula, then Q�xA��x	 and Q�x��t1; . . . ; �tn�A��x	 are dis-

play formulas for Q � �, ��, where �ti are vectors of terms (which represent
substitution instances for �x).

– If A1, . . . , An are display formulas, then
�
�A1, . . . , An� and

�
�A1, . . . , An�

are display formulas for the n-ary connectives
�

and
�
.

Given a display expansion tree E what we show to a user is the display formula
Dy�E	 defined as follows.

Definition 6. Dy maps a display expansion tree to a display formula:

Dy�E	 � E for atomic E,

Dy��E	 � �Dy�E	,

Dy�E1 �E2	 � Dy�E1	 �Dy�E2	 for � � �,�,��,

Dy�Qc�xA��x	 
 �t1 E1 

�t2 � � � 


�tn En	 � Q�xA��x	 for Q � �, ��,

Dy�Qo�xA��x	 
 �t1 E1 

�t2 � � � 


�tn En	 � Q�x�t1; . . . ; tn�A��x	,
Dy��e�xA��x	 
t1 E1 


�t2 � � � 
tn En	 �
�

�Dy�E1	, . . . ,Dy�En	�,

Dy��e�xA��x	 
t1 E1 

�t2 � � � 
tn En	 �

�
�Dy�E1	, . . . ,Dy�En	�

The user can hence control the formula that he sees by changing the status
of quantifier nodes of a display expansion tree. A display expansion tree in a
particular state of partial unfolding lies hence between the shallow formula and
the deep formula of the underlying expansion tree. This observation can be made
precise as follows:
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Definition 7. Fm maps display formulas to formulas:

Fm�A	 � A for a formula A,

Fm�Q�xA��x		 � Q�xA��x	 for Q � �, ��,

Fm�Q�x�t1; . . . ; tn�A��x		 � Q�xA��x	 for Q � �, ��,

Fm�
�

�A1, . . . , An�	 � A1 � � � � �An,

Fm�
�

�A1, . . . , An�	 � A1 � � � � �An.

Proposition 1. Let E be a display expansion tree. If all quantifiers in E are
closed, then Fm�Dy�E		 � Sh�E	. If all quantifiers in E are expanded, then
Fm�Dy�E		 � Dp�E	.

Proof. By induction on the structure of E. ��

4 Transforming Resolution Proofs to Expansion Trees

In this section we give an algorithm for constructing expansion proofs from
resolution refutations. We proceed by first transforming a resolution refutation
of the negation of a formula F into a proof of F in the sequent calculus [20].
The second step is to transform the sequent calculus proof into an expansion
tree proof. While the second part is done in a similar way to other sources [3],
the first part, to the best of knowledge of the authors, was not described earlier
in this form.

The proofs we expect as input to our algorithm are resolution refutations of
sets of clauses. A clause is a disjunction of literals, a literal is an atom or the
negation of an atom. We will sometimes write a clause in the formatA1, . . . , An �
B1, . . . , Bm for Bi being the positive and Aj the negative literals. This notation
facilitates the connection to the sequent calculus. We will denote clauses by
uppercase Greek letters and formulas by uppercase Latin letters. Substitutions
and most general unifiers are defined as usual and will be denoted by lowercase
Greek letters. Terms are denoted by lowercase Latin letters. We will also write
s�t� in order to emphasize that t is a subterm of s.

The version of the resolution calculus presented in Fig. 1 forms, if one drops
the (Instance) rule, the minimal version required in order to obtain complete-
ness for first-order logic with equality. This makes our algorithm applicable,
via elementary translations, to the proofs obtained by most resolution theorem
provers in the market. The redundant (Instance) rule allows us to take ad-
vantage of simpler proof formats generated by some theorem provers, such as
Prover9. Let C be a set of clauses, a tree over the rules in Fig. 1 with leaves
from C is a refutation of C if:

– the root of the tree is the empty clause �.
– when we apply a binary rule on clauses Γ and Δ, their sets of free variables

must be disjoint.
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A� Γ �B �Δ

Γσ �Δσ
(Resolve)

1 A�B � Γ

Aσ � Γσ
(Factor)

1

t � s� Γ A�r� �Δ

A�s�σ � Γσ �Δσ
(Paramod)

2 Γ

Γσ
(Variant)

3

Γ

Γσ
(Instance)

x � x
(Reflexivity)

1. σ is a most general unifier of A and B.
2. σ is a most general unifier of t and r.
3. σ is a variable renaming.

Fig. 1. The resolution calculus

4.1 Transforming Resolution Proofs to Sequent Proofs

The calculus we will use is presented in Fig. 2. It extends the classical sequent
calculus [20] with additional equality rules. The rules for the connectives �,� and
� are analogous to the ones presented. We will denote multisets of formulas by
uppercase Latin letters. sequents are pairs of multisets of formulas denoted by
Γ � Δ. The formulas in the upper sequents that do not occur in the lower
sequent are called auxiliary formulas of the rule, those in the lower sequent are
called the principal formulas.

In order to be able to relate refutations with proofs, we require the following
auxiliary definitions.

A � A
(Ax)

A,Γ � Δ

Γ � Δ,�A
(� : r)

Γ � Δ,A

�A,Γ � Δ
(� : l)

Γ � Δ,A Λ � Π,B

Γ,Λ � Δ,Π,A�B
(� : r)

A,Γ � Δ

A�B,Γ � Δ
(� : l1)

B,Γ � Δ

A�B,Γ � Δ
(� : l2)

Γ � Δ,A�x�

Γ � Δ, �y.A�y�
(� : r)1

A�t�, Γ � Δ

�y.A�y�, Γ � Δ
(� : l)2

Γ � Δ,A,A

Γ � Δ,A
(Contr : r)

A,A, Γ � Δ

A,Γ � Δ
(Contr : l)

Γ � Δ

Γ � Δ,A
(Weak : r)

Γ � Δ

A,Γ � Δ
(Weak : l)

Γ � Δ,A A,Λ � Π

Γ,Λ � Δ,Π
(Cut)

� t � t
(Reflexivity)

Γ � Δ, t � s Λ � Π,A�s�

Γ, Λ � Δ,Π,A�t�
(Eq : r)

Γ � Δ, t � s A�s�, Λ � Π

A�t�, Γ, Λ � Δ,Π
(Eq : l)

1. x does not occur free in Γ,Δ or in �y.A�y�.
2. t does not contain variables bound in A.

Fig. 2. The sequent calculus
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Definition 8. Given two sequents s1 and s2 of the forms Γ � Δ and Π � Λ,
their product s1� s2 is Γ,Π � Δ,Λ. Given two sets of sequents S1 and S2, their
product S1 � S2 is the set containing all possible products between sequents of
each set.

Definition 9 (Clause normal forms). Let A,A1, A2 denote formulas without
weak quantifiers and B,B1, B2 denote formulas without strong quantifiers and
let P denote atoms. Define the mappings CNF��A	 and CNF��B	 by the following
mutual induction:

CNF��P 	 � � P � CNF��A1 �A2	 � CNF��A1	 � CNF��A2	
CNF��P 	 � P �� CNF��A1 �A2	 � CNF��A1	 � CNF��A2	
CNF���B	 � CNF��B	 CNF��B1 �B2	 � CNF��B1	 � CNF��B2	
CNF���A	 � CNF��A	 CNF��B1 �B2	 � CNF��B1	 � CNF��B2	
CNF���x.A	 � CNF��A	 CNF���x.B	 � CNF��B	

The case of � is defined by combining the cases of � and �.

The point of the above two transformation is that CNF��A	 is logically equiv-
alent to A while CNF��B	 is logically equivalent to �B, this definition hence
avoids an explicit transformation to negation-normal form before computing a
clause set. This transformation is extended to sequents as follows:

Definition 10 (Clause normal forms of sequents). Let A1, . . . , An �
B1, . . . , Bm be a sequent without strong quantifiers, then CNF��A1, . . . , An �
B1, . . . , Bm	 � CNF��A1 � . . .�An ��B1 � . . .��Bm	.

While this transformation is exponential in the worst case it has not created
problems for our practical applications as the sequents we consider are typically
quite close to a conjunctive normal form. In case it does pose a performance-
problem this transformation can easily be replaced by the polynomial structural
clause form transformation.

Example 1. Let Γ � Δ � P �a	,�x.�P �x	 � Q�x		 � Q�a	, then

CNF��Γ � Δ	 � � P �a	; P �x	 � Q�x	; Q�a	 ��

The following algorithm generates a sequent proof of A,Π � Λ when the
clause Π � Λ is in CNF��A	.

Data: Formula A and a clause Π � Λ such that Π � Λ 	 CNF�
A�
begin

A is an atom � A � A
A � �B � apply (� : l) to PCNF�
Π � Λ,B�
A � B � C � apply either (� : l1) to PCNF�
B,Π � Λ� or (� : l2) to
PCNF�
C,Π � Λ�
A � �x.A � apply (� : l) to PCNF�
A,Π � Λ�
. . .

end

Algorithm 1. PCNF��A,Π � Λ	

The dual algorithm PCNF� for computing a sequent calculus proof in the case
of Π � Λ � CNF��A	 is defined in a similar way and we obtain:
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Lemma 1. Let A be a formula without weak quantifiers and B be a formula
without strong quantifiers and Π � Λ a clause, then:

– if Π � Λ � CNF��A	 then PCNF��A,Π � Λ	 is a sequent proof of A,Π � Λ.
– if Π � Λ � CNF��B	 then PCNF��Π � Λ,B	 is a sequent proof of Π � Λ,B.

Proof. By a straightforward induction on the structure of A. ��

For actual applications it is more useful to generate proofs of sequents, not
just of formulas, i.e. we work in a setting where a sequent Γ � Δ takes the role
of the formulas A or B above. To that aim the above algorithms are extended
in a straightforward way to an algorithm PCNF�Γ � Δ,Π � Λ	 that generates a
sequent calculus proof of Γ,Π � Δ,Λ if Π � Λ � CNF��Γ � Δ	.

Lemma 2. Let Γ � Δ be a sequent without strong quantifiers and Π � Λ �
CNF��Γ � Δ	, then PCNF�Γ � Δ,Π � Λ	 is a proof of Γ,Π � Δ,Λ.

Proof. If Π � Λ � CNF��Γ � Δ	, then either Π � Λ � CNF��A	 for some A � Γ
or Π � Λ � CNF��B	 for some B � Δ and we can use Lemma 1. ��

Example 2. Continuing Example 1 we have PCNF�Γ � Δ,� P �a		 �

P �a	 � P �a	

P �a	,�x.�P �x	 � Q�x		 � Q�a	, P �a	
�Weak : �	

and PCNF�Γ � Δ,P �x	 � Q�x		 �

P �x	 � P �x	 Q�x	 � Q�x	

P �x	, P �x	 � Q�x	 � Q�x	
��: l	

P �x	,�x.�P �x	 � Q�x		 � Q�x	
�� : l	

P �x	, P �a	,�x.�P �x	 � Q�x		 � Q�a	, Q�x	
�Weak : �	

and PCNF�Γ � Δ,Q�a	 �		 �

Q�a	 � Q�a	

Q�a	, P �a	,�x.�P �x	 � Q�x		 � Q�a	
�Weak : �	

The last algorithm in this section combines the sequent calculus proofs ob-
tained by PCNF and a refutation of CNF��Γ � Δ	 into a sequent calculus proof of
Γ � Δ. This algorithm translates a dag-like refutation into a tree-like proof and
hence grounds it. The most important step is to replace a resolution inference
by an atomic cut on instances of the sequent calculus proofs obtained from the
premises of the resolution inference.

Data: a refutation R of CNF�
Γ � Δ�
R match begin

An initial clause Π � Λ � PCNF
Γ � Δ,Π � Λ�
R is obtained by (Factor) with m.g.u. σ from R� � apply (Contr : r) or
(Contr : l) to LK
R��σ
R is obtained by (Resolve) with m.g.u. σ from R1 and R2 � apply
(Cut) to LK
R1�σ and LK
R2�σ
. . .

end
Algorithm 2. LK
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Theorem 2. Let Γ � Δ be a sequent without strong quantifiers and let R be a
refutation of CNF��Γ � Δ	, then LK�R	 is a sequent calculus proof of Γ � Δ.

Proof. By a straightforward induction on the structure of the refutation. ��

4.2 Transforming Sequent Proofs to Expansion Trees

In this section we describe how to read off expansion trees from sequent calculus
proofs. The algorithm presented in this section is based on [3] but in addition
deals with quantifier-free cuts and equation rules. The algorithm merge used in
this algorithm for the merging of two expansion trees is defined in [3].

Data: A sequent proof P
if (Ax) then

return an atomic expansion tree for each formula
else

return expansion trees of upper sequents and replace the trees Ei of the
auxiliary formulas with P match begin

(� : r) � E1 � E2

(� : l) with principal formula �x.A and auxiliary formula
A�t�x� � �x.A�t E
(Contr : l) � merge
E1, E2�
(Cut) � �
(Eq : r) � E2

. . .
end

end
Algorithm 3. ET

Theorem 3. Let P be a sequent proof of s without strong quantifiers, then ET�P 	
is a sequent of expansion trees of the formulas in s.

Proof. By a straightforward induction on the structure of P . ��

4.3 Complexity and Scalability

Expansion trees are an inherently ground formalism. This has the consequence
that the translation from a (non-ground) resolution refutation to an expansion
tree is expontential in the worst case. On the one hand this is a limitation of
the algorithms presented here. On the other hand, grounding has a signifcant
benefit: the witnesses which typically carry important information can only be
read off from a ground proof. We will illustrate this phenomenon in the next
section by describing an example for a clause set whose refutation only shows
that a certain puzzle can be solved while its expansion tree contains the solution
(which necessarily must be a ground term).

An extension of our algorithms which would be useful for such critical cases
would be to carry out the computation of ground instances on demand. The
present user-interface would not change but the implementation of a display
expansion tree would: instead of keeping a complete expansion tree in memory,
it would only store the original resolution refutation and compute the ground
instances of single quantifiers when asked to.
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5 Implementation and Examples

Programmed in Scala, GAPT is a framework intended, on the one hand, to
allow an easy and intuitive programming of proof theoretical algorithms and
applications and on the other hand to be as general and flexible as possible, in
order to be able to target the widest range of languages and calculi. To meet
these two requirements, we make extensive use of Scala’s object-oriented (OO)
and functional paradigms. The OO support is used mainly in order to build
a complex type system and abstraction between different logics. The functional
support is used, as we will see in the rest of this paper, in order to map formulas,
proofs and similar data directly to Scala functions and algebraic data structures.
The fact that Scala is compatible with Java allowed us to use its built-in libraries
in order to supply a comprehensive graphical user interface. GAPT supplies
algebraic data structures for terms, formulas, sequents, resolution proofs, sequent
proofs and many other logical objects. The functionality described in this paper
is available from version 1.4 on. The interested reader is invited to download the
current version from http://www.logic.at/gapt.

5.1 Import of a Resolution Proof

The GAPT-System contains two methods for importing resolution proofs. The
first is based on proof replaying by reproving each inference through forward
reasoning [21] in the minimal resolution calculus implemented in GAPT (Fig. 1).
A drawback of this method is that the resulting proofs may differ significantly
from the ones found by the theorem prover and that search might be inefficient
for macro-rules like hyperresolution. Therefore the second method implements
a direct import from the format for the Ivy proof checker [22]. Ivy’s resolution
calculus (Fig. 3) replaces unification by an explicit instance rule which applies
the substitution separately. The next step in the extraction of an expansion
tree - the transformation to LK - grounds the proof, applying the substitution
to the respective subproofs anyway. Therefore we decided to add the instance
rule to GAPT’s resolution calculus instead of merging instance rules into unifiers
within the other inference rules. The flip rule is expanded to a proof of equational
symmetry from the equational reflexivity axiom.

The conversion of Prover9’s output [23] to the Ivy format is performed by
prooftrans which is part of Prover9’s LADR distribution. An Ivy proof is rep-
resented as a Lisp S-Expression which requires a different naming convention,
therefore GAPT’s parser has to integrate proper renaming of constants and vari-
ables according to these conventions.

We will use a running example to illustrate the work-flow of our tool. The run-
ning example is the famous puzzle of a farmer who wants to transport a wolf,
a goat and a cabbage across a river using a boat in which he can take at most
one of these items with him. The difficulty is that he can neither leave goat and
cabbage nor wolf and goat alone on one of the shores. How can he cross the river?
This is formalized as problem PUZ047+1 of the TPTP-library [24]. The formal-
ization uses a 5-ary predicate symbol p whose first four coordinates contain the

http://www.logic.at/gapt
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A� Γ �A�Δ

Γ �Δ
(Resolve)

A�A� Γ

A� Γ
(Factor)

t � s� Γ A�t� �Δ

A�s� � Γ �Δ
(Paramod)

Γ

Γσ
(Instance)

1

Γ, s � t

Γ, t � s
(Flip)

x � x
(Reflexivity)

1. σ is an arbitrary substitution.

Fig. 3. The Ivy Resolution calculus

positions of farmer, wolf, goat and cabbage and whose fifth position contains the
actions already taken. Universally quantified implications describe the possible
actions, the additional axiom p�south, south, south, south, start	 describes the
initial state, the goal is to prove �z p�north, north, north, north, z	. For testing
our running example we first produce a Prover9 output file by running:

$ tptp_to_ladr < PUZ047+1.p > PUZ047+1.in

$ prover9 < PUZ047+1.in > PUZ047+1.out

Then we start the command-line interface of GAPT and load the resolution
proof from the output file.

$ ./cli.sh

scala> val p = loadProver9Proof( "PUZ047+1.out" )

This command imports a resolution refutation p. One important aspect of this
refutation is that it does not contain the solution to the puzzle, it merely
shows that the puzzle is solvable. The actual solution will be computed by our
tool automatically by the transformation of the resolution refutation to an ex-
pansion tree. The solution will then be presented in plain sight to the user as
instance of the above-mentioned existential quantifier. This example thus illus-
trates very well the added value of expansion trees over resolution refutations.

5.2 Extraction of an Expansion Tree

As described in Section 4, the extraction of an expansion tree from a resolution
refutation proceeds in two phases. First we import a resolution refutation and
transform it into a sequent calculus proof following Algorithms 1 and 2.

In addition to the resolution proof, the original input formula is extracted
from Prover9’s output file. The rationale behind this is that the user expects
to see an expansion tree representing the input formula, its clause normal form
might be of a significantly different shape. The original formula is transformed
into a sequent which forms the end-sequent of the sequent calculus proof that is
constructed. This can be carried out by

scala> val q = loadProver9LKProof( "PUZ047+1.out" )
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which creates a sequent calculus proof q from the refutation in PUZ047+1.out.
The expansion trees can then be read off from this sequent calculus proof by:

scala> val E = extractExpansionTrees( q )

5.3 The Graphical User Interface

ProofTool is the Graphical User Interface of the GAPT system [25]. It can be
used in two ways: as a pure visualization tool (with the features like zoom-
ing, scrolling, searching, etc.) and as a proof manipulator (allowing to call
GAPT’s proof transformations such as cut-elimination, regularization, skolem-
ization, etc.). The objects ProofTool can render are formulas, sequents, proofs,
trees, sequent- and definition-lists. Sequents consisting of expansion trees are
handled in a special way to support the interactive visualization features spe-
cific to expansion trees. A sequent of expansion trees is displayed in a two column
split pane, where one column is for the antecedent and the other is for the con-
sequent of the sequent.

Expansion trees are displayed in ProofTool in the following way: For each
expansion tree a display expansion tree is produced by adding the state “closed”
to the quantifier nodes occurring in the expansion tree. Then the display formula
of the display expansion tree is rendered on the screen. Finally, the display
formula can be manipulated by changing the state of quantifiers. A single left-
click changes the state from closed to open, from open to expanded, and from
expanded to closed. Additionally a context-menu is opened on a right-click to
allow a direct state-change.

The expansion trees of our running example can be displayed by

scala> prooftool( E )

which allows the solution to the puzzle to be read off with a single click:

take goat
go alone
take wolf
take goat
take cabbage
go alone
take goat
start�������

In order to illustrate the display of an expansion tree with nested quantifiers we
include a screen-shot of a simple example in Figure 4.

Fig. 4. An expansion of the sequent P 
a� � P 
b�,�x
Q
x,f
x�� � Q
x, g
x��� �
�x
P 
x� � �yQ
x, y��
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6 Conclusion

We have described an approach to understanding resolution proofs through Her-
brand’s theorem and a tool based on this approach. We have illustrated its
usefulness on two examples. The computation of ground instances of quantifiers
in combination with a flexible display of an expansion tree in a graphical user
interface allows a very quick access to the crucial turning points of a computer-
generated proof.

There are several important lines for future work: definitions (i.e. abbrevia-
tions of formulas by new predicate symbols) are crucial for human-readable for-
malizations of mathematical proofs. They can be integrated into this approach
in a straightforward way by allowing to fold and unfold them too. Furthermore,
just as the original notions of expansion trees [3], our approach and implemen-
tation supports higher-order logic as well. The only part of the programs not
supporting higher-order logic is the transformation from refutations to sequent
proofs, which is customized to the first-order resolution calculus. Another highly
interesting extension is to carry out the computation of ground instances on
demand as described in Section 4.3. This can be continued much beyond the
scope of resolution proofs. For example, by relying on the relationship between
cut-elimination and tree grammars established in [26] it would even be possible
to do cut-elimination on demand by computing only the instances of a certain
quantifier from a proof with cuts.
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