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Abstract
Herbrand’s theorem is one of the most fundamental insights in logic. From the syntactic point of view,
it suggests a compact representation of proofs in classical first- and higher-order logics by recording the
information of which instances have been chosen for which quantifiers. This compact representation is
known in the literature as Miller’s expansion tree proof. It is inherently analytic and hence corresponds to
a cut-free sequent calculus proof. Recently several extensions of such proof representations to proofs with
cuts have been proposed. These extensions are based on graphical formalisms similar to proof nets and are
limited to prenex formulas.

In this paper, we present a new syntactic approach that directly extends Miller’s expansion trees by cuts
and also covers non-prenex formulas. We describe a cut-elimination procedure for our expansion trees
with cut that is based on the natural reduction steps and shows that it is weakly normalizing.
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1. Introduction
Herbrand’s theorem (Buss, 1995; Herbrand, 1930), one of the most fundamental insights of
logic, characterizes the validity of a formula in classical first-order logic by the existence of a
propositional tautology composed of instances of that formula.

From the syntactic point of view, this theorem induces a way of describing proofs: by record-
ing which instances have been picked for which quantifiers, we obtain a description of a proof
up to its propositional part, a part we often want to abstract from. An example for a formal-
ism that carries out this abstraction is Herbrand’s proof (Buss, 1995). This generalizes nicely to
most classical systems with quantifiers, in particular to simple type theory, as in Miller’s expan-
sion tree proofs (Miller, 1987). Such formalisms are compact and useful proof certificates in
many situations; they are, for example, produced naturally by methods of automated deduc-
tion such as instantiation-based reasoning (Korovin, 2009) and play a central role in many proof
transformations in the GAPT (General Architecture for Proof Theory) system (Ebner et al., 2016).

These formalisms consider only instances of the formula that has been proved and hence are
analytic proof formalisms, corresponding to cut-free proofs in the sequent calculus. Considering
an expansion tree to be a compact representation of a proof, it is thus natural to ask about the
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1010 F Aschieri et al.

possibility of extending this kind of representation to non-analytic proofs, corresponding to proofs
with cut in the sequent calculus.

In addition to enlarging the scope of instance-based proof representations, the addition of
cuts to expansion trees promises to shed more light on the computational content of classical
logic. This is a central topic of proof theory and has therefore attracted considerable attention; see
Parigot (1992), Aschieri and Zorzi (2016), Danos et al. (1997), Curien and Herbelin (2000), Urban
(2000), Urban and Bierman (2000), or Baaz and Leitsch (2000), for different investigations in this
direction.

Two proof formalisms manipulating only formula instances and incorporating a notion of cut
have recently been proposed: proof forests (Heijltjes, 2010, 2011) and Herbrand nets (McKinley,
2013). While some definitions in the setting of proof forests are motivated by the game seman-
tics for classical arithmetic (Coquand, 1995), Herbrand nets are based on methods for proof
nets (Girard, 1987). These two formalisms share a number of properties: both of them work in
a graphical notation for proofs, both deal with prenex formulas only, and for both weak but no
strong normalization results are known.

In this paper, we present a purely syntactic approach to the topic. We start from expansion
tree proofs, add cuts, and define cut-reduction rules, naturally extending the existing literature
in this tradition. The result is a rewriting theory of expansion trees with cuts. The main staple
of a good rewriting theory is that the syntax should look simple and the reduction rules should
be as few and as elementary as possible. When a rewriting system falls short of any of these
requirements, reasoning about its combinatorial properties may easily become unwieldy; when
it satisfies them, it is always a good sign. Indeed, expansion trees are, by design, compact strings
of symbols, expansion proofs are just lists of those trees, and the reduction rules that we shall
present are straight-forward manipulations of those lists. This is a novel technical achievement.
In fact, graph-based formalisms like proof forests and Herbrand nets allow rather simple mathe-
matical definitions of tree forests and their transformations, but as soon as one tries to write them
down syntactically, their rewriting complexity becomes evident. A simple rewriting theory may
help to solve the intricate combinatorial problems that arise, like strong normalization.

With respect to proof forests, the main related work, we offer several technical novelties.
Miller’s correctness criterion. Expansion trees are just simple collections of witnesses for quan-

tifiers, so not every tree makes logical and semantical sense. Miller’s correctness criterion (Miller,
1987) is the most direct known way to express that an expansion tree (list) is sound: it requires a
certain acyclic ordering of the tree nodes, it maps the tree into a propositional formula, and asks
it to be a tautology. Syntactically, the definition of Miller’s criterion follows in a straightforward
way the tree’s shape, and the obtained propositional formula matches exactly the tree’s number
of leaves. Semantically, Miller’s criterion states that a list of expansion trees represents a winning
strategy in Coquand’s backtracking games (Coquand, 1995). Though Heijltjes’ correctness crite-
rion was motivated as well by Coquand’s game semantics and is similar in spirit to Miller’s, it
represents a different way of extracting a propositional formula from a list of expansion trees.
Namely, the formula is constructed from a case distinction on all cuts, which uses the dependency
relation to filter out some leaves and renders the formula’s size exponential with respect to the
number of cuts. On our side, we managed to keepMiller’s correctness criterion unchanged. As by-
product, we also effortlessly obtain a treatment of non-prenex formulas. This avoids not only the
distortion of the intuitive meaning of a formula by prenexification, but also the non-elementary
increase in complexity that can be caused by prenexification (Baaz and Leitsch, 1999). It also seems
possible to extend proof forests and Herbrand nets to non-prenex formulas, but this has not been
done in Heijltjes (2010) and McKinley (2013).

Cut-reductions. Eliminating cuts from expansion proofs resembles a Coquand game between
expansion trees, when they are interpreted as strategies. Following this game semantics analogy,
one would thus expect, during cut-elimination, to only encounter new trees whose branchings are
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Mathematical Structures in Computer Science 1011

isomorphic to subtrees of the original expansion proof (Aschieri, 2017). This however does not
happen in the theory of proof forests and Herbrand nets: the restructuring performed during cut-
elimination is significant and trees eventually become much bigger than the original ones, due to
an operation of copying and gluing them together. Though we are not pursuing the game seman-
tics analogy here, we define cut-reduction steps that instead satisfy the mentioned condition. The
gain is all about the rewriting theory of expansion proofs: cut-reduction only involves the opera-
tions of copying, decomposing, substituting terms, and renaming variables applied to subtrees of
the original ones.

Pruning and bridges. In proof forests (Heijltjes, 2010), an unexpected technical issue arises.
Cut-reductions create some unwanted “bridges” that cause non-termination of cut-elimination.
Therefore, additional restructuring of the forest is needed, this time in terms of scissors, cutting
those bridges. In Heijltjes (2011), cuts are eliminated without pruning, but the cut-elimination
strategy is considerably more complex. Here we show that bridges are not an issue at all and our
cut-elimination terminates, regardless of bridges. Again, in this way we avoid an additional layer
of rewriting complexity.

1.1 Plan of the paper
In Section 2, we modify Miller’s concept of expansion proof in order to also include special pairs
of expansion trees, which represent logical cuts. In Section 3, we show that our expansion proofs
are sound and complete with respect to first-order classical validity. In Section 4, we define a
cut-elimination procedure which transforms any expansion proof with cuts into a cut-free one.

2. Expansion trees
In this entire paper, we work with classical first-order logic. Formulas and terms are defined as
usual. In order to simplify the exposition, we restrict our attention to formulas in negation normal
form (NNF) and without vacuous quantifiers. Mutatis mutandis all notions and results of this
paper generalize to arbitrary formulas. We writeA for the deMorgan dual of a formulaA. A literal
is an atom P(t1, . . . , tn) or a negated atom P(t1, . . . , tn). We start by defining Miller’s concept of
expansion tree (Miller, 1987).

Definition 1 (Expansion Trees). Expansion trees and a function Sh( ·) (for shallow) that maps
an expansion tree to a propositional formula are defined inductively as follows:

1. A literal L is an expansion tree with Sh(L)= L.
2. If E1 and E2 are expansion trees and ◦ ∈ {∧,∨}, then E1 ◦ E2 is an expansion tree with
Sh(E1 ◦ E2)= Sh(E1) ◦ Sh(E2).

3. If t1, . . . , tn is a sequence of terms and E1, . . . , En are expansion trees with Sh(Ei)=A[ti/x]
for i= 1, . . . , n, then E= ∃x A+t1 E1 · · · +tn En is an expansion tree with Sh(E)= ∃x A.

4. If E0 is an expansion tree with Sh(E0)=A[α/x], then E= ∀x A+α E0 is an expansion tree
with Sh(E)= ∀x A.

The +ti of point 3 are called ∃-expansions and the +α or point 4 are called ∀-expansions, and
both ∀- and ∃-expansions are called expansions. The variable α of a ∀-expansion +α is called
eigenvariable of this expansion. We say that +ti dominates all the expansions in Ei. Similarly,
+α dominates all the expansions in E0. We also say that E is an expansion tree of Sh(E). If E =
E1, . . . , En is a sequence of expansion trees, we define Sh(E)= Sh(E1), . . . , Sh(En).
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We recall now the definition of the propositional formula Dp(E), which is used to state Miller’s
correctness criterion for an expansion tree E.

Definition 2. We define the function Dp( ·) (for deep) that maps an expansion tree to a
propositional formula as follows:

Dp(L)= L for a literal L,
Dp(E1 ◦ E2)= Dp(E1) ◦ Dp(E2) for ◦ ∈ {∧,∨},

Dp(∃x A+t1 E1 · · · +tn En)=
n∨
i=1

Dp(Ei), and

Dp(∀x A+α E0)= Dp(E0).

If E = E1, . . . , En is a sequence of expansion trees, we define Dp(E)= Dp(E1), . . . , Dp(En).

Cuts are simply defined as pairs of expansion trees, whose shallow formulas are one the
involutive negation of the other.

Definition 3 (Cut). A cut is a set C = {E1, E2} of two expansion trees s.t. Sh(E1)= Sh(E2).
A formula is called positive if its top connective is∨ or ∃ or a positive literal. An expansion tree E is
called positive if Sh(E) is positive. It will sometimes be useful to consider a cut as an ordered pair:
to that aimwewill write a cut asC = (E1, E2) with parentheses instead of curly braces with the con-
vention that E1 is the positive expansion tree. For a cut C = (E1, E2), we define Sh(C)= Sh(E1),
which is also called cut-formula of C. We define Dp(C)= Dp(E1)∧ Dp(E2). If C = C1, . . . , Cn is a
sequence of cuts, we define Dp(C)= Dp(C1), . . . , Dp(Cn) and Sh(C)= Sh(C1), . . . , Sh(Cn).

For each expansion tree, we now define the set of finite formulas and number sequences, rep-
resenting all formulas that one encounters and all branch choices one makes in any complete path
from the tree’s root to one of its leaves. This concept will soon be needed for defining correctness
of expansion proofs.

Definition 4 (Formula Branch).We define a function Br( ·) (for branch) that maps an expansion
tree to a finite set {l1, . . . , lk}, where each li is some list made of formulas and the integers 1 or 2.

Br(L)= L for a literal L,
Br(E1 ◦ E2)= {Sh(E1 ◦ E2), i, s | s ∈ Br(Ei)} for ◦ ∈ {∧,∨},

Br(∃x A+t1 E1 · · · +tn En)= {∃x A, s | s ∈ Br(Ei) with i ∈ {1, . . . , n}},
Br(∀x A+α E0)= {∀x A, s | s ∈ Br(E0)}.

For every cut C = (E1, E2) we define Br(C)= Br(E1)∪ Br(E2).

A very simple property that we shall use without further mentioning is the following.

Lemma 1. Let E be an expansion tree and F a subtree of E. Then there is a formula sequence s such
that for every r ∈ Br(F), it holds that s, r ∈ Br(E).

Proof. By a straightforward induction on E.

Expansion proofs will be defined as sequences of expansion trees and cuts satisfying a num-
ber of properties. The correctness criterion of expansion tree proofs (Miller, 1987), as well as
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those of proof forests (Heijltjes, 2010) and Herbrand nets (McKinley, 2013), has two main com-
ponents: (1) a tautology condition on one or more quantifier-free formulas and (2) an acyclicity
condition on one or more orderings. These conditions can be interpreted, logically, as ensuring
that expansion proofs represents logical proofs, semantically, as defining correct winning strate-
gies in Coquand games with backtracking (Aschieri, 2017; Heijltjes, 2010). While the tautology
condition of Miller (1987) generalizes to the setting of cuts in a straightforward way, the acyclicity
condition needs a bit more work: in the setting of cut-free expansion trees, it is enough to require
the acyclicity of an order on the ∃-expansions. In our setting that includes cuts, we also have to
speak about the order of cuts (w.r.t. each other and w.r.t. ∃-expansions). To simplify our treatment
of this order, we also include ∀-expansions. Together this leads to the following inference ordering
constraints.

Definition 5 (Dependency Relation). Let P = C, E , where C is a sequence of cuts and E a
sequence of expansion trees. We will define the dependency relation<P , which is a binary relation
on the set of expansions and cut occurrences in P . First, we define the binary relation <0

P (writing
<0 if P is clear from the context) as the least relation satisfying the following:

1. v<0 w if w is an ∃-expansion in P whose term contains the eigenvariable of the
∀-expansion v.

2. v<0 w if v is an expansion in P that dominates the expansion w.
3. C <0 v if v is an expansion of the cut C in C.
4. v<0 C if C is a cut and Sh(C) contains the eigenvariable of the ∀-expansion v.

<P is then defined to be the transitive closure of <0. Again, we write < for <P if P is clear from
the context.

As clauses 1–4 never relate two cuts, there is no <P -cycle containing cuts only, thus <P is cyclic
iff w<P w for an expansion w: we will make use of this property without further mention.

We now define the concept of expansion proof. In the following, lists of expansion trees and
cuts will be identified modulo permutation of their elements.

Definition 6 (Expansion Proofs). Let C = C1, . . . , Cn be a sequence of cuts and let E =
E1, . . . , Em be a sequence of expansion trees. Let P = C, E . We define Sh(P)= Sh(E), which
corresponds to the end-sequent of a sequent calculus proof, and Dp(P)= Dp(E), Dp(C), which
is a sequent of quantifier-free formulas, and Br(P)= Br(C1)∪ . . . ∪ Br(Cn)∪ Br(E1)∪ . . . ∪
Br(Em).Then P is called expansion proof whenever:

1. (Weak regularity) for every S and T in P , if s, ∀xA,A[α/x], s′ ∈ Br(T), and
r, ∀xB, B[α/x], r′ ∈ Br(S), then s= r, A= B, and S, T are both trees or both cuts.

2. (Acyclicity) <P is acyclic, that is, x<P x holds for no x.
3. (Validity) Dp(P) is a tautology, that is, a valid sequent.
4. (Eigenvariable condition) For every ∀-expansion +α in P , the variable α does not occur in
Sh(E).

An important difference of expansion proofs with respect to other formalisms, such as proof
forests (Heijltjes, 2010) and Herbrand nets (McKinley, 2013), is that the same ∀-expansion
can occur multiple times. This phenomenon is very natural, as soon as one realizes that the
weak regularity condition that we have imposed corresponds to an interpretation of eigenvari-
ables as Skolem functions. Namely, weak regularity ensures that the same witness is only used
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for the same formula with same parameters; that an expansion proof can always be trans-
formed into one satisfying the usual regularity condition that every ∀-expansion occurs exactly
one time (Miller, 1987). This last property, that we shall not prove, guarantees that we are
still working with the familiar objects. Our weak regularity condition offers, however, a great
technical advantage. Namely, the definition of cut-reduction becomes much easier, as it avoids
the heavy restructuring of the expansion trees which would be needed to prevent duplication of
∀-expansions.

Conditions 2 and 3 embody Miller’s correctness criterion. Condition 4 could be formulated
as asking that Sh(P) does not contain free variables. But the real trouble is indeed that if P
is such that Sh(P) contains free variables, then the eigenvariable of some ∀-expansion may be
contained in Sh(P), so that P would not represent a proof of Sh(P). This issue will become
transparent in Section 3, where we show that the notion of expansion proof represents indeed
a sound and complete proof system with respect to classical first-order validity. Moreover, again
because the eigenvariable of some ∀-expansion could be contained in Sh(P), without condition 4
the notion of expansion proof would not be closed under the cut-reduction that we shall provide in
Section 4.

Example 1. Consider the straightforward proof of P(a)→ ∃z Q(z) from ∃y∀x (P(x)→Q( f (y)))
via a cut on ∀x∃y (P(x)→Q( f (y))). In NNF, these formulas are P(a)∨ ∃z Q(z), ∃y∀x (P(x)∨
Q( f (y))), and ∀x∃y (P(x)∨Q( f (y))). The proof will be represented by the expansion proof
P = {E+, E−}, E1, E2 where

E+ = ∃x∀y (P(x)∧Q( f (y)))+a (∀y (P(a)∧Q( f (y)))+γ P(a)∧Q( f (γ ))),
E− = ∀x∃y (P(x)∨Q( f (y)))+β (∃y (P(β)∨Q( f (y)))+α (P(β)∨Q( f (α)))),
E1 = ∀y∃x (P(x)∧Q( f (y)))+α (∃x (P(x)∧Q( f (α)))+β P(β)∧Q( f (α))),

E2 = P(a)∨ (∃z Q(z)+ f (γ ) Q( f (γ ))).

We have Sh(P)= Sh(E1, E2)= ∀y∃x (P(x)∧Q( f (y))), P(a)∨ ∃z Q(z) and
Dp(P)= Dp(E+)∧ Dp(E−), Dp(E1), Dp(E2)

= (P(a)∧Q( f (γ )))∧ (P(β)∨Q( f (α))), P(β)∧Q( f (α)), P(a)∨Q( f (γ )).

Note that Dp(P) is a tautology (of the form A∧ B, B,A). Let us now consider the dependency
relation induced by P : in P each term belongs to at most one ∃- and at most one ∀-expansion. In
such a situation, we can uniformly write all expansions as Qt for some term t and Q ∈ {∃, ∀}. The
expansions of P are then written as ∃a, ∀γ , ∀β , ∃α, ∀α, ∃β , and ∃f (γ ). Furthermore, P contains
a single cut C. Then <0 is exactly as follows:

1. ∀γ <0 ∃f (γ ), ∀β <0 ∃β , ∀α <0 ∃α,
2. ∃a<0 ∀γ , ∀β <0 ∃α, ∀α <0 ∃β ,
3. C <0 ∃a, C <0 ∀γ , C <0 ∀β , C <0 ∃α,
4. there is no v<0 C as the cut formula of C is variable-free.

As the reader is invited to verify, < is acyclic.

3. Expansion proofs and sequent calculus
In this section, we will clarify the relationship between our expansion proofs and the sequent
calculus. The concrete version of sequent calculus is of no significance to the results presented
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here; they hold mutatis mutandis for every version that is common in the literature. For technical
convenience, we treat sequents as multisets of formulas in Section 3.1 and as sets of formulas in
Section 3.2.

Definition 7. The calculus LK is defined as follows: initial sequents are of the form �,A,A for an
atom A. The inference rules are

�,A[α/x]
�, ∀x A ∀ �, ∃x A,A[t/x]

�, ∃x A ∃ �,A �, B
�,A∧ B ∧ �,A, B

�,A∨ B ∨ �,A A, �
�

cut

with the usual side conditions: α must not appear in �, ∀x A and t must not contain a variable
which is bound in A.

An LK-proof is called regular if each two ∀-inferences have different eigenvariables and differ-
ent from the free variables in the conclusion of the proof. From now on we assume w.l.o.g. that all
LK-proofs are regular.

3.1 From sequent calculus to expansion proofs
In this section, we describe how to read off expansion trees from LK-proofs (with sequents as mul-
tisets), thus obtaining a completeness theorem for expansion proofs. For representing a formula
A that is introduced by (implicit) weakening, we use the natural coercion of A into an expansion
tree, denoted by AE: (∃xA)E = ∃xA+x AE, (∀xA)E = ∀xA+α AE (α fresh), (E1 ◦ E2)E = EE1 ◦ EE2 ,
LE = L for L atomic. For a sequent � =A1, . . . ,An, we define �E =AE

1 , . . . ,AE
n .

Definition 8. For an LK-proof, π define the expansion proof Exp(π) by induction on π :

1. If π is an initial sequent �,A,A, thus with A atomic, then Exp(π)= �E,A,A.

2. If π =
(πA)
�,A

(πB)
�, B

�,A∧ B ∧ with Exp(πA)= PA, EA and Exp(πB)= PB, EB, where Sh(EA)=A

and Sh(EB)= B, then Exp(π)= (PA,PB, EA ∧ EB).

3. If π =
(π ′)

�,A, B
�,A∨ B ∨ with Exp(π ′)= P , EA, EB, where Sh(EA)=A and Sh(EB)= B, then

Exp(π)= (P , EA ∨ EB).

4. If π =
(πA)

�,A[α/x]
�, ∀x A ∀ with Exp(πA)= P , E, where Sh(E)=A[α/x], then Exp(π)=

(P , ∀x A+α E).

5. If π =
(πA)

�, ∃x A,A[t/x]
�, ∃x A ∃ with Exp(πA)= P , E, Et , where E= ∃x A+t1 E1 · · · +tn En and

Sh(Et)=A[t/x], then Exp(π)= (P , ∃x A+t1 E1 · · · +tn En +t Et).

6. If π =
(π+)
�,A

(π−)
A, �

�
cut for A positive with Exp(π+)= P+, E+ and Exp(π−)= P−, E−,

where Sh(E+)=A and Sh(E−)=A, then Exp(π)= ((E+, E−),P+,P−).
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Theorem 2. (Completeness). If π is an LK-proof of a sequent �, then Exp(π) is an expansion
proof such that Sh(π)= �. If π is cut-free, then so is Exp(π).

Proof. That Exp(π) satisfies weak regularity and the eigenvariable condition follows directly from
the definitions as we are dealing with regular LK-proofs only, thus we are constructing expansion
proofs in which different ∀-expansions have different eigenvariables as well and thus are weakly
regular. By a straightforward induction on π one shows that Dp(Exp(π)) is a tautology. Acyclicity
is also shown inductively by observing that if α is a free variable in the end-sequent of π , then α

is not an eigenvariable in Exp(π). This implies that if w is the new expansion introduced in the
construction of Exp(π), and v is an old expansion in Exp(π), then w �> v, which in turn yields
acyclicity.

3.2 From expansion proofs to sequent calculus
In this section, we show how to construct an LK-proof (with sequents as sets) from a given expan-
sion proof. To this aim, we introduce a calculus LKE, generalizing the treatment in Miller (1987)
that works on sequences of expansion trees and cuts instead of sequents of formulas.

Definition 9. The axioms of LKE are of the form P ,A,A for an atom A. The inference rules are
P , E1, . . . , En

P , ∀x A+α E1, . . . , ∀x A+α En
∀

P , ∃x A+t1 E1 · · · +tn En +ti Ei
P , ∃x A+t1 E1 · · · +ti Ei · · · +tn En

∃

P , ∃x A+t1 E1 · · · +ti Ei, . . . , ∃x A+s1 F1 · · · +sj Fj, Ei+1 . . . , En, . . . , Fj+1, . . . , Fm
P , ∃x A+t1 E1 · · · +tn En, . . . , ∃x A+s1 F1 · · · +sm Fm

∃

P , E1 P , E2
P , E1 ∧ E2

∧ P , E1, E2
P , E1 ∨ E2

∨ P , E1, . . . , En P , F1, . . . , Fn
P , {E1, F1}, . . . , {En, Fn} cut

with the following side conditions: Sh(E1)= · · · = Sh(En) for the cut rule; ti+1 = · · · = tn = · · · =
sj+1 = · · · = sm for the second ∃ rule; the eigenvariable condition for the ∀ rule: α must not occur
in Sh(P), ∀x A.

The reader is invited to note that Sh(P), ∀x A does not include the cut formulas of P , though
they may – and indeed often have to – contain the eigenvariable α. An important feature of the
above calculus, which is easily verified, is that if π is an LKE-proof, then Sh(π) – defined as the
result of replacing in π each sequence P of expansion trees and cuts with Sh(P) – is a LK-proof.
In the following proof, we describe how to transform expansion proofs to LK-proofs.

Theorem 3 (Soundness). If P is an expansion proof of a sequent �, then there is an LK-proof of
�. If P is cut-free, then so is the LK-proof.

Proof. It is enough to construct an LKE-proof π of P , as then Sh(π) is a proof of Sh(P)= �.
The construction will be carried out by induction on the number of nodes in P . The inductive
statement we are going to prove is the following: if P is an expansion proof, then there is an
LKE-proof π of P .

If P contains only literals, the thesis is obvious.
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If P = P ′, E1 ∨ E2 for some P ′, E1, and E2, then P ′, E1, E2 is a strictly smaller expansion proof.
By the induction hypothesis, we obtain an LKE-proofs π ′ of P ′, E1, E2 from which a proof of P is
obtained by an ∨-inference. For P = P ′, E1 ∧ E2, proceed analogously.

So assume there are no top-level conjunctions or disjunctions. We observe that for any non-
top-level quantifier expansion, there is some top-level quantifier expansion that dominates it and
is smaller than it, according to <P . Thus, the <P -minimal quantifier expansions are all top-level.
By the acyclicity of <P , there must be a <P -minimal quantifier expansion or cut. In the case the
<P -minimal expression is a quantifier expansion, then it is a top-level one.

For the case of cut, we proceed as follows: let C = {E1, ∀x A+α F1} be a cut minimal
with respect to <P (if Sh(C) does not begin with a quantifier the argument is easier). Then
∀x A,A[α/x] ∈ Br(C), s, which, by weak regularity of P , forces every element of P containing +α

to be a cut of the shape {Ei, ∀x A+α Fi}. Then, we can write

P = {E1, ∀x A+α F1}, . . . , {En, ∀x A+α Fn},P ′

where +α does not occur in P ′. Now,
Dp(P)= (Dp(E1)∧ Dp(F1))∨ . . . ∨ (Dp(En)∧ Dp(Fn))∨ Dp(P′).

Therefore,

Dp(E1, . . . , En,P ′)= Dp(E1)∨ . . . ∨ Dp(En)∨ Dp(P ′),

Dp(∀x A+α F1, . . . , ∀x A+α Fn,P ′)= Dp(F1)∨ . . . ∨ Dp(Fm)∨ Dp(P ′)
are tautologies. To prove weak regularity of E1, . . . , En,P ′ and ∀x A+α F1, . . . , ∀x A+α Fn,P ′,
we observe that Br(E1, . . . , En,P ′) and Br(∀x A+α F1, . . . , ∀x A+α Fn,P ′) are contained in
Br(P); the only issue is when a branch belongs to Br(∀x A+α Fi). In this case, in order to show
weak regularity, we have to show that for every branch b= s, ∀x A,A[α/x], s′, we have that s is
empty and the branch b is the branch of a tree. By weak regularity of P , the same branch b was
in P a branch of a cut. Thus, it is enough to observe that b belongs to some cut {Ej, ∀x A+α Fj},
for some j= i, . . . , n, otherwise b would belong to some cut in P ′, impossible by construction
of P ′. Furthermore, the orderings of the expansions and cuts of E1, . . . , En,P ′ and ∀x A+α

F1, . . . , ∀x A+α Fn,P ′ are suborderings of <P , hence also acyclic. Last, Sh(E1, . . . , En,P ′) and
Sh(∀x A+α F1, . . . , ∀x A+α Fn,P ′) contain the same free variables of Sh(P) plus those of ∀xA;
now, no ∀-expansion +β of P can have β occur in ∀xA, otherwise +β <P C, contradicting the
minimality assumption on C, so we have that the eigenvariable condition holds. Then, by the
induction hypothesis we obtain LKE-proofsπ1, π2 of E1, . . . , En,P ′ and ∀x A+α F1, . . . , ∀x A+α

Fn,P ′, respectively, from which a proof of P is obtained by a cut.
For the case of the minimal node being an ∃-expansion, let ∃x A · · · +t E · · · be an expansion

tree of P such that +t is minimal with respect to <P . As we said, +t occurs at top level. We
move all top-level +t at the end of the lists of ∃-expansions relative to the corresponding top-level
formula. In this way, we can rewrite P as

∃x A+t1 E1 · · · +tn En, . . . , ∃x A+s1 F1 · · · +sm Fm,P ′

in such a way that Sh(E) �= ∃xA for every expansion tree E in P ′; there are i, . . . , j such that
ti = · · · = tn = t, . . . , sj = · · · = sm = t and i′ < i, . . . , j′ < j implies ti′ �= t, . . . , sj′ �= t. Let

Q = P ′, ∃x A+t1 E1 · · · +ti Ei, . . . , ∃x A+s1 F1 · · · +sj Fj, Ei+1 . . . , En, . . . , Fj+1, . . . , Fm.

ThenDp(P)= Dp(Q), so they are both tautologies. To prove weak regularity ofQ, we first observe
that every s ∈ Br(Q) is either already contained in Br(P) or s ∈ Br(Ek) or s ∈ Br(Fh), with i+ 1�
k� n and j+ 1� h�m and ∃xA, s in Br(P). Thus the only problematic case is when b1 belongs to
Br(P) but not to the branches of the new trees of Q, while, for instance, b2 ∈ Br(Ek), with i+ 1�
k� n. We show that it cannot be the case that b1 = s, ∀yB, B[α/y], s′ and b2 = r, ∀yC, C[α/y], r′:
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assume for the sake of contradiction that it is. Since ∃xA, r, ∀yC, C[α/y], r′ ∈ Br(P), we have
s= ∃xA, r, by weak regularity of P . Therefore, b1 /∈ Br(P ′), so without loss of generality, say
s= ∃xA,A[sl/x], s′′. But r =A[tk/x], r′′ and since sl �= t = tk by construction, we have a contra-
diction. Furthermore, the orderings of the expansions and cuts of Q are suborderings of <P ,
hence also acyclic. Last, no ∀-expansion +β of Q can have β occur in A[t/x], otherwise either β

occurs in t or β already occurs in ∃xA, against the assumptions on minimality of +t , in the first
case, against the assumption on P having the eigenvariable condition, in the second case. Then,
by the induction hypothesis we obtain an LKE-proof π of Q, from which a proof of P is obtained
by the second ∃ rule and a number of applications of the first ∃ rule, taking care of the rewriting
of P that we made.

For the case of the minimal node being a ∀-expansion, let ∀x A+α E be an expansion tree
of P such that +α is minimal with respect to <P . As we said, +α occurs at top level. Then
∀x A,A[α/x], s ∈ Br(∀x A+α E), which, by weak regularity of P , forces every element of P
containing +α to be an expansion tree of the shape ∀x A+α F. Then, we can write

P = ∀x A+α F1, . . . , ∀x A+α Fn,P ′,

where +α does not occur in P ′. Now, Dp(P)= Dp(F1, . . . , Fn,P ′), so they are both tautologies.
To prove weak regularity of F1, . . . , Fn,P ′, it is enough to note that every s ∈ Br(F1, . . . , Fn,P ′)
is either already contained in Br(P) or s ∈ Fk, for 1� k� n and ∀xA, s is in Br(P). Thus the only
problematic case is when b1 belongs to Br(P ′) but not to the branches of the new trees of Q,
while, for instance, b2 ∈ Br(Fk), with 1� k� n. We show that it cannot be the case that b1 =
s, ∀yB, B[β/y], s′ and b2 = r, ∀yC, C[β/y], r′: assume for the sake of contradiction that it is.We first
notice that r =A[α/x], r′′. Moreover, since ∀xA, r, ∀yC, C[β/y], r′ ∈ Br(P), we have s= ∀xA, r,
by weak regularity of P . Therefore, b1 /∈ Br(P ′) and we have a contradiction. Furthermore, the
orderings of the expansions and cuts F1, . . . , Fn,P ′ are suborderings of <P , hence also acyclic.
Last, no ∀-expansion +β of F1, . . . , Fn,P ′ can have β occur in A[α/x], otherwise either β = α

or β already occurs in ∀xA, against the assumptions on +α not occurring in P ′ or against weak
regularity of P ′, in the first case, against the assumption on P having the eigenvariable condition,
in the second case. Then, by the induction hypothesis we obtain an LKE-proof π of F1, . . . , Fn,P ′,
from which a proof of P is obtained by the ∀ rule, because α does not occur in Sh(P).

4. Cut-Elimination
Given any expansion proof P , there is always a cut-free expansion proof of Sh(P): by the sound-
ness Theorem 3, transform P into an LK- proof, then perform Gentzen cut-elimination, and
obtain a cut-free proof; finally map it back to a cut-free expansion proof by the completeness
Theorem 2. Nevertheless, the interest of expansion proofs is that they allow to investigate the
combinatorics and the computational meaning of cut-elimination, with the additional advan-
tage of factoring out tedious structural rules such as cut-permutations. In this section, we
indeed define a natural reduction system for expansion proofs, such that the normal forms are
cut-free expansion proofs. We prove weak normalization and discuss the status of other prop-
erties such as strong normalization and confluence in comparison to other systems from the
literature.

4.1 Cut-reduction steps
In the following, by a substitution σ we mean as usual a finite map from variables to first-order
terms, and if e is any syntactic expression, eσ denotes the expression resulting from e after simul-
taneous replacement of each variable x in the domain of σ with σ (x). To make sure that the
application of a substitution transforms expansion trees into expansion trees, we restrict the set of
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permitted substitutions: a substitution σ can only be applied to an expansion tree E, if it acts on
the eigenvariables of E as a renaming, more precisely: if +α is a ∀-expansion of E, then σ (α) is a
variable. Otherwise σ would destroy the ∀-expansions.

While presenting our cut-reduction steps, we have to take into account weak regularity: cut-
reduction will duplicate sub-proofs, making it necessary to discuss the renaming of variables, as
in the case of the sequent calculus. We will carefully indicate, in the case of a duplication, which
subtrees should be subjected to a variable renaming and which variables are to be renamed.

Definition 10 (Cut-Reduction Steps). The cut-reduction steps, relating expansion proofs Q,Q′
and written Q → Q′, are the following.

Quantifier step
{∃x A+t1 E1 · · · +tn En, ∀x Ā+α1 F1}, . . . , {∃x A+tp Ep · · · +tl El, ∀x Ā+αq Fq},P

→
{E1, F1η1σ1}, . . . , {E1, Fqη1σ1}, . . . , {El, F1ηlσl}, . . . , {El, Fqηlσl},P ,Pη1σ1, . . . ,Pηlσl

where σ1 = [t1/α1 . . . t1/αq], . . . , σl = [tl/α1 . . . tl/αq]; the ∀-expansions +α1 , . . . ,+αq do not
occur in P ; no cut in P has shallow formula ∃xA; η1, . . . , ηl are renamings to fresh variables
of the eigenvariables β of P , F1, . . . , Fq such that for some 1� i� q and occurrence of +αi , we
have +αi <P1 +β .

Propositional step
{E1 ∨ F1, E′

1 ∧ F′
1}, . . . , {Em ∨ Fm, E′

m ∧ F′
m},P

→
{E1, E′

1}, {F1, F′
1}, . . . , {Em, E′

m}, {Fm, F′
m},P ,

where Sh(E1 ∨ F1)= · · · = Sh(Em ∨ Fm) and for every C in P , Sh(C) �= Sh(E1 ∨ F1).
Atomic step

{A,A},P → P for an atom A.

These reduction rules are very natural: atomic cuts are simply removed and propositional cuts
are decomposed. The reduction of a quantified cut is, when thinking about cut-elimination in the
sequent calculus, intuitively appealing: existential cuts are replaced by cuts on a disjunction of
the instances. The fact that at least one of these rules that can be applied to any expansion proof
containing cuts will be proved in Theorem 6.

One may think that the quantifier reduction rule already incorporates a reduction strategy,
because several cuts are reduced in parallel. However, a strategy implies a choice and there is
no real choice here: when the main eigenvariable occurs in other cuts, all these cuts have to be
regarded as linked together, otherwise reducing one of them would destroy the soundness of the
others. Moreover, all the cuts with the same shallow formula must be reduced, otherwise weak
regularity would not be preserved.

The reason why only the eigenvariables greater than some αi are renamed is that these are
the variable indirectly affected by the substitutions [ti/α]. Semantically, the witnesses that these
variables represent are influenced by the substitutions, so for each of them a new collection of
eigenvariables is created.

One surprising aspect of the quantifier-reduction rule is the presence of P , without a substi-
tution applied, on the right-hand side of the rule: in general, P will contain α, and one would
expect that occurrences of α are redundant (since α is “eliminated” by the rule). The reason why
this occurrence of P must be present is that α is not, in fact, eliminated since some ti might
contain it. This situation occurs, for example, when translating from a regular LK-proof where
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an ∃-quantifier may be instantiated by any term, and we happen to choose an eigenvariable
from a different branch of the proof. In the sequent calculus, this situation can in principle be
avoided by using a different witness for the ∃-quantifier, but realizing such a renaming in expan-
sion proofs is technically nontrivial due to the global nature of eigenvariables. For simplicity of
exposition, we therefore allow this somewhat unnatural situation and leave a more detailed anal-
ysis for future work. Note that this n+ 1-st copy is reminiscent of the duplication behavior of the
ε-calculus (Hilbert and Bernays, 1939); see Moser and Zach (2006) for a contemporary exposition
in English.

Remark 1 (On Bridges). We note that this phenomenon also occurs in the proof forests
of Heijltjes (2010), where it is an example of bridge. Bridges, when ignored, can generate cycles in
the dependency relation <Q. In Heijltjes (2010), they are addressed with a pruning reduction that
eliminates them and the weak normalization proof of that system depends on this pruning. In our
setting, we do not need additional machinery for proving weak normalization (see Section 4.3).
The reason is our renaming policy: while in Heijltjes (2010) every occurrence of every variable
above α in the dependency relation <Q is renamed, in our case only some of those occurrences
are renamed, namely those which are not in t1, . . . , tn or in E1, . . . , En. In such a way, bridges are
broken by our cut-reduction step, so that cycles in the dependency relation cannot be generated.
Furthermore, the counterexample to strong normalization from Heijltjes (2010) also contains a
bridge; we investigate (a translation of) this counterexample in Section 4.4 and find that it is not a
counterexample in our setting for the reasons explained.

Example 2. We now consider an example of cut reduction steps, in particular when an
eigenvariable γ occurs more than once.

{∀x∃yP(x, y)+α ∃yP(α, y)+ f (α,β) P(α, f (α, β)), ∃x∀yP(x, y)+q ∀yP(q, y)+γ P(q, γ )},
{∀x∃yP(x, y)+β ∃yP(β , y)+ g(α,β) P(β , g(α, β)), ∃x∀yP(x, y)+q ∀yP(q, y)+γ P(q, γ )}

→
{∃yP(q, y)+ f (q,q) P(q, f (q, q)), ∀yP(q, y)+γ P(q, γ )},
{∃yP(q, y)+ g(q,q) P(q, g(q, q)), ∀yP(q, y)+γ P(q, γ )},
{∃yP(q, y)+ f (q,q) P(q, f (q, q)), ∀yP(q, y)+γ P(q, γ )},
{∃yP(q, y)+ g(q,q) P(q, g(q, q)), ∀yP(q, y)+γ P(q, γ )}.

We see above two identical pairs of cuts, due to the first expansion containing two times the same
tree. Reducing this last expansion, we obtain eight occurrences of {P(q, f (q, q)), P(q, f (q, q)} and
{P(p, f (p, p)), P(p, f (p, p)}.

A simple property we are going to need is that substitution commutes with Dp( ·), Sh( ·),
and Br( ·).

Lemma 4. For every substitution σ ,
Sh(Eσ )= Sh(E) σ ,
Dp(Eσ )= Dp(E) σ ,

Br(Eσ )= {s σ | s ∈ Br(E)}.

Proof. By a straightforward induction on E.

We now prove that the cut-reduction relation is sound.
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Lemma 5 (Soundness of Cut-Reduction). If P1 → P2 and P1 is an expansion proof, then P2 is
an expansion proof. Furthermore, Sh(P1)= Sh(P2).

Proof. We only give the proof for the quantifier cut-reduction step; the proof for the other
reduction steps is analogous and simpler. Let σ1, . . . , σl be, respectively, the substitutions
[t1/α1 . . . t1/αq], . . . , [tl/α1 . . . tl/αq] and assume

P1 = {∃x A+t1 E1 · · · +tn En, ∀x Ā+α1 F1}, . . . , {∃x A+tp Ep · · · +tl El, ∀x Ā+αq Fq},P
→

{E1, F1η1σ1}, . . . , {E1, Fqη1σ1}, . . . , {El, F1ηlσl}, . . . , {El, Fqηlσl},P ,Pη1σ1, . . . ,Pηlσl

= Q
where the ∀-expansions +α1 , . . . ,+αq do not occur in P , no cut in P has shallow formula ∃xA,
and η1, . . . , ηl are renamings to fresh variables of the eigenvariables β of P , F1, . . . , Fq such that
for some 1� i� q and occurrence of +αi , we have +αi <P1 +β . We observe that no αk is in the
domain of any ηj, otherwise for some i we would have +αi <P1 +αk , which is only possible when
+αi <P1 +γ <P1 Ck, where γ is an eigenvariable and Ck is the kth of the displayed cuts of P1.
But then γ would occur in ∃xA, hence also +αi <P1 +αi , which contradicts the acyclicity of <P1 .
We now show that no variable γ in the domain of any ηk can occur in any A[αj/x]= Sh(Fj):
assume by contradiction that +αi <P1 +γ and γ occurs in A[αj/x]. Then, letting Ci be the ith of
the displayed cuts of P1, we immediately have by Definition 5 the contradiction Ci <P1 +αi <P1
+γ <P1 Ci, the last relation due to γ �= αj as shown above, thus γ occurring in ∀xA and thus
in Sh(C)= ∃xA. Therefore, by Lemma 4, for every 1� h� q, we have Sh(Fhηiσi)= Sh(Fh)ηiσi =
Sh(Fh)σi =A[ti/x], the last equality due to αj for j �= i not occurring in A, otherwise +αi <P1 +αj .
We have thus shown that the displayed cuts of Q are indeed between dual formulas.

We now prove several properties, namely thatQ is weakly regular, Dp(Q) is valid,<Q is acyclic,
and Sh(Q) does not contain eigenvariables, which means that Q is an expansion proof.

Weak regularity. Letting η0 and σ0 be the empty substitution, by Lemma 4 any branch in Br(Q)
is of the form pηiσi, where i ∈ {0, 1, . . . , n} and

p ∈ B := Br(P)∪ Br(E1)∪ . . . ∪ Br(El)∪ . . . ∪ Br(F1)∪ . . . ∪ Br(Fq).
Thus, for each p ∈ B, either p ∈ Br(P) or ∀xA, p ∈ Br(P1), or ∃xA, p ∈ Br(P1). Assume

sηiσi, ∀xB ηiσi, B[β/x]ηiσi, s′ηiσi ∈ Br(S),
rηjσj, ∀xC ηjσj, C[δ/x]ηjσj, r′ηjσj ∈ Br(R),

with S and R in Q. Let s= s, ∀xB, B[β/x], s′ and r = r, ∀xC, C[δ/x], r′. We first rule out that either
s ∈ B and JxA, r ∈ B or JxA, s ∈ B and r ∈ B, with J ∈ {∀, ∃}. Indeed, since in the first case JxA, r ∈ B
and in the second case JxA, s ∈ B belong to the branches of one of the displayed cuts of P1, by
weak regularity of P1 we would have that s or r belong to the branches of a cut in P with shallow
formula ∃xA, contrary to our assumptions.

Now there are two cases:

— If β is in the domain of ηi, then it is also in the domain of ηj and

B[β/x]ηiσi = Bηiσi[ηi(β)/x],
C[δ/x]ηjσj = Cηjσj[ηj(δ)/x].

By Definition 6 of weak regularity, we suppose ηi(β)= ηj(δ) and then we have to check
that: (i) S and R are both trees or cuts; (ii)

sηiσi, ∀xB ηiσi = rηjσj, ∀xC ηjσj.
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First, we have i= j and β = δ, because ηi and ηj are both injective and have disjoint domains
by the freshness assumption on the renamings. Now, since either s ∈ B and r ∈ B or J1xA,
s ∈ B and J2xA, r ∈ B, by weak regularity of P1 we infer (i) and

s, ∀xB= r, ∀xC
thus (ii) also follows.

— If β is not in the domain of ηi, then it is not in the domain of ηj either and

B[β/x]ηiσi = Bηiσi[β/x],
C[δ/x]ηjσj = Cηjσj[δ/x],

since the ∀-expansions +αi ,+αj by assumption do not occur in P and thus in Q. By
Definition 6 of weak regularity, we suppose β = δ and then we have to check that (i) S
and R are both trees or cuts; (ii)

sηiσi, ∀xB ηiσi = rηjσj, ∀xC ηjσj.

Now, since either s ∈ B and r ∈ B or J1xA, s ∈ B and J2xA, r ∈ B, by weak regularity ofP1 we
infer (i) and

s, ∀xB= r, ∀xC
If i= j, we are done. So assume i �= j. We want to show that no variable in the domain of
ηiσi or of ηjσj appears in s, ∀xB or s, ∀xC, so that we are done. Indeed, if there was such
a variable γ , then there would be either some expansion v containing γ or some cut v
with Sh(v) containing γ such that v dominates +β in P and thus v<P1 +β . By choice of
ηi, ηj, we have+αk <P1 +γ , where k ∈ {i, j} and moreover+γ <P1 v; thus putting the three
together, +αk <P1 +γ <P1 v<P1 +β . Therefore, β is in the domain of ηk, though we were
assuming it is not.

Validity. The formula

Dp(P1)=
( n∨
i=1

Dp(Ei)∧ Dp(F1)
)

∨ . . . ∨
⎛
⎝ l∨

i=p
Dp(Ei)∧ Dp(Fq)

⎞
⎠∨ Dp(P)

by assumption is valid and logically implies the formulas

(1)
n∨

i=1
Dp(Ei)∨ . . . ∨

l∨
i=p

Dp(Ei)∨ Dp(P)

Dp(F1)∨ . . . ∨ Dp(Fq)∨ Dp(P)

which then are valid too. Therefore, also the formula

(2)
l∧

i=1

(
Dp(F1)ηiσi ∨ . . . ∨ Dp(Fq)ηiσi ∨ Dp(P)ηiσi

)
is valid. We have that Dp(Q) is equal to the formula

(Dp(E1)∧ Dp(F1)η1σ1)∨ . . . ∨ (Dp(E1)∧ Dp(Fq)η1σ1)∨
. . . ∨ (Dp(El)∧ Dp(F1)ηlσl)∨ . . . ∨ (Dp(El)∧ Dp(Fq)ηlσl)∨

Dp(P)∨
l∨

i=1
Dp(Pηiσi).
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Now, fix any propositional truth assignment. Assume Dp(P)∨∨l
i=1 Dp(Pηiσi) is false under this

assignment. By (1), we can assume Dp(E1) is true (if one among Dp(E2), . . . , Dp(El) is true, the
reasoning is symmetric). Indeed, by (2), the formula Dp(F1)η1σ1 ∨ . . . ∨ Dp(Fq)η1σ1 is true; thus,
the formula

(Dp(E1)∧ Dp(F1)η1σ1)∨ . . . ∨ (Dp(E1)∧ Dp(Fq)η1σ1)
is true and finally Q is true.

Acyclicity. We show that acyclicity of <P1 implies acyclicity of <Q. Our strategy is to map any
purported cycle of Q into a cycle of P1.
The first difficulty we are going to face is that the expansions of Q are not well-behaved copies
of expansions of P1, because of the substitutions σi. For example, an ∃-expansion +u of P could
contain some αj, so that we would find +u[ti/αj] in Q. The trouble is that +u[ti/αj] could contain
variables that were not in u; thus, there could be ∀-expansions +β such that +β <Q +u[ti/α] but it
is not the case that +β <P1 +u. This means that the relation <Q presents entirely new paths that
were not inP1. Wemight encounter paths inQ that a priori could not be mapped back to paths in
P1: for example, a path featuring copies of old expansions is suddenly followed by new ill-behaved
expansions like +u[ti/αj]. However, we shall take care of this issue in a next lemma, explaining that
such paths cannot end up in a cycle, because whatever path enters the “renamed zone” is stuck in
it. The basic intuition is that since u contains αj, everything in relation <Q with +u[ti/αj] is under
the scope of the renaming ηj and all the renamed ∀-expansion have a renamed variable that can
“jump” only in the renamed zone.
The second difficulty we are going to encounter is that one of the new displayed cuts {Ek, Fhηkσk}
ofQmay have no direct correspondents inP1. Again, the problem is that the term tk introduced by
the substitution σk could add some variable β to the shallow formulaA[tk/x] of the new cut which
is not in the shallow formula ∃xA of the original cuts. In this case, some ∀-expansion+β would be
in relation with the new cut {Ek, Fhηkσk} ofQ, but with none of the old ones ofP1. In this case, the
new cut will be mapped to+tk , in all others to the old cut {∃x A+ti Ei · · · +tj Ej, ∀x Ā+αs Fs} such
that i� k� j. But when the new cut is mapped to+tk , one has to make sure that the new cut is not
in relation in the cycle with some expansion in Fhηkσk, otherwise the mapping we wish to build
would fail. Luckily, the old expansion +β of P1 (β occurs in tk) cannot jump in the “renamed
zone” if it is part of a cycle. The “renamed zone” argument settles the issue also when s �= h, which
would cause our mapping to fail in the way we have just discussed.

Let us now work out the formal details. Consider any cycle

v1 <Q v2 <Q · · · <Q vm <Q v1
in Q. Then each vi is either of the form wiηkσk for some wi which is an old expansion or cut
belonging to P1 or vi is one of the new displayed cuts {Ek, Fhηkσk} of Q; in this second case, we
definewi to be the displayed cut {∃x A+ti Ei · · · +tj Ej, ∀x Ā+αs Fs} ofP1 such that i� k� j, if the
eigenvariable of the ∀-expansion vi−1(mod m) does not occur in tk, or to be the displayed occurrence
of +tk in P1 otherwise. We want to show that

w1 <P1 w2 <P1 · · · <P1 wm <P1 w1.

First of all we need the following:
“Renamed Zone” lemma. Suppose α ∈ {α1, . . . , αq}. If there are k and j> 0 such that+α <P1 wk

and vk occurs in Pηjσj or Fhηjσj, then for all i, +α <P1 wi and vi occurs in Pηjσj or Fhηjσj.
Proof of the Lemma. Since we are dealing with a cycle, we may assume without loss of generality

that k= 1.We proceed by induction on i, the case i= 1 being already settled. Suppose by induction
hypothesis that +α <P1 wi and vi occurs in Pηjσj or Fhηjσj and thus wi occurs in P or Fh. If
vi dominates vi+1, then wi dominates wi+1 and thus +α <P1 wi+1 and vi+1 occurs in Pηjσj or
Fhηjσj. Suppose then vi is a ∀-expansion, thus also wi = +β is a ∀-expansion and the eigenvariable
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of vi occurs in vi+1 or Sh(vi+1). Since +α <P1 +β and vi ∈ Pηjσj or Fhηjσj, we have vi = +ηj(β).
Now, ηj(β) is fresh and as it occurs in vi+1 or Sh(vi+1), we have that vi+1 must occur in Pηjσj
or Fhηjσj. Moreover, vi+1 cannot be one of the new cuts of Q, because Sh(w) would not contain
ηj(β). Therefore, vi+1 =wi+1ηjσj; since ηj(β) occurs in vi+1 and is fresh, it also occurs in wi+1ηj
and thus β must occur in wi+1 or Sh(wi+1), so that +α <P1 +β <P1 wi+1, which ends the Proof
of the Lemma.

We now prove, by induction on i, that for every i, wi <P1 wi+1 (in the following the indexes i
of wi and vi will be taken modulom).

If vi dominates vi+1, there are three possibilities:

— wi is an old cut or expansion ofP1 and vi =wiηkσk. Then also vi+1 =wi+1ηkσk, wherewi+1
is an old expansion of P1; therefore, wi also dominates wi+1 and we get wi <P1 wi+1.

— wi is the displayed cut {∃x A+ti Ei · · · +tj Ej, ∀x Ā+αs Fs} of P1 such that i� k� j and
vi = {Ek, Fhηkσk}. Since vi dominates vi+1, either vi+1 occurs in Ek or vi+1 occurs in
Fhηkσk. In the first case, vi+1 =wi+1, thus wi <P1 wi+1. The second case is not possible:
if vi+1 occurred in Fhηkσk, then vi+1 =wi+1ηkσk with wi+1 occurring in Fh. Therefore,
+αh <P1 wi+1 and by the “Renamed Zone” lemma,+αh <P1 wi−1 and vi−1 occurs inPηkσk
or Fhηkσk. Moreover, vi−1 = +β , with β occurring in A[tk/x]. Thus β must be a variable of
P1 and +αh <P1 wi−1 = +β . But then +β cannot occur in Pηkσk or Fhηkσk, because β is
in the domain, but not in the range, of ηk: contradiction.

— wi = +tk , vi = {Ek, Fhηkσk}. Since vi dominates vi+1, vi+1 occurs either in Ek or Fhηkσk.
The second case is excluded as before. In the first case, vi+1 =wi+1, therefore wi <P1 wi+1.

Suppose then vi is an ∀-expansion and thus wi = +γ is a ∀-expansion as well. We have two
cases.

1. vi = +ηj(γ ). Now, as vi <Q vi+1, we know that ηj(γ ) occurs in vi+1 or in Sh(vi+1).
Moreover, vi+1 cannot be one of the new displayed cuts of Q, because Sh(vi+1)=A[tk/x]
or Sh(vi+1)=A[tk/x] and since ηj(γ ) is fresh, it cannot occur in those formulas.
Thus vi+1 is the result of a substitution in an old cut (resp. expansion) wi+1, so

Sh(vi+1)= Sh(wi+1)ηk[tk/α] (resp. vi+1 =wi+1ηk[tk/α]). Since ηj(γ ) is fresh, it cannot
occur in tk; therefore, j= k and γ must occur also in Sh(wi+1) (resp. wi+1) and thus
wi = +γ <P1 wi+1.

2. vi = +γ and γ occurs in vi+1 or in Sh(vi+1). Now we are left with two possibilities.
— vi+1 =wi+1ηkσk. If k= 0, then vi+1 =wi+1 and we are done. Moreover, if no α ∈

{α1, . . . , αq} occurs in wi+1 or γ does not occur in tk, then γ occurs in wi+1, which
means wi <P1 wi+1. Suppose thus by contradiction that they do. Then +α <P1 wi+1
and vi+1 occurs in Pηkσk or Fhηkσk. By the “Renamed Zone” Lemma, we conclude
that +α <P1 +γ and +γ occurs in Pηkσk or Fhηkσk, but then γ is in the domain of ηk,
whereas +γ occurs in P or Fh, contradiction.

— vi+1 = {Ek, Fhηkσk} is one of the new cuts of Q. Since vi <Q vi+1, γ occurs in
Sh(vi+1)=A[tk/x]. If γ does not occur in tk, then by definition of wi+1, γ occurs in

∃xA= Sh({∃x A+ti Ei · · · +tj Ej, ∀x Ā+α Fs})= Sh(wi+1)

with i� k� j, so wi <P wi+1. If γ does occur in tk, then wi+1 = +tk , so wi <Q wi+1.

Eigenvariable condition. The fact that the eigenvariable of every ∀-expansion of Q does
not occur in Sh(Q) is ensured by Sh(Q)= Sh(P) and the new ∀-expansion having fresh
eigenvariables.
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4.2 Complexity measures
Let → denote the reflexive, transitive closure of the mapping →. Our next aim is to prove weak
normalization of our reduction system →. It turns out that a parallel version of the proof strategy
for cut-elimination can be applied to expansion trees. Equipped with this observation, we can
adapt to our setting the notion of rank of a cut and the notion of maximal cut of maximal rank,
which in turn will allow us to prove weak normalization. In fact, these notions can be formulated
in a natural way using the language of expansion trees we have introduced so far. In sequent
calculus, a maximal cut is just a cut of maximal rank having no cut of the same rank above it in
the proof tree. In our setting, the geometry of the proof is represented by the dependency relation
between cuts, so a maximal cut of maximal rank is just a cut of maximal rank which is not smaller,
according to the dependency relation, than any cut of that rank.

Definition 11 (Rank of a Cut, Maximal Cut). Let P be an expansion proof and C a cut of P . We
define rk(C) as the logical complexity of Sh(C) and we call it the rank of C. We call C maximal if
for all cuts D of P , rk(D)� rk(C) and rk(D)= rk(C) implies that C≮P D.

4.3 Weak normalization
This section is dedicated to proving that there exists a terminating strategy for the application
of the cut-reduction rules. Given an expansion proof P , our reduction strategy will be based on
picking maximal cuts and reducing them in parallel.

Theorem 6. (Weak Normalization). For every expansion proof Q, there is a cut-free expansion
proof Q∗ such that Q → Q∗ and Sh(Q)= Sh(Q∗).

Proof. We partition the collection of cuts occurring in Q in equivalence classes, by means of the
equivalence relation

C1 ∼ C2

iff
C1 = {∃x A+t1 E1 · · · +tn En, ∀x Ā+α F} and C2 = {∃x A+s1 G1 · · · +sm Gm, ∀x Ā+β H}.
We now proceed by induction on the pair (r, k), where r is the greatest among the ranks of the

cuts in Q and k is the number of equivalence classes whose cuts have rank r. If Q is already cut-
free, we are done. Otherwise, we wish to single out a maximal equivalence class: an equivalence
class whose cuts are all maximal.

We first prove that a maximal equivalence class exists. Consider the relation ≺ between equiv-
alence classes defined as follows: A ≺ B if and only if there is a C ∈ A such that C <Q D for every
D in B. We begin by showing that this relation is not cyclic. Suppose indeed by contradiction that
A1 ≺ · · · ≺ An ≺ A1. For every i, let Ci ∈ Ai be a cut such that Ci <Q D for every D in Ai+1 or for
every D in A1, if i= n. By construction, C1 <Q · · · <Q Cn <Q C1, a contradiction, because <Q is
acyclic.

Secondly, we show that that for any equivalence classes A and B, if we assume there are C ∈ A,
D ∈ B such thatC <Q D, thenA ≺ B. Indeed, sinceC <Q D, we have a chain of cuts or expansions
C <Q w1 <Q · · · <Q wn <Q D; moreover, by Definition 5, wn must be a ∀-expansion +β such
that β occurs in Sh(D). By definition of the relation ∼, for every E ∈ B, we have Sh(E)= Sh(D).
Therefore, C <Q w1 <Q · · · <Q wn <Q E. We conclude A ≺ B.

Third, suppose by contradiction that there is no maximal equivalence class, assuming there is
at least one equivalence class. We want to show that for every equivalence class A whose cuts have
rank r, there is an equivalence class B whose cuts have rank r such that A ≺ B; since there are
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finitely many equivalence classes, this implies that the relation≺ is cyclic, a contradiction. Indeed,
consider any equivalence class A whose cuts have rank r. By assumption, there is a cut C ∈ A such
that C <Q D, with D of rank r. Let B the equivalence class of D. By definition of ∼, all cuts of B
have rank r, and by what we have proved above, A ≺ B, which is what we wanted to show.

Now let us consider the possible reduction steps.
Quantifier step. If there is at least a cut whose shallow formula is an existential formula,

let σ1, . . . , σl be, respectively, the substitutions [t1/α1 . . . t1/αq], . . . , [tl/α1 . . . tl/αq], A be a
maximal equivalence class and

A = {∃x A+t1 E1 · · · +tn En, ∀x Ā+α1 F1}, . . . , {∃x A+tp Ep · · · +tl El, ∀x Ā+αq Fq},
Q = A,P ,

Q′ = {E1, F1η1σ1}, . . . , {E1, Fqη1σ1}, . . . , {El, F1ηlσl}, . . . , {El, Fqηlσl},P ,Pη1σ1, . . . ,Pηlσl,

where the ∀-expansions +α1 , . . . ,+αq do not occur in P , no cut in P has shallow formula ∃xA,
and η1, . . . , ηl are renamings to fresh variables of the eigenvariables β of P , F1, . . . , Fq such that
for some 1� i� q and occurrence of +αi , we have +αi <P1 +β . First of all, we observe that it is
always possible to satisfy the condition that no +αi occurs in P : by weak regularity of Q, every
occurrence of +αi is on the right of the shallow formula ∀xA of some cut.

Let
D= {∃x B+s1 G1 · · · +sm Gm, ∀x B̄+β H}

be any cut of rank r in P . We want to prove that neither αi nor any variable γ in the domain
of any ηk can occur in ∃x B or be equal to β . Indeed, αi by hypothesis must be different from
β and if it occurred in ∃x B, we would have by Definition 5 that for every C ∈ A, C <Q +α <Q
D, contradicting the maximality of C. Moreover, if γ in the domain of any ηk occurred in ∃x B,
then for some C ∈ A, C <Q +αi <Q +γ <Q D, contradicting the maximality of C; on the other
hand, if γ were equal to β , then for some C ∈ A, C <Q +αi <Q +β ; therefore, we would have a
chain of expansions or cuts +αi <Q w1 <Q . . . <Q wn <Q +β , so that wn =D, contradicting the
maximality of C.

Let now D1, . . . ,Dm be the cuts of rank r in P . Then, for each i,
Pηiσi =D1ηiσi, . . . ,Dmηiσi,Pi,

P =D1, . . . ,Dm,P0,
with no cut of rank r appearing in Pi. Let

D =D1, . . . ,Dm,D1η1σ1, . . . ,Dmη1σ1, . . . ,D1ηlσl, . . . ,Dmηlσl.
Then

Q′ = {E1, F1η1σ1}, . . . , {E1, Fqη1σ1}, . . . , {El, F1ηlσl}, . . . , {El, Fqηlσl},D,P0, . . . ,Pn.
By what we have proved, for every i, j, if

Di = {∃x B+s1 G1 · · · +sm Gm, ∀x B̄+β H},
then

Diηjσj = {∃x B+s′1 G′
1 · · · +s′m G′

m, ∀x B̄+β H′}.
Therefore, the number of equivalence classes of rank r in Q′ is the number of classes in which D
is partitioned, that is exactly the number of classes in which D1, . . . ,Dm is partitioned: k− 1. By
induction hypothesis, Q′ → Q∗, with Q∗ cut-free, which is the thesis.

Propositional step. Assume
Q = {E1 ∨ F1, E′

1 ∧ F′
1}, . . . , {Em ∨ Fm, E′

m ∧ F′
m},P ,

Q′ = {E1, E′
1}, {F1, F′

1}, . . . , {Em, E′
m}, {Fm, F′

m},P ,
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where P does not contain any other cut of rank r. Then, the number of equivalence classes of cuts
of rank r in Q′ is strictly smaller than k, because propositional cuts are not in relation ∼ with any
other cut and form singleton classes. By induction hypothesis, Q′ → Q∗, with Q∗ cut-free, which
is the thesis.

Atomic step. As in the previous case.

4.4 Strong normalization
Having shown weak normalization of the cut-reduction rules in the previous section, it is impor-
tant to turn to the question of strong normalization, i.e. whether all reduction sequences are of
finite length. We conjecture that our cut-reduction rules are indeed strongly normalizing and
present some evidence for this claim by discussing how our reduction rules behave on a transla-
tion of the example (Heijltjes, 2010, Figure 16), which shows how bridges can cause infinite loops
in the setting of proof forests.

This example can be translated as an expansion proof of the form (C+, C−),� with � the
atomic formula “true” and

C+ = ∃x P(x) +c P(c)+ f (α) P( f (α)),
C− = ∀x P(x) +α P(α).

We have no issue at all:

(C+, C−) → {P(c), P(c)}, {P( f (α)), P( f (α))},�,
�[c/α],�[ f (α)/α] �→ {P(c), P(c)}, {P( f (α)), P( f (α))},� → �.

This is essentially due to the different treatment of bridges (i.e. dependencies between different
sides of a cut, see Section 4.1) in our formalism: at the core of the non-termination of (Heijltjes,
2010, Figure 14) lies the bridge in (C+, C−) (Heijltjes, 2010, Figure 16) which induces a cycle. In
the setting of proof forests, the non-termination due to bridges is handled by adding a pruning
reduction, having the task of removing bridges as soon as they appear. In our setting, we are able
to get by naturally without pruning. This is due to our different renaming and duplication policy:
not everything greater in the dependency relation than the cut is duplicated and renamed. In
particular, the expansion + f (α) is not duplicated, even if it is above α in the dependency relation.

4.5 Confluence
It is well known that cut-elimination and similar procedures in classical logic are typically non-
confluent; see, e.g., Urban (2000), Ratiu and Trifonov (2012), and Baaz et al. (2005) for case studies
and Baaz and Hetzl (2011) and Hetzl (2012) for asymptotic results. Neither the proof forests
of Heijltjes (2010) nor the Herbrand nets of McKinley (2013) have a confluent reduction. The
situation is analogous in our formalism: the reduction is not confluent. In fact, one can use the
same example to demonstrate this; let

P ={∃x A+s A[s/x]+t A[t/x], ∀x A+α A[α/x]},
{∃x B+α B[α/x], ∀x B+β B[β/x]},
∃x∃y C +α (∃y C[α/x]+β C[x/α, y/β]),

which is the translation of (Heijltjes, 2010, Figure 12) into an expansion proof with cut. Then it
can be verified by a quick calculation that the choice of reducing either the cut on A or that on B
first determines which of two normal forms is obtained.

However cut-elimination in classical logic can be shown confluent on the level of the (cut-
free) expansion tree on a certain class of proofs (Hetzl and Straßburger, 2012). For future work,
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we hope to use such techniques for describing a confluent reduction in expansion proofs whose
normal form is unique and most general in the sense that it contains all other normal forms as
sub-expansions.

5. Conclusion
We showed in this paper that a relatively simple syntactic approach to expansion proofs with cuts
is possible. We strived for keeping the definitions and the technical details as elementary as pos-
sible. Our effort should have set the ground for addressing open combinatorial problems such
as strong normalization. The price to pay for simpler reductions, however, is that we duplicate
more than in Heijltjes’ proof forests. This issue could be solved by an operation of merging copies
of similar trees, but that should rather be understood as an optimization, rather than a theoret-
ical necessity. Moreover, systematic merging tends to destroy the connection with operational
game semantics. In either case, however, we do not see a perfect correspondence between our
cut-elimination process and Coquand style plays. Copying part of the old expansion proof dur-
ing the quantifier reduction step, in particular, does not seem to admit a game theoretic reading.
Heijltjes’ proof forests, on the contrary, avoid this copy. However, a perfect correspondence with
game semantics is still a general open problem, as neither proof forests nor Herbrand nets enjoy
one.
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