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 The Journal of Symbolic Logic

 Volume 77, Number 2, June 2012

 ON THE COMPLEXITY OF PROOF DESKOLEMIZATION

 MATTHIAS BAAZ, STEFAN HETZL. AND DANIEL WELLER

 Abstract. We consider the following problem: Given a proof of the Skolemization of a formula F ,

 what is the length of the shortest proof of Fl For the restriction of this question to cut-free proofs we prove

 corresponding exponential upper and lower bounds.

 §1. Introduction. The Skolemization of formulas is a standard technique in logic.
 It consists of replacing existential quantifiers by new function symbols whose argu-
 ments reflect the dependencies of the quantifier. The Skolemization of a formula
 is satisfiability-equivalent to the original formula. This transformation has a num-
 ber of applications, it is for example crucial for automated theorem proving as the
 resolution calculus is a quantifier-free formalism.

 While Skolemization in a model-theoretic context is viewed as transformation of

 the axioms of a theory, in a proof-theoretic context it is used for transforming a
 formula that shall be proved. Hence in the context of proof theory, which is the
 background of this paper, we remove universal quantifiers in favour of new function
 symbols. Thereby a validity-equivalent formula is obtained (which is sometimes
 also called the Herbrandization of the original formula).

 This transformation of formulas naturally induces a transformation of proofs: if
 we are given a proof n of some formula F one can obtain a proof n' of the Skolem-
 ization of F by simple instantiation of free variables. In fact, the Skolemization of
 a proof has the effect of decreasing the number of inferences (as some quantifier
 inferences can be dropped). Now the following question naturally arises: If we are
 given a proof of the Skolemization of F what is the length of the shortest proof
 of FI Or in other words: What is the complexity of deskolemization?

 This question is of practical interest as resolution-based automated theorem
 provers output essentially cut-free proofs of skolemized formulas and presenting a
 proof of the original input formula to a user must therefore involve an algorithm
 for deskolemization. The historically first deskolemization algorithm for prenex
 formulas in the cut-free case (via Herbrand-disjunctions) can be found in the proof
 of the 2nd e -theorem [8].

 The complexity of deskolemization is also of considerable theoretical interest as
 it concerns the impact on proof length of the addition of new function symbols to
 the language. The question of the degree of this impact has been formulated by
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 670 MATTHIAS BA AZ, STEFAN HETZL, AND DANIEL WELLER

 P. Pudlák (in a slightly different form) as problem 22 in [5]. A partial solution has
 been given by J. Avigad in [1]: theories that allow the encoding of finite functions
 have polynomial deskolemization. In this paper we consider a different type of
 restriction: instead of restricting the theories we restrict the proofs and consider the
 question of the complexity of deskolemization for cut-free proofs. We prove both
 an exponential upper and a corresponding exponential lower bound. Finally we
 consider an optimized version of Skolemization that even in the cut-free case has
 only non-elementary deskolemization.

 §2. Preliminaries. We consider first-order formulas over the logical constants
 -i, V, A, - K V, 3, T, _L. An occurrence of V in a formula F is called strong if it occurs

 in a positive context (i.e., dominated by an even number of negations and left-hand
 sides of implications), and weak otherwise. A dual definition is made for 3. The
 number of strong quantifiers in a formula F is denoted by qocc(F).

 We use a variant of the sequent calculus G3c from [11], with the difference that
 we add the appropriate axiom for T and that we work in a purely cut-free setting.

 Definition 1 (Sequent calculus). Sequents are pairs of multisets of formulas,
 written T h A. An LK-proof is a tree built up from the following axioms and
 rules: axioms are of the form

 A, Y h A, A ax -L,r b A ax± r h A, T axT

 for an atom A. The rules are

 ^rhA 5,rhA w ri-A ,a,b w n-A,F _ F tka
 A V B, r I- A ' r h A, A V B r ->F, T h A T f- A, ~^F

 and analogously for A and Furthermore

 r h A, (3x)F, F{x <- t} F{x <- a},r h A
 r h A, (3x )F (3x)F,r h A 1

 where a is a variable which does not occur in F ' T, A, the eigenvariable of this rule.
 The rules for V are defined analogously. The notions of active , auxiliary , and main
 formulas , and the ancestor relation are defined as usual. The quantifier rules with
 eigenvariable conditions are called strong quantifier rules, the other quantifier rules
 are called weak.

 We will use the standard assumption that our LK-proofs are regular , that is: for
 every two distinct 3/ inferences p , a in an LK-proof n, the eigenvariables of p and a
 are different.

 Definition 2 (Proof length) . Let n be an LK-proof. Then the length of n, denoted
 by |7r|, is the number of sequent occurrences in n.

 Having set up our calculus, we will now introduce Skolemization (for Skolem-
 ization in the context of proofs, see also [2, 3]). We postulate a countably infinite
 set of Skolem symbols S3? = {/„ | n G N} and define an operator for structural
 Skolemization as follows.
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 ON THE COMPLEXITY OF PROOF DESKOLEMIZATION 67 1

 Definition 3 (Skolemization operators). Let F be a formula and ne N. If F
 does not contain strong quantifiers then skn(F) = F . If F does contain strong
 quantifiers, then

 sk„0F) = sk„+itFe>.{.y -f- f„(xu...,xk)})

 where F Qy is F after omission of the leftmost strong quantifier occurrence // of Qy,
 and Q'x',. . . Q^x k are the weak quantifiers appearing in this order in F such that
 ¡a is in their scope. We call t = fn(x', . . . , x^) Skolem terms of F , and we say that t
 corresponds to ¡i and vice- versa.

 Finally, we define sk (F) - sko (F). If F = f'T - » '/ A and sk(,F) = /' II - » '/ A
 we define sk(r h A) = Il h A.

 The following theorem on proof Skolemization is well-known:

 Theorem 1 . Let n be an hK-proof of S , then there exists an LK-proof n' of sk(S)
 such that 'nf' < 'n'.

 Proof. The proof from [3] readily adapts to our version of LK: eigenvariables
 are replaced by Skolem terms. H

 It is also well-known that in the case of F being a prenex formula, from an LK-proof
 of sk(F) we can easily construct an LK-proof of F :

 Proposition 1. Let F be a prenex formula and n an lAL-proof of'~ sk(F). Then
 there exists an YK-proof y/ of'- F such that 'y/' < 'n' * (qocc(F) + 1).

 Proof. First, we apply Gentzen's midsequent theorem [6] to n to obtain an LK-
 proof (p of h sk(/r) such that (p contains a sequent S such that above S , only
 propositional inferences are applied and below S , only weak quantifier inferences
 are applied. Further, '(p' < 'n'. The quantifier inferences can then be reordered
 such that the strong quantifier inferences (corresponding to the quantifiers that were
 removed by Skolemization) can be introduced without violating any eigenvariable
 conditions. The reordering does not increase proof size since all quantifier infer-
 ences are unary, and at most qocc(F) * 'n' strong quantifier inferences have to be
 introduced. This yields the desired LK-proof y/ of h F. H
 Note that this proof, going back to the 2nd e -theorem [8], does not work in the
 more general setting where the quantifiers in F may appear at arbitrary positions:
 the midsequent theorem does not apply anymore, and the reordering of quantifier
 inferences may be more expensive since binary inferences are involved. It is this
 problem that we will consider in the next two sections.

 §3. The upper bound. A central technique for the upper bound will be to collect
 instances of a formula that appear in a proof. To that aim we will use a variant of
 expansion trees, introduced by D. Miller in [9] in the setting of higher-order logic.
 In fact, what we are going to define as expansion below corresponds most closely to
 the Skolem expansion trees of [9]. In order to simplify the notation we do not use
 the connective A and - » explicitely in this section, their treatment being analogous
 to that of V and -i.

 Definition 4. 1 . An atom A is an expansion of itself.
 2. If E' is an expansion of A' and E2 is an expansion of A2, then E' V Ei is an

 expansion of A' V A 2.
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 672 MATTHIAS BAAZ, STEFAN HETZL, AND DANIEL WELLER

 3. If E is an expansion of A , then ->2s is a dual expansion of ->A.
 4. If {¿i , . . . , tn } is a set of terms and E',...,En are expansions of A{x <- t'},

 . . . , A{x tn }, then 3x A +" E' H

 5. If / is a Skolem symbol and E is an expansion of A{x <- f(t' , . . . , tn)}, then
 '/x A

 6. _L is an expansion of every formula.
 Dual expansions are defined as above switching expansion and dual expansion ,

 _L and T as well as V and 3. In addition, an expansion or dual expansion E must
 satisfy the following two global conditions:

 A. Each strong quantifier in A induces an equivalence class of sub-expansions of
 E of the form of 5 by considering E' and E 2 as equivalent if they correspond
 to the same strong quantifier in A. All elements in an equivalence class use
 the same function symbol / which must not appear in A and must be different
 from the function symbol of any other equivalence class.

 B. Every strong quantifier node in E has the form £0 = Qx A' '1 E', for
 some Skolem symbol /, where the terms t' , . . . , tn are exactly those introduced
 for weak quantifiers on the path from the root of E to £0 in this order and
 š = s', . . . , sm is a fixed list of variable-free terms, called the parameters of E.

 Often the parameters will be irrelevant, if they are not we will mention them
 explicitely. For an expansion or dual expansion E, the set of Skolem terms
 SkTerms(£') is the set of terms f(t' , . . . , tn) that are contained in E at nodes of the
 form Qx A' tn^E' pertaining to strong quantifiers. If E is an expansion or dual
 expansion of a formula A with parameters š and e SkTerms(£),
 then there is a unique strong quantifier node in E with as Skolem
 term. For suppose there would be two such quantifier nodes, then the paths from
 the root of E to these two nodes would split on either a V- or an 3-node. The former
 is impossible because, by condition A, the Skolem symbol / designates a unique
 strong quantifier in A and the latter is impossible because, by condition B, the terms
 t tn designate a unique subexpansion of their respective weak quantifier nodes.

 Remark 1. Our expansions differ from Miller's Skolem expansion trees at several
 points: our convention on naming Skolem symbols corresponds directly to Skolem-
 ization of formulas, we allow _L and T to accomodate weakening conveniently, at
 weak quantifiers we consider a set of terms and we work in the setting of first-order
 logic.

 In addition to considering expansions of formulas we will also consider expan-
 sions of sequents. If S = A¡, . . . , An h B', . . . , Bm is a sequent, E',...,En are
 dual expansions of A' , . . . , An and F' , . . . , Fm are expansions of B' , . . . , Bm , then
 E',...,En b F' , . . . , Fm is called expansion of S if every t G SkTerms(isi , ...,En h
 F',...,Fm) corresponds to exactly one strong quantifier node in E', . . . , En h
 Fi,...,Fm.

 Definition 5. If E is an expansion or dual expansion, then the formula Sh(2s)
 and the quantifier-free formula Dp(is) are defined as follows:

 Sh (E) = E for an atom E,

 Sh (-■£) = -Sh (£),
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 ON THE COMPLEXITY OF PROOF DESKOLEMIZATION 673

 Sh(£i V E2) = Sh(£!) V Sh(£2),

 Sh(ßx A +" E' +

 Dp( £") = E for an atom E,

 Dp (-iE) = -Dp (E),

 Dp(Ei V E2) = Dpí^O V Dp(£2),
 n

 Dp(3x A +" Ei +■■■+'" E„) = '/ Dp (E,), and
 /= 1

 n

 Dp(Vx A +"£,+•• • +'" E„) = /' Dp(£,).
 i = '

 If S = E', . . . , En '~ F', . . . , Fm is the expansion of a sequent, then Dp (S) =
 -iDp(^i) V • • • V ->Dp(£„) V Dp (Fi) V • • - V Dp(Fm).

 Note that, if E is an expansion of A , then in general Sh (E) ^ A but by replacing
 positive occurrence of _L and negative occurrences of T in Sh (E) by subformulas
 of A , the formula A can be recovered. An expansion E is called tautological if
 Dp (£) is a tautology.

 Example 1. Eo = Vy ( P(c ) - » POO) P(c) P(f(c)) an expansion of
 Vy (P{c) ->P(y)) with parameter c and Skolem symbol /.

 Ex = (P(x) P(y)) +c E0

 as well as

 E2 = 3x'/y(P{x) P(j;)) +c E0

 +f(c) (Vj(/>(/(c)) ->• P(y))

 +/(/(<)) P(f(c))^P(f(f(c))))

 are expansions of 3xVy (P(x) P(y)). E2 is tautological but E ' is not.

 Definition 6. For an expansion or dual expansion E its logical complexity 'E'
 is defined as

 'E' - 0 for an atom E ,

 '-iE' = 'E' + l,
 'E' V E2' = 'E'' + 'E2' + 1,

 n

 I Qx A +tl E'
 /=i

 If n h A is the expansion of a sequent, then |n h A| = nuA 1^1*

 For reading out expansions from proofs, the following merge-operation will be
 useful. For our purposes it is enough to use it on expansions of formulas without
 strong quantifiers and for the sake of simplicity we restrict our definition to this
 case.

This content downloaded from 128.131.42.83 on Tue, 03 Mar 2020 13:19:51 UTC
All use subject to https://about.jstor.org/terms



 674 MATTHIAS BA AZ, STEFAN HETZL, AND DANIEL WELLER

 Definition 7. If E' and E 2 are expansions of the same formula A without strong
 quantifiers, then their union E' U E 2 is again an expansion of A and is defined as
 follows:

 1. If E' - ±, then E' U E2 = E2. If E2 = _L, then E' U E2 = E'.
 2. If Ex = E[ V E[f and E2 = E'2W E'{, then Ex{JE2 = (E[ U E'2) V {E[f U E'{).
 3. If E' - -iE[ and E2 = ^E2, then E'U E2 = ~^{E[ U E2).
 4. If

 Ex = A' +ri £1,1 • • • +r* EXJk +* Fx • - +* F¡

 and E2 = 3x A' +n E2,x

 where {^1 , . . . , 57} D {t', . . . , tm} = 0, then

 ^iU^2 = A! +n (Ex,x U E2, 1)

 +'i Fl... +'/ Fl

 +" Gì

 For dual expansions the analogous definition applies where T replaces _L and V
 replaces 3. The union of expansions of sequents is defined by componentwise
 union.

 Note that 'E' U £2 1 < 'E' ' + |^| which can be shown by a straightforward
 induction. For quantifier-free formulas A, B we write A => B if the formula A -» B
 is a tautology and A <=ï B if A o B is.

 Lemma 1 . Let Ex,E2be expansions of the same formula without strong quantifiers ,
 then Dp(2?i) V Dp(^) => Dp(£i U E2). For dual expansions Ex,E2 of the same
 formula Dp(i?i U Ei) => Dp(isi) V Dp(^) and for Sx,S2 being expansions of the
 same sequent Dp{Sx) V Dp(S2) => Dp(Si U S2).

 Proof. The result on sequents follows directly from the results on formulas which
 are proved simultaneously by a straightforward induction on the structure of the
 formula of which E' and E2 are expansions. The most interesting case of this
 induction is that of V for dual expansions as it hinders the logical equivalence:
 For Ex = E[ V E" and E2 = E>2 V E'{ being dual expansions we have E' U Ej =
 {E[ U E'2) V (£{' U E'{), so

 Dp(£, U E2) (Dp(£() A Dp {E'2)) V (Dp(£,") A Dp {E'{))

 by induction hypothesis and

 Dp(Ex) A Dp(E2) & (Dp (E[) V Dp(£ (')) A (Dp(^) V Dp (££))• H

 Lemma 2. Let n be a cut-free YXL-proof of a sequent T b A which does not contain
 any strong quantifiers. Then there is a tautological expansion II h A ofT h À such
 that |IIb A| < 'n'.
 Proof. By induction on n: for the case of n being an axiom A,T '- A ,A, or

 T h A, T, or ±, r I- A let II h A be ^4, T, . . . , T I- ±, . . . ,±,A, or T, . . . , T h
 J_, . . . , _L, T, or _L, T, . . . , T h _L, . . . , _L respectively. In any case, II h A is tauto-

 logical and |n h A| = 0.
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 ON THE COMPLEXITY OF PROOF DESKOLEMIZATION 675

 If n has the form

 (w)
 ri- A ,a

 -•A, r i- a

 we obtain a tautological expansion II h A, E of Y h A, A from the induction
 hypothesis. Then -^E, n h A is a tautological expansion of ->A, F h A and

 h^,n h A| = |nh A,E' + 1 < 'y/' + 1 = 'n'.

 The other unary propositional rules are treated analogously.
 If n has the form

 iw') (vi)
 A',T'- A 4rhA w

 AlVA2,r'-A 1
 we obtain expansions E',Y1' h Ai and E2 , II2 I- A2 of A', F h A and A2, F h A
 respectively by induction hypothesis. Let n (- A be E' V Ei,Fl' U II2 I- Aj U A2
 and observe that, by Lemma 1,

 Dp(£'i V E2,T'' U IT2 Ai U A2)

 <= (~^E' A -1E2) V Dp(rTi h Ai) V Dp(n2 A2)

 <= {^Ei V Dp(rii h Ai)) A (->E2 V Dp(n2 A2))

 <£=>• Dp(£'i, III I- Ai ) A Dp(i?2, FÍ2 I- A2)

 which is tautological by induction hypothesis. Furthermore

 |ni- A| = 1^1, iii i- Ai| + 'e2, n2 b A2| + 1 < 'y/' I + 'y/i' + 1 = 'n'.

 The other binary propositional rules are treated analogously.
 If 71 is of the form

 W)
 F h A, 3xA,A{x <- t} n

 r I- A, 3x A

 we obtain an expansion II I- A, 3x A +" E'

 by induction hypothesis. Then II I- A, (3jc A +'1 E' ■ ■ ■ +'" E„) U (3x A +' E) is
 tautological as by Lemma 1

 Dp(n h A, (3.x A +'' Ex ■ ■ ■ +'" E„) U (3x A +' E))

 <= Dp(n h A) V Dp(3x A +" El ■ ■ ■ +'" E„) V Dp(3x A +' E )

 & Dp(n h A, 3x A +ř| El •••+'"£„, E)

 which is tautological by induction hypothesis. Furthermore

 |n I- A, (3* a +" El ■ ■ • +'" E„) U (3x A +' E)'

 < |nhA,3x^+" El •••+'" E„' + 'E' + 1
 = |n h A, 3x A +" El--- +'" En,E I + 1

 < 'w' + 1 = M-

 The V/-rule is treated analogously. H
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 676 MATTHIAS BAAZ, STEFAN HETZL, AND DANIEL WELLER

 We write skd for the operator that is dual to sk, i.e., where the roles of strong and
 weak quantifiers are exchanged. A formula F is satifiability-equivalent to sk d(F).

 Lemma 3. Let Abe a formula and E be an expansion ( or dual expansion) of A' =
 sk(y4) ( or A' - skd(^4) respectively ), then there is an expansion ( a dual expansion) F
 of A with Dp(£) = Dp(F) and |F| < |2s |qoccC¿) + 'E' + qocc(^l).

 Proof. By induction on A. If A is an atom let F := E.
 If A = Ai V A. 2, then E - E' V Fj2. is an expansion of ^4 - A. j V A-^ and by

 induction hypothesis we obtain expansions F' of A' and F 2 of A2 respectively.
 Define F := Fi V Fi and observe that Dp(F) = Dp(2s). Furthermore,

 'F' < |£i|qoccG4i) + 'E{' + qocc(,4i) + |2?2|qocc(i42) + 'Ei' +qocc(^2) + 1

 = qoccU) + 'E' + |£i|qocc04i) + |£,2|qocc(^2)
 < qocc(>4) + 'E' + |2s|qoccG4).

 If A - - iv4o, then E = ->£0 is an expansion of A' = -« A'0 and by induction
 hypothesis we obtain a dual expansion Fo of Ao. Define F ~^Fo and observe
 Dp(F) = Dp(is) and

 'F' < l^olqoccU) + 'E0' + qoccU) + 1
 = 'E'qocc(A) + 'E'.

 If A = 3xAo , then E = 3x A'0 +'1 E' - +tn En is an expansion of 3x A'0
 hence E', . . . , En are expansions of A'q{x ii}, . . . , A'q{x tn } which are the
 Skolemizations of Ao{x <- 1 1}, . . . ,^4o{* tn}- From the induction hypothesis
 we obtain expansions F' , . . . , Fn of Ao{x <- t' }, . . . , Ao{x <- tn } and define F :=
 3xA0 +'1 Fi-" +'" F„. Observe that Dp(F) = V7=i DP(*i) = V7=i DP(^) =
 Dp(/s) and that

 n

 |F| < ^(|£,-|qoccU) + 'Ej ' +qocc(^4) + 1)
 <=i

 n n

 = 5Z(I£/| + l)qoccU) + ^(|£;| + 1)
 1=1 1=1

 = qocc(i4)|£| + 'E'.

 If A -VxAo, then E is an expansion of A'0{x <- f{t)}. We apply the induction
 hypothesis to Ao{x f (f)} and E to obtain an expansion Fo of Ao{x <- / (F)}.
 Define F := Vx Ao and observe that Dp(F) = Dp(Fo) = Dp(is) and

 |^| < |2s |qocc(y4o{x / (F)}) + 'E' + qocc(y4o{x /(F)}) + 1
 = |£|qocc04) + qocc(^).

 The dual cases are analogous. H
 Lemma 4. Let S be a sequent and E be an expansion of sk(S), then there is an

 expansion F of S with Dp(2s) = DpC F) and |F| < |2s |qocc(S) + 'E' + qocc(S').
 Proof. This follows from applying the above Lemma 3 to every formula in S and

 the additional observation that every t e SkTerms(F) designates a unique strong
 quantifier node in F . For suppose there were two strong quantifier nodes having t
 as Skolem term, then they must appear in different expansions (or dual expansions)
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 ON THE COMPLEXITY OF PROOF DESKOLEMIZATION 677

 E i and E2. This however is impossible as each Skolem symbol in sk(S) corresponds
 to a unique strong quantifier in S . H

 Definition 8. The calculus LKE works on expansion sequents and is defined as
 follows: axioms are of the form

 A,Y1'-A,A, IIbA,T, or J_,IIbA

 for an atom A. The rules are

 £i,nbA £2,nbAw nhA,£i,£2 w nbA ,e _ e, nbA
 £,V£2,nhA 1 nhA,£iVJ?2 ' _ nhA.n£n'

 and analogously for A and Furthermore
 n b A, A +" Ex • • • Ei- 1 +*+1 Ei+ 1 . . . +'» En, Ei

 n b A, a* A V1 El ' . • En

 where E i is an expansion of A{x <- t¡},
 E, nbA

 A +' E, n b A 1

 where E is an expansion of A{x <- /} and analogously for Vr and V/.

 If i is an -inference we write t(z) for ti and if 1 is an 3/-inference we write t(0 for t.
 The above calculus will (only) be used for a bottom-up proof construction. The
 rules of LKe are invertible in the sense that, for every unary rule, Dp(C) => Dp(P)
 for C being the conclusion of the rule and P the premise, as well as Dp(C) =>
 Dp(Pi) A Dp(P2) for P' , P2 for the binary rule with premises P', P2. Furthermore,
 if the conclusion of a rule is an expansion so are its premises (the converse is not
 true). The depth of a proof n is the maximal number of inferences on a branch of n.

 Lemma 5. Let n be an UiE-proof of an expansion E , then depth(7r) < 'E'.

 Proof. It is easy to check that a premise of a rule has a logical complexity which
 is strictly smaller than that of its conclusion. H

 Definition 9. For an expansion E we define the Skolem term ordering -<e as
 S -<E tlí

 1 . 51 is a proper subterm of t, or
 2. E contains a strong quantifier Qx A' +* E' and E' contains a strong quantifier

 Qy A" +' E".

 Note that the above ordering -<e is wellfounded on any set of terms T: let M Ç T
 be the set of terms which is minimal with respect to the subterm-ordering (which is
 well-founded) , then there is at least one t G M which belongs to an outermost strong
 quantifier. This is a minimal term with respect to -<e on T. With ■< we denote the
 reflexive closure of an ordering -<. We say that a quantifier Qx dominates another
 quantifier Qy in the same formula if Qy is in the scope of Qx.

 Definition 10. An LKE-proof is called compatible with a term ordering ^ if
 for all quantifier inferences i' and 12 where i' is strong and is above 12 we have
 t(n) ¿ t(i2).

 Lemma 6. Every tautological expansion II h A has an LK E-proof that is compatible
 with ^ni-A-
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 678 MATTHIAS BAAZ, STEFAN HETZL, AND DANIEL WELLER

 Proof. We proceed by induction on the cardinality of SkTerms(Il h A). For
 SkTerms(n I- A) = 0 any bottom-up proof search yields a proof by invertibility of
 the rules, so let SkTerms(Il h A) ^ 0. By well-foundedness of there exists
 a -<nhA-mimmal element in SkTerms(n h A), say f(sj) where t =
 Let Qy be the unique strong quantifier in II h A that is associated to / (J, t) and
 let E be the expansion (or dual expansion) that contains Qy. Then the weak
 quantifiers dominating Qy in E are Qx i, . . . , Qxn with terms respectively.
 Furthermore Qy is not dominated by a strong quantifier due to ^nbA-minimality.

 A bottom segment of the proof of II h A is constructed by induction on the
 depth of Qy in E: if the outermost connective is propositional, the corresponding
 rule is applied, if the outermost connective is a quantifier, then it is one of the
 Qxj for 1 < i < n and the weak quantifier rule is applied to the term ti . If the
 outermost connective is a strong quantifier, then by the above observation, it is Qy
 in which case we apply the corresponding rule yielding the term / (š, t). The leaves
 111 h Ai, . . . , nm b Am of the proof segment just constructed are tautological by
 the invertibility of the rules and have strictly smaller sets of Skolem-terms, so we
 can complete the proof construction by obtaining proofs tz', . . . ,nm of them by
 induction hypothesis. It remains to prove compatibility with -<nhA-

 If z i is the inference introducing Qy then as i ' is above 12 , 12 is introducing Qx¡ for
 an i e {1 ,...,«} and in this case t(i2) = ti is a proper subterm of / (J, t) = t(/i)
 hence t(ii) ^ni-A t(i2).

 If i' is above 12 and both are in some 7i/, then by induction hypothesis t(ii) ^ii/bA,
 t(/2) hence t(ii) is not a subterm of t(^). Suppose now, for the sake of contradiction,
 that t(zi) ^ni-A t (^2 ) » then II h A must contain a strong quantifier Qx A! E'
 and E' must contain a strong quantifier Qy A " E" . But as both i' and 12 are
 in 7 Zi also 11/ h A/ must contain Qx Af E' contradicting t(zi) ^n,i-A , t(^).

 If i' is in 7 ti and 12 in the bottom segment, then t(zi ) ^ / (J, t) because / (s, t) £
 SkTerms(II/ h A,-). Furthermore both t(*i) -<nbA as well as t(zi) ^ni-A
 tj ^ni-A f(š,t) for some j G {1,...,«} would contradict ^nhA-minimality of

 H

 Lemma 7. Let E be an expansion of a sequent S that does not contain Skolem
 symbols and let n be an LKE-proof of E which is compatible with -<e> Then there is
 an LK-proof y/ofS with depth(^) = depth(7r).

 Proof. It suffices to construct such a proof y/ of Sh(2s ) as a proof of S can then
 be obtained by replacing positive occurrences of _L and negative occurrences of T
 by subformulas of S which does not change the depth of the proof.

 We proceed by induction on n. The translation of axioms, propositional and
 weak quantifier rules are straightforward, so consider a subproof n' of n of the
 form

 (wo)

 £o,nhA 3
 äJc^+^^o.ni-A '

 By induction on the depth of n' in rc, and using the assumption that S does not
 contain Skolem terms, one can show that

 SkTerms(Sh(3x A +/(ř) E0, II h A)) ç Subterms({t(n), . . . , t(iB)})
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 where i', . . . , in are the quantifier inferences below 7t' in n. By compatibility of n
 with -<e we have f(t) ^ e t(ř/) hence f{t)£ Subterms({t(ii), . . . , t(/„)}.

 By induction hypothesis there is an LK-proof y/o of Sh(2¿o, n h A). Let a be a
 fresh variable and y/'0 be the result of replacing all occurrences of f(t) in y/o by a.
 Let y/' be

 (wo)
 Sh(£'o, n h A)

 Sh(3x A £o. n I- A) '

 which is a valid rule application as /(f) ^ Terms(Sh(3x A +-/^! Eo, n h A)). H

 Theorem 2. Let S be a sequent that does not contain Skolem symbols and n be an
 IjK-proof of sk(iS), then there is an LK-proof y/ of S with depth(^) < |7r|qocc(S') +
 'n' +qocc(S) and hence 'y/' < 2Wq°œ(,s,)+l7rl+ciocc('s)#

 Proof. By Lemma 2 there is a tautological expansion E of sk :(S) s.t. 'E' < 'n'.
 By Lemma 4 there is a tautological expansion F of S with |F| < Itt^occÌS) -h 'n ' +
 qocc (S). By Lemma 6 there is an LKE-proof / of F which is compatible with p
 and, by Lemma 5, hasdepth(^) < iTrlqoccí^j + lTrl+qoccííS). Finally, by Lemma 7,
 we obtain an LK-proof y/ of S with depth(^) < |7r|qocc(*S) + 'n' + qocc(iS). H

 The above upper bound refers to cut-free proofs only. However one can use this
 result to obtain a similar upper bound on a class of proofs with cuts as follows. For
 the rest of this section, we augment our calculus LK by the following cut-rule:

 r'~ A, A A, ThA

 Let 7i be an LK-proof, let a' , . . . , an be the eigenvariables of n and let T = {¿i =
 a' = an,tn+' , . . . , tm} be a set of terms. Denote by nT the cut-free proof
 obtained from n by replacing every cut by an -^-inference followed by V/ -inferences
 to bind all occurrences of terms from T (this is a slightly more general version of
 proof transformations that also appear in [2, 4]). If the endsequent of n is T h A,
 then the endsequent of nT is E, T b A where

 2 = Vxi...Vxm (A' -> Ai),...yx' ( Ak -> Ak)

 and A'{xi <- ti}™=v. . . ,Ak{*i ti}™=x are the cut formulas of n. As there are
 at most 'n' many cuts we add at most 'n''T' new inferences and obtain |7rr| <
 ('T' + 1)'*'.

 Conversely, if / is a proof of a sequent I,Th A with Z of the above form, denote
 with / the proof of T h A which is obtained from replacing every -^/-inference
 pertaining to an (Aj Aj){xi <- tjj}ni=x by a cut and removing the V/ -inferences.
 If an ancestor path of a formula in I does not contain an ->/ -inference, it starts
 with weakening and is removed without increasing the depth of the proof, hence
 depth(x) < depth (/).

 Corollary 1. Let S be a sequent that does not contain Skolem symbols and n be
 an Ui-proof of sk (S) s.t. every term that starts with a Skolem symbol and appears
 in a cut formula of n does not contain a bound variable. Let A', . . . , Ak be the cut
 formulas of n and let c be the number of quantifiers in {A', . . . , Ak}. Then there is
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 an LK-proof y/ofS s.t. depth(^) < (|7r|2qocc(5) + 'n' 4- l){c + qocc(S) + 1) and
 hence 'y/' < 2(^l2q°cc(s)+W+1)(c+90<x(5)+1).

 Proof. Let S = F '- A and sk(S) = V '- A'. Let T = {t' = a', ... ,tn =
 an , tn+' , . . . , tm } where {a' , . . . , an } are the eigenvariables of n and {tn+' , . . . , tm }
 are all Skolem terms of n that do not contain bound variables. Now |r| <
 |7r|qocc(r h A) because every Skolem term t e T starts with a certain Skolem
 symbol / of which there are qocc(r h A) many. Furthermore, for each / the num-
 ber of different /(f)'s is bound by the number of paths of weak quantifier inferences
 corresponding to the weak quantifiers that bind variables in / (jt) in T I- A, i.e., by
 the number of weak quantifier inferences which are uppermost in such paths, i.e.,
 by 'n'.

 Now y/o = nT is a cut-free proof of Z, V h A7 and E does not contain Skolem
 symbols. Let y/' be the proof of E', V I- A' obtained from skolemizing y/o. Note that

 V b A' is a skolemization of I, T h A which does not contain Skolem symbols.
 Therefore we can apply Theorem 2 to obtain a cut-free proof y/i of E, Y h A with

 depth(^2) < |^i|qocc(Z, r h A) + |^i| + qocc(E, F h A)

 < (|7r|2qocc(S) + 'n' + l)(c + qocc(S) + 1)

 Finally y/ = ý 2 is a proof of T I- A with depth(y/) < depth^)- H
 The above corollary provides a necessary condition for a super-exponential lower
 bound: to contain Skolem terms with bound variables. Note that in the context

 of Skolemization in higher-order logic, a similar condition was formulated in [9]:
 essentially, it also forbids the application of Skolem symbols to terms containing
 bound variables. There, the condition was formulated for soundness (without it,
 the Skolemization of the axiom of choice becomes provable), while in our setting,
 it concerns complexity.

 §4. A lower bound. For our lower bound, we consider the language 3? = {Pi , P2 ,
 . . . , Go, Gì, G2 . . . } where the Pj are one-place predicate symbols and the G¡ are
 zero-place predicate symbols. The following sequence will be central to proving the
 lower bound:

 1. Rq - G0 y Go.
 2. For N > 0, Rn = (( 3xn)Pn(xn ) V Gn) - > ( ^yN)((PN(yN ) V Gn) A Rn- 1).

 Definition 1 1 . Let F be a formula, then the size of F , denoted by 1 1 F ' | , is defined
 as the number of (logical and non-logical) symbols in F .

 The sizes of the formulas are moderate, but their proofs are long:

 Proposition 2. ||jRaHI = 14 * N + 3.

 Theorem 3. For allLK-proofsnof'~ Rn , 'n' > 2N+l.

 Proof. We proceed by induction on N:
 1. N = 0. Then n:

 Gp I- Gp

 h Go - > Go

 is the shortest LK proof of h Ro. Note that 'n' = 2.
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 2. N > 0. We will describe the shortest LK proof n of Rn, arguing at every step
 that there is only one way to apply the rules. We will also give countermodels
 to show that some rules are not applicable, for this purpose we will give
 interpretations with domain M = {a, b}. The induction hypothesis (IH)
 is: all proofs yj of I- Rn-' are such that 'y/' > 2N . n has the form

 ( 3XM)Pn(xn ) V GN l~ (3y#) ((/*#(>>#) V GN) A RN-') ^
 h {(3XN)PN(XN) V GN) - > (3j>jv)((/V(j>;v) V GN) A RN-')

 because in step (1), only - >r is applicable. In step (2), 3r is not applicable, as
 {(3xn)Pn(xn)) V Gn I- ((Pn(s) V Gn) A Rn-') is not valid for any term s.
 To see this, set G^¡ - f, and if sM = a set P^ = {/?} (and analogously if
 sM - b). Therefore we have to apply V/.

 Tt' is

 M

 Pn(c*N) (3yw)((/V(.yjv) V GN) A RN-') ^
 {3xn)PN(XN) I" (3yw)((/V(.yjv) V GN) A RN-')

 because in step (3), 3r cannot be applied: the countermodel from the previous
 paragraph is also a countermodel here. So 3/ has to be applied. We claim that
 'y/' > 2N . This follows by (IH) and the following:

 Lemma 8. Let n be a proof of Pn{oln) Pj^XUVCvív) V Gn) A Rn-').
 Then there exists a proof y/ of'~ Rn-i such that 'y/' < 'n'.

 which we will prove later. This completes the argument for n'.
 The end-sequent of ni is Gn (ž3jjv)((/V(j;v) V Gn) A Rn-')- We claim

 that 'tí2' > 2N . This follows by (IH) and the following:

 Lemma 9. Let n be a proof of Gn I- {3y n){{P n (y n) V Gn) A Rn-'). Then
 there exists a proof yj of'~ Rn-' such that 'y/' < 'n'.

 which we will also prove later.
 Hence we find that for some constant k ,

 'n'=k + 'w' + 'ni' >k + 2*2N =k + 2N+i > 2N+l. H

 We will use the following result from [11], which also holds for our modified version
 of G3c:

 Proposition 3. For all AS, A

 1 . Ifn is an Ui-proof of A, A, Y h À then there exists an Ui-proof y/ of A, Y b A
 such that 'y/' < 'n'.

 2. If n is an LK-proof of Y h A, A, A then there exists an YK-proof y/ of Y h A, A
 such that 'y/' < 'n'.

 Now, we are ready to give the missing proofs:

 Proof of Lemma 8. First, note that for all axioms A, Y h A, A in rc, it holds that

 A ^ Gn (because Gn occurs only in one polarity), and if A = Pn(s) for some
 term s then A occurs in a subproof <p' of the form
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 (V>l) (<P2)

 n h A, Pjy (s) V Gjv II h A,i?jv-i ^
 n h A, (Pj'[(s) V Gn) A Rn- i

 in n (because the indicated occurrence of Pn^n) in the end-sequent is the only
 positive occurrence of Pn in the end-sequent). Call such subproofs <p' of n degener-
 ate , and call inferences occuring in degenerate subproofs degenerate. Further, call
 an occurrence of a formula in n replaceable if it is an ancestor of the occurrence
 of (3yN)((Ptf(yN) V Gn) A Rn-') in the end-sequent of n that (still) contains the
 indicated disjunction.
 Let p be an inference in n with conclusion Y h A, 0, where © are the replaceable

 occurrences (note that this is general as replaceable occurrences can only occur on
 the right hand side). By induction on the height of /?, we will define a proof np of
 r h A, Rn-i, • • • , Rn-i if P is not degenerate. Otherwise np is undefined. Hence
 we only consider inferences p which are not degenerate:

 1. If p is an axiom A,Tl h A, A, then replaceable occurrences occur at most in
 II, A (otherwise p would be degenerate by the argument given above). Hence
 we may replace those occurrences by Rn-' to obtain a suitable axiom to take
 for 7i p.

 2. If p does not operate on replaceable occurrences then we obtain np from the
 proofs 7 zPi ( ti P2 ) obtained by induction hypothesis by applying p. Note that
 since p is not degenerate by assumption and does not operate on replaceable
 occurrences, p' (and pi) are also not degenerate.

 3. If p is an Ar inference operating on a replaceble occurrence with premises
 p' , pi, then p is of the form:

 (v>i) (<P2)
 Y h A, Pn (S) V Gm Y'~A,®,RN-'

 F h A, 0, (Pn(s) V Gn) A RN-'

 Note that <p2 is degenerate only if the proof ending in p is, which is not
 the case by assumption. Hence we set np = nPl which is a proof of Y h
 A, Rn-' , - • . , Rn- i by induction hypothesis.

 4. If p is an Vr inference operating on a replaceable occurrence, then it is degen-
 erate and hence we do not treat this case.

 5. If p is an 3r inference operating on a replaceable occurrence with premise p'
 then p is of the form

 (v)

 Y I- A,0, (Pn(s) V GN) A RN-', (3yAr)((/VQ^v) V GW) A RN-') ^
 r h A, 0, (3yN)((PN(yN) V Gn) A RN- I)

 Again (p is degenerate only if the subproof ending in p is, which is not the
 case by assumption. Hence we may set itp = np> which is a proof of Y h
 A, Rn-i , • • • , Rn-' by induction hypothesis.

 Observe that if po is the last inference in ti then 7 zPo is a proof of Pn(oln) l~
 Rn-', - . . , Rn-i and by construction, 'nP{)' < 'n'. As Pn{oln) occurs only in
 one polarity, tiPo can easily be transformed into a proof y/ of h
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 such that 'y/' < I^J. Finally, we apply Proposition 3 multiple times to obtain the
 desired LK-proof of h Rn- i . H
 Lemma 9 is proved analogously.
 While Rn has only long proofs, its Skolemization has short proofs. The Skolem-

 ization of Rn is where for all N and for alln < N we define

 1. S" = Go -»• Go.
 2. For n > 0,

 s? = (P„(fN-n(yN,yN- 1, . . . , JWi)) v G„) (3yn)((Pn(yn) v G„) A

 Theorem 4. There exists an LK proof n of'- sk (Rn) such that 'n' < k * TV + c for
 some constants c, k.

 Proof. Let N, n e N such that N > n. Let

 sn = f N-n(yN,yN- 1, • • • ,^/t+l)
 _7V _ r , N , TV „ ,

 °n _ - <- , sN,yN-i <- , sN_ìaN_ì,. . ,,yn+ „ 1 <- ,

 Observe that s% is a Skolem constant, and that for all 0 < n < N, s^a^ is
 a closed term. Therefore the range of a„ consists of closed terms and hence

 We will construct LK proofs n of T h A, for all N > n and multisets of
 formulas T, A, such that 'n' <k*n + c, by induction on n. For reasons of clarity,
 we will (mostly) not write down the contexts T, A explicitly - they are only needed
 because our calculus does not have rules for weakening.

 1. n = 0. Observe that S[j = Go -> Go = S¡ja for all substitutions o . Take as n

 Gp h Gq

 h Go Go

 and note that 'n' =2.
 2. n > 0, N > 0. Let n be

 G„ A, <j„ v
 Pn (s»o?) V G„ A, P„ (*>*), Gn v v 1 (nm)

 V G„ h A, ((Pn(yn) V Gn) A <- Af
 V Gn h ((3j„)((/>„Q;,,) V G„) A ^ '

 h ((P„{s?) V G„) -»• (37„)((P„(^) V G„) A ^_!))<

 where n^IH) is a proof of F h A, S^_xg^_x such that |7T(7//) | < k * (n - 1) + c
 obtained by applying the induction hypothesis. Then for some constant / < k ,

 'n' - I -J- |7£(///)| ^ I H~ - 1) ~h c < kn H- c. ~'
 Note that the formulas Rn have also linear proofs in the £ -calculus as the e-terms
 simulate the Skolem terms. Furthermore, in the above lower bound, the assumption
 of working in a cut-free setting is necessary.

 Proposition 4. There are proofs jzn with cuts of'- Rn s.t. 'kn' = k * TV + c for
 some constants k , c.
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 Proof. The sequents

 (3 xn)PN(XN) V GN l~ {3Zn){PX{zn) V GN)

 have constant-length proofs y/^. Let no be

 Gp Gp

 h Go - » Go

 and 7i ¡y (or N > 0 be

 y/N (3ZN)(PN(ZN) V GN) b (3yN)((PN(yN) V GN) A RN-')
 (3xm)PN(XN) V Gn h V GN) A i£jv-i)

 I- Rn H

 §5. sra-Skolemization. In this section, we consider an alternative Skolemization
 that, even in the cut-free case, does not have an elementary elimination of Skolem
 symbols. This optimized version sra-Skolemization of structural Skolemization
 allows minimization of quantifier scope. This is analogous to the ô+ rule for free
 variable semantic tableaux introduced in [7].

 Definition 12. We define a rewrite relation ->,v/„ on formulas that "pushes quan-
 tifiers down":

 {VxhF ^ -0x)F,

 ('/x)(F V G) {'/x)F V G, (Vx)(G V F) G V (Vjc)F

 provided that x is not free in G, and so on for the other cases and connectives. If
 F -»*„ G then sk(G) is an sm- Skolemization of F . This definition is extended to
 sequents in the obvious way.

 Clearly, in general sm-Skolemization creates smaller Skolem terms than structural
 Skolemization. Using results from [2], we show that there may be a non-elementary
 difference in cut-free proof complexity between a formula and its sra-Skolemization.
 For this purpose, we define the functions e , s by e{0 , k) = k, e(n + 1, k) = 2e(<n-k'
 s(n) = e(n , 1).

 Theorem 5. There exist sequences of sequents Sn , Mn and constants c , d such that
 for all n

 1 . Mn is an sm- Skolemization of Sn , and
 2. there exists a cut-free proof nn of Mn s.t. 'n„' < e(c, n) (/'. e. elementary ), and
 3. for all cut-free proofs nn of Sn , |7rw| > s(n - d) (/. e. non-elementary).

 Proof. Consider the sequence of sequents Tn Statman uses to show the non-
 elementary complexity of cut-elimination in [10]. Statman constructs short proofs
 with cut nn of Tn. Consider the end-sequent T ^ of rìnT where T is the set of
 eigenvariables of nn. We take sk(rw') for Mn. For Sn we take a certain "bad
 prenexification" of T'n, constructed as the witness for (e) in Theorem 4.1 in [2].
 Since S„ is a prenexification of T'n> Sn ~+*m T'n , which shows 1. Further, 2. follows
 from (d), and 3. follows from (e) and (c)1 of the aformentioned Theorem. The

 1 (c) is Statman's result.
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 bounds there are stated in terms of the Herbrand complexity HC(S), which is the
 number of formulas of a minimal Herbrand sequent of S . But since we can (using
 the techniques described in this paper) go from Herbrand sequents to proofs and
 back with at most exponential expense, we get the desired bounds. H

 §6. Conclusion. We would like to stress that the complexity considerations in this
 paper do not depend so much on Skolemization per se but rather on the rigidity of
 the eigenvariable conditions and the form of the proof. The eigenvariable conditions
 can be more relaxed, e.g., for sequent calculus variants of Hilberťs £ -calculus or a
 sequent calculus that uses Henkin constants instead of eigenvariables. The length
 of cut-free proofs in such calculi corresponds to that of skolemized cut-free proofs
 which allows to repeat the complexity results of this paper. In case the format of
 the proof is changed from tree-like to dag-like the questions remain open.

 The question about the complexity of deskolemization of proofs with cuts in the
 general case is left open. Among the main obstacles seems to be the difficulty of
 proving lower bounds for proofs with cuts. Another open question posed in the
 cut-free and general case is the complexity of deskolemization in presence of identity
 axioms for the Skolem functions. This question is interesting because it is connected
 to an assymmetry between model-theoretic and proof-theoretic Skolemization. In
 model theory identity axioms for Skolem functions are always assumed as one
 intends to work algebraically in the open extension. In proof theory already existing
 proofs are skolemized and therefore identity axioms for Skolem functions are never
 used.

 Acknowledgements. The authors would like to thank Bruno Woltzenlogel Paleo
 for insightful comments on an early draft of this paper and an anonymous referee
 for many comments that led to improvements of the final version.

 REFERENCES

 [1] Jeremy Avigad, Eliminating definitions and Skolem functions in first-order logic , ACM Transac-
 tions on Computational Logic , vol. 4 (2003), no. 3, pp. 402-415.

 [2] Matthias Baaz and Alexander Leitsch, Skolemization and proof complexity , Fundamenta In-
 formaticae , vol. 20 (1994), no. 4, pp. 353-379.

 [3]

 pp. 127-177.
 [4]

 tion , vol. 29 (2000), no. 2, pp. 149-176.
 [5] Peter Clote and Jan Krajíček, Open problems , Arithmetic proof theory and computational

 complexity (Peter Clote and Jan Krajíček, editors), Oxford University Press, 1993, pp. 1-19.
 [6] Gerhard Gentzen, Untersuchungen über das logische Schließen II, Mathematische Zeitschrift ,

 vol. 39 (1935), no. 1, pp. 405-431.
 [7] Reiner Hähnle and Peter H. Schmitt, The liberalized S-rule in free variable semantic tableaux ,

 Journal of Automated Reasoning , vol. 13 (1994), no. 2, pp. 21 1-221.
 [8] David Hilbert and Paul Bernays, Grundlagen der Mathematik II, 2nd ed., Springer, 1970.
 [9] Dale Miller, A compact representation of proofs, Studia Logica , vol. 46 (1987), no. 4, pp. 347-

 370.

 [10] Richard Statman, Lower bounds on Herbrand' s theorem , Proceedings of the American Mathe-
 matical Society, vol. 75 (1979), pp. 104-107.

 [1 1] A. S. Troelstra and H. Schwichtenberg, Basic proof theory, second ed., Cambridge Tracts in
 Theoretical Computer Science, Cambridge University Press, 2000.

This content downloaded from 128.131.42.83 on Tue, 03 Mar 2020 13:19:51 UTC
All use subject to https://about.jstor.org/terms



 686 MATTHIAS BAAZ, STEFAN HETZL. AND DANIEL WELLER

 INSTITUTE OF DISCRETE MATHEMATICS AND GEOMETRY (E104)
 VIENNA UNIVERSITY OF TECHNOLOGY

 WIEDNER HAUPTSTRAßE 8-10, 1040 VIENNA, AUSTRIA

 E-mail : baaz@logic.at

 LABORATOIRE PREUVES, PROGRAMMES ET SYSTÈMES (PPS)
 UNIVERSITÉ PARIS DIDEROT - PARIS 7

 175 RUE DU CHEVALERET, 75013 PARIS, FRANCE

 E-mail : stefan.hetzl@pps.jussieu.fr

 INSTITUTE OF COMPUTER LANGUAGES (E185)
 VIENNA UNIVERSITY OF TECHNOLOGY

 FAVORITENSTRAßE 9, 1040 VIENNA, AUSTRIA

 E-mail : weller@logic.at

This content downloaded from 128.131.42.83 on Tue, 03 Mar 2020 13:19:51 UTC
All use subject to https://about.jstor.org/terms


	Contents
	p. 669
	p. 670
	p. 671
	p. 672
	p. 673
	p. 674
	p. 675
	p. 676
	p. 677
	p. 678
	p. 679
	p. 680
	p. 681
	p. 682
	p. 683
	p. 684
	p. 685
	p. 686

	Issue Table of Contents
	The Journal of Symbolic Logic, Vol. 77, No. 2 (JUNE 2012) pp. 369-728
	Front Matter
	ON SUBGROUPS OF THE ADDITIVE GROUP IN DIFFERENTIALLY CLOSED FIELDS [pp. 369-391]
	WEAKLY ONE-BASED GEOMETRIC THEORIES [pp. 392-422]
	HENSON AND RUBEL'S THEOREM FOR ZILBER'S PSEUDOEXPONENTIATION [pp. 423-432]
	NONHEMIMAXIMAL DEGREES AND THE HIGH/LOW HIERARCHY [pp. 433-446]
	A REAL OF STRICTLY POSITIVE EFFECTIVE PACKING DIMENSION THAT DOES NOT COMPUTE A REAL OF EFFECTIVE PACKING DIMENSION ONE [pp. 447-474]
	þÿ�þ�ÿ���þ���ÿ�������W�������O�������O�������D�������I�������N�������'�������S������� �������A�������X�������I�������O�������M������� �������(�������*�������)�������,������� �������B�������O�������U�������N�������D�������E�������D������� �������F�������O�������R�������C�������I�������N�������G������� �������A�������X�������I�������O�������M�������S�������,������� �������A�������N�������D������� �������P�������R�������E�������C�������I�������P�������I�������T�������O�������U�������S������� �������I�������D�������E�������A�������L�������S������� �������O�������N������� �������É��� ����������� �������[�������p�������p�������.������� �������4�������7�������5�������-�������4�������9�������8�������]
	ON UNIFORM DEFINABILITY OF TYPES OVER FINITE SETS [pp. 499-514]
	SOME RESULTS ABOUT (+) PROVED BY ITERATED FORCING [pp. 515-531]
	P
max
VARIATIONS FOR SEPARATING CLUB GUESSING PRINCIPLES
[pp. 532-544]
	MULTIPLICATIVE VALUED DIFFERENCE FIELDS [pp. 545-579]
	ON RATIONAL LIMITS OF SHELAH-SPENCER GRAPHS [pp. 580-592]
	ON COUNTABLE CHAINS HAVING DECIDABLE MONADIC THEORY [pp. 593-608]
	þÿ�þ�ÿ���þ���ÿ�������$�������R�������T�������\�������b�������e�������g�������i�������n�������{�������a�������r�������r�������a�������y�������}�������{�������*�������{�������2�������0�������}�������{�������c�������}�������}������� �������2������� �������\�������\������� �������2������� �������\�������\������� �������\�������e�������n�������d�������{�������a�������r�������r�������a�������y�������}������� �������$�������
�������D�������O�������E�������S������� �������N�������O�������T������� �������I�������M�������P�������L�������Y������� �������W�������K�������L��� �����������
�������[�������p�������p�������.������� �������6�������0�������9�������-�������6�������2�������0�������]
	A VERSION OF p-ADIC MINIMALITY [pp. 621-630]
	HAUSDORFF MEASURE ON O-MINIMAL STRUCTURES [pp. 631-648]
	þÿ�þ�ÿ���þ���ÿ�������T�������R�������U�������T�������H������� �������D�������E�������F�������I�������N�������I�������T�������I�������O�������N�������S������� �������W�������I�������T�������H�������O�������U�������T������� �������E�������X�������P�������O�������N�������E�������N�������T�������I�������A�������T�������I�������O�������N������� �������A�������N�������D������� �������T�������H�������E������� �������£��� ����������� �������C�������O�������L�������L�������E�������C�������T�������I�������O�������N������� �������S�������C�������H�������E�������M�������E������� �������[�������p�������p�������.������� �������6�������4�������9�������-�������6�������5�������5�������]
	SHARPENED LOWER BOUNDS FOR CUT ELIMINATION [pp. 656-668]
	ON THE COMPLEXITY OF PROOF DESKOLEMIZATION [pp. 669-686]
	A STOCHASTIC INTERPRETATION OF PROPOSITIONAL DYNAMIC LOGIC: EXPRESSIVITY [pp. 687-716]
	ADDING LINEAR ORDERS [pp. 717-725]
	CORRIGENDUM TO: "REAL CLOSED FIELDS AND MODELS OF ARITHMETIC" [pp. 726-726]
	CORRIGENDUM TO: "QUANTIFIER ELIMINATION IN VALUED ORE MODULES" [pp. 727-728]
	Back Matter



