
Theoretical Computer Science 549 (2014) 1–16
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Algorithmic introduction of quantified cuts ✩

Stefan Hetzl a, Alexander Leitsch b, Giselle Reis b, Daniel Weller a,∗
a Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Vienna, Austria
b Institute of Computer Languages, Vienna University of Technology, Vienna, Austria

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 January 2013
Received in revised form 15 May 2014
Accepted 27 May 2014
Available online 2 June 2014
Communicated by A. Avron

Keywords:
Proof compression
Cut-introduction
Classical logic
First-order logic

We describe a method for inverting Gentzen’s cut-elimination in classical first-order logic.
Our algorithm is based on first computing a compressed representation of the terms
present in the cut-free proof and then cut-formulas that realize such a compression.
Finally, a proof using these cut-formulas is constructed. Concerning asymptotic complexity,
this method allows an exponential compression of quantifier complexity (the number of
quantifier-inferences) of proofs.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Cut-elimination introduced by Gentzen [15] is the most prominent form of proof transformation in logic and plays
an important role in automating the analysis of mathematical proofs. The removal of cuts corresponds to the elimination
of intermediate statements (lemmas), resulting in a proof which is analytic in the sense that all statements in the proof
are subformulas of the result. Thus a proof of a combinatorial statement is converted into a purely combinatorial proof.
Cut-elimination is therefore an essential tool for the analysis of proofs, especially to make implicit parameters explicit.

In this paper we present a method for inverting Gentzen’s cut-elimination by computing a proof with cut from a given
cut-free proof as input. As cut-elimination is the backbone of proof theory, there is considerable proof-theoretic interest and
challenge in understanding this transformation sufficiently well to be able to invert it. But our interest in cut-introduction
is not only of a purely theoretical nature. Proofs with cuts have properties that are essential for applications: on the one
hand, cuts are indispensable for formalizing proofs in a human-readable way. One the other hand cuts have a very strong
compression power in terms of proof length.

Computer-generated proofs are typically analytic, i.e. they only contain logical material that also appears in the the-
orem shown. This is due to the fact that analytic proof systems have a considerably smaller search space which makes
proof-search practically feasible. In the case of the sequent calculus, proof-search procedures typically work on the cut-free
fragment. But also resolution is essentially analytic as resolution proofs satisfy the subformula property of first-order logic.
An important property of non-analytic proofs is their considerably smaller length. The exact difference depends on the
logic (or theory) under consideration, but it is typically enormous. In (classical and intuitionistic) first-order logic there are
proofs with cut of length n whose theorems have only cut-free proofs of length 2n (where 20 = 1 and 2n+1 = 22n) (see [36]

✩ This work was supported by the projects P22028-N13, I603-N18 and P25160-N25 of the Austrian Science Fund (FWF), by the ERC Advanced Grant
ProofCert and the WWTF Vienna Research Group 12-04.

* Corresponding author.
E-mail addresses: stefan.hetzl@tuwien.ac.at (S. Hetzl), leitsch@logic.at (A. Leitsch), giselle@logic.at (G. Reis), weller@logic.at (D. Weller).
http://dx.doi.org/10.1016/j.tcs.2014.05.018
0304-3975/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2014.05.018
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:stefan.hetzl@tuwien.ac.at
mailto:leitsch@logic.at
mailto:giselle@logic.at
mailto:weller@logic.at
http://dx.doi.org/10.1016/j.tcs.2014.05.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2014.05.018&domain=pdf

2 S. Hetzl et al. / Theoretical Computer Science 549 (2014) 1–16
and [31]). The length of a proof plays an important role in many situations such as human readability, space requirements
and time requirements for proof checking. For most of these situations general-purpose data compression methods cannot
be used as the compressed representation would need to be uncompressed for checking proof theoretical properties. It is
therefore of high practical interest to develop proof-search methods which produce non-analytic and hence potentially much
shorter proofs. In the method presented in this paper we start with a cut-free proof and abbreviate it by computing useful
cuts based on a structural analysis of the cut-free proof.

There is another, more theoretical, motivation for introducing cuts which derives from the foundations of mathematics:
most of the central mathematical notions have developed from the observation that many proofs share common structures
and steps of reasoning. Encapsulating those leads to a new abstract notion, like that of a group or a vector space. Such a
notion then builds the base for a whole new theory whose importance stems from the pervasiveness of its basic notions in
mathematics. From a logical point of view this corresponds to the introduction of cuts into an existing proof database. While
we cannot claim to contribute much to the understanding of such complex historical processes by the current technical state
of the art, this second motivation is still worthwhile to keep in mind, if only to remind us that we are dealing with a difficult
problem here.

Gentzen’s method of cut-elimination is based on reductions of cut-derivations (subproofs ending in a cut), transforming
them into simpler ones; basically the cut is replaced by one or more cuts with lower logical complexity. A naive reversal
of this procedure is infeasible as it would lead to a search tree which is exponentially branching on some nodes and
infinitely branching on others. Therefore we base our procedure on a deeper proof-theoretic analysis: in the construction
of a Herbrand sequent S ′ corresponding to a cut-free proof ϕ′ (see e.g. [3]) obtained by cut-elimination on a proof ϕ of
a sequent S with cuts, only the substitutions generated by cut-elimination on quantified cuts are relevant. In fact, it is
shown in [18] that, for proofs with Σ1 and Π1-cuts only, S ′ can be obtained just by computing the substitutions defined by
cut-elimination without applying Gentzen’s procedure as a whole. Via the cuts in the proof ϕ one can define a tree grammar
generating a language consisting exactly of the terms (to be instantiated for quantified variables in S) for obtaining the
Herbrand sequent S ′ [18]. Hence, generating a tree grammar G from a set of Herbrand terms T (generating T) corresponds
to an inversion of the quantifier part of Gentzen’s procedure. The computation of such an inversion forms the basis of the
method of cut-introduction presented in this paper. Such an inversion of the quantifier part of cut-elimination determines
which instances of the cut-formulas are used but it does not determine the cut-formulas. In fact, a priori it is not clear
that every such grammar can be realized by actual cut-formulas. However, we could show that, for any such tree grammar
representing the quantifier part of potential cut-formulas, actual cut-formulas can be constructed. Finally, a proof containing
these cut-formulas can be constructed.

Work on cut-introduction can be found at a number of different places in the literature. Closest to our work are other
approaches which aim to abbreviate or structure a given input proof : [41] is an algorithm for the introduction of atomic
cuts that is capable of exponential proof compression. The method [13] for propositional logic is shown to never increase
the size of proofs more than polynomially. Another approach to the compression of first-order proofs by introduction of
definitions for abbreviating terms is [40].

Viewed from a broader perspective, this paper should be considered part of a large body of work on the generation
of non-analytic formulas that has been carried out by numerous researchers in various communities. Methods for lemma
generation are of crucial importance in inductive theorem proving which frequently requires generalization [7], see e.g. [25]
for a method in the context of rippling [8] which is based on failed proof attempts. In automated theory formation [9,10],
an eager approach to lemma generation is adopted. This work has, for example, led to automated classification results
of isomorphism classes [34] and isotopy classes [35] in finite algebra. See also [28] for an approach to inductive theory
formation. In pure proof theory, an important related topic is Kreisel’s conjecture (see footnote 3 on page 400 of [38]) on
the generalization of proofs. Based on methods developed in this tradition, [4] describes an approach to cut-introduction
by filling a proof skeleton, i.e. an abstract proof structure, obtained by an inversion of Gentzen’s procedure with formulas
in order to obtain a proof with cuts. The use of cuts for structuring and abbreviating proofs is also of relevance in logic
programming: [30] shows how to use focusing in order to avoid proving atomic subgoals twice, resulting in a proof with
atomic cuts.

This paper is organized as follows:
In Section 3 we define Herbrand sequents and extended Herbrand sequents which represent proofs with cut. The concept

of rigid acyclic regular tree grammars is applied to establish a relation between an extended Herbrand sequent S∗ and a
(corresponding) Herbrand sequent S ′: the language defined by this grammar is just the set of terms T to be instantiated for
quantifiers in the original sequent S to obtain S ′ . Given such a grammar G generating T there exists a so-called schematic
extended Herbrand sequent Ŝ in which the (unknown) cut-formulas are represented by monadic second-order variables. It is
proved that Ŝ always has a solution, the canonical solution. From this solution, which gives an extended Herbrand sequent
and the cut-formulas for a proof, the actual proof with these cuts is constructed.

To make the underlying methods more transparent, Section 3 deals only with end-sequents of the form ∀x F →. In
Section 4 the method is generalized to sequents of the form

∀x̄1 F1, . . . ,∀x̄n Fn → ∃ ȳ1G1, . . . ,∃ ȳmGm

S. Hetzl et al. / Theoretical Computer Science 549 (2014) 1–16 3
where the x̄i, ȳ j are vectors of variables and ∀z1 · · · zk stands for ∀z1 · · · ∀zk . This form of sequents is more useful for
practical applications and covers all of first-order logic as an arbitrary sequent can be transformed into one of this form by
Skolemization and prenexification. We prove that all results obtained in Section 3 carry over to this more general case.

Given a cut-free proof ϕ and a corresponding Herbrand term set T , the canonical solution corresponding to a non-trivial
minimal grammar generating T yields a proof ψ with lower quantifier-complexity (which is the number of quantifier
inferences in a proof) than ϕ .

In Section 5 a nondeterministic algorithm CI is defined which is based on the techniques developed in Section 3. We
show that CI is, in a suitable sense, an inversion of Gentzen’s cut-elimination method. A sequence of cut-free proofs is
defined and it is proven that the application of CI to this sequence results in an exponential compression of quantifier
complexity.

This paper improves the publication [21] in several crucial directions: (1) the method for introducing a single ∀-cut is
generalized to a method introducing an arbitrary number of ∀-cuts, which requires – among others – a length-preserving
transformation of extended Herbrand-sequents to proofs with cuts based on Craig interpolation, (2) we show that our
method is, in a suitable sense, an inversion of Gentzen’s cut-elimination method, (3) the end-sequent may contain blocks of
quantifiers instead of just single ones, (4) the decomposition of terms is represented as a problem of grammars, and (5) it is
shown that the proof compression (measured by quantifier complexity) obtained by the new method is exponential while
it was only quadratic for the one of [21].

The method CI developed in this paper is a systematic, proof-theoretic method to compress the quantifier complexity of
first-order proofs by the introduction of cuts. Still, the generated cut-formulas are all universal. A desirable extension of this
method to introduce cuts with alternating quantifiers (which is necessary to obtain super-exponential compressions) is left
to future work. Such an extension is highly non-trivial as it first requires the development of an adequate notion of tree
grammar for extending the underlying proof-theoretic results to cuts with quantifier alternations.

2. A motivating example

Consider the sequents

Sn = Pa,∀x (P x ⊃ P f x) → P f 2n
a.

The straightforward cut-free proof of Sn in the sequent calculus uses the successor-axiom 2n times. In fact, it is easy to
show that every cut-free proof has to contain all of these 2n instances. On the other hand, if we allow the use of cuts, we
can give a considerably shorter proof by first showing

∀x
(

P x ⊃ P f 2x
)

from the axiom and then using this formula twice to show

∀x
(

P x ⊃ P f 4x
)

and so on. In general we cut with the constant-length proofs of

∀x
(

P x ⊃ P f 2i
x
) → ∀x

(
P x ⊃ P 2i+1

x
)

and hence obtain a proof of Sn that uses only O (n) inference steps instead of the Ω(2n) of the cut-free proof. Note how the
structures of these two proofs are reminiscent of the binary and the unary representation of numbers. This proof sequence
is an exponential version of the sequences of Statman [36] and Orevkov [31] and has also been considered by Boolos [6].

In this paper we want to leverage this compression power of lemmas by automatically transforming cut-free proofs into
proofs using compressing lemmas.

3. Proof-theoretic infrastructure

Gentzen’s proof of cut-elimination [15] can be understood as the application of a set of local proof rewriting rules with
a terminating strategy. A first naive approach to cut-introduction would be to consider the inversion of these local rewriting
steps as a search algorithm. While this procedure would in theory allow to reverse every cut-elimination sequence, it
becomes clear quickly that it is not feasible in practice: not only would we have to guess an enormous amount of trivialities
(e.g. rule permutations) but the inversion of rewriting rules which erase a part of the proof lead to the necessity of correctly
guessing an entire subproof. Therefore we need more abstract proof representations.

The proof representations we will be using and their relationships are depicted in Fig. 1. The purpose of this section is
to explain these representations and their relationships. As a first orientation let us just mention that the rows of Fig. 1
contain notions on increasingly abstract levels: the level of proofs in the first row, that of formulas in the second row and
that of terms in the third row. The transformations in each column are complexity-preserving (in a sense that will be made
precise soon). The transformation of an object in the left column to an object in the right column increases its complexity
considerably (exponentially in this paper).

4 S. Hetzl et al. / Theoretical Computer Science 549 (2014) 1–16
proof π with cuts
cuttop-elimination−→ cut-free proof π∗

� Theorem 2 � Theorem 1

extended Herbrand-sequent
Theorem 4−→ Herbrand-sequent H(π∗)

� Theorem 5 � triv.

grammar G(π)
defines−→ language L(G(π))

Fig. 1. Proof-theoretic setting of this paper.

For this whole section, fix a quantifier-free formula F with one free variable x s.t. ∀x F is unsatisfiable. We will, for
the sake of simplicity, explain our algorithm first in the setting of proofs of the end-sequent ∀x F →. We will show how to
abbreviate a given cut-free proof of this sequent by the introduction of cuts, which are of the form ∀x A for A quantifier-free,
such cuts will be called Π1-cuts in the sequel. The algorithm will then be generalized to less restrictive end-sequents in
Section 4.

3.1. Proofs and Herbrand’s theorem

A sequent is an ordered pair of sets of formulas, written as Γ → Δ. While the concrete variant of the sequent calculus
is of little importance to the algorithms presented in this paper let us, for the sake of precision, fix it to be G3c + Cutcs

1

from [39].

Definition 1 (Herbrand-sequent). A tautological sequent of the form H : F [x\t1], . . . , F [x\tn] → is called a Herbrand-sequent
of ∀x F →. We define |H | = n and call it the complexity of H .

We thus measure the number of instances of ∀x F used for showing its unsatisfiability. This complexity-measure is of
fundamental importance as the undecidability of first-order logic hinges on it: a bound gives a decision procedure as most
general unification can be used for bounding the term size in the number of instances; it then only remains to enumerate all
possible instances having at most this bounding size. On the level of proofs we keep track of the number of used instances
by counting the number of ∀l- and ∃r-inferences, for the other quantifier rules (∀r and ∃l) one application per formula
suffices.

Definition 2. We define the quantifier-complexity of a proof π , written as |π |q as the number of ∀l- and ∃r-inferences in π .

Herbrand-sequents then correspond to cut-free proofs in the following sense.

Theorem 1. ∀x F → has a cut-free proof π with |π |q = l iff it has a Herbrand-sequent H with |H | = l.

Proof sketch. Given π we obtain H by reading off the instances of ∀x F from the proof π and collecting them in a sequent
(if π contains some duplicate instances we add dummy instances to H for obtaining |H | = |π |q).

Given H we first compute any propositional proof of H and obtain a cut-free proof π of ∀x F → by introducing the
universal quantifier for each of those instances and applying a sufficient number of contractions. �

The above theorem shows that we can think of a Herbrand-sequent as a concise representation of a cut-free proof. A first
important step towards our cut-introduction algorithm will be the generalization of this relation to proofs with an arbitrary
number of Π1-cuts (in a way similar to [17]).

Definition 3. Let u1, . . . , um be terms, let A1, . . . , An be quantifier-free formulas, let α1, . . . , αn be variables, let V (t) denote
the set of variables occurring in the term t , and let si, j for 1 � i � n, 1 � j � k j be terms s.t.

1. V(Ai) ⊆ {αi, . . . , αn} for all i, and
2. V(si, j) ⊆ {αi+1, . . . , αn} for all i, j.

Then the sequent

H = F [x\u1], . . . , F [x\um], A1 ⊃
k1∧

j=1

A1[α1\s1, j], . . . , An ⊃
kn∧

j=1

An[αn\sn, j] →

is called an extended Herbrand-sequent of ∀x F → if H is a tautology.

1 G3c + Cutcs has no structural rules and all its rules are invertible.

S. Hetzl et al. / Theoretical Computer Science 549 (2014) 1–16 5
What is this cryptic definition supposed to mean? An extended Herbrand-sequent of the above form will represent a
proof with n Π1-cuts whose cut formulas are ∀α1 A1, . . . , ∀αn An (or sometimes minor variants thereof), the αi are the
eigenvariables of the universal quantifiers in these cut-formulas, the si, j the terms of the instances of the cut-formulas on
the right-hand side of the cut and the ui the terms of the instances of our end-formula ∀x F . The complexity of an extended
Herbrand-sequent H of the above form is defined as |H | = m + ∑n

j=1 k j . One can view an extended Herbrand-sequent
together with a propositional proof of it as a particular form of proof in the ε-calculus [24] with the cuts corresponding to
the critical formulas. We obtain the following correspondence to the sequent calculus:

Theorem 2. ∀x F → has a proof π with Π1-cuts and |π |q = l iff it has an extended Herbrand-sequent H with |H | = l.

While this theorem looks plausible it is not as straightforward to prove as one may expect. Its proof relies on Craig’s
interpolation theorem [12] which we briefly repeat here for the reader’s convenience in the version of [38] and restricted to
propositional logic. We split a sequent into two parts by writing it as a partition Γ1 ; Γ2 → Δ1 ; Δ2. The purpose of doing
so is merely to mark Γ1, Δ1 as belonging to one and Γ2, Δ2 as belonging to the other part of the partition. The logical
meaning of Γ1 ; Γ2 → Δ1 ; Δ2 is just Γ1, Γ2 → Δ1, Δ2.

Theorem 3. If a quantifier-free sequent Γ1 ; Γ2 → Δ1 ; Δ2 is a tautology, then there is a quantifier-free formula I s.t.

1. Both Γ1 → Δ1, I and I, Γ2 → Δ2 are tautologies, and
2. All atoms that appear in I appear in both Γ1 → Δ1 and Γ2 → Δ2 .

Proof. See [38]. �
Proof of Theorem 2. For the left-to-right direction we proceed analogously to the cut-free case: by passing through the
proof π and reading off the instances of quantified formulas (of both the end-formula and the cuts) we obtain an extended
Herbrand-sequent H with |H | � |π |q (which can be padded with dummy instances if necessary in order to obtain |H | =
|π |q).

For the right-to-left direction let

H = F [x\u1], . . . , F [x\um], A1 ⊃
k1∧

j=1

A1[α1\s1, j], . . . , An ⊃
kn∧

j=1

An[αn\sn, j] →

be an extended Herbrand-sequent and let us begin by introducing some abbreviations. For a set of terms T and a formula
F , write F [x\T] for the set of formulas {F [x\t] | t ∈ T }. Abbreviate the “cut-implication” Ai ⊃ ∧ki

j=1 Ai[αi\si, j] as CIi and let
U = {u1, . . . , um}. Then H can be written more succinctly as F [x\U], CI1, . . . , CIn →.

Let Ui = {u ∈ U | V(u) ⊆ {αi+1, . . . , αn}} for i = 0, . . . , n. First we will show that it suffices to find quantifier-free formulas
A′

1, . . . , A
′
n s.t. the sequent

H ′ = F [x\U], A′
1 ⊃

k1∧

j=1

A′
1[α1\s1, j], . . . , A′

n ⊃
kn∧

j=1

A′
n[αn\sn, j] →

has a proof of the following linear form:

....
F [x\U] → A′

1, . . . , A′
n

....∧k1
j=1 A′

1[α1\s1, j], F [x\U1] → A′
2, . . . , A′

n

F [x\U],CI′1 → A′
2, . . . , A′

n

⊃l

....
F [x\U],CI′1, . . . ,CI′n−1 → A′

n

....∧kn
j=1 A′

n[αn\sn, j], F [x\Un] →
F [x\U],CI′1, . . . ,CI′n → ⊃l

where CI′i abbreviates A′
i ⊃ ∧ki

j=1 A′
i[αi\si, j]. This suffices because in the above proof we can introduce cuts and quantifiers

by replacing a segment of the form

F [x\U],CI′1, . . . ,CI′i−1 → A′
i, . . . , A′

n
∧ki

j=1 A′
i[αi\si, j], F [x\Ui] → A′

i+1, . . . , A′
n

F [x\U],CI′1, . . . ,CI′i → A′
i+1, . . . , A′

n

⊃l

by

6 S. Hetzl et al. / Theoretical Computer Science 549 (2014) 1–16
F [x\Ui−1],∀x F → A′
i, . . . , A′

n

F [x\Ui],∀x F → A′
i, . . . , A′

n

∀∗
l

F [x\Ui],∀x F → ∀x A′
i[αi\x], A′

i+1, . . . , A′
n

∀r

A′
i[αi\si, j]ki

j=1, F [x\Ui] → A′
i+1, . . . , A′

n

∀x A′
i[αi\x], F [x\Ui] → A′

i+1, . . . , A′
n

∀∗
l

F [x\Ui],∀x F → A′
i+1, . . . , A′

n
cut

and finishing the proof at its root by

F [x\Un],∀x F →
∀x F → ∀∗

l .

This transformation results in a proof whose number of ∀l-inferences is the complexity of the extended Herbrand-sequent
as every term of H is introduced exactly once.

Let us now turn to the construction of the A′
i . Write

Li for CI1, . . . ,CIi−1, F [x\U] → A′
i, . . . , A′

n, and

Ri for
ki∧

j=1

A′
i[αi\si, j], F [x\Ui] → A′

i+1, . . . , A′
n.

Note that Li and Ri depend only on those A′
j with j � i and note furthermore that Ln+1 is the extended Herbrand-sequent

H which is a tautology by assumption. Fix i ∈ {1, . . . , n}. Assuming � Li+1 we will now construct A′
i and show � Li and � Ri .

From � Li+1 we obtain

� CI1, . . . ,CIi−1, F [x\U] → Ai, A′
i+1, . . . , A′

n and (1)

� CI1, . . . ,CIi−1, F [x\(U \ Ui)]︸ ︷︷ ︸
Γ

,

ki∧

j=1

Ai[αi\si, j], F [x\Ui]
︸ ︷︷ ︸

Π

→ A′
i+1, . . . , A′

n︸ ︷︷ ︸
Λ

(2)

from an application of ⊃l to CIi . Applying the propositional interpolation theorem to the partition Γ ; Π → ; Λ of (2)
yields I s.t. � Γ → I and � Π, I → Λ. Furthermore I contains only such atoms which appear in Π → Λ, hence V(I) ⊆
{αi+1, . . . , αn}. Define A′

i as Ai ∧ I . Observe that � Ri follows from � Π, I → Λ and � Li follows from (1) and � Γ → I .
Hence Li, Ri for i = 1, . . . , n are tautologies. But L1, R1, . . . , Rn are exactly the leaves of the linear proof from above which
finishes the proof of the theorem. �

This result does not only generalize Proposition 2 of [21] to the case of an arbitrary number of cuts but also improves it
considerably, even for the case of a single cut: the use of interpolants is new in this paper and allows to obtain |π |q � |H |
for an extended Herbrand sequent H . In general it is not possible to read back an extended Herbrand-sequent to a proof of
linear form without changing the cut formulas as the following example shows. The reason for insisting on this linear form
is that it does not contain any duplicate instances which permits to show the property |π |q = |H |. The duplication behavior
of connectives in this transformation is reminiscent of the complexity results in [2].

Remark 1. The complexity of the proof π obtained from the extended Herbrand-sequent H can also be bound beyond its
pure quantifier complexity |π |q. Let d(ψ) denote the depth of a proof ψ , i.e. the maximal number of inferences on a branch
and let ‖H‖ denote the logical complexity of H . Then the right-to-left direction of Theorem 2 can be strengthened as
follows: there is a constant c s.t. for every extended Herbrand sequent H of ∀x F → with n cuts and |H | = l there is a proof
π with n Π1-cuts, |π |q = l and d(π) � cn‖H‖. This bound can be obtained from carrying out the proofs of Theorem 3 and
Theorem 2 using d (derivability in depth d) instead of � (validity). It is created by the n-fold iteration of transformations
of a proof of depth d to a proof of depth c · d.

Example 1. Let F = P (x) ∧ (P (c) ⊃ Q (x)) ∧ (Q (x) ⊃ P (d)) ∧ ¬P (d) and A1 = P (α1). Furthermore let m = 1, u1 = α1 and
n = 1, k1 = 1, s1,1 = c. Then

E = F [x\u1], . . . , F [x\um], A1 ⊃
k1∧

j=1

A1[α1\s1, j], . . . , An ⊃
kn∧

j=1

An[αn\sn, j] →

= P (α1) ∧ (
P (c) ⊃ Q (α1)

) ∧ (
Q (α1) ⊃ P (d)

) ∧ ¬P (d), P (α1) ⊃ P (c) →
is a tautology and hence an extended Herbrand-sequent of ∀x F →.

Let us now try to construct a linear LK-proof that corresponds to E . Such a proof contains a cut on ∀x P (x) as its last
inference. The formula ∀x F must be instantiated on the left above this cut to obtain F [x\α1] as α1 is the eigenvariable

S. Hetzl et al. / Theoretical Computer Science 549 (2014) 1–16 7
of the cut formula. This leaves the right side of the cut as P (c) → which is not valid, a second instance of ∀x F would be
needed. The solution used in the proof of Theorem 2 is based on computing a propositional interpolant of F [x\α1]; P (c) →;.
This can be done e.g. by first computing a proof of the sequent F [x\α1], P (c) →, e.g. the following ψ =

P (c) → P (c)
Q (α1) → Q (α1)

P (α1), P (d) → P (d)

P (α1), P (d),¬P (d) → ¬l

P (α1), Q (α1), Q (α1) ⊃ P (d),¬P (d) → ⊃l

P (α1), P (c) ⊃ Q (α1), Q (α1) ⊃ P (d),¬P (d), P (c) → ⊃l

P (α1) ∧ (P (c) ⊃ Q (α1)) ∧ (Q (α1) ⊃ P (d)) ∧ ¬P (d), P (c) → ∧∗
l

The propositional interpolant induced by the partition F [x\α1]; P (c) →; of ψ according to the algorithm of [38] is computed
as

¬P (c)
⊥

⊥
⊥ ¬l

⊥ ∨ ⊥ ⊃l

¬P (c) ∨ ⊥ ∨ ⊥ ⊃l

¬P (c) ∨ ⊥ ∨ ⊥ ∧∗
l

which simplifies to ¬P (c). Hence the new cut formula is ∀x (P (x) ∧ ¬P (c)) which renders the right side of the cut provable
as P (c) ∧ ¬P (c) →.

3.2. Proofs and grammars

Now that we have established the connection between proofs and (extended) Herbrand-sequents we can move on to the
term level of Fig. 1. A first trivial observation is that, assuming the knowledge of F , a Herbrand-sequent H for ∀x F → does
not carry more information than just the set of terms T s.t. H = F [x\T] →.

A set of terms, in the terminology of formal language theory, is a tree language. The central theoretical result on which
this paper is based is an analogous relation between extended Herbrand-sequents (or: proofs with Π1-cuts) and a certain
class of tree grammars. This result has first been proved in [18], see also [22] for a generalization.

Tree languages are a natural generalization of formal (string) languages, see e.g. [14,11]. Many important notions, such
as regular and context-free languages carry over from the setting of strings to that of trees. The class of rigid tree languages
has been introduced in [26] with applications in verification in mind, see [27]. Rigid tree languages augment regular tree
languages by the ability to carry out certain equality tests, a property that is very useful for applications.

In the context of proof theory it is more natural to work with grammars than with automata because of the generative
nature of cut-elimination. The class of grammars we will use in this paper is a subclass of rigid grammars: the totally rigid
acyclic tree grammars. We write TΣ(V) for the set of terms in the first-order signature Σ over the set of variables V and
TΣ for TΣ(∅). For a symbol f ∈ Σ we write (f /k) for denoting the arity k of f .

Definition 4. A regular tree grammar is a tuple G = 〈N, Σ, τ , P 〉, where N is a finite set of non-terminal symbols, Σ is a
first-order signature, τ ∈ N is the start symbol and P is a finite set of production rules of the form β → t with β ∈ N and
t ∈ TΣ(N).

The one-step derivation relation →1
G of a regular tree grammar G consists of all pairs u[β] →1

G u[t] where β → t ∈ P .
A derivation in G is a finite sequence of terms t0 = τ , t1, . . . , tn s.t. ti →1

G ti+1. The language of G is defined as L(G) =
{t ∈ TΣ | t has a G-derivation}.

Definition 5. A rigid tree grammar is a tuple G = 〈N, NR , Σ, τ , P 〉, where 〈N, Σ, τ , P 〉, is a regular tree grammar and NR ⊆
N is the set of rigid non-terminals. We speak of a totally rigid tree grammar if NR = N . In this case we will just write
〈NR , Σ, τ , P 〉.

A derivation t0 = τ , t1, . . . , tn = t of a term t ∈ TΣ in a rigid tree grammar is a derivation in the underlying regular tree
grammar that satisfies the additional rigidity condition: If there are i, j < n, a non-terminal β ∈ NR , and positions p and
q such that ti |p = β and t j |q = β , then t|p = t|q . The language L(G) of the rigid tree grammar G is the set of all terms
t ∈ TΣ which can be derived under the rigidity condition. Totally rigid tree grammars are formalisms for specifying sets of
substitutions and thus are particularly useful for describing instances generated by cut-elimination.

Example 2. Let Σ = {0/0, s/1}. A simple pumping argument shows that the language L = { f (t, t) | t ∈ TΣ } is not regular.
On the other hand, L is generated by the rigid tree grammar 〈{τ , α, β}, {α}, {0/0, s/1, f /2}, τ , P 〉 where P = {τ → f (α, α),

α → 0 | s(β), β → 0 | s(β)}.

8 S. Hetzl et al. / Theoretical Computer Science 549 (2014) 1–16
Definition 6. The grammar of an extended Herbrand-sequent

H ≡ F [x\u1], . . . , F [x\um], A1 ⊃
k1∧

j=1

A1[α1\s1, j], . . . , An ⊃
kn∧

j=1

An[αn\sn, j] →

is defined as the totally rigid G(H) = 〈NR , Σ, τ , P 〉 where NR = {τ , α1, . . . , αn}, Σ is the signature of H and P = {τ → ui |
1 � i � m} ∪ {αi → si, j | 1 � i � n, 1 � j � ki}.

A derivation of the form β →1
G t1 →1

G · · · →1
G tn is called cyclic if β ∈ V(tn). A grammar is called acyclic if it does not have

any cyclic derivations. Note that condition 2 of Definition 3 ensures that the grammar of an extended Herbrand-sequent is
acyclic. Furthermore, by definition, the grammar of an extended Herbrand-sequent is totally rigid. The language of such a
grammar can be written in the following normal form.

Lemma 1. If G is totally rigid and acyclic, then up to renaming of the non-terminals G = 〈{α0, . . . , αn}, Σ, α0, P 〉 with L(G) =
{α0[α0\t0] · · · [αn\tn] | αi → ti ∈ P }.

Proof. Acyclicity permits to rename the non-terminals in such a way that αi →1
G t1 →1

G · · · →1
G tn and α j ∈ V(tn) implies

j > i. The notation based on substitutions is then possible because, due to total rigidity, each t ∈ L(G) can be derived using
at most one production for each non-terminal. See [22] for a detailed proof. �

In particular, the language of a totally rigid acyclic grammar is finite. This lemma also suggests a compact notation for
totally rigid acyclic grammars: we write

U ◦α1 S1 · · · ◦αn Sn

for the grammar 〈{τ , α1, . . . , αn}, Σ, τ , P 〉 where P = {τ → u | u ∈ U } ∪ {αi → si | 1 � i � n, si ∈ Si}, τ is some fresh start
symbol and Σ is the signature of the terms appearing in P . Using this notation, we can observe that L(U) = U for a set
of terms U and L(G ◦α S) = {u[α\s] | u ∈ L(G), s ∈ S} for a totally rigid acyclic tree grammar G and a set of terms S . If the
non-terminals are clear from the context, this notation is further abbreviated as

U ◦ S1 · · · ◦ Sn.

One can then obtain a cut-elimination theorem based on grammars:

Theorem 4. If H is an extended Herbrand-sequent of ∀x F →, then {F [x\t] | t ∈ L(G(H))} → is a Herbrand-sequent of ∀x F →.

Proof. This can be shown by following the development of the grammar during a cut-elimination process, see [18,16] and
also [22] for a more general result. �

Throughout this whole paper all the grammars we are dealing with will be totally rigid and acyclic. Therefore we will
henceforth use grammar as synonym for totally rigid acyclic tree grammar.

3.3. Cut-introduction

We have already observed above that it is not feasible to invert Gentzen’s cut-elimination steps literally. The key to our
method is that moving from the level of proofs to the level of grammars provides us with a transformation that is much
easier to invert. The computation of the language of a grammar can simply be inverted as: given a finite tree language L, find
a grammar G s.t. L(G) = L.

The only piece then still missing in Fig. 1 is to obtain an extended Herbrand-sequent from G . Note that, for a given G ,
the term-part of the extended Herbrand-sequent is already determined using Lemma 1. What we do not know yet are the
cut-formulas. Hence we define:

Definition 7. Let u1, . . . , um be terms, let X1, . . . , Xn be monadic second-order variables, let α1, . . . , αn be variables, and let
si, j for 1 � i � n, 1 � j � k j be terms s.t. V(si, j) ⊆ {αi+1, . . . , αn} for all i, j. Then the sequent

H = F [x\u1], . . . , F [x\um], X1(α1) ⊃
k1∧

j=1

X1(s1, j), . . . , Xn(αn) ⊃
kn∧

j=1

Xn(sn, j) →

is called a schematic extended Herbrand-sequent of ∀x F → if
∧

t∈L(G(H)) F [x\t] → is a tautology (where G(H) is defined
analogously to Definition 6).

A solution of a schematic extended Herbrand-sequent H is a substitution σ = [Xi\λαi .Ai]n
i=1 s.t. V(Ai) ⊆ {αi, . . . , αn} and

Hσ is a tautology.

S. Hetzl et al. / Theoretical Computer Science 549 (2014) 1–16 9
The reason for calling such a substitution σ a solution is the close relationship of this problem to unification problems
modulo the theory of Boolean algebras, in particular to Boolean unification with constants [29,1]. By comparison with
Definition 3 note that if σ is a solution for H , then Hσ is an extended Herbrand-sequent. The central property which is of
interest right now is that such a sequent always has a solution.

Definition 8. Let H be a schematic extended Herbrand-sequent. Define

C1 =
m∧

i=1

F [x\ui] and Ci+1 =
ki∧

j=1

Ci[αi\si, j] for i = 1, . . . ,n.

Then

σ := [Xi\λαi .Ci]n
i=1

is called canonical substitution of H .

We will now show that the canonical substitution is, in fact, a solution.

Lemma 2. Let H and Ci be as in Definition 8. Then Cn+1 → is a tautology.

Proof. By definition, Cn+1 → is
∧m

i=1
∧k1

j1=1 · · ·∧kn
jn=1 F [x\ui][α1\s1, j1] · · · [sn,αn\ jn] → which by Lemma 1 is∧

t∈L(G(H)) F [x\t] → which is a tautology as H is a schematic extended Herbrand-sequent. �
Lemma 3. Let H be a schematic extended Herbrand-sequent and σ be its canonical substitution. Then σ is a solution of H.

Proof. First note that the variable condition is fulfilled as V(Ci) ⊆ {αi, . . . , αn}. Then observe that

Hσ = F [x\u1], . . . , F [x\um], C1 ⊃
k1∧

j=1

C1[α1\s1, j], . . . , Cn ⊃
kn∧

j=1

Cn[αn\sn, j] →

is logically equivalent to

C1, C1 ⊃ C2, . . . , Cn ⊃ Cn+1 → .

The unsatisfiability of Cn+1 follows from Lemma 2, hence Hσ is a tautology. �
In light of the above result we will henceforth call σ the canonical solution. Note that the canonical solution permits a

sequent calculus proof of a linear form in the sense of the proof of Theorem 2, and hence – for this solution – interpolation
is not necessary in the construction of the proof with cuts.

Theorem 5. ∀x F → has an extended Herbrand-sequent H with |H | = l iff there is a totally rigid acyclic tree grammar G with |G| = l
s.t.

∧
t∈L(G) F [x\t] → is a tautology.

Proof. The left-to-right direction of this statement follows from Theorem 4 together with the observation that |G(H)| = |H |.
For the right-to-left direction assume that G is given, let H be the schematic extended Herbrand-sequent of G . Then the
result follows from Lemma 3. �

Now we have proved all results mentioned in Fig. 1 and can finally describe our approach to cut-introduction. It consists
in following this diagram in a clockwise fashion from the cut-free proof to the proof with cut. More specifically, given as
input a cut-free proof π our algorithm will proceed as follows:

1. Extract the set of terms T of H(π) (as in Theorem 1).
2. Find a suitable grammar G s.t. L(G) = T .
3. Compute an extended Herbrand-sequent H from G (as in Theorem 5).
4. Construct a proof ψ with cut from H (as in Theorem 2).

Example 3. Consider the sequent ∀x F → where

F = Pa ∧ (P x ⊃ P f x) ∧ ¬P f 9a.

10 S. Hetzl et al. / Theoretical Computer Science 549 (2014) 1–16
Let π be a straightforward cut-free proof of ∀x F →, then |π |q = 9. Following the above outline of an algorithm we carry
out the following steps. Extract the set of terms

T = {
a, f a, f 2a, f 3a, f 4a, f 5a, f 6a, f 7a, f 8a

}

from H(π) following Theorem 1. Compute a grammar G with L(G) = T , for example

G = {
α, f α, f 2α

} ◦α

{
a, f 3a, f 6a

}
.

As in the proof of Theorem 5, this grammar induces the schematic extended Herbrand-sequent

H = F [x\α], F [x\ f α], F [x\ f 2α], X(α) ⊃ (
X(a) ∧ X

(
f 3a

) ∧ X
(

f 6a
)) →

whose canonical solution is

σ = [
X\λα.

(
F [x\α] ∧ F [x\ f α] ∧ F [x\ f 2α])]

Hence Hσ is an extended Herbrand-sequent with |Hσ | = |H | = 6 which in turn induces a proof ψ as in Theorem 2 which
has |ψ |q = 6 and contains a single Π1-cut whose cut-formula is

∀x
(

F ∧ F [x\ f x] ∧ F [x\ f 2x]).
Observe that we have decreased the quantifier complexity from |π |q = 9 to |ψ |q = 6.

4. More general end-sequents

The class of end-sequents considered in the previous section, while leading to a comparatively simple statement of the
central results, is clearly too restricted for concrete applications. We will therefore extend our proof-theoretic infrastructure
to proofs of end-sequents of the form

∀x1 · · · ∀xl1 F1, . . . ,∀x1 · · · ∀xlp F p → ∃x1 · · · ∃xlp+1 F p+1, . . . ,∃x1 · · · ∃xlq Fq

with li � 0 and Fi quantifier-free. We say that a sequent in this format is a Σ1-sequent. Note that every first-order sequent
can be transformed to this form by Skolemization and prenexing. Permitting li to be zero allows for quantifier-free formulas
such as in the example of Section 2. While the formalism now gets notationally more complicated, the results and proofs
remain essentially the same. We write x̄ for a vector (x1, . . . , xn) of variables, t̄ for a vector (t1, . . . , tn) of terms and [x̄\t̄]
for the substitution [x1\t1, . . . , xn\tn]. For this whole section, we fix a sequent Γ → Δ of the above form.

Definition 9. A tautological sequent of the form

{
Fi[x̄\ �ti, j] | 1 � i � p,1 � j � ni

} → {
Fi[x̄\ �ti, j] | p < i � q,1 � j � ni

}

is called Herbrand-sequent of Γ → Δ.

The size of a Herbrand-sequent is defined as |H | = ∑q
i=1 ni . Note that we only count formulas obtained by instanti-

ation. Now as we are dealing with blocks of quantifiers it is appropriate to also change the size measure on proofs to
consider blocks instead of single quantifiers. To that aim we change the quantifier rules in our sequent calculus to allow
the introduction of a block of quantifiers (which is a natural alternative for a number of problems related to proof size, see
e.g. [4]):

∀x1 · · · ∀xn A, A[x̄\t̄],Γ → Δ

∀x1 · · · ∀xn A,Γ → Δ
∀∗

l
Γ → Δ, A[x̄\t̄],∃x1 · · · ∃xn A

Γ → Δ,∃x1 · · · ∃xn A
∃∗

r

We write ‖π‖q for the number of ∀∗
l - and ∃∗

r -inferences in the proof π .

Theorem 6. Γ → Δ has a cut-free proof π with ‖π‖q = l iff it has a Herbrand-sequent H with |H | = l.

Proof. As for Theorem 1. �
Definition 10. Let �ui,1, . . . , �ui,mi be vectors of terms with li elements each. Let A1, . . . , An be quantifier-free formulas, let
α1, . . . , αn be variables, and let si, j for 1 � i � n, 1 � j � k j be terms s.t.

1. V(Ai) ⊆ {αi, . . . , αn} for all i, and
2. V(si, j) ⊆ {αi+1, . . . , αn} for all i, j.

S. Hetzl et al. / Theoretical Computer Science 549 (2014) 1–16 11
Then the sequent

H = {
Fi[x̄\ �ui, j] | 1 � i � p,1 � j � mi

}
, A1 ⊃

k1∧

j=1

A1[α1\s1, j], . . . , An ⊃
kn∧

j=1

An[αn\sn, j]

→ {
Fi[x̄\ �ui, j] | p < i � q,1 � j � mi

}

is called an extended Herbrand-sequent of Γ → Δ if H is a tautology.

The notion of schematic extended Herbrand-sequent is defined analogously to Definition 7 by replacing the formulas Ai
in the above definition by monadic predicate variables Xi . The size of a (schematic) extended Herbrand sequent H of the
above form is |H | = ∑q

i=1 mi + ∑n
j=1 k j .

Theorem 7. Γ → Δ has a proof with Π1-cuts and ‖π‖q = l iff it has an extended Herbrand-sequent H with |H | = l.

Proof. Analogous to the proof of Theorem 2, replacing F [x\Ui] by the collection of all instances Fi[x̄\ �ui, j] s.t. all terms in
ui, j contain only variables from {αi+1, . . . , αn}. �

The above theorem encapsulates an algorithm for the construction of a proof with Π1-cuts from an extended Herbrand-
sequent. We will henceforth use the abbreviation PCA for this proof-construction algorithm.

In order to represent term vectors, it is helpful to enrich our signature by new function symbols f1, . . . , fq where f i has
arity li . The function symbol f i will serve the purpose of grouping a term-tuple which corresponds to an instantiation of
the formula ∀x1 · · · ∀xli F i if i � p (or ∃x1 · · · ∃xli F i if i > p).

Definition 11. The grammar of an extended Herbrand-sequent

H = {
Fi[x̄\ �ui, j] | 1 � i � p,1 � j � mi

}
, A1 ⊃

k1∧

j=1

A1[α1\s1, j], . . . , An ⊃
kn∧

j=1

An[αn\sn, j]

→ {
Fi[x̄\ �ui, j] | p < i � q,1 � j � mi

}

is defined as G(H) = 〈NR , Σ, τ , P 〉 where NR = {τ , α1, . . . , αn}, Σ is the signature of H plus { f1, . . . , fq} and P =
{τ → f i(�ui, j) | 1 � i � q, 1 � j � mi} ∪ {αi → si, j | 1 � i � n, 1 � j � ki}.

Note that this definition also applies to Herbrand-sequents (as in Definition 9): then n = 0 and we obtain a trivial
grammar 〈NR , Σ, τ , P 〉 with NR = {τ }. Using this grammar, we define the Herbrand terms of a Herbrand-sequent as the set
{t | (τ → t) ∈ P }. The Herbrand terms of a cut-free proof π are then the Herbrand terms of the Herbrand-sequent extracted
from π via Theorem 6.

Example 4. Consider the sequent

P (0,0),∀x∀y
(

P (x, y) ⊃ P
(
s(x), y

))
,∀x∀y

(
P (x, y) ⊃ P

(
x, s(y)

)) → P
(
s4(0), s4(0)

)
.

Abbreviating P (x, x) ⊃ P (s2(x), s2(x)) as F (x) we see that ∀x F (x) is a useful cut formula that allows to decrease the number
of ∀∗

l -inferences. A corresponding extended Herbrand-sequent is

E = P (0,0), P (α,α) ⊃ P
(
s(α),α

)
, P

(
s(α),α

) ⊃ P
(
s(α), s(α)

)
, P

(
s(α), s(α)

) ⊃ P
(
s2(α), s(α)

)
,

P
(
s2(α),α

) ⊃ P
(
s2(α), s2(α)

)
, F (α) ⊃ (

F (0) ∧ F
(
s2(0)

)) → P
(
s4(0), s4(0)

)

The corresponding grammar is G(E) = 〈{τ , α}, {0/0, s/1}, τ , P 〉, with |E| = |G(E)| = 6 and

P = {
τ → f1(α,α)| f2

(
s(α),α

)| f1
(
s(α), s(α)

)| f2
(
s2(α),α

)
,α → 0|s2(0)

}
.

In extension of our compact notation for grammars we write

(U1, . . . , Uq) ◦α1 S1 · · · ◦αn Sn

for the grammar G(H) of Definition 11 where Ui = { �ui, j | 1 � j � mi} and Si = {si, j | 1 � j � ki}. As before, we leave out
the αi if they are obvious from the context. In this notation the function symbols f i are implicitly specified by the position
of Ui in the vector (U1, . . . , Uq). Consequently, each t ∈ L((U1, . . . , Uq) ◦α1 S1 · · · ◦αn Sn) has one of the f i as top-level
symbol and these are the only occurrences of f i . For notational convenience and if li = 1 for all i we sometimes write
L((U1, . . . , Uq) ◦α1 S1 · · · ◦αn Sn) as a vector of sets of terms in the form (T1, . . . , Tq) where Ti = {t ∈ L((U1, . . . , Uq) ◦α1

S1 · · · ◦αn Sn) | t = f i(s̄) for some s̄}.

12 S. Hetzl et al. / Theoretical Computer Science 549 (2014) 1–16
Theorem 8. If H is an extended Herbrand-sequent of Γ → Δ, then

{
Fi[x̄\t̄] | 1 � i � p, f i(t̄) ∈ L

(
G(H)

)} → {
Fi[x̄\t̄] | p < i � q, f i(t̄) ∈ L

(
G(H)

)}

is a Herbrand-sequent of Γ → Δ.

Proof. As for Theorem 4. �
Definition 12. Let H be a schematic extended Herbrand sequent. Define

C1 =
p∧

i=1

mi∧

j=1

Fi[x̄\ �ui, j] ∧
q∧

i=p+1

mi∧

j=1

¬Fi[x̄\ �ui, j] and Ci+1 =
ki∧

j=1

Ci[αi\si, j] for i = 1, . . . ,n.

Then

σ := [Xi\λαi .Ci]n
i=1

is called canonical substitution of H .

Lemma 4. Let H be a schematic extended Herbrand-sequent and σ be its canonical substitution. Then σ is a solution of H.

Proof. As for Lemma 3. �
As in Section 3, the canonical substitution is hence called canonical solution.

Theorem 9. Γ → Δ has an extended Herbrand-sequent H with |H | = l iff there is a totally rigid acyclic tree grammar G with |G| = l
s.t.

{
Fi[x̄\t̄] | 1 � i � p, f i(t̄) ∈ L

(
G(H)

)} → {
Fi[x̄\t̄] | p < i � q, f i(t̄) ∈ L

(
G(H)

)}

is a tautology.

Proof. Analogous to the proof of Theorem 5, using the canonical solution to obtain an extended Herbrand-sequent from a
grammar. �
5. The method CI

In Section 3 we have shown that, for any rigid acyclic tree grammar G generating the set of Herbrand terms T of a
cut-free proof ϕ of a sequent S , there exists a solution of the corresponding schematic extended Herbrand sequent H , the
canonical solution. This canonical solution yields cut formulas and an extended Herbrand sequent H∗ of S . By Theorem 2
we can construct a proof ϕ∗ with cuts from H∗ . In combining these transformations in a systematic way we obtain a
nondeterministic algorithm CI(A), where A is an algorithm computing a grammar given a set of terms.2

We now define CI(A):

Input: a cut-free proof ϕ of a Σ1-sequent S .
(1) Compute the set of Herbrand terms T of ϕ .
(2) Compute a rigid acyclic tree grammar G with L(G) = T by A.
(3) Construct the canonical solution corresponding to G .
(4) Construct the proof with the computed cut-formulas.

5.1. Inverting cut-elimination

In this section we show that the method CI is complete by proving that, in a suitable sense, it constitutes an inversion
of Gentzen’s procedure for cut-elimination. To that aim we will strongly rely on the results of [22,23] which show that the
language of a grammar is an invariant of cut-elimination. To be more precise we quickly repeat the most central notions
from [22,23] here, for full details the interested reader is referred to these papers.

2 Note that such algorithms A exist: for example, a trivial algorithm computing a minimal grammar can be implemented by simply searching through all
the exponentially-many grammar-candidates. In [20, Sec. 5], we describe a more sophisticated A that is more efficient in practice.

S. Hetzl et al. / Theoretical Computer Science 549 (2014) 1–16 13
Definition 13. We denote with � the cut-reduction relation defined by allowing the application of the standard reduction
rules without any strategy-restriction. The standard reductions include rules such as e.g.

(π1)
Γ → Δ, A[x\α]
Γ → Δ,∀x A

∀r

(π2)
A[x\t],Π → Λ

∀x A,Π → Λ
∀l

Γ,Π → Δ,Λ
cut

�→
(π1[α\t])

Γ → Δ, A[x\t]
(π2)

A[x\t],Π → Λ

Γ,Π → Δ,Λ
cut ,

see [22, Figure 1] for the complete list. With ne� we denote the non-erasing part of �, i.e. we disallow application of the
reduction rule

(π1)
Γ → Δ

Γ → Δ, A
wr

(π2)
A,Π → Λ

Γ,Π → Δ,Λ
cut

�→
(π1)

Γ → Δ

Γ,Π → Δ,Λ
w∗

and its symmetric variant that removes a wl-inference.

Definition 14. A proof is called simple if every cut is of one of the following forms:

Γ → Δ, A[x\α]
Γ → Δ,∀x A

∀r ∀x A,Π → Λ

Γ,Π → Δ,Λ
cut

or Γ → Δ,∃x A
A[x\α],Π → Λ

∃x A,Π → Λ
∃l

Γ,Π → Δ,Λ
cut

or

Γ → Δ, A A,Π → Λ

Γ,Π → Δ,Λ
cut

where A is quantifier-free.

Each proof with Π1 ∪ Σ1-cuts can be pruned to obtain a simple proof by permuting ∀r- and ∃l-inferences down and
identifying their eigenvariables when needed. All of the reductions of � preserve simplicity with the exception of the
following situation:

Γ → Δ, A

A,Π → Λ, B[x\α]
A,Π → Λ,∀x B

∀r ∀x B,Σ → Θ

A,Π,Σ → Λ,Θ
cut

Γ,Π,Σ → Δ,Λ,Θ
cut

�

Γ → Δ, A
A,Π → Λ, B[x\α]

A,Π → Λ,∀x B
∀r

Γ,Π → Δ,Λ,∀x B
cut ∀x B,Σ → Θ

Γ,Π,Σ → Δ,Λ,Θ
cut

where the order of the two cuts is exchanged which motivates the following definition.

Definition 15. A reduction sequence of simple proofs as one where the above reduction is directly followed by permuting down
the ∀r-inference in order to arrive at:

Γ → Δ, A A,Π → Λ, B[x\α]
Γ,Π → Δ,Λ, B[x\α] cut

Γ,Π → Δ,Λ,∀x B
∀r ∀x B,Σ → Θ

Γ,Π,Σ → Δ,Λ,Θ
cut

and symmetrically for the case of ∃l .

We can now state the part of the main result of [23] which is relevant for this paper:

Theorem 10. If π ne� π∗ is a cut-reduction sequence of simple proofs, then L(G(π)) = L(G(π∗)).

Proof. This is the second part of Theorem 7.2 in [23]. �
Definition 16. We write π1 ≈ π2 if π1 and π2 have the same end-sequent and G(π1) = G(π2).

14 S. Hetzl et al. / Theoretical Computer Science 549 (2014) 1–16
Lemma 5. ≈ is an equivalence relation.

Proof. This follows directly from the definition of ≈. �
Lemma 6. For simple π1, π2 we have π1 ≈ π2 iff the schematic extended Herbrand-sequents of π1 and π2 are identical.

Proof. The left-to-right direction follows from the fact that a schematic extended Herbrand-sequent is uniquely defined by a
grammar and the end-sequent. The right-to-left direction follows from being able to read off the grammar from a schematic
extended Herbrand-sequent. �

We write [π] for the ≈-equivalence class of π , i.e. [π] = {ψ simple proof | ψ ≈ π}. For a set P of simple proofs we write
P/≈ for {[π] | π ∈ P }. This notation will, in particular, be used for the set of results of a non-deterministic algorithm such
as CI(GG). Here GG refers to the non-deterministic grammar-guessing algorithm which is given a finite tree language L as
input and non-deterministically returns any grammar G with L(G) = L. Consequently, CI(GG)(π∗)/≈ is the set of ≈-equivalence
classes reachable by applying CI(GG) to π∗ . We can now state the inversion theorem:

Theorem 11. If π ne� π∗ is a cut-reduction sequence of simple proofs and π∗ is cut-free, then [π] ∈ CI(GG)(π∗)/≈.

Proof. By definition of the Herbrand-sequent we have

H
(
π∗) = {

Fi[x̄\t̄] | 1 � i � p, f i(t̄) ∈ L
(
G
(
π∗))} → {

Fi[x̄\t̄] | p < i � q, f i(t̄) ∈ L
(
G
(
π∗))}.

By Theorem 10 we have L(G(π∗)) = L(G(π)) and hence

H
(
π∗) = {

Fi[x̄\t̄] | 1 � i � p, f i(t̄) ∈ L
(
G(π)

)} → {
Fi[x̄\t̄] | p < i � q, f i(t̄) ∈ L

(
G(π)

)}
.

Therefore G(π) can be obtained from the nondeterministic grammar-guessing algorithm GG applied to H(π∗). Let ψ be
the proof obtained from the canonical solution of G(π), then ψ ∈ CI(GG)(π∗) and as G(ψ) = G(π) we have ψ ≈ π and
therefore [π] ∈ CI(GG)(π∗)/≈. �
5.2. Proof compression

We will prove in this section that application of CI(A) to a sequence of cut-free proofs �n of sequents Sn can result
in an exponential compression of �n . But we should take care with respect to which complexity measure the proofs are
compressed. In fact, the steps (1)–(3) and (5) yield proofs χn of Sn with cuts such that |�n|q is exponential in |χn|q ,
resulting in an exponential compression of quantifier complexity.

As input we take a sequence of shortest cut-free proofs �n of the sequents

sn: Pa,∀x(P x ⊃ P f x) → P f 2n+1
a

from Section 2.
We apply step (1) to �n and obtain a sequence of the corresponding minimal Herbrand sequents

s′
n: Pa, (P s ⊃ P f s)s∈Tn → P f 2n+1

a,

where

Tn = {
a, f a, . . . , f 2n+1−1a

}
.

Note that the quantifier complexity of any cut-free proof of Sn is � 2n+1 and thus exponential in n.
In step (2), A computes the grammars

Gn: {α1, f α1} ◦α1

{
α2, f 2α2

} ◦α2 · · · ◦ {
αn, f 2n−1

αn
} ◦αn

{
a, f 2n

a
}
,

where the αi are variables and a is a constant symbol.
We now move to step (3) and compute the canonical solution of the schematic extended Herbrand sequent Hn corre-

sponding to Gn where

Hn = Pa, (P s ⊃ P f s)s∈S0 , X1α1 ⊃
∧

s∈S1

X1s, . . . , Xnαn ⊃
∧

s∈Sn

Xns → P f 2n+1
a.

The canonical solution of Hn is

θn: [X1 \ λα1.C1 |, . . . , Xn \ λαn.Cn]

S. Hetzl et al. / Theoretical Computer Science 549 (2014) 1–16 15
where

F = Pa ∧ (P x ⊃ P f x) ∧ ¬P f 2n+1
a,

C1 =
∧

s∈S0

F {x \ s},

Ci+1 =
∧

s∈Si

Ci{αi \ s} for 1 � i < n.

Now let H∗
n: Hnθn be the corresponding extended Herbrand sequent. Then |H∗

n | = 2(n + 1).
Step (4): By Theorem 2 we can construct proofs χn of Sn with |χn|q = |H∗

n | = 2(n + 1). As |�n|q � 2n+1 we obtain

|�n|q � 2|χn|q/2,

and so |�n|q is exponential in |χn|q . Finally we have obtained an exponential compression of quantifier complexity.
Note that an exponential compression of quantifier complexity does not in general imply an exponential compression

of proof length (taking into account all logical inferences). We remark here that such a compression can be obtained in a
systematic way by an extended version of CI which searches for a solution of the schematic extended Herbrand sequent
that is smaller than the canonical solution, see [20, Sec. 7.2.2].

6. Conclusion and future work

We have described a method for the inversion of Gentzen’s cut-elimination method by the introduction of quantified
cuts into an existing proof. Our method is based on separating the problem into two phases: (1) the computation of a tree
grammar for a language and (2) finding a solution of a unification problem.

The work presented in this paper is only a first step and opens up several important directions for future work: a
straightforward extension of this algorithm is to use blocks of quantifiers in the cut-formulas. This ability is useful for
obtaining additional abbreviations. An equally obvious – but less straightforward – extension of this method is to cover
cut-formulas with quantifier alternations. As a prerequisite for this work, the extension of the connection between cut-
elimination and tree languages established in [18] to the corresponding class of formulas is necessary.

On the empirical side an important aspect of future work will be to assess the abilities for compression of proofs
produced by theorem provers. A first step in this direction has been taken in [19], where we have carried out large-scale
experiments with proofs from the TPTP-library [37]. An investigation of proofs from the SMT-LIB [5] is left for future work.
Additional features that we consider important for such applications are to include the ability to work modulo simple
theories and to systematically compute grammars whose language is a superset of the given set of terms.

On the theoretical side, we could only scratch the surface of many questions in this paper: What is the complexity of
grammar computation? What are good exact algorithms? Can we find incompressible tree languages? And more generally:
study the complexity of cut-free proofs along the lines of measures such as automatic complexity [33] and automaticity [32].
Also the unification problem poses a number of interesting theoretical challenges: Is the general unification problem of
monadic predicate variables modulo propositional logic decidable? If yes, what is its complexity, what are good algorithms?
What is the structure of the solution space of unification problems induced by cut-introduction? How can we navigate this
structure systematically to find solutions of minimal size? How can we prove lower bounds on the size of such solutions?

References

[1] Franz Baader, On the complexity of Boolean unification, Inform. Process. Lett. 67 (1998) 215–220.
[2] Matthias Baaz, Stefan Hetzl, Daniel Weller, On the complexity of proof deskolemization, J. Symbolic Logic 77 (2) (2012) 669–686.
[3] Matthias Baaz, Alexander Leitsch, On Skolemization and proof complexity, Fund. Inform. 20 (4) (1994) 353–379.
[4] Matthias Baaz, Richard Zach, Algorithmic structuring of cut-free proofs, in: Computer Science Logic, CSL, 1992, in: Lecture Notes in Computer Science,

vol. 702, Springer, 1993, pp. 29–42.
[5] Clark Barrett, Aaron Stump, Cesare Tinelli, The Satisfiability Modulo Theories Library (SMT-LIB), www.SMT-LIB.org, 2010.
[6] George Boolos, Don’t eliminate cut, J. Philos. Logic 13 (1984) 373–378.
[7] Alan Bundy, The automation of proof by mathematical induction, in: Andrei Voronkov, John Alan Robinson (Eds.), Handbook of Automated Reasoning,

vol. 1, Elsevier, 2001, pp. 845–911.
[8] Alan Bundy, David Basin, Dieter Hutter, Andrew Ireland, Rippling: Meta-Level Guidance for Mathematical Reasoning, Cambridge Tracts in Theoretical

Computer Science, Cambridge University Press, 2005.
[9] Simon Colton, Automated theory formation in pure mathematics, PhD thesis, University of Edinburgh, 2001.

[10] Simon Colton, Automated Theory Formation in Pure Mathematics, Springer, 2002.
[11] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison, M. Tommasi, Tree automata: techniques and applications, available on

http://www.grappa.univ-lille3.fr/tata, 2007, release October, 12th 2007.
[12] William Craig, Three uses of the Herbrand–Gentzen theorem in relating model theory and proof theory, J. Symbolic Logic 22 (3) (1957) 269–285.
[13] Marcelo Finger, Dov Gabbay, Equal rights for the cut: computable non-analytic cuts in cut-based proofs, Log. J. IGPL 15 (5–6) (2007) 553–575.
[14] Ferenc Gécseg, Magnus Steinby, Tree languages, in: G. Rozenberg, A. Salomaa (Eds.), Beyond Words, in: Handbook of Formal Languages, vol. 3, Springer,

1997, pp. 1–68.
[15] Gerhard Gentzen, Untersuchungen über das logische Schließen, Math. Z. 39 (1934–1935) 176–210, 405–431.
[16] Stefan Hetzl, Proofs as tree languages, submitted for publication, preprint available at http://hal.archives-ouvertes.fr/hal-00613713/.

http://refhub.elsevier.com/S0304-3975(14)00417-4/bib4261616465723938436F6D706C6578697479s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib4261617A3132436F6D706C6578697479s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib4261617A2E4C6569747363682E31393934s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib4261617A3932416C676F726974686D6963s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib4261617A3932416C676F726974686D6963s1
http://www.SMT-LIB.org
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib426F6F6C6F733834446F6E74s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib42756E647930314175746F6D6174696F6Es1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib42756E647930314175746F6D6174696F6Es1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib42756E64793035526970706C696E67s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib42756E64793035526970706C696E67s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib436F6C746F6E30314175746F6D61746564s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib436F6C746F6E30324175746F6D61746564s1
http://www.grappa.univ-lille3.fr/tata
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib437261696735375468726565s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib46696E6765723037457175616Cs1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib476563736567393754726565s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib476563736567393754726565s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib47656E747A656E3334556E74657273756368756E67656Es1
http://hal.archives-ouvertes.fr/hal-00613713/

16 S. Hetzl et al. / Theoretical Computer Science 549 (2014) 1–16
[17] Stefan Hetzl, Describing proofs by short tautologies, Ann. Pure Appl. Logic 159 (1–2) (2009) 129–145.
[18] Stefan Hetzl, Applying tree languages in proof theory, in: Adrian-Horia Dediu, Carlos Martín-Vide (Eds.), Language and Automata Theory and Applica-

tions, LATA, 2012, in: Lecture Notes in Computer Science, vol. 7183, Springer, 2012.
[19] Stefan Hetzl, Alexander Leitsch, Giselle Reis, Janos Tapolczai, Daniel Weller, Introducing quantified cuts in logic with equality, in: International Joint

Conference on Automated Reasoning, IJCAR-14, 2014, in press.
[20] Stefan Hetzl, Alexander Leitsch, Giselle Reis, Daniel Weller, Algorithmic introduction of quantified cuts, CoRR, arXiv:1401.4330 [abs], 2014.
[21] Stefan Hetzl, Alexander Leitsch, Daniel Weller, Towards algorithmic cut-introduction, in: Logic for Programming, Artificial Intelligence and Reasoning,

LPAR-18, in: Lecture Notes in Computer Science, vol. 7180, Springer, 2012, pp. 228–242.
[22] Stefan Hetzl, Lutz Straßburger, Herbrand-confluence for cut-elimination in classical first-order logic, in: Patrick Cégielski, Arnaud Durand (Eds.), Com-

puter Science Logic, CSL, 2012, in: Leibniz International Proceedings in Informatics (LIPIcs), vol. 16, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2012, pp. 320–334.

[23] Stefan Hetzl, Lutz Straßburger, Herbrand-confluence, Log. Methods Comput. Sci. 9 (4) (2013).
[24] David Hilbert, Paul Bernays, Grundlagen der Mathematik II, Springer, 1939.
[25] Andrew Ireland, Alan Bundy, Productive use of failure in inductive proof, J. Automat. Reason. 16 (1–2) (1996) 79–111.
[26] Florent Jacquemard, Francis Klay, Camille Vacher, Rigid tree automata, in: Adrian Horia Dediu, Armand-Mihai Ionescu, Carlos Martín-Vide (Eds.), Lan-

guage and Automata Theory and Applications, LATA, 2009, in: Lecture Notes in Computer Science, vol. 5457, Springer, 2009, pp. 446–457.
[27] Florent Jacquemard, Francis Klay, Camille Vacher, Rigid tree automata and applications, Inform. and Comput. 209 (2011) 486–512.
[28] Moa Johansson, Lucas Dixon, Alan Bundy, Conjecture synthesis for inductive theories, J. Automat. Reason. 47 (3) (2011) 251–289.
[29] Ursula Martin, Tobias Nipkow, Boolean unification – the story so far, J. Symbolic Comput. 7 (3–4) (1989) 275–293.
[30] Dale Miller, Vivek Nigam, Incorporating tables into proofs, in: 16th Conference on Computer Science and Logic, CSL07, in: Lecture Notes in Computer

Science, vol. 4646, Springer, 2007, pp. 466–480.
[31] V.P. Orevkov, Lower bounds for increasing complexity of derivations after cut elimination, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. 88 (1979)

137–161.
[32] Jeffrey Shallit, Yuri Breitbart, Automaticity I: properties of a measure of descriptional complexity, J. Comput. System Sci. 53 (1996) 10–25.
[33] Jeffrey Shallit, Ming-Wei Wang, Automatic complexity of strings, J. Autom. Lang. Comb. 6 (4) (2001) 537–554.
[34] Volker Sorge, Simon Colton, Roy McCasland, Andreas Meier, Classification results in quasigroup and loop theory via a combination of automated

reasoning tools, Comment. Math. Univ. Carolin. 49 (2) (2008) 319–339.
[35] Volker Sorge, Andreas Meier, Roy McCasland, Simon Colton, Automatic construction and verification of isotopy invariants, J. Automat. Reason. 40 (2–3)

(2008) 221–243.
[36] Richard Statman, Lower bounds on Herbrand’s theorem, Proc. Amer. Math. Soc. 75 (1979) 104–107.
[37] Geoff Sutcliffe, The TPTP problem library and associated infrastructure: the FOF and CNF parts, v3.5.0, J. Automat. Reason. 43 (4) (2009) 337–362.
[38] Gaisi Takeuti, Proof Theory, 2nd edition, North-Holland, 1987.
[39] Anne S. Troelstra, Helmut Schwichtenberg, Basic Proof Theory, second edn., Cambridge Tracts in Theoretical Computer Science, Cambridge University

Press, 2000.
[40] Jiři Vyskočil, David Stanovský, Josef Urban, Automated proof compression by invention of new definitions, in: E.M. Clark, A. Voronkov (Eds.), Logic for

Programming, Artificial Intelligence and Reasoning, LPAR-16, in: Lecture Notes in Computer Science, vol. 6355, Springer, 2010, pp. 447–462.
[41] Bruno Woltzenlogel Paleo, Atomic cut introduction by resolution: proof structuring and compression, in: E.M. Clark, A. Voronkov (Eds.), Logic for

Programming, Artificial Intelligence and Reasoning, LPAR-16, in: Lecture Notes in Computer Science, vol. 6355, Springer, 2010, pp. 463–480.

http://refhub.elsevier.com/S0304-3975(14)00417-4/bib4865747A6C32303039s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib4865747A6C31324170706C79696E67s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib4865747A6C31324170706C79696E67s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib4865747A6C313462s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib4865747A6C313462s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib4865747A6C3134s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib4865747A6C3132546F7761726473s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib4865747A6C3132546F7761726473s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib4865747A6C31324865726272616E64s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib4865747A6C31324865726272616E64s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib4865747A6C31324865726272616E64s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib4865747A6C31334865726272616E64s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib48696C6265727433394772756E646C6167656E32s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib4972656C616E64393650726F64756374697665s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib4A61637175656D61726430395269676964s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib4A61637175656D61726430395269676964s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib4A61637175656D61726431315269676964s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib4A6F68616E73736F6E3131436F6E6A656374757265s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib4D617274696E3839426F6F6C65616Es1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib4D696C6C657230375461626C6573s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib4D696C6C657230375461626C6573s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib4F7265766B6F7637394C6F776572s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib4F7265766B6F7637394C6F776572s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib5368616C6C697439364175746F6D61746963697479s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib5368616C6C697430314175746F6D61746963s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib536F7267653038436C617373696669636174696F6Es1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib536F7267653038436C617373696669636174696F6Es1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib536F72676530384175746F6D61746963s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib536F72676530384175746F6D61746963s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib537461746D616E37394C6F776572s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib537574636C69666665303954505450s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib54616B65757469383750726F6F66s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib54726F656C7374726132303030s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib54726F656C7374726132303030s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib5679736B6F63696C31304175746F6D61746564s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib5679736B6F63696C31304175746F6D61746564s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib576F6C747A656E6C6F67656C50616C656F313041746F6D6963s1
http://refhub.elsevier.com/S0304-3975(14)00417-4/bib576F6C747A656E6C6F67656C50616C656F313041746F6D6963s1

	Algorithmic introduction of quantiﬁed cuts
	1 Introduction
	2 A motivating example
	3 Proof-theoretic infrastructure
	3.1 Proofs and Herbrand's theorem
	3.2 Proofs and grammars
	3.3 Cut-introduction

	4 More general end-sequents
	5 The method CI
	5.1 Inverting cut-elimination
	5.2 Proof compression

	6 Conclusion and future work
	References

