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Abstract. We consider the problem of simultaneously compressing a
finite set of words by a single grammar. The central result of this paper is
the construction of an incompressible sequence of finite word languages.
This result is then shown to transfer to tree languages and (via a previ-
ously established connection between proof theory and formal language
theory) also to formal proofs in first-order predicate logic.

1 Introduction

In grammar-based compression, context-free grammars that generate exactly
one word are used for representing the input text. The smallest grammar prob-
lem asks for the smallest context-free grammar that generates a given word.
Its decision version is known to be NP-complete [28]. However, there is a num-
ber of fast algorithms which are practically useful [16,17,19] or achieve good
approximation ratios [5,14,15,23,24]. Grammar-based compression also has the
considerable practical advantage that many operations can be performed directly
on the compressed representation; see [18].

In this paper we consider the problem of simultaneously compressing a finite
set of words by a single grammar. Our motivation for investigating this problem
is rooted in proof theory and automated deduction: as shown in [7] there is
an intimate relationship between a certain class of formal proofs (those with
Π1-cuts) in first-order predicate logic and a certain class of grammars (totally
rigid acyclic tree grammars). In particular, the number of production rules in
the grammar is a lower bound on the length of the proof. This relationship has
been exploited in a method for proof compression whose central combinatorial
step is a grammar-based compression of a finite tree language [8–10].

The proof-theoretic application of our work entails a shift of emphasis w.r.t.
traditional grammar-based compression in the following respects: first, we do
not have any freedom of choice regarding the type of grammar. Totally rigid
acyclic tree grammars have to be used because they can be translated to proofs
afterwards. Secondly, we are looking for a minimal grammar G s.t. L(G) ⊇ L
where L is the finite input language. This is the case because L describes a
disjunction which is required to be a tautology (a so-called Herbrand-disjunction,
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see [2,6]) and if L′ ⊇ L then L′ also describes a tautology. This condition is
similar to (but different from) the one imposed on cover automata [3,4]: there an
automaton A is sought s.t. L(A) ⊇ L, but in addition it is required that L(A)\L
consists only of words longer than any word in L. And thirdly, the complexity
measure we aim at minimising is not the number of symbols in the grammar,
but the number of production rules of the grammar. This is due to the fact that
the number of production rules corresponds to the number of certain logical
inferences in a formal proof.

Along the lines of descriptional complexity measures such as automatic com-
plexity [26] and automaticity [25] one can consider the size of the smallest gram-
mar that covers a language L in the above sense as the complexity of L. Then
the result of [7] shows that this complexity measure is a lower bound on the
length of a proof with Π1-cuts of the Herbrand-disjunction described by L.

The central result of this paper is the construction of an incompressible
sequence of finite (word) languages. This result extends to tree languages in a
straightforward way, and is then used to obtain an incompressibility result for
proofs with Π1-cuts in first-order predicate logic. The length of proofs with cuts
is notoriously difficult to control (for propositional logic this is considered the
central open problem in proof complexity [22]). Theorem 5 below is, to the best
of our knowledge, the first such incompressiblity result in proof theory.

2 Grammar-Based Compression of Finite Languages

Definition 1. A context-free grammar (CFG) is a 4-tuple G = (N,Σ,P, S)
where N is a finite set of nonterminals, Σ is a finite alphabet, S ∈ N is the
starting symbol and P is a finite set of productions of the form A → w where
A ∈ N and w ∈ (Σ ∪ N)∗.

As usual, the one-step derivation relation =⇒G of G is defined by u =⇒G v
iff there is a production A → w in G s.t. v is obtained from u by replacing an
occurrence of A by w. The derivation relation =⇒∗

G is the reflexive and transitive
closure of =⇒G and the language of G is L(G) = {w ∈ Σ∗ | S =⇒∗

G w}. We omit
the subscript G if the grammar is clear from the context.

Definition 2. A right-linear grammar is a context-free grammar (N,Σ,P, S)
s.t. all productions in P are of the form A → vB or A → v for A,B ∈ N and
v ∈ Σ∗.

It is well-known, see e.g., [11], that the languages of right-linear grammars are
exactly the regular languages.

Definition 3. Let G = (N,Σ,P, S) be a context-free grammar. The ordering
<1

G of N is defined as follows: A <1
G B iff there is a production A → w in P

s.t. B occurs in w. The ordering <G is defined as the transitive closure of <1
G.

We say that G is cyclic (respectively acyclic) iff <G is.
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We abbreviate “right-linear acyclic grammar” as “RLAG”. Let A ∈ N ; then a
production whose left hand side is A is called A-production. We write PA for
the set of A-productions in P . For N ′ ⊆ N we define PN ′ =

⋃
A∈N ′ PA. For a

language L and a CFG G we say that G covers L if L(G) ⊇ L. The size of a CFG
G = (N,Σ,P, S) is defined as |G| = |P |. The length of a right-linear production
rule A → wB or A → w for w ∈ Σ∗ is defined as |w|.

Definition 4. A finite language L is called compressible if there is a RLAG G
which covers L and satisfies |G| < |L|. It is called incompressible otherwise.

A variant of this problem, the equality formulation, consists in asking for a gram-
mar G with L(G) = L and |G| < |L|. As explained in the introduction, the cover
formulation is motivated by our proof-theoretic application, see Sect. 5. However,
our main result on incompressibility also applies to the equality formulation; see
Corollary 1.

The choice of RLAGs for the compression of finite languages is quite nat-
ural in view of the fact that right-linear grammars generate exactly the regular
languages and the observation that a right-linear grammar where every nonter-
minal is accessible and which does not contain trivial productions generates a
finite language iff it is acyclic.

Definition 5. A sequence (Ln)n≥1 of finite languages is called incompressible
if there is an M ∈ N s.t. for all n ≥ M the language Ln is incompressible.
A sequence (Ln)n≥1 of finite languages is called compressible if for every M ∈ N

there is an n ≥ M s.t. Ln is compressible.

Note that it is trivial to construct an incompressible sequence of languages of
small size, e.g., Ln = {a} for a letter a. It is also trivial to construct a sequence of
incompressible languages in an unbounded signature, e.g., Ln = {a1, . . . , an} for
letters a1, a2, . . .. Consequently, in this paper we will construct an incompressible
sequence of languages of unbounded size over a constant alphabet.

3 Incompressible Languages

3.1 Reduced Grammars

In this section we will make some preparatory observations on the structure of
RLAGs which compress finite languages, leading to the notion of strong com-
pressibility.

Definition 6. Let G = (N,Σ,P, S) be a RLAG. Then a rule A → w is called
trivial if A = S and w ∈ Σ∗. We define Gt = (N,Σ,Pt, S) where Pt is the set
of trivial rules of G.

We say that a word u is a subword of a word w if there are words v1, v2 s.t.
w = v1uv2. We say that a word u is a prefix of a word w if there is a word v
s.t. w = uv.
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Definition 7. Let L be a finite language and G be a RLAG that covers L. Then
G is called reduced w.r.t. L if for every non-trivial production rule A → wB or
A → w of G there are distinct u, v ∈ L \ L(Gt) s.t. w is a subword of both u
and v.

If the language is clear from the context we will say “reduced” instead of “reduced
w.r.t. L”. Intuitively, in a grammar which is reduced w.r.t. L all production rules
are either trivial or useful for the compression of L. The following lemma shows
that for questions of compressibility, it is sufficient to consider reduced RLAGs.

Lemma 1. Let L be a finite language and G be a RLAG which covers L. Then
there is a reduced RLAG G∗ which covers L and satisfies |G∗| ≤ |G|.

Proof Sketch. Replace each non-trivial production rule that is only used for
deriving a single word w by the trivial production S → w.

Definition 8. A language L is called strongly compressible if there is a reduced
RLAG G without trivial rules s.t. G covers L and |G| < |L|. A sequence (Ln)n≥1

of finite languages is called strongly compressible if for every M ∈ N there is an
n ≥ M s.t. Ln is strongly compressible.

Lemma 2. Let L be a compressible language, then there is a language L′ ⊆ L
which is strongly compressible.

Proof Sketch. After obtaining a reduced RLAG G′ which compresses L from
Lemma 1 let L′ be all words in L derivable from the non-trivial part of G′.

3.2 Segmented Languages

From this section on we will often use the alphabet Σ = {0,1, s}. The letters
0 and 1 will be used for the binary representation of natural numbers, while
the letter s will serve as a separator. The incompressible sequence of languages
used for the main result of this paper will be a sequence of segmented languages,
a notion which we define now and study in this section.

Definition 9. Let Σ = {0,1, s}. A word w ∈ Σ∗ s.t. w = (sv)k for some
k ≥ 1 and some v ∈ {0,1}+ is called segmented word. The word v is called the
building block of w. Occurrences of v in w are called segments. A segmented
word (sv)k where |v| = l is called a (k, l)-segmented word. A language consisting
of (k, l)-segmented words is called a (k, l)-segmented language.

The following lemma states the key property of segmented languages: long rules
are not useful for compression.

Lemma 3. Let L be a finite (k, l)-segmented language and G be a reduced RLAG
that covers L. Then every non-trivial rule of G has length at most l.

Proof Sketch. If a rule has length l + 1, it contains a whole building block and
hence fixes a word of L.
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Lemma 4. Let L be a finite (k, l)-segmented language that is strongly compress-
ible. Then k < |L| − 1.

Proof. Note that we have |w| = k(l+1) for all w ∈ L. Let G be a reduced RLAG
which compresses L. Then by Lemma 3 every rule in G has length at most l.
Hence for deriving a single w ∈ L the grammar G needs at least |w|

l > |w|
l+1 = k

rules. Since L is compressible, it is non-empty and hence k < |G| < |L|.
Lemma 5. Let (Ln)n≥1 be a compressible sequence of finite languages s.t. Ln

is (kn, ln)-segmented and (kn)n≥1 is unbounded. Then there is a sequence of
finite languages (L′

n)n≥1 s.t. 1) L′
n ⊆ Ln for all n ≥ 1, 2) (L′

n)n≥1 is strongly
compressible, and 3) (|L′

n|)n≥1 is unbounded.

Proof. The pointwise application of Lemma 2 to an infinite subsequence of
(Ln)n≥1 that consists of compressible languages only yields a sequence (L′

n)n≥1

satisfying 1 and 2. By Lemma 4 we have ki < |L′
i| for infinitely many i ∈ N which

together with the assumption that (kn)n≥1 is unbounded entails 3.

The following Lemma 6 applies the uselessness of long rules for compression to
provide an upper bound on the number of segments which a strongly compressing
RLAG covers. This upper bound is a key ingredient of the proof of our main
result.

Definition 10. Let G = (N,Σ,P, S) be a RLAG. Let w ∈ L(G) be a (k, l)-
segmented word with building block v and let i ∈ {1, . . . , k}. Then w = w0svw1

for w0 = (sv)i−1 and w1 = (sv)k−i. Let δ be a derivation of w w.r.t. G; then it
is of the form

S =⇒∗ w′
0A1 =⇒ w0sv′A2 =⇒ · · · w0sv′′An =⇒ w0svw′

1An+1 =⇒∗ w

for some A1, . . . , An, An+1 ∈ N with v′, v′′ being prefixes of v, w′
0 a prefix of w0

and w′
1 a prefix of w1. We define nonterms(w, i, δ) = {Aj | 1 ≤ j ≤ n}.

Lemma 6. Let L be a finite (k, l)-segmented language that is strongly com-
pressed by a RLAG G = (N,Σ,P, S). For each w ∈ L fix a derivation δw of
w w.r.t. G. Let N0 ⊆ N , let P0 = PN0 and let S0 = {(w, i) ∈ L × {1, . . . , k} |
nonterms(w, i, δw) ⊆ N0}. Then we have |S0| ≤ 2|P0| · |P0|.
Proof. For w ∈ L define Sw,0 = {i ∈ {1, . . . , k} | nonterms(w, i, δw) ⊆ N0}. By
Lemma 3 every rule of G has length at most l. Due to acyclicity, each A ∈ N0

can be used at most once in a derivation. Therefore by using all A ∈ N0 in a
derivation one can generate at most |N0| · l terminal symbols, and hence at most
|N0| segments. We thus obtain |Sw,0| ≤ |N0|.

Furthermore, define L0 = {w ∈ L | ∃i s.t. (w, i) ∈ S0}. Let P ∗ ⊆ P0 s.t.
P ∗ contains exactly one production for each nonterminal of N0 and note that
there are at most 2|P0| such P ∗. If P ∗ permits deriving a word that contains
a subword v ∈ {0,1}l, then the choice of P ∗ uniquely determines a word w ∈
L. If P ∗ does not allow deriving such a word, then P ∗ may be used in the
derivations δw of several w ∈ L; however, it does not contribute to any of its Sw,0.
Therefore we have |L0| ≤ 2|P0|. Putting these two results together, we obtain
|S0| =

∑
w∈L0

|Sw,0| ≤ |L0| · |N0| ≤ 2|P0| · |P0|.
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3.3 Ordered Grammars

In a RLAG G the ordering <G is acyclic but, in general, not linear. For technical
purposes it will be useful to fix a linearisation of <G and a corresponding linear
order of the productions of G. To that aim we introduce the notion of ordered
grammar.

Definition 11. A right-linear ordered grammar (RLOG) is a tuple G = (N,Σ,
P,A1) where N is a list A1, . . . , An of nonterminals, P is a list p1, . . . , pm of
productions s.t.

1. G′ = ({A1, . . . , An}, Σ, {p1, . . . , pm}, A1) is a RLAG,
2. if Ai <G′ Aj then i < j, and
3. p1, . . . , pm = q1,1, . . . , q1,k1 , . . . , qn,1, . . . , qn,kn

where {qi,1, . . . , qi,ki
} = PAi

for all i ∈ {1, . . . , n}.

We say that an RLOG compresses a language L, is reduced w.r.t. L, etc., if the
underlying RLAG fulfils the respective property.

Definition 12. Let G = ((A1, . . . , An), Σ, P, S) be a RLOG. Let w ∈ L(G) be
a (k, l)-segmented word, let i ∈ {1, . . . k} and let δ be a derivation of w w.r.t. G.
Let m1 = min{j ∈ {1, . . . , n} | Aj ∈ nonterms(w, i, δ)} and m2 = max{j ∈
{1, . . . , n} | Aj ∈ nonterms(w, i, δ)} and define cost(w, i, δ) =

∑m2
j=m1

|PAj
|.

Note that the cost of the i-th segment of a word w also takes those nonterminals
into account which are not used in the derivation δ of w. The following lemma
shows that in a strongly compressed segmented language, many segments are
cheap.

Lemma 7. Let L be a finite (k, l)-segmented language and let G be a RLOG
that strongly compresses L. Let w ∈ L and δ be a derivation of w w.r.t. G. Then
for at least half of the i ∈ {1, . . . , k}, we have cost(w, i, δ) < 4|L|

k .

Proof. As G compresses L, it covers L, so by Lemma 3 every rule of G has
length at most l. Hence each rule of G can contribute to the costs of at most
two segments of w, so we have 2|G| ≥

∑k
i=1 cost(w, i, δ). Now suppose that �k

2 �
segments of w have cost at least 4|L|

k each, then
∑k

i=1 cost(w, i, δ) ≥ �k
2 � · 4|L|

k ≥
2|L|, which is a contradiction to |G| < |L|.

Definition 13. Let G = (N,Σ, (p1, . . . , pm), A1) be a RLOG and let s < m. For
A ∈ N define pmin(A) = min{j | pj ∈ PA}, and pmax(A) = max{j | pj ∈ PA}.
Furthermore, for j ∈ {1, . . . , �m

s � − 1} define Nj = {A ∈ N | (j − 1)s ≤
pmin(A) and pmax(A) < (j + 1)s}. We say that (Nj)

�m
s �−1

j=1 is the s-covering
of G.

Note that Nj and Nj+1 can overlap, but Nj and Nj+2 can not. Furthermore,
note that |PNj

| ≤ 2s for all j ∈ {1, . . . , �m
s � − 1}. The following lemma applies

Lemma 7 to obtain a lower bound on the number of segments covered by the
productions of a single Nj .



Compressibility of Finite Languages by Grammars 99

Lemma 8. Let L be a finite (k, l)-segmented language, let G be a RLOG which
strongly compresses L and let |G| > s ≥ 4|L|

k . Let N1, . . . , N� |G|
s �−1

be the
s-covering of G. Let w ∈ L and δ be a G-derivation of w. Then for at least half
of the i ∈ {1, . . . , k} there is a j ∈ {1, . . . , � |G|

s �− 1} s.t. nonterms(w, i, δ) ⊆ Nj.

Proof. By Lemma 7 at least half of the i ∈ {1, . . . , k} have cost(w, i, δ) < 4|L|
k .

Let i be s.t. cost(w, i, δ) < 4|L|
k , then cost(w, i, δ) < s. Let A0 ∈ N be the

nonterminal used for entering the i-th segment of w in δ and let j0 = max{j ∈
{1, . . . , � |G|

s � − 1} | A0 ∈ Nj}. If j0 = � |G|
s � − 1, then nonterms(w, i, δ) ⊆ Nj0

because (Nj)
� |G|

s �−1
j=1 covers all nonterminals and Nj0 is the last element of this

list. If j0 < � |G|
s � − 1, then pmin(A0) < j0s, for if pmin(A0) ≥ j0s, then A0 ∈

Nj0+1. Therefore pmin(A0) + cost(w, i, δ) < pmin(A0) + s < (j0 + 1)s; hence
nonterms(w, i, δ) ⊆ Nj0 .

3.4 The Main Result

For n ≥ 1 and k ∈ {0, . . . , 2n − 1} we write bnk ∈ {0,1}n for the n-bit binary
representation of k.

Definition 14 (Incompressible sequence). For all n ≥ 1 define l(n) =
�log(n)�, k(n) = � 9n

l(n)+1�, and Ln = {(sbl(n)i)k(n) | 0 ≤ i ≤ n − 1}.

Note that l(n) is the number of bits required to represent all elements of {0, . . . ,
n − 1} in binary. Note furthermore that for every n ≥ 1, we have |Ln| = n and
all words in Ln have the same length k(n)(l(n) + 1). The number of segments
k(n) has been chosen s.t. k(n)(l(n) + 1) is 9n padded up to the next multiple of
l(n) + 1; hence the length of the words in Ln grows linearly in n.

Example 1. For n = 5 we have l(5) = 3, k(5) = 12 and L5 = {(s000)12, (s001)12,
(s010)12, (s011)12, (s100)12}.

Theorem 1. (Ln)n≥1 is incompressible.

The proof strategy for this theorem is as follows: both Lemmas 6 and 8 assume
a strongly compressed segmented language. But while Lemma 6 states an upper
bound on the number of segments covered by a certain part of a strongly com-
pressing grammar, Lemma 8 provides a lower bound on the number of segments
covered by the productions of a single Nj . The following proof will show these
two bounds to be inconsistent, thus deriving the incompressibility of (Ln)n≥1.

Proof. Suppose that (Ln)n≥1 is compressible. Then by Lemma 5 there is a
sequence (L′

n)n≥1 which is strongly compressibly by a sequence (Gn)n≥1 of
RLAGs which we consider as RLOGs (G′

n)n≥1 by fixing an arbitrary linear
order satisfying Definition 11. Let us fix for every n ≥ 1 and every w ∈ L′

n a
derivation δw of w w.r.t. G′

n. This is well-defined, since the L′
n are disjoint, and

hence δw does not depend on n.
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First note that for all n ≥ 1 we have k(n) = � 9n
�log(n)�+1� ≥ 9n

log(n)+2 , and
since n ≥ |L′

n| we have

k(n) ≥ 9|L′
n|

log(|L′
n|) + 2

. (1)

Therefore 4|L′
n|

k(n) ≤ 4
9 (log(|L′

n|)+2) =: sn. Let N1, . . . N� |G′
n|

sn
�−1

be the sn-covering

of G′
n and define Un := |{(w, i) ∈ L′

n×{1, . . . , k(n)} | ∃j s.t. nonterms(w, i, δw) ⊆
Nj}|. By Lemma 8 we have Un ≥ |L′

n|·k(n)
2 , which, together with Theorem (1),

entails

Un ≥ 9|L′
n|2

2(log(|L′
n|) + 2)

. (2)

On the other hand, applying Lemma6 to all Nj for j = 1, . . . , � |G′
n|

sn
�− 1 and

summing up yields Un ≤
∑� |G′

n|
sn

�−1

j=1 2|PNj
| · |PNj

| ≤ (� |G′
n|

sn
� − 1) · 22sn · 2sn. We

have 22sn · 2sn ≤ C|L′
n| 8

9 (log(|L′
n|)+2) for some C ∈ N and � |G′

n|
sn

�− 1 ≤ |L′
n|

sn
=

9|L′
n|

4(log(|L′
n|)+2) and therefore

Un ≤ D|L′
n| 17

9 for some D ∈ N. (3)

Putting Theorem (2) and (3) together we obtain

|L′
n|2 ≤ E|L′

n| 17
9 (log(|L′

n|) + 2) for some E ∈ N. (4)

But by Lemma 5 the function n → |L′
n| is unbounded. Hence there is an M ∈ N

s.t. for all n ≥ M the inequality Theorem (4) is not satisfied. This is a contra-
diction.

3.5 Remarks

Every sequence of languages which is incompressible in the cover formulation is
also incompressible in the (more restricted) equality formulation. Therefore we
immediately obtain the following corollary from Theorem1.

Corollary 1. There is no sequence (Gn)n≥1 of RLAGs and M ∈ N s.t. L(Gn) =
Ln and |Gn| < |Ln| for all n ≥ M .

On the other hand, the sequence (Ln)n≥1 can be compressed by stronger for-
malisms:

Theorem 2. There is a sequence (Gn)n≥1 of acyclic CFGs which compresses
(Ln)n≥1.

Proof. Let Gn = ({S,A1, . . . , Al(n)}, {0,1, s}, Pn, S) where

Pn = {S → (sA1)k(n), A1 → 0A2 | 1A2, . . . , Al(n) → 0 | 1}.

Then L(Gn) ⊇ Ln for all n ≥ 1 and |Gn| = 2�log(n)� + 1 < n = |Ln| for all
n ≥ M for a certain M .
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The length of the words in Ln grows linearly. Under the condition that |Ln| = n
this is the best possible:

Theorem 3. Let (L′
n)n≥1 be a sequence of finite languages over a finite alphabet

Σ = {a1, . . . ak} s.t. |L′
n| = n and s.t. there is a sublinear function that bounds

the maximal length ln of a word in L′
n. Then (L′

n)n≥1 is compressible.

Proof. Let Gn = ({A1, . . . , Aln}, Σ, Pn, A1) where

Pn = {A1 → a1A2 | · · · | akA2 | A2, . . . , Aln → a1 | · · · | ak | ε}.

Then L(Gn) = Σ≤ln ⊇ L′
n and |Gn| = (k + 1) · ln which, from a certain M ∈ N

on, is less than |L′
n| = n.

4 Application to Tree Languages

In this section we will transfer the main theorem to tree languages. The gram-
mars we will be considering for the compression of finite tree languages are totally
rigid acyclic tree grammars. Rigid tree languages were introduced in [12,13] with
applications in verification in mind. A presentation of this class of languages via
rigid grammars was given in [7].

For a ranked alphabet (i.e., a term signature) Σ we write T (Σ) for the set
of all terms built from function and constant symbols of Σ.

Definition 15. A regular tree grammar is a tuple G = (N,Σ,P, S) where N is
a set of nonterminals of arity 0, Σ is a term signature, S ∈ N is the starting
symbol and P is a finite set of productions of the form A → t where A ∈ N and
t ∈ T (Σ ∪ N).

The ordering <G of nonterminals is defined analogously to the case of word
grammars. Hence we can speak about acyclic regular tree grammars. As usual
for tree grammars, a derivation is a finite list of terms t1, . . . , tn s.t. ti+1 is
obtained from ti by applying a production rule to a single position. A derivation
w.r.t. a grammar G = (N,Σ,P, S) is said to satisfy the rigidity condition if for
every nonterminal A ∈ N it uses at most one A-production.

Definition 16. A totally rigid acyclic tree grammar (TRATG) is an acyclic
regular tree grammar G = (N,Σ,P, S) whose language L(G) is the set of all
t ∈ T (Σ) that have a derivation from S satisfying the rigidity condition.

(In)compressibility of tree languages and sequences thereof is defined analogously
to the case of word languages replacing RLAGs with TRATGs.

Definition 17. For an alphabet Σ define ΣT = {fa/1 | a ∈ Σ} ∪ {e}. For
w ∈ Σ∗ define the term wT recursively by εT = e, and (av)T = fa(vT). For
L ⊆ Σ∗ define LT = {wT | w ∈ L}.
Theorem 4. The sequence of tree languages (LT

n )n≥1 is incompressible.

Proof Sketch. Starting from the assumption that (LT
n )n≥1 is compressible, trans-

form the compressing TRATGs into RLAGs compressing (Ln)n≥1 hence arriving
at a contradiction to Theorem 1.
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5 Application to Proof Theory

A sequent is an expression of the form Γ � Δ where Γ and Δ are finite sets of
formulas in first-order predicate logic. The intended interpretation of a sequent
Γ � Δ is the formula (

∧
ϕ∈Γ ϕ) → (

∨
ψ∈Δ ψ). The logical complexity ‖Γ � Δ‖

of a sequent is the number of logical connectives it contains.
A proof is a tree whose nodes are sequents which is built according to certain

logical inference rules. The leaves are of the form A � A. An important inference
rule is the so-called cut rule:

Γ � Δ,A A,Π � Λ
Γ,Π � Δ,Λ

cut

For a complete list of inference rules of the sequent calculus, the interested
reader is referred to [1]. The length of a proof π, written as |π|, is the number
of inferences in π. The cut rule formalises the use of a lemma in mathematical
practice and is of particular importance here because it allows compressing proofs
in first-order logic non-elementarily [20,21,27]. A cut is said to be a Π1-cut if
its cut formula A is of the form ∀xB for B quantifier-free.

The following result is a proof-theoretic corollary of the incompressiblity
theorem proved in Sect. 3 and extended to tree languages in Sect. 4. It should be
stressed that the proof-theoretic techniques for deriving it from Theorem4 are
simple standard techniques, the details of which are omitted from this paper for
space reasons.

Theorem 5. There is a sequences of sequents (Sn)n≥1 such that ‖Sn‖ is con-
stant, there is a cut-free proof of Sn with O(22n) inferences and there is M ∈ N

s.t. for all n ≥ M : every proof with Π1-cuts of Sn has at least 2n inferences.

Proof Sketch. For i ≥ 1 define the sequent Ri :=

∀y∀v P (0, y, e, v), ∀x∀y∀u∀v (P (x, f0(y), u, v) → P (x, y, f0(u), v)),

∀x∀y∀u∀v (P (x, f1(y), u, v) → P (x, y, f1(u), v)),

∀x∀y∀u∀v (P (x, fs(y), u, v) → P (x, y, u, v)), ∀x∀y∀v (P (x, y, v, v) → P (s(x), y, e, v)),

∀v (P (k(n), e, e, v) → Q(1, v)), ∀x∀v ((Q(x, f0(v)) ∧ Q(x, f1(v))) → Q(s(x), v))

� Q(l(n), e)

where n for n ∈ N denotes the term sn(0). Define (Sn)n≥1 by Sn = R2n . Then
‖Sn‖ is constant and Sn has a straightforward cut-free proof with O(22n) infer-
ences. Furthermore, every cut-free proof of Sn must instantiate the quantifier ∀y
in ∀y∀v P (0, y, e, v) with all terms in LT

2n . The lower bound on the proofs with
cuts then follows immediately from Theorem 4 and a suitable (but straightfor-
ward) generalisation of Theorem 22 in [7].

6 Conclusion

We have investigated the problem of simultaneously compressing a finite set of
words by a right-linear acyclic grammar. We have constructed an incompressible
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sequence of languages and applied it to obtain an incompressibility-result in
proof theory.

This problem of simultaneous compression has received only little attention
in the literature so far and consequently there is a number of interesting open
questions, for example: what is the complexity of the smallest grammar problem
in this setting? How difficult is the approximation of the smallest grammar? Can
approximation algorithms and techniques be carried over from the case of one
word to this setting? How does the situation change when we do not minimise
the number of production rules but the symbol complexity of the grammar?

Fast approximation algorithms for computing a minimal RLAG (or TRATG)
that covers a given finite input language would also be of high practical value in
the cut-introduction method [9,10] and its implementation [8].
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