
On the Completeness of Interpolation Algorithms
Stefan Hetzl

TU Wien

Vienna, Austria

Raheleh Jalali

Czech Academy of Sciences

Prague, Czechia

ABSTRACT
Craig interpolation is a fundamental property of logics with a

plethora of applications from philosophical logic to computer-aided

verification. The question of which interpolants can be obtained

from an interpolation algorithm is of profound importance. Mo-

tivated by this question, we initiate the study of completeness

properties of interpolation algorithms. An interpolation algorithm

I is complete if, for every interpolant 𝐶 of an implication 𝐴 → 𝐵,

there is a proof 𝑃 of 𝐴 → 𝐵 such that 𝐶 is logically equivalent to

I(𝑃). We establish incompleteness and different kinds of complete-

ness results for several standard algorithms for resolution and the

sequent calculus for propositional, modal, and first-order logic.

KEYWORDS
(Craig) interpolation, proof theory, sequent calculus, resolution

ACM Reference Format:
Stefan Hetzl and Raheleh Jalali. 2024. On the Completeness of Interpolation

Algorithms. In 39th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS ’24), July 8–11, 2024, Tallinn, Estonia. ACM, New York, NY,

USA, 13 pages. https://doi.org/10.1145/3661814.3662112

1 INTRODUCTION
Interpolation is one of the most fundamental properties of classical

and many non-classical logics. Proved first by Craig in the 1950s [8],

the interpolation theorem has remained central to logic ever since

and continues to find new applications, see, e.g., [20] to catch a

glimpse of the remarkable breadth of this seminal result. It has

widespread applications throughout all areas of logic in philosophy,

mathematics, and computer science. For example, the interpolation

theorem has strong connections to the foundations of mathemat-

ics through its use for proving Beth’s definability theorem [5]. It

underlies the technique of feasible interpolation for proving lower

bounds in proof complexity [17]. It has also become a versatile and

indispensable tool in theory reasoning [23, 26], model checking [21],

and knowledge representation [1].

A question of profound importance, from a theoretical as well

as a practical point of view, is that of the expressive power of

interpolation algorithms: Given a particular interpolation algorithm,

which interpolants can it compute? This question is relevant for

all applications of interpolation and it is gaining importance with

the increasing number of applications. In particular, it has been

the focus of attention in the Computer-Aided Verification (CAV)

LICS ’24, July 8–11, 2024, Tallinn, Estonia
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0660-8/24/07

https://doi.org/10.1145/3661814.3662112

community where a lot of work, see, e.g. [9, 11, 13–16, 28], has been

devoted to developing algorithms that compute “good” interpolants,

i.e., such interpolants that have properties, e.g., in terms of logical

strength, that make them well suited for the application at hand.

However, from a theoretical point of view, this question has not

been investigated to a satisfactory degree yet.

In this paper, we set out to gauge the expressive power of dif-

ferent interpolation algorithms by carrying out a thorough theo-

retical analysis. To this aim, we initiate the study of completeness

properties of interpolation algorithms. An interpolation algorithm

outputs an interpolant of an implication𝐴 → 𝐵 when given a proof

of 𝐴 → 𝐵 (in a suitable proof system). We say that an interpolation

algorithm I is complete if, for every interpolant𝐶 of an implication

𝐴 → 𝐵, there is a proof 𝑃 of 𝐴 → 𝐵 such that I(𝑃) is logically
equivalent to 𝐶 . The practical relevance of a completeness result is

that it provides a guarantee that, at least in principle, the algorithm

allows to find the “good” interpolants, whatever that may mean in

the concrete application under consideration.

In this paper, we study the completeness of the standard interpo-

lation algorithms for the sequent calculus and resolution, two of the

most important proof systems in mathematical logic and computer

science. We establish the following results: after introducing the

necessary notions and definitions in Section 2 we will show in Sec-

tion 3 that the standard interpolation algorithms for resolution and

cut-free sequent calculus for classical propositional logic are incom-

plete. On the other hand, if we weaken the completeness property,

it is possible to obtain a positive result for the cut-free sequent

calculus: in Section 5 we will show that the standard interpolation

algorithm for cut-free sequent calculus is complete up to subsump-

tion for pruned interpolants. This result requires a subtle argument

that traces the development of interpolants during cut-elimination.

Furthermore, in Section 6 we show that in the sequent calculus with

cut, already with atomic cut, the standard interpolation algorithm is

complete. We then leave the realm of propositional logic to extend

our results to normal modal logics in Section 7 and to classical

first-order logic in Section 8. While the results for propositional

logic carry over to first-order logic, we also find a new source of

incompleteness on the first-order level which implies that standard

algorithms for first-order interpolation are incomplete, even in the

sequent calculus with atomic cuts. Last, but not least, in Section 9

we show that completeness properties of interpolation algorithms

translate directly to completeness properties of Beth’s definability

theorem.

2 PRELIMINARIES
2.1 Formulas
For the preliminaries, the reader may consult [6, 22, 27]. Let the

propositional language L𝑝 = {⊥,∧,∨,¬}. Propositional variables or
atoms are denoted by 𝑝, 𝑞, . . . , possiblywith subscripts. Formulas are
denoted by 𝐴, 𝐵, . . . and defined as usual. Define 𝐴 → 𝐵 := ¬𝐴 ∨ 𝐵

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3661814.3662112
https://doi.org/10.1145/3661814.3662112
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3661814.3662112&domain=pdf&date_stamp=2024-07-08

LICS ’24, July 8–11, 2024, Tallinn, Estonia Stefan Hetzl and Raheleh Jalali

and ⊤ := ⊥ → ⊥ for any formulas 𝐴 and 𝐵 in the language L𝑝 . A
literal ℓ is either an atom or a negation of an atom. We consider

⊥ as an atom and ⊤ as a literal. If ℓ = 𝑝 , by ℓ̄ we mean ¬𝑝 and if

ℓ = ¬𝑝 , by ℓ̄ we mean 𝑝 . A clause 𝐶 is a finite disjunction of literals

𝐶 = ℓ1 ∨ · · · ∨ ℓ𝑛 , sometimes simply written as 𝐶 = {ℓ1, . . . , ℓ𝑛}.
The clause 𝐶 ∪ {ℓ} is often abbreviated by 𝐶, ℓ . We assume two

clauses are equal if they have the same set of literals. A positive
literal is an unnegated atom and a negative literal is a negated atom.

By convention, ∧∅ := ⊤ and ∨∅ := ⊥. For a formula 𝐴, the set of

its variables, denoted by 𝑉 (𝐴), is defined recursively; 𝑉 (⊥) = ∅;
𝑉 (𝑝) = {𝑝} for any atom 𝑝 ;𝑉 (¬𝐴) = 𝑉 (𝐴), and𝑉 (𝐴◦𝐵) = 𝑉 (𝐴) ∪
𝑉 (𝐵) for ◦ ∈ {∧,∨}. For a multiset Γ define 𝑉 (Γ) = ⋃

𝛾 ∈Γ 𝑉 (𝛾).

Definition 1. A logic 𝐿 has the Craig Interpolation Property (CIP) if
for any formulas 𝐴 and 𝐵 if 𝐴 → 𝐵 ∈ 𝐿 then there exists a formula

𝐶 such that 𝑉 (𝐶) ⊆ 𝑉 (𝐴) ∩𝑉 (𝐵) and 𝐴 → 𝐶 ∈ 𝐿 and 𝐶 → 𝐵 ∈ 𝐿.

2.2 Resolution
Propositional resolution, 𝑅, is one of the weakest proof systems.

However, it is very important in artificial intelligence as it is useful

in automated theorem proving and SAT solving. Resolution operates

on clauses.

By a clause set we mean a set C = {𝐶1, . . . ,𝐶𝑛} of clauses 𝐶𝑖 =
{ℓ𝑖1, . . . , ℓ𝑖𝑘𝑖 } and the formula interpretation of C is

∧𝑛
𝑖=1

∨𝑘𝑖
𝑗=1

ℓ𝑖 𝑗 .

We say a clause set is logically equivalent to a formula 𝜑 when

its formula interpretation is logically equivalent to 𝜑 . A formula

is in conjunctive normal form if it is a conjunction of disjunctions

of literals, i.e., has the form

∧𝑛
𝑖=1

∨𝑘𝑖
𝑗=1

ℓ𝑖 𝑗 for some 1 ≤ 𝑛 and

1 ≤ 𝑘𝑖 for each 1 ≤ 𝑖 ≤ 𝑛, where ℓ𝑖 𝑗 ’s are literals. Equivalently,

we may use the clause set C = {𝐶𝑖 | 1 ≤ 𝑖 ≤ 𝑛}, where each

𝐶𝑖 = ℓ𝑖1 ∨ · · · ∨ ℓ𝑖𝑘𝑖 . We use these two formats interchangeably

for the conjunctive normal form of a formula. By convention, the

empty clause set is logically equivalent to ⊤ and the empty clause

is logically equivalent to ⊥. Similarly, ⊤ and ⊥ are considered as

formulas in conjunctive normal form.

A resolution proof, also called a resolution refutation, shows the
unsatisfiability of a set of initial clauses by starting with these

clauses and deriving new clauses by the resolution rule

𝐶 ∪ {𝑝} 𝐷 ∪ {¬𝑝}
𝐶 ∪ 𝐷

until the empty clause is derived, where 𝐶 and 𝐷 are clauses. This

rule is obviously sound, i.e., if a truth assignment satisfies both

the premises, then the conclusion is also satisfied by the same as-

signment. Given a set of clauses, it is possible to use the resolution

rule and derive new clauses. Specifically, we may derive the empty

clause, denoted by ⊥. Thus, we can interpret resolution as a refuta-

tion system; instead of proving a formula 𝐴 is true we prove that

¬𝐴 is unsatisfiable. We write ¬𝐴 as a conjunction of disjunctions of

literals and take each conjunct as a clause. Then, from these clauses,

we derive the empty clause using the resolution rule only. It is also

possible to add the weakening rule to the resolution system:

𝐶

𝐶 ∪ 𝐷
for arbitrary clauses 𝐶 and 𝐷 . The new system is called resolution
with weakening.

Interpolation algorithm for resolution [18, 24]: Suppose a res-
olution proof 𝑃 of the empty clause from the clauses 𝐴𝑖 (𝑝, 𝑞) and
𝐵 𝑗 (𝑝, 𝑟) is given, where 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 , and 𝑝, 𝑞, 𝑟 are disjoint sets of
atoms. The only atoms common between the two sets of clauses

are 𝑝 . Define a ternary connective 𝑠𝑒𝑙 as 𝑠𝑒𝑙 (𝐴, 𝑥,𝑦) = (¬𝐴 →
𝑥) ∧ (𝐴 → 𝑦) = (𝐴 ∨ 𝑥) ∧ (¬𝐴 ∨ 𝑦), for formulas 𝐴, 𝑥 , and 𝑦. For

instance, by definition, we have 𝑠𝑒𝑙 (⊥, 𝑥,𝑦) = 𝑥 , 𝑠𝑒𝑙 (⊤, 𝑥,𝑦) = 𝑦,

𝑠𝑒𝑙 (𝐴,⊥,⊤) = 𝐴, and 𝑠𝑒𝑙 (𝐴,⊤,⊥) = ¬𝐴. The interpolation algo-

rithm operates as follows. Assign the constant ⊥ to clauses 𝐴𝑖 for

each 𝑖 ∈ 𝐼 and assign ⊤ to clauses 𝐵 𝑗 for 𝑗 ∈ 𝐽 . Then:
(1) Suppose the resolution rule is of the form

Γ, 𝑝𝑘 Δ,¬𝑝𝑘
Γ,Δ

where 𝑝𝑘 ∈ 𝑝 . If we have assigned 𝑥 to the premise Γ, 𝑝𝑘 and 𝑦 to

Δ,¬𝑝𝑘 then we assign 𝑧 = 𝑠𝑒𝑙 (𝑝𝑘 , 𝑥,𝑦) to the conclusion Γ,Δ.
(2) Suppose the resolution rule is of the form

Γ, 𝑞𝑘 Δ,¬𝑞𝑘
Γ,Δ

where 𝑞𝑘 ∈ 𝑞. If we have assigned 𝑥 to the premise Γ, 𝑞𝑘 and 𝑦 to

Δ,¬𝑞𝑘 , then we will assign 𝑥 ∨ 𝑦 to the conclusion Γ,Δ.
(3) Suppose the resolution rule is of the form

Γ, 𝑟𝑘 Δ,¬𝑟𝑘
Γ,Δ

where 𝑟𝑘 ∈ 𝑟 . If we have assigned 𝑥 to the premise Γ, 𝑟𝑘 and 𝑦 to

Δ,¬𝑟𝑘 , then we will assign 𝑥 ∧ 𝑦 to the conclusion Γ,Δ.
This algorithm outputs an interpolant of the valid formula 𝐴 →

𝐵, given a resolution refutation of the unsatisfiable formula 𝐴∧¬𝐵.
The interpolation algorithm for resolution with weakening is

defined as above except that when the weakening rule is used

Γ
Γ,Δ

and we have assigned 𝑥 to the premise Γ, we will also assign 𝑥 to

the conclusion Γ,Δ.

Theorem 2. [18, 24] Let 𝜋 be a resolution refutation of the set of
clauses {𝐴𝑖 (𝑝, 𝑞) | 𝑖 ∈ 𝐼 } and {𝐵 𝑗 (𝑝, 𝑟) | 𝑗 ∈ 𝐽 }. Then, the in-
terpolation algorithm outputs an interpolant for the valid formula∧
𝑖∈𝐼 𝐴𝑖 (𝑝, 𝑞) →

∨
𝑗∈ 𝐽 ¬𝐵 𝑗 (𝑝, 𝑟).

In refutational theorem provers, interpolation is also often for-

mulated in terms of reverse interpolants. A reverse interpolant of an
unsatisfiable formula𝐴∧𝐵 is a formula𝐶 with𝑉 (𝐶) ⊆ 𝑉 (𝐴)∩𝑉 (𝐵)
such that 𝐴 |= 𝐶 and 𝐵 |= ¬𝐶 . Note that 𝐶 is a reverse interpolant

of 𝐴 ∧ 𝐵 iff it is an interpolant of 𝐴 → ¬𝐵.

2.3 Sequent calculus
A sequent is an expression of the form Γ ⇒ Δ where Γ, called the

antecedent, and Δ, called the succedent, are multisets of formulas

and the formula interpretation of the sequent is

∧
Γ → ∨

Δ. In
the propositional sequent calculus LK each proof is represented

as a tree. The nodes correspond to sequents and the root of the

proof tree, at the bottom, is the end-sequent and it is the sequent

proved by the proof. The topmost nodes of the tree, the leaves, are

called the initial sequents or axioms. Apart from the axioms, each

sequent in an LK proof must be inferred from one of the inference

rules provided in Table 1. An inference rule is an expression of

On the Completeness of Interpolation Algorithms LICS ’24, July 8–11, 2024, Tallinn, Estonia

𝑝 ⇒ 𝑝 (Ax) ⊥ ⇒ (⊥)

Γ ⇒ Δ (𝐿𝑤)
𝐴, Γ ⇒ Δ

Γ ⇒ Δ (𝑅𝑤)
Γ ⇒ Δ, 𝐴

𝐴,𝐴, Γ ⇒ Δ (𝐿𝑐)
𝐴, Γ ⇒ Δ

Γ ⇒ Δ, 𝐴,𝐴 (𝑅𝑐)
Γ ⇒ Δ, 𝐴

𝐴, Γ ⇒ Δ (𝐿∧1)
𝐴 ∧ 𝐵, Γ ⇒ Δ

𝐵, Γ ⇒ Δ (𝐿∧2)
𝐴 ∧ 𝐵, Γ ⇒ Δ

Γ ⇒ Δ, 𝐴 Γ ⇒ Δ, 𝐵 (𝑅∧)
Γ ⇒ Δ, 𝐴 ∧ 𝐵

Γ ⇒ Δ, 𝐴 (𝑅∨1)
Γ ⇒ Δ, 𝐴 ∨ 𝐵

Γ ⇒ Δ, 𝐵 (𝑅∨2)
Γ ⇒ Δ, 𝐴 ∨ 𝐵

𝐴, Γ ⇒ Δ 𝐵, Γ ⇒ Δ (𝐿∨)
𝐴 ∨ 𝐵, Γ ⇒ Δ

Γ ⇒ Δ, 𝐴 (𝐿¬)¬𝐴, Γ ⇒ Δ
Γ, 𝐴 ⇒ Δ (𝑅¬)
Γ ⇒ Δ,¬𝐴

Γ ⇒ Δ, 𝐴 𝐴, Γ ⇒ Δ (𝑐𝑢𝑡)
Γ ⇒ Δ

Table 1: Propositional LK. In (Ax), 𝑝 is an atom. The formula
𝐴 in the cut rule is called the cut formula.

the form
𝑆1

𝑆
or

𝑆1 𝑆2

𝑆
indicating that the conclusion 𝑆 is inferred

from the premise 𝑆1 or the premises 𝑆1 and 𝑆2. In Table 1, rules

are schematic, 𝐴 and 𝐵 denote arbitrary formulas, and Γ and Δ
denote arbitrary multisets of formulas. The first row in Table 1 are

axioms. The weakening and contraction rules and the cut rule are

structural inference rules and the rest logical. By length of a formula

𝐴, denoted by |𝐴|, we mean the number of symbols in it. Similarly,

we define the length of a multiset, sequent, and a proof. The size of
a tree is the number of nodes in it. The depth or height of a proof
tree is the maximum length of the branches in the tree, where the

length of a branch is the number of nodes in the branch minus one.

We will consider the 𝐺1 systems for our logics, as presented

in [27, Section 3.1]. However, the results of this paper do not depend

significantly on the concrete version of the sequent calculus. The

system presented in Table 1 is the propositional LK. In each rule,

the upper sequent(s) is (are) premise(s), and the lower sequent is

the conclusion. Γ and Δ are called the context. The formula in the

conclusion of the rule not belonging to the contexts is called the

main formula. The formulas in the premises not in the contexts

are called the active or auxiliary formulas. The cut rule is called

atomic when the cut formula is an atom or ⊥ or ⊤. Denote LK with

cuts only on atoms (resp. literals) by LKat
(resp. LKlit

) and denote

cut-free LK by LK−
.

Maehara interpolation algorithm for LKat, LKlit and LKm: A
split sequent is an expression of the from Γ1; Γ2 ⇒ Δ1;Δ2 such that

Γ1, Γ2 ⇒ Δ1,Δ2 is a sequent. The partition Γ1, Γ2 = Γ and Δ1,Δ2 = Δ
is called the Maehara partition of the sequent Γ ⇒ Δ. A formula

𝐴 is on the left-hand side (resp. right-hand side) of the Maehara

partition if 𝐴 ∈ Γ1 ∪ Δ1 (resp. 𝐴 ∈ Γ2 ∪ Δ2). A proof 𝜋 of a split

sequent Γ1; Γ2 ⇒ Δ1;Δ2 is called monochromatic when for each

cut rule used in 𝜋 , the cut formula 𝐴 has the following condition:

either 𝑉 (𝐴) ⊆ 𝑉 (Γ1) ∪𝑉 (Δ1) or 𝑉 (𝐴) ⊆ 𝑉 (Γ2) ∪𝑉 (Δ2). Let LKm

be the set of all monochromatic proofs. Let 𝐺 ∈ {LKat, LKlit, LKm}.
We define the Maehara algorithm for 𝐺 . Suppose a valid sequent

Γ ⇒ Δ is given. Let 𝜋 be a proof of the split sequent Γ1; Γ2 ⇒ Δ1;Δ2

in 𝐺 . In the following, we will define the Maehara interpolation

algorithm, denoted by M. More concretely, we define the formula

M(𝜋) = 𝐶 , called the interpolant, recursively, such that 𝑉 (𝐶) ⊆
𝑉 (Γ1∪Δ1)∩𝑉 (Γ2∪Δ2) and𝐺 ⊢ Γ1 ⇒ Δ1,𝐶 and𝐺 ⊢ 𝐶, Γ2 ⇒ Δ2. Let

us denote the interpolant𝐶 for Γ1; Γ2 ⇒ Δ1;Δ2 by Γ1; Γ2

𝐶
=⇒ Δ1;Δ2.

An interpolant for the provable formula𝐴 → 𝐵 is defined asM(𝜋),
where 𝜋 is the proof of the split sequent 𝐴; ⇒ ;𝐵.

• If 𝜋 is an axiom, it is either (Ax) or (⊥). Then,M(𝜋) is defined as
follows based on the occurrence of the atom 𝑝 or⊥ in the partitions:

𝑝;

⊥
=⇒ 𝑝; ;𝑝

⊤
=⇒;𝑝 ⊥;

⊥
=⇒;

𝑝;

𝑝
=⇒; 𝑝 ;𝑝

¬𝑝
=⇒ 𝑝; ;⊥ ⊤

=⇒;

• If the last rule R used in 𝜋 is one of the one-premise rules, i.e.,

(𝑅∨1), (𝑅∨2), (𝐿∧1), (𝐿∧2), (𝐿𝑤), (𝑅𝑤), (𝐿𝑐), (𝑅𝑐), (𝐿¬), or (𝑅¬),
then the interpolant of the premise also works as the interpolant for

the conclusion, i.e., define M(𝜋) = M(𝜋 ′) where 𝜋 ′ is the proof
of the premise of R.

• If the last rule in 𝜋 is (𝑅∧), there are two cases based on the

occurrence of the main formula in the conclusion:

Γ1; Γ2

𝐶
=⇒ Δ1, 𝐴;Δ2 Γ1; Γ2

𝐷
=⇒ Δ1, 𝐵;Δ2

Γ1; Γ2

𝐶∨𝐷
=⇒ Δ1, 𝐴 ∧ 𝐵;Δ2

or

Γ1; Γ2

𝐶
=⇒ Δ1;𝐴,Δ2 Γ1; Γ2

𝐷
=⇒ Δ1;𝐵,Δ2

Γ1; Γ2

𝐶∧𝐷
=⇒ Δ1;𝐴 ∧ 𝐵,Δ2

• If the last rule in 𝜋 is (𝐿∨), then:

Γ1, 𝐴; Γ2

𝐶
=⇒ Δ1;Δ2 Γ1, 𝐵; Γ2

𝐷
=⇒ Δ1;Δ2

Γ1, 𝐴 ∨ 𝐵; Γ2

𝐶∨𝐷
=⇒ Δ1;Δ2

or

Γ1;𝐴, Γ2

𝐶
=⇒ Δ1;Δ2 Γ1;𝐵, Γ2

𝐷
=⇒ Δ1;Δ2

Γ1;𝐴 ∨ 𝐵, Γ2

𝐶∧𝐷
=⇒ Δ1;Δ2

• Suppose the last rule in 𝜋 is an instance of a cut rule in 𝐺 . Let

𝐴 be the cut formula. Denote𝑉1 = 𝑉 (Γ1 ∪Δ1) and𝑉2 = 𝑉 (Γ2 ∪Δ2).
Then, either 𝑉 (𝐴) ⊆ 𝑉1 or 𝑉 (𝐴) ⊆ 𝑉2 or 𝑉 (𝐴) ⊆ 𝑉1 ∩ 𝑉2. If

𝑉 (𝐴) ⊆ 𝑉1, define

Γ1; Γ2

𝐶
=⇒ Δ1, 𝐴;Δ2 Γ1, 𝐴; Γ2

𝐷
=⇒ Δ1;Δ2

Γ1; Γ2

𝐶∨𝐷
=⇒ Δ1;Δ2

If 𝑉 (𝐴) ⊆ 𝑉2, define

Γ1; Γ2

𝐸
=⇒ Δ1;𝐴,Δ2 Γ1; Γ2, 𝐴

𝐹
=⇒ Δ1;Δ2

Γ1; Γ2

𝐸∧𝐹
=⇒ Δ1;Δ2

And if 𝑉 (𝐴) ⊆ 𝑉1 ∩𝑉2, choose either case.

Theorem 3. Let 𝜋 be a proof of 𝐴 → 𝐵 in 𝐺 ∈ {LKat, LKlit, LKm}.
Then, M(𝜋) outputs an interpolant of the formula 𝐴 → 𝐵 with
|M(𝜋) | ≤ |𝜋 |.

Proof in the appendix. □

A formula is in negation normal form (NNF) when the negation

is only allowed on atoms and the other connectives in the formula

are disjunctions and conjunctions. By an easy investigation of the

form of the interpolants constructed in the Maehara algorithm, we

LICS ’24, July 8–11, 2024, Tallinn, Estonia Stefan Hetzl and Raheleh Jalali

see that in binary rules, based on the position of the active formulas

in the premises, the interpolant of the conclusion will be either the

conjunction or disjunction of the interpolants of the premises.

Corollary 4. The interpolants constructed via the Maehara algo-
rithm are in NNF.

Remark 5. By carefully investigating the definition of theMaehara

algorithm for 𝐺 ∈ {LKat, LKlit, LKm}, we see that the following

happens. If the cut formula is on the left-hand side (resp. right-

hand side) of the Maehara partition, then the interpolant of the

conclusion of the cut rule is the disjunction (resp. conjunction) of

the interpolants of the premises of the cut rule. We will use this

observation in the following results.

3 SIMPLE INCOMPLETENESS RESULTS
We start with a simple observation. Some interpolation algorithms

return only formulas of a particular shape. For example, as observed

in Corollary 4, Maehara algorithmM only returns formulas in NNF.

This immediately yields a first incompleteness result as follows.

Definition 6. An interpolation algorithm I is called syntactically
complete if for every valid implication𝐴 → 𝐵 and every interpolant

𝐶 of 𝐴 → 𝐵 there is a proof 𝜋 such that 𝐶 = I(𝜋).

Observation 7. M is syntactically incomplete.

Proof. ¬¬𝑝 is an interpolant of 𝑝 → 𝑝 but, since it is not in

NNF, there is no 𝜋 such that M(𝜋) = ¬¬𝑝 . □

This simple observation makes clear that in many cases we will

only obtain an interesting question if we ask for completeness up

to some equivalence relation coarser than syntactic equality. The

first candidate that comes to mind, and the most important case we

will deal with in this paper, is logical equivalence.

Definition 8. An interpolation algorithm I is called complete up
to logical equivalence if for every valid implication 𝐴 → 𝐵 and

every interpolant 𝐶 of 𝐴 → 𝐵 there is a proof 𝜋 s.t. 𝐶 is logically

equivalent to I(𝜋).

Since, in this paper, we will mostly deal with completeness up to

logical equivalence we will usually simply say completeness instead.
A useful basis for negative results is the implication 𝑝∧𝑞 → 𝑝∨𝑞.

It has the four interpolants 𝑝∧𝑞, 𝑝, 𝑞, 𝑝∨𝑞 but, in proof systems that

do not allow overly redundant proofs there are essentially only two

different proofs: one that proceeds via 𝑝 (and has 𝑝 as interpolant)

and one that proceeds via 𝑞 (and has 𝑞 as interpolant). This can

be used to obtain incompleteness results for interpolation in the

cut-free sequent calculus and resolution in a strong sense.

Definition 9. The notions of positive and negative subformulas

of a formula 𝐴 are defined as follows. 𝐴 is a positive subformula

of itself. If 𝐵 ◦𝐶 is a positive (resp. negative) subformula of 𝐴, so

are 𝐵 and 𝐶 , where ◦ ∈ {∧,∨}. If ¬𝐵 is a positive (resp. negative)

subformula of 𝐴, then 𝐵 is a negative (resp. positive) subformula of

𝐴. A formula 𝐵 is a subformula of the formula 𝐴 if it is a positive

or negative subformula of 𝐴. Positive and negative occurrences of

formulas in Γ ⇒ Δ are defined as positive and negative occurrences

of formulas in ¬∧
Γ ∨∨

Δ.

Proposition 10. Maehara interpolation in LK− is not complete.

Proof. We use the subformula property of cut-free proofs (see

Proposition 4.2.1 and its Corollary in [27]). Any cut-free proof of

𝜋 : 𝑝 ∧ 𝑞 ⇒ 𝑝 ∨ 𝑞 has the following properties:
• For any sequent Γ ⇒ Δ in 𝜋 , the formulas of Γ occur pos-

itively in 𝑝 ∧ 𝑞 and the formulas of Δ occur positively in

𝑝 ∨ 𝑞.
• The rules (𝐿¬) and (𝑅¬) are not used in 𝜋 .

• As the formula 𝑝 ∧𝑞 occurs negatively in 𝑝 ∧𝑞 ⇒ 𝑝 ∨𝑞 then
𝑝 ∧ 𝑞 is only obtained by using left rules, i.e., either (𝐿∧),
(𝐿𝑐), or (𝐿𝑤). And the rule (𝐿∨) cannot be used.

• Similarly, for 𝑝 ∨ 𝑞, it can be only obtained using the right

rules (𝑅∨), (𝑅𝑐), or (𝑅𝑤). And the rule (𝑅∧) cannot be used.
• Axioms in 𝜋 have one of the forms: 𝑝 ⇒ 𝑝 or 𝑞 ⇒ 𝑞. The

axioms ⊥ ⇒, 𝑝 ∧𝑞 ⇒ 𝑝 ∧𝑞 or 𝑝 ∨𝑞 ⇒ 𝑝 ∨𝑞 cannot appear
in 𝜋 , because of the subformula property and the positive or

negative occurrences.

Thus, the axioms of 𝜋 are either 𝑝 ⇒ 𝑝 or 𝑞 ⇒ 𝑞. And, as all the

rules in 𝜋 are one-premise rules, the interpolants 𝑝 ∧𝑞 or 𝑝 ∨𝑞 can
never be obtained. □

Proposition 11. Standard interpolation in propositional resolution
is not complete.

Proof. The formula 𝑝 ∧ 𝑞 → 𝑝 ∨ 𝑞 has the interpolants 𝑝 , 𝑞,

𝑝∧𝑞, or 𝑝∨𝑞. However, neither 𝑝∧𝑞 nor 𝑝∨𝑞 can be read off from a

resolution proof. To form a resolution refutation, as 𝑝∧𝑞 → 𝑝∨𝑞 is
classically valid, the set of clauses 𝐴1 = {𝑝}, 𝐴2 = {𝑞}, 𝐵1 = {¬𝑝},
and 𝐵2 = {¬𝑞} is unsatisfiable. The set of atoms common in both

𝐴1, 𝐴2 and 𝐵1, 𝐵2 is {𝑝, 𝑞}. A resolution refutation of the mentioned

set of clauses has either of the following forms:

𝑝 ¬𝑝
∅

𝑞 ¬𝑞
∅

Then, based on the algorithm we assign the constant ⊥ on clauses

𝐴1 and 𝐴2, and assign ⊤ on clauses 𝐵1 and 𝐵2. Then for the left

refutation we obtain 𝑠𝑒𝑙 (𝑝,⊥,⊤) which is logically equivalent to 𝑝

and for the right refutation we obtain 𝑠𝑒𝑙 (𝑞,⊥,⊤) which is logically

equivalent to𝑞 on the conclusion as the interpolant in each case. □

Note that the above proofs are quite general. In the case of reso-

lution, it shows the incompleteness of any interpolation algorithm

which, when given a resolution refutation in some set of propo-

sitional variables 𝑉 will output a formula in 𝑉 . This is arguably

the case for any reasonable interpolation algorithm. In the case of

sequent calculus, it shows the incompleteness of any interpolation

algorithm that produces only such interpolants that contain only

atoms that occur in axioms of the input proof.

Remark 12. It is worth mentioning that the above example does

not prove the incompleteness of the system resolution with weak-

ening. Because for the same set of clauses 𝐴1 = {𝑝}, 𝐴2 = {𝑞},
𝐵1 = {¬𝑝}, and 𝐵2 = {¬𝑞}, to form the interpolant 𝑝 ∨ 𝑞 we can

take the following resolution refutation:

𝑝
(𝑤)

𝑝, 𝑞 ¬𝑝
𝑞 ¬𝑞

∅

interpolant

−→

⊥
⊥ ⊤

𝑠𝑒𝑙 (𝑝,⊥,⊤) = 𝑝 ⊤
𝑠𝑒𝑙 (𝑞, 𝑝,⊤) = 𝑝 ∨ 𝑞

On the Completeness of Interpolation Algorithms LICS ’24, July 8–11, 2024, Tallinn, Estonia

Question 13. Is standard interpolation in resolution with weakening
complete?

Question 14. Are the standard interpolation algorithms in algebraic
proof systems, such as the cutting planes system [24], complete?

4 INTERPOLANTS IN THE SEQUENT
CALCULUS

In this section, we prove some general results about interpolants in

the sequent calculus in preparation for ourmain results in Sections 5

and 6.

For some aspects of the following proofs, it will be useful to

distinguish between different occurrences of a formula in an LK
proof. We use lowercase Greek letters like 𝜇, 𝜈, . . . to denote for-
mula occurrences. There is a natural ancestor relation on the set of

formula occurrences in a proof: if a formula occurrence 𝜇 is the

main occurrence of a logical or structural inference rule and 𝜈 is an

auxiliary occurrence then 𝜈 is a direct ancestor of 𝜇. Moreover, if 𝜇

is a formula occurrence in the context of the conclusion sequent

of an inference rule and 𝜈 is a corresponding formula occurrence

in the context of a premise sequent, then 𝜈 is a direct ancestor of 𝜇.
The ancestor relation is then the reflexive and transitive closure of

the direct ancestor relation. We write 𝐴𝜇 in a proof to denote an

occurrence 𝜇 of a formula 𝐴. We also write 𝐿𝑖 for a label 𝐿 of an

inference rule to give this inference the name 𝑖 .

Example 15. In the proof

𝐴 ⇒ 𝐴𝜈1

𝐴,¬𝐴 ⇒ (𝐿¬)

𝐴𝜇1
,¬𝐴 ∧ ¬𝐵 ⇒ (𝐿∧1)

𝐵 ⇒ 𝐵𝜈2

𝐵,¬𝐵 ⇒ (𝐿¬)

𝐵𝜇2
,¬𝐴 ∧ ¬𝐵 ⇒ (𝐿∧2)

¬𝐴 ∧ ¬𝐵, (𝐴 ∨ 𝐵)𝜇 ⇒ (𝐿∨)𝑖

𝐴 ∨ 𝐵 ⇒ (¬(¬𝐴 ∧ ¬𝐵))𝜈
(𝑅¬)

the formula occurrence 𝜇 has two direct ancestors: 𝜇1 and 𝜇2. The

occurrences 𝜇, 𝜇1, and 𝜇2 are the active formulas of the inference 𝑖 .

The formula occurrence 𝜈 has eight ancestors, including itself, and

the formula occurrences 𝜈1 and 𝜈2.

We will often work with formulas in conjunctive normal form

as a convenient representative for a class of formulas up to logical

equivalence. Many of the following results do not depend strongly

on the shape and could be adapted to other normal forms. Let 𝐿 be

a set of atoms. ByA is a clause set in the language 𝐿 we mean every

literal in A is either an atom or negation of an atom in 𝐿. If C and

D are clause sets, define C × D := {𝐶 ∪ 𝐷 | 𝐶 ∈ C and 𝐷 ∈ D}.

Definition 16. We define the function CNF, which maps formulas

in negation normal form to clause sets recursively: CNF(⊤) = ∅,
CNF(⊥) = {∅}, CNF(ℓ) = {ℓ}, CNF(𝐴 ∧ 𝐵) = CNF(𝐴) ∪ CNF(𝐵),
and CNF(𝐴 ∨ 𝐵) = CNF(𝐴) × CNF(𝐵), where ℓ is a literal and 𝐴
and 𝐵 are formulas.

Observation 17. Let 𝐴, 𝐵,𝐶 be formulas, let ℓ be a literal, and let
◦ ∈ {∧,∨}. Then:

(1) CNF(𝐴) is logically equivalent to 𝐴
(2) CNF(𝐴 ◦ 𝐵) = CNF(𝐵 ◦𝐴)
(3) CNF((𝐴 ◦ 𝐵) ◦𝐶) = CNF(𝐴 ◦ (𝐵 ◦𝐶))
(4) CNF(𝐴 ∧𝐴) = CNF(𝐴)

(5) CNF(ℓ ∨ ℓ) = CNF(ℓ)
(6) CNF(𝐴 ∧ ⊤) = CNF(𝐴)
(7) CNF(𝐴 ∨ ⊥) = CNF(𝐴)

Proof in the appendix. □

In the upcoming Obervation 18 and Lemma 19 we prove two

results about partitions of the end-sequent which determine the

interpolant independently of the proof.

Observation 18. Let Γ and Δ be multisets of formulas.
(1) If 𝜋 is an LK− proof of Γ;⇒ Δ; then CNF(M(𝜋)) = {∅}.
(2) If 𝜎 is an LK− proof of ; Γ ⇒;Δ then CNF(M(𝜋)) = ∅.

Proof. In case (1) all inferences work on the left-hand side of

the Maehara partition. Therefore all axioms have interpolant ⊥
and binary inferences induce disjunctions. Unary inferences do not

modify the interpolant. ThereforeCNF(M(𝜋)) = CNF(⊥∨· · · ⊥) =
{∅}. Case (2) is symmetric. □

Lemma 19. Let𝐴 be a formula, let {ℓ1, . . . , ℓ𝑛} be a non-tautological
clause, and let 𝜋 be an LK− proof of 𝐴;⇒; ℓ1, . . . , ℓ𝑛 . Then we have
CNF(M(𝜋)) = {𝑀} for some clause𝑀 with𝑀 ⊆ {ℓ1, . . . , ℓ𝑛}.

Proof. First note that a formula occurrence in 𝜋 is an ancestor

of 𝐴 (resp. of the ℓ𝑖 ’s) iff it is on the left-hand side (resp. right-hand

side) of the Maehara partition. All binary inferences in 𝜋 operate

on ancestors of 𝐴 and thus induce disjunctions in the computation

of M(𝜋). Therefore, M(𝜋) = ∨
𝑆∈S M(𝑆) where S is the set of

initial split sequents in 𝜋 . We make a case distinction on the form

of an 𝑆 ∈ S.
(1) If 𝑆 is 𝐵;

⊥
=⇒ 𝐵; then the interpolant is ⊥.

(2) The case of 𝑆 being ;𝐵
⊤
=⇒;𝐵 is impossible because it would

entail that both occurrences of 𝐵 are ancestors of the ℓ𝑖 ’s and

hence {ℓ1, . . . , ℓ𝑛} would be tautological.

(3) If 𝑆 is 𝐵;

𝐵
=⇒;𝐵 then the occurrence of 𝐵 on the succedent

of the sequent is ancestor of ℓ𝑗 for some 𝑗 ∈ {1, . . . , 𝑛} and
thus the interpolant is 𝐵 = ℓ𝑗 .

(4) If 𝑆 is ;𝐵
¬𝐵
=⇒ 𝐵; then the occurrence of 𝐵 on the antecedent

of the sequent is ancestor of ℓ𝑗 for some 𝑗 ∈ {1, . . . , 𝑛} and
thus the interpolant is ¬𝐵 = ℓ𝑗 .

(5) If 𝑆 is ⊥;

⊥
=⇒ then the interpolant is ⊥.

(6) The case of 𝑆 being ;⊥ ⊤
=⇒ is impossible because it would

entail that ℓ𝑗 = ¬⊥ for some 𝑗 ∈ {1, . . . , 𝑛} and hence

{ℓ1, . . . , ℓ𝑛} would be tautological.

We have thus shown thatM(𝑆) ∈ {⊥, ℓ1, . . . , ℓ𝑛} for all 𝑆 ∈ S. So,
by Observation 17/(2),(3),(5),(7), we have CNF(M(𝜋)) = {𝑀} for
some𝑀 ⊆ {ℓ1, . . . , ℓ𝑛}. □

The next useful result is that M is just as complete in LKat
as

it is in LKlit
. To show this, we first need a version of the inversion

lemma for negation that preserves the interpolant.

Lemma 20. If 𝜋 is an LKm proof with monochrome cuts of
(1) Γ1; Γ2 ⇒ Δ1;Δ2,¬𝐴
(2) Γ1; Γ2 ⇒ Δ1,¬𝐴;Δ2

(3) Γ1; Γ2,¬𝐴 ⇒ Δ1;Δ2

(4) Γ1,¬𝐴; Γ2 ⇒ Δ1;Δ2

LICS ’24, July 8–11, 2024, Tallinn, Estonia Stefan Hetzl and Raheleh Jalali

then there is an LKm proof with monochrome cuts 𝜋 ′ of
(1) Γ1; Γ2, 𝐴 ⇒ Δ1;Δ2

(2) Γ1, 𝐴; Γ2 ⇒ Δ1;Δ2

(3) Γ1; Γ2 ⇒ Δ1;Δ2, 𝐴

(4) Γ1; Γ2 ⇒ Δ1, 𝐴;Δ2

with M(𝜋 ′) = M(𝜋) and |𝜋 ′ | ≤ 2|𝜋 |.

Proof in the appendix. □

Lemma 21. If 𝜋 is an LKlit proof of Γ1; Γ2 ⇒ Δ1;Δ2 then there is an
LKat proof 𝜋 ′ of Γ1; Γ2 ⇒ Δ1;Δ2 with CNF(M(𝜋 ′)) = CNF(M(𝜋))
and |𝜋 ′ | ≤ 2|𝜋 |.

Proof. As all the cuts in 𝜋 are on literals, we apply Lemma 20 to

each instance of a cut rule on negative literals in the proof to obtain

a proof with only atomic cuts. Take a topmost instance of a cut

rule where the cut formula is a negative literal. Call this subproof 𝜎 .

Based on the position of the cut formula in the Maehara partition,

𝜎 either looks like

𝜎1

Γ1; Γ2

𝐼
=⇒ Δ1,¬𝑝;Δ2

𝜎2

Γ1,¬𝑝; Γ2

𝐽
=⇒ Δ1;Δ2

Γ1; Γ2

𝐼∨𝐽
=⇒ Δ1;Δ2

or

𝜎1

Γ1; Γ2

𝐼
=⇒ Δ1;¬𝑝,Δ2

𝜎2

Γ1; Γ2,¬𝑝
𝐽

=⇒ Δ1;Δ2

Γ1; Γ2

𝐼∧𝐽
=⇒ Δ1;Δ2

where 𝑝 is an atom and the cut formula is ¬𝑝 . In the first case, we

apply Lemma 20 to 𝜎1 and 𝜎2 to get 𝜎′
1
and 𝜎′

2
and use the cut to

get the end sequent of the proof 𝜎 :

𝜎′
1

Γ1, 𝑝; Γ2

𝐼
=⇒ Δ1;Δ2

𝜎′
2

Γ1; Γ2

𝐽
=⇒ Δ1, 𝑝;Δ2

Γ1; Γ2

𝐼∨𝐽
=⇒ Δ1;Δ2

Now, this cut is atomic, the cut formula is 𝑝 , and the interpolant

remains the same up to commutativity of conjunction. The other

case is similar. We apply the same process to every cut on a negated

literal in 𝜋 , resulting in a proof with only atomic cuts. □

The main technical lemma of Section 5, Lemma 38, will be shown

by carrying out a cut-elimination argument on a carefully chosen

class of proofs. This class on the one hand is large enough to per-

mit an embedding of all pruned interpolants, but on the other

hand small enough to exhibit a very nice behaviour during cut-

elimination: the interpolant of the reduced proof is subsumed by

the interpolant of the original proof. We now proceed to introduce

this class of proofs, called “tame” proofs, which is a new invariant

for cut-elimination.

Definition 22. We say that a cut is of type R if it is of the form

Γ1; Γ2 ⇒ Δ1;Δ2,𝐶 Γ1; Γ2,𝐶 ⇒ Δ1;Δ2

Γ1; Γ2 ⇒ Δ1;Δ2

cut

and of type L if it is of the form

Γ1; Γ2 ⇒ Δ1,𝐶;Δ2 Γ1,𝐶; Γ2 ⇒ Δ1;Δ2

Γ1; Γ2 ⇒ Δ1;Δ2

cut

Our cut-elimination argument will work with proofs all of whose

cuts are of type 𝑅.

Definition 23. We say that an axiom is of type L/L if it is of the

form 𝐴; ⇒ 𝐴; , of type L/R if it is of the form 𝐴; ⇒ ;𝐴, of type

R/L if it is of the form ;𝐴 ⇒ 𝐴; , and of type R/R if it is of the form

;𝐴 ⇒ ;𝐴.

Definition 24. We say that an axiom occurrence𝐴 ⇒ 𝐴 in a proof

𝜋 is of type Ω if both occurrences of𝐴 are ancestors of cut formulas

in 𝜋 .

Every cut 𝑐 in a proof has a left subproof and a right subproof:
the subproof whose end-sequent is the left, or respectively: right,

premise sequent of 𝑐 .

Definition 25. An LKm
proof 𝜋 is called tame if

(1) 𝜋 does not contain axioms of type Ω and

(2) every cut in 𝜋 has a subproof in which all axioms in which

an ancestor of the cut formula is active are of type R/R.

Definition 26. A clause set A is called pruned if no atom occurs

both positively and negatively in A and A does not contain the

literal ⊤.

For instance, none of the following clause sets are pruned:

{{𝑝}, {𝑟,¬𝑝}} {{⊤, 𝑝}} {{𝑝,¬𝑝}, {𝑟 }}

Lemma 27. Let A be a clause set in some language 𝐿. Let 𝐿D =

{𝑝 ∈ 𝐿 | 𝑝 occurs both positively and negatively in A}. Then, there
is a pruned clause set A∗ in the language 𝐿 \ 𝐿D such that

(1) 𝐼 |= A implies 𝐼 |= A∗.
(2) 𝐼 ′ |= A∗ implies that there is an extension of 𝐼 ′ to an 𝐿 inter-

pretation 𝐼 such that 𝐼 |= A.

Proof in the appendix. □

The above lemma is shown essentially by computing the clo-

sure A′
of A under resolution and then obtaining A∗

from A′
by

deleting all clauses that contain an atom in 𝐿D, including all tau-

tologies. Thus, pruned clause sets allow for a simple standardised

representation of a formula or a clause set.

The following useful Lemma essentially combines existing inter-

polants with a conjunction.

Lemma 28. Let 𝐴 → 𝐵 be a valid formula, and let the clause set
C = {𝐶𝑖 | 1 ≤ 𝑖 ≤ 𝑛} be an interpolant of 𝐴 → 𝐵. For 𝑖 = 1, . . . , 𝑛

let 𝜋𝑖 : 𝐴; ⇒ ;𝐶𝑖 be an LKat proof. Then, there is an LKat proof
𝜓 of 𝐴; ⇒ ;𝐵 all of whose cuts are of type R with CNF(M(𝜓)) =
CNF(∧𝑛

𝑖=1
M(𝜋𝑖)). Moreover, if C is a pruned clause set, then 𝜓 is

tame.

Proof. As C =
∧𝑛
𝑖=1

∨𝑘𝑖
𝑗=1

ℓ𝑖 𝑗 is an interpolant of 𝐴 → 𝐵, both

𝐴 ⇒ C and C ⇒ 𝐵 are valid sequents. Take ¬C = ¬∧𝑛
𝑖=1

∨𝑘𝑖
𝑗=1

ℓ𝑖 𝑗

which is logically equivalent to

∨𝑛
𝑖=1

∧𝑘𝑖
𝑗=1

ℓ𝑖 𝑗 and to the clause set

CNF(∨𝑛
𝑖=1

∧𝑘𝑖
𝑗=1

ℓ𝑖 𝑗). Define

On the Completeness of Interpolation Algorithms LICS ’24, July 8–11, 2024, Tallinn, Estonia{
C+ = {{ℓ𝑖1, . . . , ℓ𝑖𝑘𝑖 } | 1 ≤ 𝑖 ≤ 𝑛}
C− = {{ℓ1𝑗1 , . . . , ℓ𝑛𝑗𝑛 } | 1 ≤ 𝑗𝑖 ≤ 𝑘𝑖 }

The set of clauses C+ ∪ C−
is unsatisfiable. Let 𝐹 be a resolution

refutation with these clauses as the initial clauses and ∅ as the

conclusion of the refutation. Transform 𝐹 to a split proof in LKlit

as follows. Take the initial clauses; if a clause is in C+
then it is of

the form 𝐶𝑖 = {ℓ𝑖1, . . . , ℓ𝑖𝑘𝑖 } for some 1 ≤ 𝑖 ≤ 𝑛. And if an initial

clause is in C−
, then it is of the form 𝐷 𝑗𝑖 = {ℓ1𝑗1 , . . . , ℓ𝑛𝑗𝑛 } for some

1 ≤ 𝑗𝑖 ≤ 𝑘𝑖 . Replace these clauses with the following split sequents:

𝐶𝑖 with 𝐴;⇒; ℓ𝑖1, . . . , ℓ𝑖𝑘𝑖 𝐷 𝑗𝑖 with ; ℓ1𝑗1 , . . . , ℓ𝑛𝑗𝑛 ⇒;𝐵

Now, suppose a resolution rule is applied on a literal ℓ in 𝐹

𝑀, ℓ ℓ, 𝑁

𝑀, 𝑁

We replace this rule with a cut on the literal ℓ where the premises

of the cut rule are the corresponding split sequents of 𝑀, ℓ and

ℓ, 𝑁 . After making all these replacements, we obtain a deriva-

tion𝜓1 of 𝐴;⇒;𝐵, where the split sequents 𝐴;⇒; ℓ𝑖1, . . . , ℓ𝑖𝑘𝑖 and

; ℓ1𝑗1 , . . . , ℓ𝑛𝑗𝑛 ⇒;𝐵, for all 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗𝑖 ≤ 𝑘𝑖 appear

as leaves of 𝜓1. Note that in 𝜓1 inferences of the following form

appear:

𝜋1

Γ1; Γ2 ⇒ Δ1; ℓ,Δ2

𝜋2

Σ1; ℓ, Σ2 ⇒ Λ1;Λ2

Γ1, Σ1; Γ2, Σ2 ⇒ Δ1,Λ1;Δ2,Λ2

for some literal ℓ . We use these inferences as abbreviations for

𝜋1

Γ1; Γ2 ⇒ Δ1; ℓ,Δ2

Γ1, Σ1; Γ2, Σ2 ⇒ Δ1,Λ1; ℓ,Δ2,Λ2

𝜋2

Σ1; ℓ, Σ2 ⇒ Λ1;Λ2

Γ1, Σ1; ℓ, Γ2, Σ2 ⇒ Δ1,Λ1;Δ2,Λ2

Γ1, Σ1; Γ2, Σ2 ⇒ Δ1,Λ1;Δ2,Λ2

where the double lines mean applying the left and right weakening

rules as often as needed. For the curious reader, this means that we

can replace each context-splitting cut (a cut rule of the first form)

with a combination of weakening rules and context-sharing cut

rules, to get a derivation in LKlit
. Now, replace each leaf of𝜓1 of the

form 𝐴;⇒; ℓ𝑖1, . . . , ℓ𝑖𝑘𝑖 by the proof 𝜋𝑖 . Moreover, replace each leaf

of𝜓1 of the form ; ℓ1𝑗1 , . . . , ℓ𝑛𝑗𝑛 ⇒;𝐵 by a cut-free proof 𝜎 𝑗1,..., 𝑗𝑛 of it

which exists since it is a valid sequent. The result of making all these

replacements yields an LKlit
proof𝜓2 : 𝐴;⇒;𝐵. Now, we investigate

the Maehara interpolant of𝜓2. Note that in each cut rule, the cut

formula is on the right-hand side of the Maehara partition. The

initial sequents of𝜓2 are either the initial sequents of 𝜋𝑖 ’s or initial

sequents of the cut-free proofs of the sequents ; ℓ1𝑗1 , . . . , ℓ𝑛𝑗𝑛 ⇒;𝐵.

For the latter, by Observation 18, the interpolant is ⊤. On the other

hand, the proof 𝜋𝑖 has the interpolant M(𝜋𝑖). Hence, M(𝜓2) is
the conjunction of

∧𝑛
𝑖=1

M(𝜋𝑖) with several ⊤’s. The final step is

applying Lemma 21 to obtain a proof𝜓 : 𝐴;⇒;𝐵 in LKat
. We have

M(𝜓1) = M(𝜓2) = M(𝜓)
and we have CNF(M(𝜓)) = CNF(∧𝑛

𝑖=1
M(𝜋𝑖)). All cuts in the

proofs𝜓1,𝜓2, and𝜓 are of type R. Since C is a pruned clause set, no

𝐶𝑖 is a tautology, so no 𝜋𝑖 contains an axiom of type Ω. Similarly,

since C is a pruned clause set, no {ℓ1, 𝑗1 , . . . , ℓ𝑛,𝑗𝑛 } contains two

dual literals, so no 𝜎 𝑗1,..., 𝑗𝑛 contains an axiom of type Ω. Therefore
tameness condition (1) is satisfied. Since all formula occurrences in

𝜎 𝑗1,..., 𝑗𝑛 are on the right-hand side of the split sequents, all axioms

on the right-hand side of a cut on ℓ𝑖, 𝑗𝑖 in which an ancestor of the cut

formula is active are of type R/R. Therefore tameness condition (2)

is satisfied.

□

Remark 29. Up to associativity, commutativity, idempotence, and

unit elimination of ∧ we have M(𝜓) = ∧𝑛
𝑖=1

M(𝜋𝑖) in Lemma 28.

5 COMPLETENESS UP TO PRUNING AND
SUBSUMPTION

Even though, as we have seen in Proposition 10, Maehara inter-

polation in LK−
is incomplete it is possible to obtain also positive

results for LK−
. In this section we will prove such a positive result:

we will show that if we restrict our attention to pruned interpolants,
then Maehara interpolation is complete up to subsumption. The

proof strategy consists of carrying out a cut-elimination procedure

on tame proofs with monochromatic cuts and showing that, in this

setting, the interpolants have a very nice behaviour: the interpolant

of the reduced proof is subsumed by the interpolant of the original

proof. Applying this cut-elimination on a suitable chosen proof

with atomic cuts will yield the desired result. This strategy is remi-

niscent of that used in [3] to compare cut-elimination by resolution

(CERES) with traditional methods for cut-elimination.

Definition 30. A clause setA subsumes a clause set B, in symbols

A ≤ss B, if for all 𝐵 ∈ B there is an 𝐴 ∈ A s.t. 𝐴 ⊆ 𝐵.

For instance, {{𝑝}} subsumes {{𝑝, 𝑞}, {𝑝}}. Subsumption is one

of the most useful and one of the most thoroughly studied mecha-

nisms for the detection and elimination of redundancy in automated

deduction. Note that, if A ≤ss B then A |= B. In this sense, sub-

sumption is a restricted form of implication.

Observation 31. Let A,B, C be clause sets.
(1) If A ⊇ B then A ≤ss B.
(2) If A ≤ss B and B ≤ss C then A ≤ss C.
(3) If A ≤ss B then A ∪ C ≤ss B ∪ C.
(4) If A ≤ss B then A × C ≤ss B × C.
(5) (A × B) ∪ C ≤ss (A ∪ C) × (B ∪ C)

Proof in the appendix. □

Weproceed to set up the initial LKat
proof for our cut-elimination

argument.

Definition 32. A pruned clause set C is called pruned interpolant of
a formula𝐴 → 𝐵 if it is an interpolant and there are no𝐶′ ⊂ 𝐶 ∈ C
with 𝐴 |= 𝐶′

.

So a pruned interpolant, in addition to being a pruned clause

set, must not contain redundant literals in the sense of the above

definition.

Lemma 33. Let C be a pruned interpolant of an implication 𝐴 → 𝐵.
Then there is a tame LKat proof 𝜋 of 𝐴; ⇒ ;𝐵 all of whose cuts are
of type R with CNF(M(𝜋)) = C.

Proof. Let C = {𝐶𝑖 | 1 ≤ 𝑖 ≤ 𝑛}. Since C is an interpolant,

|= 𝐴 → 𝐶𝑖 for all 𝑖 = 1, . . . , 𝑛. Since C is pruned, the 𝐶𝑖 are non-

tautological, so Lemma 19 yields an LK−
proof 𝜋𝑖 of𝐴; ⇒ ;𝐶𝑖 with

LICS ’24, July 8–11, 2024, Tallinn, Estonia Stefan Hetzl and Raheleh Jalali

CNF(M(𝜋𝑖)) = {𝑀𝑖 } for some 𝑀𝑖 ⊆ 𝐶𝑖 . Since M(𝜋𝑖) is an inter-

polant of 𝐴 → 𝐶𝑖 , we have |= 𝐴 → M(𝜋𝑖). By Observation 17/(1),

we have |= 𝐴 → CNF(M(𝜋𝑖)), i.e., |= 𝐴 → 𝑀𝑖 . Then 𝑀𝑖 = 𝐶𝑖
because𝑀𝑖 ⊂ 𝐶𝑖 would contradict prunedness of C. Then, by ap-

plying Lemma 28, we obtain a tame LKat
proof 𝜋 all of whose cuts

are of type R with CNF(M(𝜋)) = CNF(∧𝑛
𝑖=1

M(𝜋𝑖)) = C. □

Definition 34. We call a proof 𝜋 w-reduced if every weakening

inference in 𝜋 occurs immediately below an axiom or another weak-

ening inference.

The point of the notion of w-reduced proofs is to facilitate the

technical matters of the cut-elimination argument in our variant

of LK. We now proceed to set up the termination measure for the

cut-elimination procedure.

Definition 35. A formula occurrence in a proof 𝜋 is called weak if
all its ancestors are introduced by weakening inferences.

Let 𝜇 be an occurrence of a formula𝐴 in a proof 𝜋 . An occurrence

𝜇′ of𝐴 is called relevant for 𝜇 if 𝜇′ is an ancestor of 𝜇, 𝜇′ is not weak,
and 𝜇′ is not in the conclusion sequent of a weakening inference.

The weight of a formula occurrence 𝜇 in a proof 𝜋 , written as

w(𝜇), is the number of formula occurrences which are relevant for

𝜇.

The weight of a cut 𝑐 in a proof 𝜋 is defined as w(𝑐) = w(𝜇
l
) +

w(𝜇r) where 𝜇l
(resp. 𝜇r) is the occurrence of the cut formula in the

left (resp. right) premise of 𝑐 .

Definition 36. The degree of a cut 𝑐 , written as deg(𝑐), is the logical
complexity, i.e., the number of propositional connectives, of the cut

formula of 𝑐 .

Lemma 37. Let 𝐺 ∈ {LKm, LK−}. For every 𝐺 proof 𝜋 of a sequent
Γ1; Γ2 ⇒ Δ1;Δ2 there is a w-reduced 𝐺 proof 𝜋 ′ of Γ1; Γ2 ⇒ Δ1;Δ2

such that
(1) M(𝜋 ′) = M(𝜋),
(2) if 𝜋 is tame then so is 𝜋 ′

(3) if all cuts in 𝜋 are of type R then all cuts in 𝜋 ′ are of type R
(4) for any formula occurrence 𝜇 in the end-sequent of 𝜋 and its

corresponding formula occurrence 𝜇′ in the end-sequent of 𝜋 ′:
(a) w(𝜇′) = w(𝜇) and
(b) every axiom of 𝜋 ′ in which an ancestor of 𝜇′ is active is, up

to weak formulas, also an axiom of 𝜋 in which an ancestor
of 𝜇 is active.

Proof Sketch. Shifting up weakenings until they are in a per-

mitted position satisfies the mentioned properties. For a more de-

tailed proof, please see the appendix. □

Lemma 38. For every tame LKm proof 𝜋 all of whose cuts are of type
R, there is an LK− proof 𝜋 ′ with CNF(M(𝜋)) ≤ss CNF(M(𝜋 ′)).

Proof. By Lemma 37 we can assume that 𝜋 is tame and w-

reduced. In this proof we will write

Γ, 𝐴 ⇒ Δ, 𝐴
wax

as an abbreviation for the axiom 𝐴 ⇒ 𝐴 followed by weakening

inferences to derive Γ, 𝐴 ⇒ Δ, 𝐴.
We write 𝜋 as 𝜋 [𝜒] where 𝜒 is a subproof of 𝜋 that ends with

an uppermost cut. Based on a case distinction on the form of 𝜒 we

will define a proof 𝜒∗ which, by replacing 𝜒 , yields a proof 𝜋 [𝜒∗].
We will show that

(i) 𝜋 [𝜒∗] is tame and w-reduced,

(ii) the cut 𝑐 in 𝜒 is replaced by cuts 𝑐′ in 𝜒∗ with d(𝑐) > d(𝑐′)
or (d(𝑐) = d(𝑐′) and w(𝑐) > w(𝑐′)), and

(iii) M(𝜒) ≤ss M(𝜒∗).

Points (i) and (ii) ensure correctness and termination of the cut-

elimination sequence while point (iii) shows CNF(M(𝜋 [𝜒])) ≤ss

CNF(M(𝜋 [𝜒∗])) by Observation 31/(3) and (4). This suffices to

prove the result by transitivity of ≤ss. In order to show that 𝜋 [𝜒∗]
is tame we will show the following condition (*) in most cases:

Every axiom of 𝜒∗ is, up to weak formulas, an axiom of 𝜒 .

Hence tameness condition (1) is preserved, because 𝜒 is tame. More-

over, if 𝜇 is a formula occurrence in the end-sequent of 𝜒 and 𝜇∗

is the corresponding formula occurrence in the end-sequent of 𝜒∗,
then every axiom of 𝜒∗ in which an ancestor of 𝜇∗ is active is, up to
weak formulas, also an axiom of 𝜒 in which 𝜇 is active. Therefore,

also tameness condition (2) is preserved.

Exclusion of weak cut formulas: If 𝜒 =

(𝜒1)
Γ1; Γ2 ⇒ Δ1;Δ2,𝐶𝜇1

(𝜒2)
Γ1;𝐶𝜇2

, Γ2 ⇒ Δ1;Δ2

Γ1; Γ2 ⇒ Δ1;Δ2

cut

where 𝜇1 is weak, define 𝜒∗ : Γ1; Γ2 ⇒ Δ1;Δ2 from 𝜒1 by removing

𝜇1, all its ancestors, and all weakening inferences that introduce

these ancestors. Then 𝜋 [𝜒∗] is w-reduced and, since 𝜒1, 𝜒
∗
satisfy

(*), 𝜋 [𝜒∗] is also tame which shows (i). (ii) holds vacuously. Further-

more, CNF(M(𝜒)) = CNF(M(𝜒1) ∧ M(𝜒2)) ⊇ CNF(M(𝜒1)) =
CNF(M(𝜒∗)). So (iii) follows from Observation 31/(1). In case 𝜇2

is weak we proceed analogously. So, in the remaining cases, we

assume that none of the two cut formulas are weak.

Permutation of a binary inference over a cut: If 𝜒 is of the

form

(𝜒1)
Γ1; Γ2 ⇒ Δ1, 𝐴;Δ2,𝐶𝜇1

(𝜒2)
Γ1; Γ2 ⇒ Δ1, 𝐵;Δ2,𝐶𝜇2

Γ1; Γ2 ⇒ Δ1, 𝐴 ∧ 𝐵;Δ2,𝐶

(𝜒3)
Γ1; Γ2,𝐶𝜇3

⇒ Δ1, 𝐴 ∧ 𝐵;Δ2

Γ1; Γ2 ⇒ Δ1, 𝐴 ∧ 𝐵;Δ2

cut𝑐

we define the proofs

𝜒 ′
1

=

(𝜒1)
Γ1; Γ2 ⇒ Δ1, 𝐴;Δ2,𝐶

Γ1; Γ2 ⇒ Δ1, 𝐴,𝐴 ∧ 𝐵;Δ2,𝐶

𝜒 ′
2

=

(𝜒2)
Γ1; Γ2 ⇒ Δ1, 𝐵;Δ2,𝐶

Γ1; Γ2 ⇒ Δ1, 𝐵, 𝐴 ∧ 𝐵;Δ2,𝐶

𝜒 ′
3,1 =

(𝜒3)
Γ1; Γ2,𝐶 ⇒ Δ1, 𝐴 ∧ 𝐵;Δ2

Γ1; Γ2,𝐶 ⇒ Δ1, 𝐴,𝐴 ∧ 𝐵;Δ2

𝜒 ′
3,2 =

(𝜒3)
Γ1; Γ2,𝐶 ⇒ Δ1, 𝐴 ∧ 𝐵;Δ2

Γ1; Γ2,𝐶 ⇒ Δ1, 𝐵, 𝐴 ∧ 𝐵;Δ2

On the Completeness of Interpolation Algorithms LICS ’24, July 8–11, 2024, Tallinn, Estonia

By applying Lemma 37 to these proofs individually, we obtain proofs

𝜒∗
1
, 𝜒∗

2
, 𝜒∗

3,1
, and 𝜒∗

3,2
that satisfy (1) and (4). We finally define 𝜒∗ =

(𝜒∗
1
) (𝜒∗

3,1
)

Γ1; Γ2 ⇒ Δ1, 𝐴,𝐴 ∧ 𝐵;Δ2

cut𝑐1

(𝜒∗
2
) (𝜒∗

3,2
)

Γ1; Γ2 ⇒ Δ1, 𝐵, 𝐴 ∧ 𝐵;Δ2

cut𝑐2

Γ1; Γ2 ⇒ Δ1, 𝐴 ∧ 𝐵,𝐴 ∧ 𝐵;Δ2

(𝑅∧)

Γ1; Γ2 ⇒ Δ1, 𝐴 ∧ 𝐵;Δ2

For (i) we observe that 𝜋 [𝜒∗] is w-reduced and, since 𝜒, 𝜒∗ sat-

isfy (*), 𝜋 [𝜒∗] is tame. For (ii) we observe that w(𝑐) = w(𝜇1) +
𝑤 (𝜇2) + 1 + w(𝜇3), w(𝑐1) = w(𝜇1) + w(𝜇3), and w(𝑐2) = w(𝜇2) +
w(𝜇3). For (iii) we have CNF(M(𝜒)) = CNF((M(𝜒1) ∨M(𝜒2)) ∧
M(𝜒3)) ≤Obs. 31/(5)

ss
CNF((M(𝜒1)∧M(𝜒3))∨(M(𝜒2)∧M(𝜒3))) =

CNF(M(𝜒∗)).
We proceed analogously for the other binary inferences. If the

binary inference above the cut works on the right-hand side of the

Maehara partition, we define 𝜒∗ analogously and obtain the calcu-

lation CNF(M(𝜒)) = CNF((M(𝜒1) ∧M(𝜒2)) ∧M(𝜒3)) =Obs. 17
CNF((M(𝜒1) ∧M(𝜒3)) ∧ (M(𝜒2) ∧M(𝜒3))) = CNF(M(𝜒∗)).

Reduction of axioms: Since all cuts are of type R, we have

to consider the four cases of axioms of type 𝑇1/R and R/𝑇2 for

𝑇1,𝑇2 ∈ {L, R}.
If 𝜒 is of the form R/R and R/R as in

Γ1; Γ2, 𝐴 ⇒ Δ1;Δ2, 𝐴,𝐴
wax

Γ1; Γ2, 𝐴,𝐴 ⇒ Δ1;Δ2, 𝐴
wax

Γ1; Γ2, 𝐴𝜇1
⇒ Δ1;Δ2, 𝐴𝜇2

cut

we reduce 𝜒 to 𝜒∗ =

Γ1; Γ2, 𝐴 ⇒ Δ1;Δ2, 𝐴
wax

For (i) we observe that 𝜋 [𝜒∗] is w-reduced. Moreover, the axiom

in 𝜒∗ is not of type Ω for if it were, then both 𝜇1 and 𝜇2 would

be ancestors of cuts in 𝜋 and hence 𝜒 would contain two axioms

of type Ω. (ii) is trivial. For (iii) we have CNF(M(𝜒)) = CNF(⊤ ∧
⊤) =Obs. 17/(6) CNF(⊤) = CNF(M(𝜒∗)).

If 𝜒 is of the form R/R and R/L as in

Γ1; Γ2, 𝐴 ⇒ Δ1, 𝐴;Δ2, 𝐴
wax

Γ1; Γ2, 𝐴,𝐴 ⇒ Δ1, 𝐴;Δ2

wax

Γ1; Γ2, 𝐴 ⇒ Δ1, 𝐴;Δ2

cut

we reduce 𝜒 to 𝜒∗ =

Γ1; Γ2, 𝐴 ⇒ Δ1, 𝐴;Δ2

wax

(i) is shown as above. (ii) is trivial. For (iii) we have CNF(M(𝜒)) =
CNF(⊤ ∧ ¬𝐴) =Obs. 17/(6) CNF(¬𝐴) = CNF(M(𝜒∗)).

If 𝜒 is of the form L/R and R/R as in

Γ1, 𝐴; Γ2 ⇒ Δ1;Δ2, 𝐴,𝐴
wax

Γ1, 𝐴; Γ2, 𝐴 ⇒ Δ1;Δ2, 𝐴
wax

Γ1, 𝐴; Γ2 ⇒ Δ1;Δ2, 𝐴
cut

we reduce 𝜒 to 𝜒∗ =

Γ1, 𝐴; Γ2 ⇒ Δ1;Δ2, 𝐴
wax

(i) is shown as above. (ii) is trivial. For (iii) we have CNF(M(𝜒)) =
CNF(𝐴 ∧ ⊤) =Obs. 17/(6) CNF(𝐴) = CNF(M(𝜒∗)).

The case of 𝜒 being of the form L/R and R/L as in

Γ1, 𝐴; Γ2 ⇒ Δ1, 𝐴;Δ2, 𝐴
wax

Γ1, 𝐴; Γ2, 𝐴 ⇒ Δ1, 𝐴;Δ2

wax

Γ1, 𝐴; Γ2 ⇒ Δ1, 𝐴;Δ2

cut

is ruled out by 𝜒 being tame.

The remaining cases of this cut-elimination argument can be

found in the appendix. □

Theorem39. Let C be a pruned interpolant of an implication𝐴 → 𝐵.
Then there is an LK− proof 𝜋 of 𝐴; ⇒ ;𝐵 with C ≤ss CNF(M(𝜋)).

Proof. By Lemma 33 there is a tame LKat
proof 𝜋 of 𝐴; ⇒ ;𝐵

all of whose cuts are of type R with CNF(M(𝜋)) = C. Then,
by applying Lemma 38, we obtain an LK−

proof 𝜋 ′ with C =

CNF(M(𝜋)) ≤ss CNF(M(𝜋 ′)). □

So even though interpolation in LK−
is not complete as shown

in Proposition 10, we can still recover a desired interpolant 𝐼 in a

restricted sense: after transforming 𝐼 into a pruned interpolant C
we can obtain a proof whose interpolant is subsumed by C.

Example 40. The formula 𝑝 ∧𝑞 → 𝑝 ∨𝑞 has the four interpolants
𝑝 ∧ 𝑞, 𝑝, 𝑞, 𝑝 ∨ 𝑞. We know from the proof of Proposition 10 that

the only interpolants obtainable from LK−
proofs are 𝑝 and 𝑞. The

clause set {{𝑝, 𝑞}}, representing the formula 𝑝 ∨ 𝑞, is not a pruned
interpolant. The clause set {{𝑝}, {𝑞}}, representing the formula

𝑝 ∧ 𝑞, subsumes both {{𝑝}} and {{𝑞}}.

Question 41. Is standard interpolation in resolution complete up to
subsumption for pruned interpolants?

Question 42. Can we extend these results to the sequent calculus
LJ for the intuitionistic logic? How about other super intuitionistic or
substructural logics?

6 SEQUENT CALCULUS WITH ATOMIC CUTS
If we move from LK−

to the slightly stronger LKat
we can even

obtain a full completeness result. This is achieved by a variant of

the construction used in the proof of Lemma 33.

Theorem 43. Maehara interpolation in LKat is complete.

Proof. Let 𝐼 be an interpolant of an implication 𝐴 → 𝐵 and

let the clause set C = {𝐶1, . . . ,𝐶𝑛} be logically equivalent to 𝐼 . For

𝑖 = 1, . . . , 𝑛 let 𝐶𝑖 = {ℓ𝑖,1, . . . , ℓ𝑖,𝑘𝑖 }. We start by constructing proofs

𝜋𝑖 : 𝐴; ⇒ ; ℓ𝑖,1, . . . , ℓ𝑖,𝑘𝑖 such thatM(𝜋𝑖) is logically equivalent to

𝐶𝑖 . As C is an interpolant of 𝐴 → 𝐵, we have LK ⊢ 𝐴 ⇒ ∧𝑛
𝑖=1

𝐶𝑖 .

Thus, for each 1 ≤ 𝑖 ≤ 𝑛, LK ⊢ 𝐴 ⇒ 𝐶𝑖 and hence LK ⊢ 𝐴 ⇒
ℓ𝑖1, . . . , ℓ𝑖𝑘𝑖 . Let 𝛼𝑖 be a cut-free proof of

𝛼𝑖 : 𝐴;⇒ ℓ𝑖1, . . . , ℓ𝑖𝑘𝑖 ;

By Observation 18, M(𝛼𝑖) is logically equivalent to ⊥. Take the
following proof tree as 𝜋𝑖 , which moves all the literals in the succe-

dent of 𝛼𝑖 to the right-hand side of the Maehara partition only by

cuts on literals and weakening rules:

𝛼𝑖

𝐴;⇒ ℓ𝑖1, ℓ𝑖2, . . . , ℓ𝑖𝑘𝑖 ;

𝐴;⇒ ℓ𝑖1, ℓ𝑖2, . . . , ℓ𝑖𝑘𝑖 ; ℓ𝑖1

ℓ𝑖1;⇒; ℓ𝑖1

𝐴, ℓ𝑖1;⇒ ℓ𝑖2, . . . , ℓ𝑖𝑘𝑖 ; ℓ𝑖1

𝐴;⇒ ℓ𝑖2, . . . , ℓ𝑖𝑘𝑖 ; ℓ𝑖1

.

.

.

𝐴;⇒ ℓ𝑖𝑘𝑖 ; ℓ𝑖1, . . . , ℓ𝑖𝑘𝑖−1

𝐴;⇒ ℓ𝑖𝑘𝑖 ; ℓ𝑖1, . . . , ℓ𝑖𝑘𝑖−1
, ℓ𝑖𝑘𝑖

ℓ𝑖𝑘𝑖 ;⇒; ℓ𝑖𝑘𝑖

𝐴, ℓ𝑖𝑘𝑖 ;⇒; ℓ𝑖1, . . . ℓ𝑖𝑘𝑖

𝐴;⇒; ℓ𝑖1, . . . ℓ𝑖𝑘𝑖

LICS ’24, July 8–11, 2024, Tallinn, Estonia Stefan Hetzl and Raheleh Jalali

The double lines in the proof mean using the rules (𝐿𝑤) and (𝑅𝑤) as
often as needed. To construct the proof 𝜋𝑖 , we start with 𝛼𝑖 and use

the rule (𝑅𝑤) on its end-sequent. Then, we take the valid sequent

ℓ𝑖1;⇒; ℓ𝑖1 and apply (𝐿𝑤) and (𝑅𝑤) as needed. Then we can use the
cut rule to move ℓ𝑖1 to the right-hand side of the Maehara partition.

We repeat this procedure for the rest of the literals to get 𝜋𝑖 . To

see thatM(𝜋𝑖) is logically equivalent to 𝐶𝑖 , note that each cut in

the proof 𝜋𝑖 is on a literal and the cut formula is always on the

left-hand side of the Maehara partition. Moreover,𝑉 (𝐶𝑖) ⊆ 𝑉 (𝐶) ⊆
𝑉 (𝐴) ∩ 𝑉 (𝐵) ⊆ 𝑉 (𝐴). Hence, in each cut, the cut formula is in

𝑉 (𝐴), and by the Maehara interpolation algorithm for LKlit
, the

interpolant of the conclusion of the cut rule is the disjunction of the

interpolants of the premises. SinceM(𝛼1) is logically equivalent to
⊥ andM(ℓ𝑖 𝑗 ;⇒; ℓ𝑖 𝑗) = ℓ𝑖 𝑗 for 1 ≤ 𝑗 ≤ 𝑘𝑖 , we getM(𝜋𝑖) is logically
equivalent to ⊥ ∨ ℓ𝑖1 ∨ · · · ∨ ℓ𝑖𝑘𝑖 , which is logically equivalent to

ℓ𝑖1 ∨ · · · ∨ ℓ𝑖𝑘𝑖 =
∨𝑘𝑖
𝑗=1

ℓ𝑖 𝑗 = 𝐶𝑖 . Now apply Lemmas 21 and 28 to

obtain an LKat
proof 𝜋 of𝐴; ⇒ ;𝐵 withM(𝜋) logically equivalent

to C. □

A trivial consequence of Theorem 43 is that Maehara interpola-

tion in LKlit
and LKm

is also complete.

Remark 44. It is worth noting that the proof of Theorem 43 pro-

vides an interpolant logically equivalent to the given interpolant

𝐼 in CNF, only by adding ⊤ as conjuncts and ⊥ as disjuncts. Thus,

we have even shown that Maehara interpolation is syntactically

complete up to unit elimination of conjunction and disjunction for

formulas in CNF.

Example 45. We find a proof 𝜋 : 𝑝 ∧ 𝑞;⇒; 𝑝 ∨ 𝑞 in LKat
such that

M(𝜋) = 𝑝 ∧ 𝑞. Denote 𝐼1 = 𝑝 and 𝐼2 = 𝑞. We have

𝜋1 :

𝑝;⇒; 𝑝

𝑝 ∧ 𝑞;⇒; 𝑝
𝜋2 :

𝑞;⇒;𝑞

𝑝 ∧ 𝑞;⇒;𝑞

and M(𝜋1) = 𝑝 and M(𝜋2) = 𝑞. Take the following proof tree

𝜎 : 𝑝 ∧ 𝑞;⇒;𝑝 ∨ 𝑞 in LKat
where all the cuts are context-splitting:

𝜋2

𝑝 ∧ 𝑞;

𝑞
=⇒;𝑞

𝜋1

𝑝 ∧ 𝑞;

𝑝
=⇒; 𝑝

;𝑝
⊤
=⇒;𝑝

;𝑝, 𝑞
⊤
=⇒; 𝑝

; 𝑝, 𝑞
⊤
=⇒; 𝑝 ∨ 𝑞

𝑝 ∧ 𝑞;𝑞
𝑝∧⊤
=⇒;𝑝 ∨ 𝑞

𝑝 ∧ 𝑞, 𝑝 ∧ 𝑞;

𝑞∧𝑝∧⊤
=⇒ ;𝑝 ∨ 𝑞

𝑝 ∧ 𝑞;

𝑞∧𝑝∧⊤
=⇒ ;𝑝 ∨ 𝑞

where the double lines mean applying the left and right weakening

rules (to get the same contexts in the premises of the cut rule) and

then the cut rule. We have M(𝜎) is logically equivalent to 𝑝 ∧ 𝑞.

7 PROPOSITIONAL NORMAL MODAL LOGICS
We work with the language L□ = {⊥,∧,∨,¬,□}. The modal rules

we consider are:

Γ ⇒ 𝐴
(𝐾)

□Γ ⇒ □𝐴
Γ ⇒

(𝐷)

□Γ ⇒
Γ,□Γ ⇒ 𝐴

(4)

□Γ ⇒ □𝐴
Γ, 𝐴 ⇒ Δ

(𝑇)
Γ,□𝐴 ⇒ Δ

Consider the normal modal logics K, D, T, K4, KD4, and S4. Take
the usual sequent calculi for these logics by adding the correspond-

ing modal rules to LK:

K = LK + (𝐾) KD = LK + (𝐾) + (𝐷) KT = LK + (𝐾) + (𝑇)
K4 = LK + (4) KD4 = LK + (4) + (𝐷) S4 = LK + (𝑇) + (4)
We extend the interpolation algorithm with the following rules:

□𝐴;

⊥
=⇒ □𝐴; ;□𝐴

⊤
=⇒;□𝐴

□𝐴;

□𝐴
=⇒;□𝐴 ;□𝐴

¬□𝐴
=⇒ □𝐴;

If the last rule is (𝐾):

Γ1; Γ2

𝐶
=⇒;𝐴

□Γ1;□Γ2

□𝐶
=⇒;□𝐴

Γ1; Γ2

𝐶
=⇒ 𝐴;

□Γ1;□Γ2

¬□¬𝐶
=⇒ □𝐴;

If the last rule is (𝐷), then note that the rule (𝐾) is also present in

the calculus. Then:

Γ1; Γ2

𝐶
=⇒

□Γ1;□Γ2

□𝐶
=⇒

If the last rule is (4):

Γ1,□Γ1; Γ2,□Γ2

𝐶
=⇒;𝐴

□Γ1;□Γ2

□𝐶
=⇒;□𝐴

Γ1,□Γ1; Γ2,□Γ2

𝐶
=⇒ 𝐴;

□Γ1;□Γ2

¬□¬𝐶
=⇒ □𝐴;

If the last rule is (𝑇):

Γ1, 𝐴; Γ2

𝐶
=⇒ Δ1;Δ2

Γ1,□𝐴; Γ2

𝐶
=⇒ Δ1;Δ2

Γ1;𝐴, Γ2

𝐶
=⇒ Δ1;Δ2

Γ1;□𝐴, Γ2

𝐶
=⇒ Δ1;Δ2

Recall the definition of a monochromatic proof from Subsection

2.3. It can be easily extended to the modal language and modal

sequent calculi. Then, for any 𝑋 ∈ {K,KD,KT,K4,KD4, S4}, we
define𝑋𝑚 as the set of all monochromatic proofs in𝑋 . Definemodal
literals, denoted by ℓ□, as 𝑝,¬𝑝,□𝐴,¬□𝐴, where 𝑝 is a propositional
atom and 𝐴 is a modal formula. The conjunctive normal form of

a modal formula, denoted by mCNF, is defined similarly to the

propositional case: conjunctions of disjunctions of modal literals.

A modal formula of the form □𝐵 is an immediate modal subformula
of a modal formula 𝐴 if it is a subformula of 𝐴 and there is no

other subformula of 𝐴 that contains □𝐵. By an easy observation,

we see that every modal formula has a logically equivalent modal

conjunctive normal form. The reason is that we can see immediate

modal subformulas of a formula as new atomic formulas (i.e., not

occurring in 𝐴) and then this formula will be propositional and it

has a CNF. Transforming the new atoms back to the immediate

modal subformulas will provide an mCNF for 𝐴.

Proposition 46. Maehara interpolation in cut-free propositional K
is not complete.

Proof. The formula □(𝑝 ∧ 𝑞) → □(𝑝 ∨ 𝑞), which is valid in

propositional K, has the interpolants □(𝑝∧𝑞), □(𝑝∨𝑞), and □𝑝∧□𝑞
but neither of them can be read off of a cut-free proof. □

Theorem 47. Let 𝐺 ∈ {K𝑚,KD𝑚,KT𝑚,K4𝑚,KD4𝑚, S4𝑚}. Mae-
hara interpolation M in 𝐺 where cuts are only allowed on atomic
formulas and boxed formulas is complete.

Proof. Similar to the proof of Theorem 43. Suppose 𝐼 is an

interpolant of the 𝐺-provable split sequent 𝐴; ⇒ ;𝐵. Take the

mCNF of interpolant 𝐼 =
∧𝑛
𝑖=1

𝐼𝑖 =
∧𝑛
𝑖=1

∨𝑘𝑖
𝑗=1

ℓ𝑖 𝑗 , where each ℓ𝑖 𝑗 is

a modal literal. We can construct the proofs 𝜋𝑖 as in Theorem 43

and every step of the proof is similar to before. Note that the cut

rule is always monochromatic. □

On the Completeness of Interpolation Algorithms LICS ’24, July 8–11, 2024, Tallinn, Estonia

It is interesting to investigate these questions for non-normal

modal logics, and other logics such as the Gödel-löb logic GL.

8 FIRST-ORDER LOGIC
We now move to the completeness of interpolation algorithms in

first-order logic. There are different strategies for interpolation in

first-order logic (with and without equality). The most prominent

strategy consists of 1. computing a propositional interpolant and

2. introducing quantifiers into this propositional interpolant in

order to convert it to a first-order interpolant. Such interpolation

algorithms can be found, e.g., in [19, Theorem 13], [12], [10, Section

5.13], and [4, Section 8.2]. An alternative strategy consists of 1.

replacing function symbols by relation symbols in the input formula,

2. applying an (almost) propositional interpolation algorithm, and

3. translating the interpolant thus obtained back into a language

with function symbols. Such algorithms can be found, e.g., in [8]

and [2, Section 7.3].

What kind of results can we expect for these two strategies?

We can clearly obtain incompleteness results for the cut-free se-

quent calculus for first-order logic as a straightforward extension of

Proposition 10. However, when we consider sequent calculus with

atomic cuts, the answer is not clear at first sight and boils down to

the question of whether there is some source of incompleteness on

the first-order level.

In this section, we will prove a strong incompleteness result for

the first strategy: we will show that it is incomplete, regardless

of the concrete algorithms employed in the two phases and the

concrete calculus used for obtaining the interpolant in the first

phase. In order to do this we first have to make this strategy precise.

To that aim, we consider the language L = {⊥,∧,∨,¬, ∃,∀} and
write 𝐿𝑃 (𝐴) for the set of all predicate symbols occurring in the

first-order formula𝐴. If we add the following rules to propositional

LK, we get first-order LK:
𝐴[𝑥/𝑡], Γ ⇒ Δ

(𝐿∀)∀𝑥𝐴, Γ ⇒ Δ

Γ ⇒ Δ, 𝐴[𝑥/𝑦]
(𝑅∀)

Γ ⇒ Δ,∀𝑥𝐴
𝐴[𝑥/𝑦], Γ ⇒ Δ

(𝐿∃)∃𝑥𝐴, Γ ⇒ Δ

Γ ⇒ Δ, 𝐴[𝑥/𝑡]
(𝑅∃)

Γ ⇒ Δ, ∃𝑥𝐴
where 𝑡 is an arbitrary term and in (𝑅∀) and (𝐿∃), the variable 𝑦 is

not free in the conclusion.

Definition 48. Let𝐴 → 𝐵 be a valid first-order formula. A formula

𝐶 is called a weak interpolant of 𝐴 → 𝐵 if |= 𝐴 → 𝐶 , |= 𝐶 → 𝐵, and

𝐿𝑃 (𝐶) ⊆ 𝐿𝑃 (𝐴) ∩ 𝐿𝑃 (𝐵).
So, while a weak interpolant satisfies the usual language condi-

tion on the predicate symbols, it may contain constants and function

symbols, which are not in the intersection of the languages of 𝐴

and 𝐵.

Example 49. Define the formulas

𝐴 = ∀𝑣 (𝑣 < 𝑓 (𝑣)) ∧ ∀𝑣∀𝑤 (𝑍 (𝑣) ∧ 𝑣 < 𝑤 → ¬𝑍 (𝑤))
𝐵 = 𝑍 (𝑐) → ∃𝑢∃𝑣 (𝑍 (𝑢) ∧ ¬𝑍 (𝑣))

Then 𝐿(𝐴) = {𝑍, <, 𝑓 }, 𝐿(𝐵) = {𝑍, 𝑐}, thus 𝐿(𝐴) ∩ 𝐿(𝐵) = {𝑍 }.
Then 𝐶0 = 𝑍 (𝑐) → ¬𝑍 (𝑓 (𝑐)) is a weak interpolant.

An algorithm for the computation of interpolants in proposi-

tional logic can usually be easily adapted to compute weak inter-

polants in first-order logic. For example, we can add the rules

𝐴[𝑥/𝑦], Γ1; Γ2

𝐶⇒ Δ1;Δ2

∃𝑥𝐴(𝑥), Γ1; Γ2

𝐶⇒ Δ1;Δ2

Γ1;𝐴[𝑥/𝑦], Γ2

𝐶⇒ Δ1;Δ2

Γ1;∃𝑥𝐴(𝑥), Γ2

𝐶⇒ Δ1;Δ2

Γ1; Γ2

𝐶⇒ Δ1, 𝐴[𝑥/𝑡];Δ2

Γ1; Γ2

𝐶⇒ Δ1, ∃𝑥𝐴(𝑥);Δ2

Γ1; Γ2

𝐶⇒ Δ1;Δ2, 𝐴[𝑥/𝑡]

Γ1; Γ2

𝐶⇒ Δ1;Δ2, ∃𝑥𝐴(𝑥)
and analogous rules for ∀ to the algorithm from Section 2.3 in

order to obtain an algorithm that computes a weak interpolant of

𝐴 → 𝐵 from an LKm
proof of 𝐴; ⇒ ;𝐵. We can now make the first

phase of the strategy precise: 1. we compute a weak interpolant 𝐶0

for 𝐴 → 𝐵, e.g., as in the algorithm described above. To describe

the second phase, we define:

Definition 50. We define the binary relation 𝐴 is an abstraction
of 𝐵 on first-order formulas as the smallest reflexive and transitive

relation that satisfies the following condition: 𝐴 = 𝑄𝑥 𝐴0 for 𝑄 ∈
{∀, ∃} and 𝐵 = 𝐴0 [𝑥\𝑡] for some term 𝑡 .

Lemma 51. There is an algorithmB which, given a weak interpolant
𝐶0 of 𝐴 → 𝐵 computes an interpolant 𝐶 of 𝐴 → 𝐵 which is an
abstraction of 𝐶0.

Proof Sketch. B replaces a maximal term 𝑡 which is not in

𝐿(𝐴) ∩ 𝐿(𝐵) by a new bound variable 𝑥 which is either existen-

tially or universally quantified, depending on whether the leading

function symbol of 𝑡 is in 𝐿(𝐴) \ 𝐿(𝐵) or 𝐿(𝐵) \ 𝐿(𝐴). If 𝐶 [𝑡] is a
weak interpolant of 𝐴 → 𝐵, then 𝑄𝑥 𝐶 [𝑥] is an abstraction of 𝐶 [𝑡]
and a weak interpolant of 𝐴 → 𝐵 which contains one less term

violating the language condition. By repeating this step one obtains

an interpolant in the usual sense. See, e.g., [4, Lemma 8.2.2] for a

detailed exposition of this proof. □

We can now make the second phase precise: 2. we apply the

algorithm B to the weak interpolant 𝐶0 of 𝐴 → 𝐵 in order to

obtain an interpolant 𝐶 := B(𝐶0) of 𝐴 → 𝐵.

Example 52. Continuing Example 49 we obtain the interpolant

B(𝐶0) = ∀𝑥∃𝑦 (𝑍 (𝑥) → ¬𝑍 (𝑦)) of 𝐴 → 𝐵.

The central observation is now the following: in first-order logic,

there are interpolants which are not abstractions of weak inter-

polants. More precisely:

Lemma 53. There are first-order sentences 𝐴, 𝐵, and 𝐶 s.t. 𝐶 is an
interpolant of 𝐴 → 𝐵 but 𝐶 is not an abstraction of a quantifier-free
weak interpolant of 𝐴 → 𝐵.

Proof. Let𝐴 := ∀𝑥 (𝐼 (0)∧(𝐼 (𝑥) → 𝐼 (𝑠 (𝑥)))), let𝐵 := 𝐼 (𝑠 (𝑠 (0))),
and let 𝐶 := 𝐴. Then 𝐿(𝐴) = 𝐿(𝐵) = 𝐿(𝐶) = {0, 𝑠, 𝐼 }, 𝐴 → 𝐵 is a

valid formula, and 𝐶 is an interpolant of 𝐴 → 𝐵.

Suppose that 𝐶 is an abstraction of a quantifier-free weak inter-

polant 𝐶0. Then 𝐶0 is of the form 𝐼 (0) ∧ (𝐼 (𝑡) → 𝐼 (𝑠 (𝑡))) for some

term 𝑡 and we would have |= 𝐶0 → 𝐵. However,

𝐼 (0) ∧ (𝐼 (𝑡) → 𝐼 (𝑠 (𝑡))) → 𝐼 (𝑠 (𝑠 (0)))
is not a valid formula which can be shown easily by a countermodel

N with domain N s.t. 0 ∈ 𝐼N , 2 ∉ 𝐼N , and 1 ∈ 𝐼N iff 𝑡N = 0. □

Therefore, any algorithm that computes only abstractions of

weak interpolants is incomplete. In particular: letM be the interpo-

lation algorithm for first-order LK−
from Section 8.2 in [4]. Clearly,

LICS ’24, July 8–11, 2024, Tallinn, Estonia Stefan Hetzl and Raheleh Jalali

M is not complete due to Proposition 10. Let M′
be the (straight-

forward) extension of M to first-order LKat
. Then we obtain:

Theorem 54. M′ is not complete.

Proof. Let 𝐴 → 𝐵 and 𝐶 be as in Lemma 53. ThenM(𝜋 ′) is an
abstraction of a weak interpolant of 𝐴 → 𝐵 and hence different

from 𝐶 . □

Question 55. Are interpolation algorithms following the second
strategy incomplete?

9 A REMARK ON BETH’S DEFINABILITY
THEOREM

Beth’s definability theorem is one of the most important applica-

tions of interpolation in mathematical logic. As we will briefly point

out in this section, the completeness properties of the interpolation

theorem apply directly to Beth’s definability theorem. For the re-

sults in this section, it will be convenient to explicitly indicate all

predicate symbols that occur in a first-order formula by writing

𝐴(𝑅1, . . . , 𝑅𝑛).

Definition 56. Let 𝑅, 𝑅1, . . . , 𝑅𝑛 be predicate symbols. A sentence

𝐴(𝑅, 𝑅1, . . . , 𝑅𝑛) is an implicit definition of 𝑅 if

𝐴(𝑅, 𝑅1, . . . , 𝑅𝑛) ∧𝐴(𝑅′, 𝑅1, . . . , 𝑅𝑛) → ∀®𝑥 (𝑅(®𝑥) ↔ 𝑅′ (®𝑥)) (1)

is valid.

𝐴(𝑅, 𝑅1, . . . , 𝑅𝑛) is an explicit definition of 𝑅 if there is a formula

𝐹 (®𝑥) s.t.
𝐴(𝑅, 𝑅1, . . . , 𝑅𝑛) → ∀®𝑥 (𝑅(®𝑥) ↔ 𝐹 (®𝑥)) (2)

is valid.

Beth’s definability theorem states that whenever 𝑅 is definable

implicitly (in first-order logic), then 𝑅 is also definable explicitly.

We first observe that (1) is valid iff

(𝐴(𝑅, 𝑅1, . . . , 𝑅𝑛) ∧ 𝑅(𝑥)) → (𝐴(𝑅′, 𝑅1, . . . , 𝑅𝑛) → 𝑅′ (𝑥)) (3)

is valid. Then, in analogy to Definition 8, we can say that an algo-

rithm D which receives a proof 𝜋 of (3) as input and returns an 𝐹

s.t. (2) is valid is complete if for every 𝐹 there is a 𝜋 with 𝐹 = D(𝜋).
The standard proof of Beth’s definability theorem from the in-

terpolation theorem, see, e.g. [25], now proceeds as follows: Let

𝐴(𝑅, 𝑅1, . . . , 𝑅𝑛) be an implicit definition of 𝑅 and let 𝜋 be a proof

of (3). Then applying an interpolation algorithm I to 𝜋 yields a

formula 𝐹 = I(𝜋) with 𝐿𝑃 (𝐹) ⊆ {𝑅1, . . . , 𝑅𝑛} such that both

𝐴(𝑅, 𝑅1, . . . , 𝑅𝑛) ∧ 𝑅(𝑥) → 𝐹 (𝑥)
and, by renaming 𝑅′ to 𝑅,

𝐹 (𝑥) → (𝐴(𝑅, 𝑅1, . . . , 𝑅𝑛) → 𝑅(𝑥))
are valid. Hence also

𝐴(𝑅, 𝑅1, . . . , 𝑅𝑛) → ∀®𝑥 (𝑅(®𝑥) ↔ 𝐹 (®𝑥))
is valid, so 𝐹 (®𝑥) is an explicit definition of 𝑅. Writing DI for the

algorithm that takes a proof (3) and returns an explicit definition

𝐹 (®𝑥) of 𝑅 we see that DI is the restriction of I to formulas of the

form (3). In particular:

Observation 57. DI is complete iff I is complete on formulas of
the form (3).

10 CONCLUSION
We have initiated the study of completeness properties of interpola-

tion algorithms by proving several results about some of the most

important interpolation algorithms: The standard algorithms for

resolution and cut-free sequent calculus for propositional logic are

incomplete. On the other hand, in the sequent calculus with atomic

cuts, it is complete. Moreover, even in the cut-free sequent calcu-

lus, one can obtain a weaker completeness result: completeness of

pruned interpolants up to subsumption. We have also extended our

results to normal modal logics and to first-order logic and found

a new source of incompleteness in first-order logic that applies to

a wide variety of interpolation algorithms. We have also shown

that the completeness properties of interpolation algorithms corre-

spond directly tothe completeness properties of Beth’s definability

theorem.

These results show that the completeness of an interpolation

algorithm is related to the amount of freedom, or redundancy, that

is permitted by a proof system and its subtle interplay with the

interpolation algorithm, as witnessed very clearly, e.g., by the proof

of Theorem 43, the completeness of interpolation in the sequent

calculus with atomic cut.

Moreover, our results show clearly that the completeness of a

proof calculus (w.r.t. some semantics) is a different question from

that of the completeness of an interpolation algorithm in this calcu-

lus. For example, both cut-free sequent calculus and sequent calcu-

lus with atomic cuts are complete w.r.t. Tarski semantics. However,

the standard interpolation algorithm is complete in the latter but

not in the former.

We believe that this work is merely a first step in a wider project

of gauging the expressive power of interpolation algorithms based

on their completeness properties. We have already mentioned

many open questions in the paper. We consider the following open

problems to be the most promising and relevant: We plan to in-

vestigate the completeness of interpolation algorithms for local

proofs [14, 16] which are of particular relevance in the CAV com-

munity. In order to get a better picture of the situation in first-order

logic, it would be useful to investigate the second interpolation

strategy for first-order proofs as mentioned in Section 8. More-

over, we are intrigued by the question whether the cut-elimination

argument underlying Theorem 39 can be extended to first-order

logic. It would be interesting to investigate these questions also

for intuitionistic logic where, due to the more restricted availabil-

ity of normal forms, quite different techniques will presumably

be needed. Resolution with weakening for classical propositional

logic is interesting from a proof-theoretic point of view since, in

contrast to ordinary resolution, it is complete (as a proof calculus,

w.r.t. standard semantics). However, the completeness of its interpo-

lation algorithm is unknown. Also, it would be interesting to relate

these completeness and incompleteness results more directly to

applications in verification, for example based on the relationship

between interpolation and narrowing as described in [7]. We leave

these, and the questions mentioned throughout the paper, to future

work.

On the Completeness of Interpolation Algorithms LICS ’24, July 8–11, 2024, Tallinn, Estonia

11 ACKNOWLEDGEMENTS
The authors would like to thank Iris van der Giessen as well as

the anonymous reviewers for many comments that have helped to

improve this paper.

REFERENCES
[1] E. Amir and S. McIlraith. Partition-based logical reasoning for first-order and

propositional theories. Artificial intelligence, 162(1-2):49–88, 2005.
[2] J. Avigad. Mathematical Logic and Computation. Cambridge University Press,

2023.

[3] M. Baaz and A. Leitsch. Towards a clausal analysis of cut-elimination. Journal of
Symbolic Computation, 41(3–4):381–410, 2006.

[4] M. Baaz and A. Leitsch. Methods of Cut-Elimination, volume 34 of Trends in Logic.
Springer, 2011.

[5] E. Beth. On Padoa’s Method in the Theory of Definition. Indagationes Mathe-
maticae (Proceedings), 56:330–339, 1953.

[6] S. R. Buss. Handbook of proof theory. Elsevier, 1998.
[7] P. Cousot. Abstracting induction by extrapolation and interpolation. In

D. D’Souza, A. Lal, and K. G. Larsen, editors, Verification, Model Checking, and
Abstract Interpretation - 16th International Conference, VMCAI 2015, Mumbai,
India, January 12-14, 2015. Proceedings, volume 8931 of Lecture Notes in Computer
Science, pages 19–42. Springer, 2015.

[8] W. Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory

and proof theory. Journal of Symbolic Logic, 22(3):269–285, 1957.
[9] V. V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher. Interpolant

strength. In G. Barthe and M. V. Hermenegildo, editors, 11th International Confer-
ence on Verification, Model Checking, and Abstract Interpretation (VMCAI), volume

5944 of Lecture Notes in Computer Science, pages 129–145. Springer, 2010.
[10] J. Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge

University Press, 2009.

[11] K. Hoder, L. Kovács, and A. Voronkov. Playing in the Grey Area of Proofs. In

J. Field and M. Hicks, editors, Symposium on Principles of Programming Languages
(POPL) 2012, pages 259–272. ACM, 2012.

[12] G. Huang. Constructing craig interpolation formulas. In D. Du and M. Li, editors,

First Annual International Conference on Computing and Combinatorics (COCOON),
volume 959 of Lecture Notes in Computer Science, pages 181–190. Springer, 1995.

[13] R. Jhala and K. L. McMillan. Interpolant-based transition relation approximation.

In K. Etessami and S. K. Rajamani, editors, 17th International Conference on
Computer Aided Verification (CAV), volume 3576 of Lecture Notes in Computer
Science, pages 39–51. Springer, 2005.

[14] R. Jhala and K. L. McMillan. A practical and complete approach to predicate

refinement. In H. Hermanns and J. Palsberg, editors, 12th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
volume 3920 of Lecture Notes in Computer Science, pages 459–473. Springer, 2006.

[15] R. Jhala and K. L. McMillan. Interpolant-Based Transition Relation Approxima-

tion. Logical Methods in Computer Science, 3(4), 2007.
[16] L. Kovács and A. Voronkov. Interpolation and symbol elimination. In R. A.

Schmidt, editor, 22nd International Conference on Automated Deduction (CADE-
22), volume 5663 of Lecture Notes in Computer Science, pages 199–213. Springer,
2009.

[17] J. Krajíček. Lower bounds to the size of constant-depth propositional proofs.

Journal of Symbolic Logic, 59(1), 1994.
[18] J. Krajíček. Interpolation theorems, lower bounds for proof systems, and indepen-

dence results for bounded arithmetic. The Journal of Symbolic Logic, 62(2):457–486,
1997.

[19] G. Kreisel and J.-L. Krivine. Elements of Mathematical Logic (Model Theory).
North-Holland, 1967.

[20] P. Mancosu. Introduction: Interpolations – Essays in Honor of William Craig.

Synthese, 164(3):313–319, 2008.
[21] K. L.McMillan. Interpolation andmodel checking. In E.M. Clarke, T. A. Henzinger,

H. Veith, and R. Bloem, editors, Handbook of Model Checking, pages 421–446.
Springer, 2018.

[22] S. Negri and J. Von Plato. Structural proof theory. Cambridge university press,

2008.

[23] G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.

ACM Transactions on Programming Languages and Systems (TOPLAS), 1(2):245–
257, 1979.

[24] P. Pudlák. Lower bounds for resolution and cutting plane proofs and monotone

computations. The Journal of Symbolic Logic, 62(3):981–998, 1997.
[25] G. Takeuti. Proof Theory. North-Holland, Amsterdam, 2nd edition, March 1987.

[26] C. Tinelli. Cooperation of background reasoners in theory reasoning by residue

sharing. Journal of Automated Reasoning, 30:1–31, 2003.
[27] A. S. Troelstra and H. Schwichtenberg. Basic proof theory. Number 43. Cambridge

University Press, 2000.

[28] G. Weissenbacher. Interpolant strength revisited. In A. Cimatti and R. Sebastiani,

editors, 15th International Conference on Theory and Applications of Satisfiability
Testing (SAT), volume 7317 of Lecture Notes in Computer Science, pages 312–326.
Springer, 2012.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Formulas
	2.2 Resolution
	2.3 Sequent calculus

	3 Simple incompleteness results
	4 Interpolants in the sequent calculus
	5 Completeness up to pruning and subsumption
	6 Sequent calculus with atomic cuts
	7 Propositional normal modal logics
	8 First-order logic
	9 A remark on Beth's definability theorem
	10 Conclusion
	11 Acknowledgements
	References

