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Abstract. We introduce a new connection between formal language the-
ory and proof theory. One of the most fundamental proof transformations
in a class of formal proofs is shown to correspond exactly to the compu-
tation of the language of a certain class of tree grammars. Translations in
both directions, from proofs to grammars and from grammars to proofs,
are provided. This correspondence allows theoretical as well as practical
applications.

1 Introduction

Proof theory developed from Hilbert’s programme in the foundations of math-
ematics at the beginning of the 20th century. The fundamental observation of
Hilbert was that even though mathematical proofs speak about infinite objects
(such as real numbers, real-valued functions, vector spaces of such functions,
etc.) they do so by using only a finite amount of symbols and of space. There-
fore, considering proofs as mathematical objects in their own right makes them
amenable to analysis by mathematical (finitary, discrete) means. Hilbert’s orig-
inal aim was to justify mathematical reasoning by consistency proofs which, by
Gödel’s second incompleteness theorem, turned out to be too ambitious. How-
ever, other kinds of analyses of proofs are possible.

One type of analysis that has received a lot of attention in recent years (see
e.g. [15]) is proof mining: the extraction of additional mathematical information
from existing proofs. Such additional information can often be thought of as
concrete values for existential quantifiers. In the most simple situations it can be
straightforward to read off such values, for example in case a proof of a statement
∃xϕ(x) starts with “Let us show ϕ(a).” for some concrete value a. In general
the situation is more complicated, consider the following famous example:

Theorem. There are x, y ∈ R \Q s.t. xy ∈ Q.

Proof. If
√
2
√
2 ∈ Q, let x = y =

√
2 and we are done as

√
2 ∈ R \Q. Otherwise

√
2
√
2 ∈ R \Q, let x =

√
2
√
2
, y =

√
2 and observe xy =

√
2
2
= 2 ∈ Q. �

This proof does not give us any information on whether
√
2
√
2 ∈ Q or not.
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The values of the existential quantifiers ∃x and ∃y are not unique, we have
to represent this proof by a disjunction of instances of the theorem: if ϕ(x, y)
abbreviates “x ∈ R \Q and y ∈ R \Q and xy ∈ Q”, the above proof only shows

that ϕ(
√
2,
√
2) ∨ ϕ(

√
2
√
2
,
√
2) is provable (from suitable basic axioms). This

situation is described from a logical point of view by Herbrand’s theorem [9,2].
In its simplest form it states that ∃xϕ(x) for a quantifier-free formula ϕ(x) is
valid iff there are terms t1, . . . , tn s.t.

∨n
i=1 ϕ(ti) is a tautology. Such a disjunction

is therefore also called Herbrand-disjunction.
It was easy to read off an Herbrand-disjunction from the above proof. The

reason is that it contains the instances of its quantifiers in plain sight. In general
however proofs use lemmas and values of quantifiers of the theorem depend
on objects whose existence is asserted by these lemmas. The proofs of these
lemmas may in turn rely on other lemmas and so on. In total, there can be very
complicated dependencies between values of quantifiers that have to be unwound
in order to obtain concrete values. A proof transformation that carries out this
unwinding is cut-elimination (the root of this terminology being that the cut-rule
formalises the use of a lemma). This transformation is, for a number of reasons,
of central importance in proof theory. It essentially works by a stepwise reduction
of the complexity of the cuts (lemmas), the interested reader is referred to [19].

In this paper we show that for a certain class of proofs, cut-elimination corre-
sponds exactly to the computation of the language of a certain tree grammar: we
give translations from proofs to grammars and from grammars to proofs s.t. this
correspondence holds. The connection point is the observation that an Herbrand-
disjunction is given by a finite set of terms, hence a finite tree language. A proof
with lemmas then corresponds to a tree grammar whose language is an Herbrand-
disjunction. Therefore, one can obtain concrete values for existential quantifiers
by computing the language of a grammar. In Section 2 we will develop a suit-
able notion of tree grammar corresponding to rigid tree automata [13,14], in
Section 3 we describe how to translate proofs to grammars and in Section 4 how
to translate grammars to proofs. Most proofs in this paper will only be sketched,
the reader interested in more details is referred to the technical report [10].

2 Rigid Tree Languages

A feature which is important for many applications of tree languages but not
present in regular tree languages is the ability to carry out equality tests between
subterms, for instance to recognise patterns of the form f(x, x). This need has
led to the development of several classes of tree automata providing this ability:
some allow to specify local equality constraints as side conditions of transition
rules by giving term positions explicitly, see [3] for a survey, while others consider
global constraints specified via states. An important class of the latter kind are
tree automata with global equalities and disequalities (TAGED) [5,6,7]. For the
purposes of this paper it will turn out to be natural to work with rigid tree
automata that have been introduced in [13], see also [14]. They are a subclass of
TAGED (characterised by having minimal equality and disequality relations).
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Definition 1. A tree automaton on a signature Σ is a tuple 〈Q,F,Δ〉 where Q
is a finite set of state symbols, F ⊂ Q is the set of final states and Δ a set of
transition rules of the form: f(q1, . . . , qn) → q where f ∈ Σ and q, q1, . . . , qn ∈ Q.

A rigid tree automaton on Σ is a tuple 〈Q,R, F,Δ〉 where 〈Q,F,Δ〉 is a tree
automaton and R ⊆ Q is the set of rigid states.

As usual a position is a list of natural numbers, Pos(t) is the set of positions of the
term t, ε is the empty (root) position and concatenation of positions p1 and p2 is
written as p1.p2. The subterm of t at a position p ∈ Pos(t) is denoted as t|p. We
write Pos(x, t) for the set of positions of the symbol x in t and we write x ∈ t if
Pos(x, t) �= ∅. A run of a tree automaton on a term t is a function r : Pos(t) → Q
s.t. for all f ∈ Σ and all p ∈ Pos(f, t): f(r(p.1), . . . , r(p.n)) → r(p) ∈ Δ. A run of
a rigid tree automaton on t is a run of the underlying tree automaton satisfying
the additional rigidity condition: for all p1, p2 ∈ Pos(t): if r(p1) = r(p2) ∈ R
then t|p1 = t|p2 . T (Σ) denotes the set of ground terms over a signature Σ. The
language of an automaton A in a state q is denoted as L(A, q) and defined as
the set of t ∈ T (Σ) s.t. there exists a run r on t with r(ε) = q. The language of
A is defined as L(A) =

⋃
q∈F L(A, q).

Example 2. Let Σ = {0/0, s/1}. A simple pumping argument shows that the
language L = {f(t, t) | t ∈ T (Σ)} is not regular. On the other hand, L is
recognised by the rigid tree automaton 〈Q,R, F,Δ〉 where Q = {q, qr, qf}, R =
{qr}, F = {qf} and Δ = {0 → q, 0 → qr, s(q) → q, s(q) → qr, f(qr, qr) → qf}.

For the proof-theoretic purposes of this paper it is considerably more natural
and technically useful to work with grammars instead of automata.

Definition 3. A regular tree grammar is a tuple 〈α,N,Σ, P 〉 composed of an
axiom α, a set N of non-terminal symbols with arity 0 and α ∈ N , a term
signature Σ with Σ ∩N = ∅ and a set P of production rules of the form β → t
where β ∈ N and t ∈ T (Σ ∪N).

A rigid tree grammar is a tuple 〈α,N,R,Σ, P 〉 where 〈α,N,Σ, P 〉 is a regular
tree grammar and R ⊆ N is the set of rigid non-terminal symbols.

The derivation relation →G of a regular tree grammar G is defined for s, t ∈
T (Σ ∪ N) as s →G t if there is a production rule β → u and a position p s.t.
s|p = β and t is obtained from s by replacing β at p by u. A derivation of a
term t ∈ T (Σ) in a regular tree grammar is a list of terms t1, . . . , tn ∈ T (Σ∪N)
s.t. t1 = α, tn = t and ti →G ti+1 for i = 1, . . . , n − 1. A derivation of t in
a rigid tree grammar is a derivation in the underlying regular tree grammar
satisfying the additional rigidity condition: if ti →G ti+1 and tj →G tj+1 are
applications of productions rules at positions pi, pj with the same left-hand side
β ∈ R, then t|pi = t|pj . The language of a tree grammar L(G) is the set of
t ∈ T (Σ) that are derivable in G. A production whose left-hand side is β will
be called β-production. Let G = 〈α,N,R, T, P 〉 be a rigid tree grammar; a rigid
tree grammar G′ = 〈α,N,R, T, P ′〉 is called projection of G if P ′ ⊆ P and P ′

contains at most one β-production for every β ∈ R. A first basic but useful
observation about rigid tree grammars is the following
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Lemma 4. Let G be a rigid tree grammar and let t ∈ L(G). Then there is a
projection G′ of G s.t. t ∈ L(G′).

Proof. Use the rigidity condition, replace subderivations if needed.

In order to establish the connection with the existing literature we quickly sketch
a proof of the equivalence of rigid tree grammars and rigid tree automata. The
reader interested in the details is referred to [10].

Definition 5. A grammar is called normalised if every production rule has the
form γ → a or γ → f(γ1, . . . , γn) for a, f ∈ Σ and γ, γ1, . . . , γn ∈ N .

Lemma 6. If G is a rigid tree grammar, then there is a normalised rigid tree
grammar G∗ s.t. L(G) = L(G∗).

Proof. In a first phase of normalisation, productions β → f(t1, . . . , tn) are
replaced by β → f(β1, . . . , βn), β1 → t1, . . . , βn → tn. In the second phase, pro-
ductions of the form β → γ are removed which – due to the rigidity condition –
necessitates a different treatment depending on which of β, γ are rigid.

Theorem 7. A set of terms is language of a rigid tree grammar iff it is language
of a rigid tree automaton.

Proof. It is straightforward to translate between normalised rigid tree grammars
and rigid tree automata, the result then follows from Lemma 6.

Definition 8. A rigid tree grammar is called totally rigid if all non-terminals
are rigid.

Totally rigid tree grammars will simply be written as 〈α,R,Σ, P 〉.
Definition 9. Let G be a regular or rigid tree grammar with non-terminals N
and productions P . Define an order <1

G on N as α <1
G β if α → t ∈ P and β ∈ t

and write <G for the transitive closure of <1
G. G is called acyclic if <G is.

Example 10. The totally rigid grammar G = 〈α,R,Σ, P 〉 with R = {α, β, γ},
Σ = {f/1, g/1, g/1, a/0, b/0}, and P = {α → h(β)|h(γ), β → f(γ)|a, γ →
g(β)|b} is cyclic because β <G γ and γ <G β but removing β → f(γ) or
γ → g(β) (or both) from the productions yields an acyclic grammar.

Totally rigid acyclic grammars are central for this paper as they correspond to
proofs. Furthermore, they allow the following description of their language in
terms of substitutions. As usual, a substitution is a mapping from variables to
terms which is different from the identity for only a finite number of variables.
A substitution is written as [x1\t1, . . . , xn\tn]. Application of a substitution σ
to a term t is written as tσ.

Lemma 11. If G is totally rigid and acyclic, then up to renaming of the non-
terminals G = 〈α0, {α0, . . . , αn}, Σ, P 〉 with L(G) = {α0[α0\t0] · · · [αn\tn] |
αi → ti ∈ P}.
Proof. Acyclicity permits a renaming of non-terminals s.t. αi >P αj implies
i > j. The result then follows from re-arranging the derivation and Lemma 4.

Consequently, the language L(G) of a totally rigid and acyclic G is finite.
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3 From Proofs to Tree Languages

We now turn to proof theory. In the seminal article [8], which can be considered
the founding work of structural proof theory, Gentzen introduced the sequent
calculus and proved the cut-elimination theorem. A sequent is a pair of multisets
of formulas written A1, . . . , An � B1, . . . , Bm whose intended meaning is the
formula (

∧n
i=1 Ai) → (

∨m
j=1 Bj).

Definition 12. A proof in the sequent calculus is a tree that starts with sequents
of the form A � A for an atomic formula A and is built up using the following
rules:
The logical rules:

Γ � Δ,A Π � Λ,B
Γ,Π � Δ,Λ,A ∧B ∧r

A,Γ � Δ
A ∧B,Γ � Δ

∧l1
B,Γ � Δ

A ∧B,Γ � Δ
∧l2

A,Γ � Δ B,Π � Λ
A ∨B,Γ,Π � Δ,Λ ∨l

Γ � Δ,A
Γ � Δ,A ∨B

∨r1
Γ � Δ,B

Γ � Δ,A ∨B
∨r2

Γ � Δ,A
¬A,Γ � Δ

¬l
A,Γ � Δ
Γ � Δ,¬A

¬r

A[x\t], Γ � Δ
∀xA, Γ � Δ ∀l

Γ � Δ,A[x\α]
Γ � Δ, ∀xA ∀r

A[x\α], Γ � Δ
∃xA, Γ � Δ ∃l

Γ � Δ,A[x\t]
Γ � Δ, ∃xA ∃r

where t is a term, α is a variable and the quantifier rules are subject to the
following conditions:

1. t must not contain a bound variable,
2. α is called eigenvariable and must not occur in Γ ∪Δ ∪ {A}

The structural rules weakening, contraction and cut:

Γ � Δ
A,Γ � Δ

wl
Γ � Δ
Γ � Δ,A

wr
A,A, Γ � Δ
A,Γ � Δ

cl
Γ � Δ,A,A
Γ � Δ,A

cr

Γ � Δ,A A,Π � Λ
Γ,Π � Δ,Λ cut

The formulaA in an application of the cut-rule is called cut-formula. The sequent
at the root of a proof is called end-sequent of that proof. This calculus is sound
and complete for classical first-order logic in the sense that a formula F is valid
iff there is a proof whose end-sequent is � F . We consider A → B to be an
abbreviation of ¬A∨B and also allow free use of corresponding rule abbreviations
→l and →r for

Γ � Δ,A B,Π � Λ
A→ B,Γ,Π � Δ,Λ

→l and
A,Γ � Δ,B
Γ � Δ,A→ B

→r .

Furthermore, → is right-associative.
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Example 13. Define the formulas A1 = P (a)∨P (b), A2 = ∀x (P (x) → Q(f(x)))
and A3 = ∀x∀y (P (x) → Q(y) → R(g(x, y))) and the proof π =

(π1)
A1 � P (a), P (b)

A1 � ∃xP (x), P (b)
∃r

A1 � ∃xP (x),∃xP (x)
∃r

A1 � ∃xP (x)
cr

(π2)
P (α), A2 � Q(f(α))

P (α), A2 � ∃xQ(x)
∃r

(π3)
P (α), Q(β),A3 � R(g(α,β))

P (α), Q(β),A3 � ∃xR(x)
∃r

P (α),∃xQ(x),A3 � ∃xR(x)
∃l

P (α), P (α), A2, A3 � ∃xR(x)
cut

P (α), A2, A3 � ∃xR(x)
cl

∃xP (x),A2, A3 � ∃xR(x)
∃l

A1, A2, A3 � ∃xR(x)
cut

where the proofs π1, π2 and π3 are left to the reader. This proof contains
two cuts, one whose cut-formula is ∃xP (x) and another whose cut-formula is
∃xQ(x).

A quantifier in a formula A is called positive if it is below an even number of
negations in the syntax tree of A and negative if it is under an odd number
of negations. Positive universal and negative existential quantifiers are called
strong, the others are called weak. It is straightforward to show that a strong
quantifier is introduced by ∀r or ∃l and a weak quantifier by ∀l or ∃r. A proof is
called regular if different strong quantifier inferences have different eigenvariables.
From now on we will assume – as a convention on variable-naming – that all
proofs are regular.

In the above definition some formulas are mentioned explicitly like A ∧ B,
A and B in the case of ∧r. The formula A ∧ B below the rule is called main
formula and the formulas A and B above it are called auxiliary formulas of
the rule. Analogous definitions apply to all other rules. One then defines an
ancestor relation on the formula occurrences in a proof as follows: an auxiliary
formula occurrence is ancestor of a main formula occurrence and furthermore the
occurrence of a formula in the context Γ,Δ,Π,Λ above an inference is ancestor of
the corresponding occurrence below the inference. For illustration of the ancestor
relation see Definitions 14, 17 and Examples 15, 18.

From now on and for the rest of this paper, T will denote a universal the-
ory, i.e. a set of formulas of the form ∀x1 · · · ∀xnB with B quantifier-free. It
is a standard result of mathematical logic that every theory has a conservative
universal extension which is obtained by Skolemisation, see e.g. [22]. Concentrat-
ing on universal theories hence does not significantly restrict (though simplifies
technically) the results of this paper.

Definition 14. Let π be a proof of T � ∃xA with A quantifier-free and ψ a
subproof of π. The Herbrand-set H(ψ, π) of ψ w.r.t. π is defined as follows. If ψ
is an axiom, then H(ψ, π) = ∅. If ψ is of the form

(ψ′)
Π � Λ,A[x\t]
Π � Λ, ∃xA ∃r
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where the main formula ∃xA is ancestor of the formula ∃xA in the end-sequent,
then H(ψ, π) = H(ψ′, π)∪{A[x\t]}. If ψ ends with any other unary inference and
ψ′ is its immediate subproof then H(ψ, π) = H(ψ′, π). If ψ ends with a binary
inference and ψ1, ψ2 are its immediate subproofs, then H(ψ, π) = H(ψ1, π) ∪
H(ψ2, π). We write H(π) for H(π, π).

Example 15. The proof π of Example 13 has H(π) = {R(g(α, β))}.

Example 16. A (suitable) formalisation of the proof discussed in the introduction

has the Herbrand-set {ϕ(
√
2,
√
2), ϕ(

√
2
√
2
,
√
2)}.

Definition 17. Let π be a proof and Q be a quantifier occurrence in π. Define a
set of terms t(Q) associated with Q as follows: if Q occurs in the main formula
of a weakening, then t(Q) = ∅. If Q is introduced by a quantifier inference
from a term t or a variable x, then t(Q) = {t} or t(Q) = {x} respectively. If Q
occurs in the main formula of a contraction and Q1, Q2 are the two corresponding
quantifiers in the auxiliary formulas of the contraction, then t(Q) = t(Q1) ∪
t(Q2). In all other cases Q has exactly one immediate ancestor Q′ and t(Q) =
t(Q′).

Let π be a proof and c be a cut in π. Write Q(c) for the set of pairs (Q,Q′)
of quantifier occurrences where Q is a strong occurrence in one occurrence of
the cut-formula of c and Q′ the corresponding weak occurrence in the other oc-
currence of the cut-formula. Define the set of base substitutions of c as B(c) =⋃

(Q,Q′)∈Q(c){[x\t] | x ∈ t(Q), t ∈ t(Q′)}. For c1, . . . , cn being the cuts in π define

the base substitutions of π as B(π) =
⋃n

i=1 B(ci).

Example 18. The proof π of Example 13 has B(π) = {[α\a], [α\b], [β\f(α)]}.

Definition 19. For a proof π define the totally rigid tree grammar G(π) =
〈ϕ,N,Σ, P 〉 by N = {ϕ} ∪ EV(π), Σ = Σ(π) ∪ {∧,∨,¬}, and P = {ϕ → F |
F ∈ H(π)} ∪ {α→ t | [α\t] ∈ B(π)}, where EV(π) is the set of eigenvariables of
the proof π and Σ(π) is its first-order signature.

Example 20. The proof π of Example 13 has G(π) = 〈ϕ,N,Σ, P 〉 where N =
{ϕ, α, β}, Σ = {a, b, f, g, P,Q,R,∧,∨,¬} and P = {ϕ → R(g(α, β)), β →
f(α), α → a, α→ b} hence L(G(π)) = {R(g(a, f(a))), R(g(b, f(b)))}. The reader
is invited to verify that A1, A2, A3 � L(G(π)) is provable for A1, A2, A3 as in
Example 13.

Definition 21. A proof π is called simple if every cut-formula in π contains at
most one quantifier.

We will now restrict our attention to simple proofs. The main result of this pa-
per is that cut-elimination in the class of simple proofs corresponds exactly (in a
sense made precise below) to the computation of the language of a totally rigid
acyclic tree grammar. While this restriction on proofs substantially decreases
the scope of the present analysis, simple proofs are still of considerable inter-
est: they do contain quantified cuts and hence allow the formalisation of some
mathematical lemmas and their cut-elimination is of exponential complexity.
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The size of a grammar G, written as |G|, is the number of production rules.
The size of a proof π, written as |π|, is the number of inferences.

Theorem 22. If π is a simple proof of T � ∃xA with A quantifier-free, then
there is a totally rigid acyclic grammar G with |G| ≤ |π| and L(G) ⊆ L(G(π))
s.t. T � L(G) is provable.

Proof. Only a sketch of the proof is described here, the reader interested in
the details is referred to the technical report [10]. We have |G(π)| ≤ |π|2, the
quadratic size being due to quantifiers in cut-formulas which are introduced
from a linear number of terms (on their weak side) and a linear number of
eigenvariables (on their strong side).

Let β, γ be two non-terminals of G(π) and write β ∼ γ if there is a strong
quantifier occurrence Q in a cut-formula with β, γ ∈ t(Q). The equivalence
relation ∼ defines a partition of the non-terminals of G(π) into n classes where
n is the number of cuts in π that contain a quantifier. Define the totally rigid
grammarG from G(π) by identifying all non-terminals of the same ∼-class. Then
|G| ≤ |π| and L(G) ⊆ L(G(π)).

Furthermore, let d be a new (“dummy”) constant and, for a given proof ψ,
write Gnd(ψ) for G(ψ) from which all productions of the form β → d for any non-
terminal β have been removed. By proof-theoretic transformations – in particular
the prenexification of [1], see also [4, Theorem VII.4.7], applied to cut-formulas
– we obtain a proof π′ all of whose cuts are of the form ∃xB for B quantifier-free
and which satisfies L(Gnd(π

′)) = L(G). The role of the dummy constant is to
mark artefacts introduced by prenexification into the grammar as such.

The central part of the proof then consists in applying a suitable procedure for
cut-elimination to π′ and to show that this process is computing L(Gnd(π

′)) step-
by-step from G(π′) in the proof: the systematic unfolding of the proof induced
by cut-elimination essentially transforms a grammar into its language, the occur-
rences of the dummy constant are deleted by this process due to their positions
in the proof. Finally we obtain a cut-free proof π∗ with H(π∗) = L(Gnd(π

′)).
This allows to conclude that T � L(Gnd(π

′)), i.e. T � L(G), is provable.
Corollary 23. If π is a simple proof of T � ∃xA with A quantifier-free, then
T � L(G(π)) is provable.

Proof. Append weakenings to the proof of T � L(G) obtained from Theorem 22.

Example 24. Applying Corollary 23 to the proof π of Example 13 shows that

A1, A2, A3 � R(g(a, f(a))), R(g(b, f(b)))
is provable. The reader is invited to verify that a standard algorithm for cut-
elimination (see e.g. [19]) gives the same result.

Note that Theorem 22 together with Lemma 11 provides an exponential upper
bound on the complexity of cut-elimination in simple proofs, more precisely: for
every simple proof π of T � ∃xA with A quantifier-free there are t1, . . . , tk with
k ≤ |π||π| s.t. T � A[x\t1], . . . , A[x\tk]. On the other hand, cut-elimination in
general is non-elementary [23,17,18] which shows that simplicity is a necessary
assumption for Theorem 22.
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4 From Tree Languages to Proofs

Already the results in [11] show that a simple proof induces an acyclic regular(!)
tree grammar whose finite language is an Herbrand-disjunction. So what have we
gained from strengthening this result by adding total rigidity? On the one hand,
we have gained an exponent: in contrast to the bound nn obtained in the totally
rigid case, there are acyclic regular tree grammars Gn with 2n productions and
|L(Gn)| = nnn

(Gn builds a tree with depth n, branching-degree n and n choices
at each leaf).

However there is another – more fundamental – motivation for this result: in
this section we show that the compression power of simple proofs corresponds
exactly to that of totally rigid acyclic grammars. Given such a grammar G we
will obtain a simple proof π that induces G and whose cut-elimination essentially
computes L(G) from G. As L(G(π)) is a set of formulas but L(G) is a set of
terms (which do not necessarily represent formulas), we cannot expect to obtain
G(π) = G. The closest possible connection is to wrap up the term language of
G in some new unary predicate symbol R1. Therefore the proofs constructed in
the theorem below have T � ∃xR1(x) as end-sequent. For proofs π and π′ we
write π → π′ if π′ can be obtained from π by applying the standard reduction
rules of cut-elimination as in [19].

Theorem 25. For every totally rigid acyclic tree grammar G = 〈α1, R,Σ, P 〉
there is a simple proof π with G(π) = 〈α0, R∪{α0}, Σ, P ∪{α0 → R1(α1)}〉 and
a cut-free proof π′ with π → π′ and H(π′) = L(G(π)).

Proof. By Lemma 11 we can assume that G = 〈α1, {α1, . . . , αn}, Σ, P 〉 s.t. αi

depends only on αj with j > i. The proof π is defined in the language Σ ∪
{Ri | 1 ≤ i ≤ n} where the Ri are unary predicate symbols with intended
interpretation “being reachable from the non-terminal αi”. For each rule αi → t
define the formula

ϕαi→t = ∀xi+1 · · · ∀xn ( Ri+1(xi+1) → · · ·Rn(xn) → Ri(t[αj\xj ]nj=i+1) ).

For each non-terminal αi with rules αi → t1, . . . , αi → tm define the formula

ϕi =

m∨

j=1

ϕαi→tj

and the proof ψi =

· · ·
Ri(tj) � Ri(tj)

Ri(tj) � ∃xRi(x)
∃r

ϕαi→tj , Ri+1(αi+1), . . . , Rn(αn) � ∃xRi(x)
∀∗l ,→∗

l

· · ·

ϕi, Ri+1(αi+1), . . . , Rn(αn) � ∃xRi(x)
c∗,∨∗

l .

Now define proofs πi : ϕ1, . . . , ϕi, Ri+1(αi+1), . . . , Rn(αn) � ∃xR1(x) for i ∈
{0, . . . , n} and π′

i : ϕ1, . . . , ϕi, ∃xRi+1(x), Ri+2(αi+2), . . . , Rn(αn) � ∃xR1(x)
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for i ∈ {0, . . . , n− 1} by

π′
i =

(πi)
ϕ1, . . . , ϕi, Ri+1(αi+1), . . . , Rn(αn) � ∃xR1(x)

ϕ1, . . . , ϕi, ∃xRi+1(x), Ri+2(αi+2), . . . , Rn(αn) � ∃xR1(x)
∃l

and

π0 =
R1(α1) � R1(α1)

R1(α1), . . . , Rn(αn) � ∃xR1(x)
w∗

l , ∃r

and

πi+1 =

(ψi+1)
ϕi+1, Ri+2(αi+2), . . . , Rn(αn) � ∃xRi+1(x) (π′

i)

ϕ1, . . . , ϕi+1, Ri+2(αi+2), . . . , Rn(αn) � ∃xR1(x)
c∗l , cut .

Then it is straightforward to verify that π = πn : ϕ1, . . . , ϕn � ∃xR1(x) has
the desired grammar. In order to obtain π′, reduce the cuts in a bottom-up
order which for each production rule of an αi+1 will create a new copy of πi
hence computing the language L(G(π)) by expansion from right to left (in the
representation of Lemma 11).

5 Applications

The above results pave the way for several applications of formal language theory
in proof theory to be further explored in future work. First of all, for carrying out
concrete analyses of simple proofs one can use rigid tree grammars instead of the
more cumbersome cut-elimination to compute values for existential quantifiers.
Secondly, standard problems of formal language theory such as membership, in-
tersection, etc. assume a proof-theoretic meaning by allowing to answer whether
a given value is obtained from a given proof, what values can be obtained from
both of two given proofs, etc.

Furthermore, these results show that the length of a proof with cut (which is
notoriously difficult to control) is intimately related to measures such as auto-
matic complexity [21] and automaticity [20], more precisely:

Corollary 26. Let ∃xA be a formula and k ∈ N s.t. T � A[x\t1], . . . , A[x\tn]
implies that every totally rigid acyclic grammar G with L(G) = {t1, . . . , tn} has
|G| ≥ k, then every simple proof π of T � ∃xA has |π| ≥ k.

Proof. Suppose there was a simple proof π0 of T � ∃xA with |π0| < k, then
by Theorem 22 there would be a totally rigid acyclic tree grammar G0 with
|G0| ≤ |π0| < k s.t. T � L(G0) would be provable, contradiction.

Via this connection, a lower bound on grammars thus translates to a lower bound
on proofs with cut.

Another intriguing perspective is to exploit these results computationally by
abbreviating a cut-free proof through the introduction of cuts which are ob-
tained from first computing a small grammar: the cut-free proof of T � ∃xA
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is represented by its Herbrand-disjunction A[x\t1], . . . , A[x\tn] which in turn is
represented by the trivial grammar whose axiom is x and whose productions are
x → t1, . . . , x → tn. An analysis of the structure of the ti can lead to a smaller
grammar representing the same language. It then only remains to check whether
the grammar can be realised by cut-formulas of a simple proof (which for the
case of a single cut is always the case). A first algorithm based on this approach
for the case of a single cut can be found in [12].

6 Conclusion

We have shown that cut-elimination in proofs where each cut contains at most
one quantifier corresponds exactly to the computation of the language of a totally
rigid acyclic tree grammar. This work constitutes a proof-of-concept result for a
new connection between proof theory and formal language theory arising from
exact characterisations of classes of proofs by classes of grammars. In principle,
such a result is conceivable for any proof system that possesses an Herbrand-like
theorem, i.e. even full higher-order logic as in [16]. The challenge consists in
finding an appropriate type of grammars.
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