Mobius differential geometry

(Version: July 17, 2003; A4 format)

Basics

Mobius geometry is the geometry of the group of Mébius transfor-
mations, that is, hypersphere preserving (point) transformations,
acting on the n-sphere S™ as a base manifold. The elements of
Mobius geometry are points (elements of the first kind) and hy-
perspheres (elements of the second kind).

Models

Models serve a uniform description of the elements of (Mé&bius) ge-
ometry (points, hyperspheres) and derived objects (for example,
k-spheres) as well as a description of the Mébius transformations
as linear, fractional linear, or spin transformations.

The classical (projective) model: the conformal n-sphere as
an absolute quadric S™ 2 {Rv C R}"?||v|? = 0} C RP™*!, the
space of hyperspheres as the “outer space” SILJrl/il C RP™t1;
the Lorentz sphere S?Jrl ={ve JR;hL2 | [v]2 = 1} can be inter-
preted as the space of oriented hyperspheres. Mobius transfor-
mations become Lorentz transformations, resp. projective trans-
formations that preserve S™ C RP™*1.

The quaternionic approach: the conformal 4-sphere as the
quaternionic projective line, S* = HP!, and the space of quater-
nionic Hermitian forms $(H?) = RS with |h|? = —deth (w.r.t.
some basis) so that 3-spheres are quaternionic Hermitian forms.
Mobius involutions S € &(H?), S? = —id, are 2-spheres. Ori-
entation preserving Mobius transformations are fractional linear
transformations, or special linear transformations (on homoge-
neous coordinates v € H?).

A Clifford algebra model: the coordinate Minkowski space
JR?+2 of the projective model is embedded into its Clifford algebra
AZR;H'Q. Mobius transformations are (s)pin transformations.
The Vahlen matrix approach: the Clifford algebra A]R{LJr2 is
described in terms of 2 X 2-matrices with entries from the Clifford
algebra AR™ of Euclidean n-space. Mobius transformations are
fractional linear transformations, given by Vahlen matrices.

Points

‘We consider R;L+2 = RxR"t! = Rx R" x R with the Minkowski
product {(yo0,¥), (y0,y)) = —yg +|y|2. The following are descrip-
tions of points in different models.

As points of the absolute quadric in the projective model:

R 5> S" 35y « R(l,y)

1
o2 1|2 € 8™ ¢ RptY,
RM 3z — R 2, D )}

As quaternionic Hermitian forms, in the quaternionic approach
(R* = H can be identified with the affine slice vy = 1):

St mHP s (M)H o R(12F Tnt) coam?).

vy
v2 —v201  |v1]?
As 2 x 2-Clifford algebra matrices in the Vahlen matrix approach:
2
R">z — R(§ZY)CARP™ = M(2x2,AR").

1 —=x

Hyperspheres
A hypersphere with center m € S* C R™t! and radius ¢ € (0, 7):
S = -1 (cosp,m) e SIL'H;

sin p

a change to —m and 7w — p reverts the orientation.

A hypersphere with center m € R™ and radius r # 0:
2_ 2 2_ 2
g=1 (1+(\m2\ —r ),m, 1—(|m2| —r )) c Si’hLl,

T

and a hyperplane with normal n € S"~! C R"™ and (directed)
distance d € R from the origin:

T =(d,n,—d) € S{LJFI;
as Vahlen matrices:
—m2—r? 2d 2
S:%(m m r)’ T:(n )E.AJR;Hr;

1 —m 0 —n
and as quaternionic Hermitian forms:

S= (i) T= (5 31) €0,

r m |m|2—r2 I
2-spheres (or planes) in R3 = ImH as Mobius involutions:

s=1(m |m|j7;r2)7 T=(7%) es(m?).
0

Note that S (and T) are symmetric w.r.t. R3 ~ (1 (1)
generally, a 2-sphere S € S(H?) lies inside a 3-sphere S? € $(H?)
iff S is symmetric w.r.t. S3, $3(.,S.) = S3(S.,.).

more

Incidence and intersection angle

A point p € S C RP"*! lies on a hypersphere S € S;H'l iff pisin
the polar hyperplane of S w.r.t. S™; in homogeneous coordinates,
this is orthogonality:

p=RveS & (v,5)=0.
In the Vahlen matrix description or the description of 2-spheres
in HP! as involutions, incidence can be expressed as

peS & p=S-p
that is, p € R™ U {oo} (or p € HU {o0}) is a fixed point of the
inversion at S; in case p = vIH € HP' this can also be written
p=vHE€ES < 3INEH: Sv=uvl,

that is, v € H? is an eigenvector of S € G(H?). Incidence of a
point p = vIH € HP! and a 3-sphere S € $(H?) is isotropy,

p=vHeS < S(v,v)=0.

The intersection angle o of two hyperspheres S1,S2 € SI"H is
given by
cosaa = (S1,52) = 7%{31,52},

where {.,.} is the anti-commutator in AR?JFQ; in particular, or-
thogonal intersection becomes orthogonality.

Inversions

The inversion at a hypersphere S C S™ is the polar reflection at

S € RP™*1; in homogeneous coordinates, p = Rv and S € S?Jrl:
R 3 v v —2(v,8)S = SvS € R c ARTT.

In terms of Vahlen matrices,

m—r2(p—m)”

1
R"U{cc}3p— S-p= }GJR”U{OO}.

S1(2, H) does not provide (orientation reversing) inversions.

npn + 2dn

The Mobius group

The Mobius group Mab(S™) is the conformal group Conf(S™)
of S™; in the classical (projective) picture, this is the group of
projective transformations that map S™ C RP™*! to itself.
O1(n+2) is a (trivial) double cover of Méb(S™) with kernel {+id};
its identity component SOIr (n + 2) is isomorphic to the group
Mébt(S™) of orientation preserving Mébius transformations.
Ping(n+2) is a double cover of O1(n+ 2) via the twisted adjoint
action

Pini(n+2) x R?+2 3 (s,v) — 5081 € R?+2,
where 7 is the order involution on AZR’;"'Q,

§=(-1)*s for s=s1---s, ;€ JR;H'I;
Spinl+ (n+2) is the universal cover of S’OIr (n+2) = MébT(S™); in
terms of Vahlen matrices, Mobius transformations are fractional
linear:

R*U{oo} 3 p— (¢ 5) p=(ap+b)(ecp+d)~! € R" U{oo}.
Si(2, H) is the double universal cover of Mab*(S4); its action on
HP! = H U {co} is by fractional linear transformations,

S1(2, H) x HP! > (p,vH) — (uv)H € HP?,
and on $H(H?2) it is given by
SU2, H) x $(H?) 5 (1, ) > S(u~1 u 1) € H(H?).
Any (orientation preserving) Mobius transformation is the com-
position of (an even number of) inversions at hyperspheres.

Spheres of arbitrary dimension

A sphere S C S™ of dimension k£ < n can be identified with

— the projective (k + 1)-plane that intersects S™ in the k-sphere:
this plane is spanned by k+2 points p; = Rv; € S™ in “general
osition,”

P ’ S=v1/\.../\vk+2€AZR”+2.

— the space of all hyperspheres that contain S, or the projective
(n—k—1)-plane that contains these hyperspheres, respectively:
this plane does not intersect S™ and can be spanned by n — k
orthogonal hyperspheres S;, that is, S is the orthogonal inter-
section of the Sj,

S=S81A...ASp_j, =81+ Sy_j € Pin(R}"") C ART;
S can be interpreted as a Mobius involution with
(n=k
S e A FRIM? and $2=(-1) 2 ,
which conforms with the identification of G(IH?) with the space
of 2-spheres in S* = HP!.

The passage from one description to the other is

— by polarity w.r.t. S* C RP™*! in the projective picture,

— by taking orthogonal complements in R?+2, or

. . . +2
— by taking the Clifford dual (or, the Hodge dual) in AR7]™".
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Sphere pencils and complexes

A sphere pencil consists of all spheres on a line in RP™*1; it is

— elliptic if the line does not intersect S™ (< [S1 A S2|2 > 0
for any two hyperspheres S1 # Sz in the pencil), that is, all
spheres intersect in a codimension 2 sphere;

— parabolic if the line touches S™ (& [S1 A SQ\Q =0 for S, S2
in the pencil), that is, all spheres touch in a point (the point
of contact with S™) and form a “contact element”;

— hyperbolic if the line intersects S™ (< |S1 A S2|? < 0 for any
two hyperspheres S1 # Sz in the pencil), that is, all spheres
have one intersection point of the line with S™ as their center
when interpreting the other as co, S™ \ {c0} = R", and the
pencil can be identified with this “point pair.”

A (linear) sphere complex consists of all spheres S in the polar
hyperplane of a point RK € RP*t1, S 1 K; it is called

— elliptic if K lies outside S™, |K|2 > 0;
— parabolic if K lies on S™, |K|? = 0; and
— hyperbolic if K lies inside S™, |K|? < 0.

These sphere complexes describe the hyperplanes of the hyper-
bolic, Euclidean, and spherical subgeometries of Mobius geome-
try, respectively.

Quadrics of constant curvature

Given K € R¥+2 \ {0}, the quadric
Qr={p € R{*?[|p]” = 0 and (p,K) = ~1}
has constant sectional curvature x = —|C|2. The standard ball
models B? = ({z € R" |1+ &|z|? > 0}, %
curvature K spaces are 1sometrlcally embedded by
Bisz = (11++~‘\z|\2’ 2 i) € Q.
where K = (@7 0, "2 ); the spheres S™(r) embed via
R 5> 8*(r)3y ~— (ry) € Qy/r2, K= (%,0,0).
The (mean) curvature H of a hypersphere S € S?Jrz is given by
—(5,K),

in particular, S is a hyperplane in Q, iff S is a sphere of the
sphere complex IC, S L K.
A k-sphere S = S1 A...AS,_k is a k-plane in Q, iff all
S; LK & Kespan{v;|i=1,...,k+2}

for k + 2 points p; = Rv; € S in general position.
A 2-sphere S € G(H?) is a 2-plane in Qy, given by K € $H(H?) iff
S is skew w.r.t. C; more generally, its mean curvature is given by

HP = |KsP, where Kg = 5(K(,5.) +K(S.,.)).

) of constant

A Mobius transformation that fixes the sphere complex K (the
hyperplanes of Q) is an isometry of Qx if kK # 0 or a similarity
of Qo, respectively;

Isom(Qx) = {p € O1(n + 2) | u(K) = K}
is the group of isometries of @, — in case k < 0, it is the group of
isometries that extend smoothly through the infinity sphere RK.

Stereographic projection
Let Ko = (1,0,—1) € Q1 be the “south pole” in the round n-
sphere S™ = Q1 given by K1 = (1,0,0);
1+|z|? 1—|x|? 2z 1—
Q 3( s Ty P} ) = (1’1+| |271+| |2)€Q1
Y1
Ql\{lco}9 (11y17y2) = (1+U27 T+ys’ 1+U2) EQO
then yields the classical stereographic projection. More generally,
S’”B]Rv»—>—<v,C € Qr
can be considered as a stereographic projection from (part of) the
conformal n-sphere onto a quadric of constant curvature.

With veo, vo € (H2)* a notion of stereographic projection is given
b
Y HP!\ {c0} 3 p=vH — (vov)(reov) ' = p € H,

where 0o = voo H is the unique point with veovee = 0.

The cross ratio

Four points p; € S™ always lie on a 2-sphere S that can be con-
sidered as a Riemann sphere, so that their complex cross ratio
[p1;p2;p3;pa] can be defined up to complex conjugation (orien-
tation of S). In the following [p1;p2;p3;pa] € C is obtained by
taking [p1;p2;p3; pa] = Req + i |Im g| where appropriate.
Expressing the cross ratio in terms of the distances
(1‘H;k‘2’xk’ H;sz)

|z; — 2|2 = —2(v;,v;), where v =
of the four points in R™, one arrives at
_ {v1,v2) (v3,04) —(v1,v3) (v2,04) +(v1,v4) (v2,03) +y/det((vi,v5))

2(v1,v4)(v2,v3) ’
Using the Clifford algebra setup, the cross ratio is obtained from

— V1V2V3V4 —V4V3V2V] 0pn+2 4mpn+2
9= Torvatvav1)(vavytuzvz) € AR @ AR,

and the direction of the A4JR?+2—part defines the 2-sphere S of
the four points; for z; € R"”,

q= (1 — x2)(x2 — x3) " H(wg — 24) (x4 — 1)~ € APR"PAR"

provides the cross ratio, and the same formula holds true for four
points z; € H in the quaternionic setup; if p; = v; H € HP! then

q = (v1v2)(v3v2) " H(vsve)(r1va) L € H

gives their cross ratio, where v1,v3 € (H?2)*\ {0} are quaternionic
linear forms with v;v; = 0.

The cross ratio [p1;p2;p3;p4] € R is real iff the four points are
concircular (form a “conformal rectangle,” which is embedded iff
[p1;p2;p3;p4] < 0) and the cross ratio [p1;p2;p3;pa] = —1 iff
they form an (embedded) “conformal square.”

The cross ratio cr := [p1; p2; p3; p4] satisfies the following identi-
ties under permutations of the four points (the complex conjugate
cr appears when the imaginary part is chosen to be always posi-
tive):

er: 1234 2143 3412 4321
l—2r: 1324 2413 3142 4231
T 1423 2314 3241 4132
= : 1432 2341 3214 4123
— L 1342 2431 3124 4213
=250 1243 2134 3421 4312

Sphere congruences and envelopes

A sphere congruence is a smooth map S : M™ — SIHI/:‘:, and
a smooth map f: M™ — S™ is said to envelope S if
f(p) € S(p) and dpf(TpM™) C Ty S(p) forallpe M™.
For hypersurfaces, m = n — 1, this reads
0=(f,S)=1S(SfS—f) and 0= (df,S) = $5(SdfS — df),
when considering f,S : M™~1 — ZR;L+2 C AR’;+2; an immersed
congruence S : M"~1 — S?'H has two envelopes iff (dS,dS) is
positive definite. For f : M3 — H? and S : M3 — $(H?) the
enveloping condition reads
0=2S(f,f) and 0=S(df,f)+S(f,df).
A 2-sphere congruence S : M? — &(H?) is enveloped by f iff
S-fIlf and dS-f| f
or, equivalently, if f envelopes every hypersphere congruence (sec-
tion) in the congruence of elliptic sphere pencils given by S.
Similarly, an m-sphere congruence S : M™ — A"*MJRIL+2 is
enveloped by f : M™ — ZRTfJr2 iff f envelopes any section of S
(hypersphere congruence in S). With the contact elements
t(p) = f(p) - dpf(er)---dpf(em), (e1,...,em) orthonormal,
of an immersion Rf : M™ — S™, the enveloping condition reads
t|| v(Sf), where ARTT? 3y vyc AR
is the Clifford dual. Two immersion f and f envelope an m-sphere
congruence iff f ) it

The central sphere congruence Z : M™ — A"_mlR’lhL2 of an

immersion Rf : M™ — S™ is given by
_ 1
vZ = 5-(t-Af = (=1)™Af - 1).

Conformal change of metric

Let S™ C M™ be a submanifold, (M™, g) Riemannian, j = e2%g
a conformal change of the ambient metric; then the geometric
quantities of S™ change as follows:

Vow = Vyw+ (vu)w + (wu)v — g(v,w) - Vu
I(v,w) = @I(v,w)—g(v,w)- (gradyu)’

Anv = Apv— (nu)v

Vin = Vin+ (vu)n;

and the real valued curvature quantities:

= s—by, (s= ﬁ('ric - 2(267?1)9) Schouten tensor)
= ey (w=r—sANg Weyl tensor)
= 2“(7“ —buAg)

2 (K — trgb [x) (sect. curv. on w C T'S™)
= ( Au) (Gauss curv. for m = 2),
where bu(v w) = (V2 ) (v, w) — (vu)(wu) + %g(Vu, Vu)g(v, w)
o 0o =202 809 03 20
the Kulkarni-Nomizu product of two bilinear forms.

b 5’ = B w

is

Important invariants are umbilics, the normal curvature R+, and
the trace free second fundamental form Iog = I — H - g with
the mean curvature H = %trgﬂ of S™. A conformal metric is
obtained by geonf = h2g, h? = %g(ﬂo,ﬂo); this is the induced
metric of the conformal Gauss map in case m = 2 and n = 3.



