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jes Tóth on sums of moments using a bare minimum of geometric arguments.
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1. Introduction and Statement of the Result

To the more general results of discrete geometry belongs the following theorem of
L. Fejes Tóth on sums of moments, where ‖ · ‖ and | · | denote the Euclidean norm and
the ordinary area measure in Euclidean 2-space IE 2; see [?].

Theorem. Let f : [0,+∞) → IR be non-decreasing and let H be a convex 3, 4, 5, or
6-gon in IE 2. Then, for any set P of n points in IE 2,

(1) S =
∫
H

min{f(‖x− p‖) : p ∈ P}dx ≥ n
∫

Hn

f(‖x‖)dx,

where Hn is a regular hexagon in IE 2 of area |H|/n and center at the origin o.

The great importance of this modest-looking result is due to its applications ranging
from packing and covering problems for solid circles, problems of optimal location,
errors of quantization of data and Gauss channels, the isoperimetric problem for convex
polytopes in IE 3, and the optimal choice of nodes in numerical integration formulae to
asymptotically best approximation of convex bodies in IE 3. See [?] for references. The
theorem indicates that for certain geometric or other problems the regular hexagonal
configurations are, at least, close to optimal. Considering this, the question arises
whether in such situations optimal or close to optimal configurations are almost regular
hexagonal. As expected, the — non-trivial — answer is yes and follows from a stability
counterpart of Fejes Tóth’s theorem for functions of the form f(t) = ta of Gruber [?].
This stability result can be extended to more general classes of functions but not to all
functions f .



L. Fejes Tóth proved his estimate first for the 2-sphere and only then for IE 2, see
[?, ?]. Alternative proofs, in some cases for surfaces of constant curvature, are due to
L. Fejes Tóth [?], Imre [?], G. Fejes Tóth [?], and Florian [?]. An extension to Jordan
measurable sets on 2-dimensional Riemannian manifolds can be obtained along the
lines of [?]. All these proofs, in essence, are geometric.

It is the aim of this article to present an elementary analytic proof of the theorem on
sums of moments which uses only a minimum of geometric tools. One motive for this
proof is the fact that the analytic arguments can be refined to yield a corresponding
stability result which will be published elsewhere. G. Fejes Tóth has announced a
different proof.

2. Proof of the Theorem

It is sufficient to prove the Theorem for functions f with f(0) = 0 and positive con-
tinuous derivative on (0,+∞). Let P = {p1, . . . , pn} be a set of n points in IE 2. By
replacing any point of P which is not in H by its closest point in H, the integral S on
the left hand side of (1) is decreased. Thus we may suppose that P is contained in H.
Since f is non-decreasing, S can be written as a sum of moments in the form

(2) S =
n∑

i=1

∫
Di

f(‖x− pi‖)dx,

where Di = {x ∈ H : ‖x− pi‖ ≤ ‖x− p‖ for each p ∈ P} for i = 1, . . . , n.

Di is the intersection of H with the Dirichlet–Voronoi cell of pi with respect to P . It
is a convex polygon of area ai with vi vertices, say. The so-called moment lemma of
L. Fejes Tóth [?], p. 198, shows that

(3)
∫
Di

f(‖x− pi‖)dx ≥
∫
Ri

f(‖x‖)dx = M(ai, vi), say,

where Ri is a regular vi-gon with center o, area ai, and vi vertices.

Let g be defined by g(r2) = f(r) for r ≥ 0. Then g(0) = 0 and g has positive
continuous derivative on (0,+∞). Let G be such that G(0) = 0 and G′ = g. Finally,
let h(a, v) = a/v tan(π/v) for a > 0, v ≥ 3. Clearly,

(4) if R is a regular polygon with center o, area a, and v vertices, then h1/2 is its
inradius, and

M(a, v) =
∫
R

f(‖x‖)dx = 2v

π
v∫

0

h1/2

cosψ∫
0

g(r2)rdrdψ = v

π
v∫

0

G(
h

cos2 ψ
)dψ.
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Define M(a, v) for a > 0, v ≥ 3 by the latter integral.
After these preparations the main step of the proof of the Theorem is to show that

the moment

(5) M(a, v) is convex for a > 0, v ≥ 3.

Let

I =

π
v∫

0

g(
h

cos2 ψ
)
dψ

cos2 ψ
, J =

π
v∫

0

g′(
h

cos2 ψ
)
dψ

cos4 ψ
, K = g(

h

cos2 π
v

).

Elementary calculus yields the following:

Maa = vh2
aJ (> 0), Mav = (ha + vhav)I + vhahvJ −

πha

v cos2 π
v

K,

Mvv = (2hv + vhvv)I + vh2
vJ +

2πa

v cos2 π
v

(
π

v3
− hav)K.

Noting that

2h2
v − hhvv =

2π2a2

v6 sin2 π
v

, h+ vhv =
πa

v2 sin2 π
v

,

K −
cos π

v

sin π
v

I =
2a cos2 π

v

v sin2 π
v

π
v∫

0

g′(
h

cos2 ψ
)
sin2 ψ

cos4 ψ
dψ (> 0),

a lengthy calculation then shows that

MaaMvv −M2
av

= −vha(2hvhav − hahvv)IJ +
2π2ah2

a

v3 cos2 π
v

JK − ((ha + vhav)I −
πha

v cos2 π
v

K)2

=
2π2a cos π

v

v5 sin3 π
v

IJ +
2π2a

v5 sin2 π
v

JK − π2

v4 sin2 π
v

cos2 π
v

(K −
cos π

v

sin π
v

I)2

=
2π2a

v5 sin2 π
v

J(K −
cos π

v

sin π
v

I)− 2π2a

v5 sin2 π
v

· v

2a cos2 π
a

(K −
cos π

v

sin π
v

I)2

=
2π2a

v5 sin2 π
v

(J − v

2a cos2 π
a

(K −
cos π

v

sin π
v

I))(K −
cos π

v

sin π
v

I)

=
2π2a

v5 sin2 π
v

·

π
v∫

0

g′(
h

cos2 ψ
)(1− sin2ψ

sin2 π
v

)
dψ

cos4 ψ
·
2a cos2 π

v

v sin2 π
v

·

π
v∫

0

g′(
h

cos2 ψ
)
sin2 ψ

cos4 ψ
dψ

> 0.

Having proved that Maa and MaaMvv −Mav are positive for a > 0, v ≥ 3, it follows
that the Hessian matrix of M is positive definite, which in turn implies (5).

Our next tool is the following simple consequence of Euler’s polytope formula, see
e.g. [?], p. 16:
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(6) v1 + . . .+ vn ≤ 6n.

Since for fixed a the function M(a, v) is convex in v by (5) and has a limit as v → +∞
(the moment of the circular disc with center o and area a), we see that

(7) M(a, v) is non-increasing in v for a fixed.

Now, combining (2), (3), (4), (5), applying Jensen’s inequality for convex functions,
and using (6) and (7),

S ≥
n∑

i=1

M(ai, vi) ≥ nM(
a1 + . . .+ an

n
,
v1 + . . .+ vn

n
) ≥ nM(

|H|
n
, 6)

follows. This completes the proof of the Theorem.
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