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Clones

We consider algebras (X , f , g, . . .) on a fixed set A,
and rank them according to their richness of term functions.

Note: In general, our algebras will have many operations.

Example

(Q,+) < (Q,+, ·) < (Q,+,−, ·) = (Q,−, ·).

general problem: Analyse the relationships between
different algebras on the same set;
by how much is (Q,+, ·) “richer” than (Q,+)?

specific problem: Which algebras are complete?
(i.e., all functions are term functions)?
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Definition

Fix a set X . We write O(n) for the set of n-ary operations:
O(n) = X X n

, and we let O = OX =
⋃

n=1,2,... O
(n).

A clone on X is a set C ⊆ O which contains all the projection
functions and is closed under composition.

Equivalently, a clone is the set of term functions of some
universal algebra on X .

Fact

The set of clones on X forms a complete lattice: CLONE(X ).

Definition: For any C ⊆ O let 〈C〉 be the clone generated by C.



Background Descriptive set theory Infinite Combinatorics Forcing Structure or nonstructure?

Definition

Fix a set X . We write O(n) for the set of n-ary operations:
O(n) = X X n

, and we let O = OX =
⋃

n=1,2,... O
(n).

A clone on X is a set C ⊆ O which contains all the projection
functions and is closed under composition.

Equivalently, a clone is the set of term functions of some
universal algebra on X .

Fact

The set of clones on X forms a complete lattice: CLONE(X ).

Definition: For any C ⊆ O let 〈C〉 be the clone generated by C.



Background Descriptive set theory Infinite Combinatorics Forcing Structure or nonstructure?

Size of CLONE(X )

If X is finite, then OX is countable.

If |X | = 1, then OX is trivial.

If |X | = 2, then CLONE(X ) is countable, and completely
understood. (“Post’s lattice”)

If 3 ≤ |X | < ℵ0, then |CLONE(X )| = 2ℵ0 , and not well
understood.

If X is infinite, then

|OX | = 2|X |,

|CLONE(X )| = 22|X |
,

and only little is known about the structure of CLONE(X ).
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Completeness

Example

The functions ∧,∨, true , false do not generate all operations
on {true , false }.

Proof: All these functions are monotone, and ¬ is not.

Now let X be any set.

Example

Assume that ≤ is a nontrivial partial order on X, and that all
functions in C ⊆ O are monotone with respect to ≤.
Then 〈C〉 6= O.
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Polymorphisms

Let X be a set, C ⊆ OX .

If all functions in C respect some order ≤ on X ,

or: if all functions in C respect some nontrivial equivalence
relation θ

or: if all functions in C respect some nontrivial fixed set
A ⊂ X
(i.e., f [Ak ] ⊆ A)

or . . .

then 〈C〉 6= O.

We write Pol(≤), Pol(θ), Pol(A), . . . for the clone of all functions
respecting ≤, θ, A, . . .
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Completeness; finite base set

Let X be finite. Then

CLONE(X ) has finitely many coatoms (“precomplete
clones”).

All of these coatoms are explicitly known,

they have the form Pol(≤) for some order ≤, or . . .

Every clone other than O is contained in a coatom.

This gives a decision procedure for the question

Is 〈C〉 = O?
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A simple example

Theorem

Let X be a finite set, and let C ⊆ D be clones on X. Then the
interval [C, D] in CLONE(X ) is

either finite,

or countable,

or of size 2ℵ0 .

Proof: Recall that OX is countable, so every C ⊆ OX can be
viewed as a real number.
The set [C, D] is a Borel set (even closed) in the natural Polish
topology.

Note 1 All these possibilities are realized: 1,2,. . . , ℵ0, 2ℵ0 .
Note 2 Not true for clones on infinite sets; all cardinalities are

possible.
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Partition and anti-partition

Let Cun be the clone of all (essentially) unary functions. We are
interested in the interval [Cun,O]. (“Clone theory modulo
semigroup theory”)

If the base set X is finite with k elements, then [Cun,O) is a
chain of k elements; the last one (the unique maximal
element in this interval) is the set of all functions that are
essentially unary or not surjective.

If the base set X is countable or weakly compact, then
[Cun,O) has two maximal elements.

If the cardinality of the base set X satisfies a certain strong
negative partition relation, then [Cun,O) has very many
maximal elements
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The clone T2

The following “canonisation theorem” follows from Ramsey’s
theorem:

For every function f : ω × ω → ω we can find infinite sets A, B
such that f �(A× B) ∩∇ (with ∇ := {(x , y) : x < y})

is injective,

or depends injectively only on x : f (x , y) = h1(x), h1 1-1

or depends injectively only on y : f (x , y) = h2(y), h2 1-1

or is constant.

This theorem motivates the definition of a clone; namely, the
clone of all functions for which the first case (“injective”) never
happens.
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An open question concerning T2

Let T2 be the set of all binary functions f such that there are no
infinite sets A, B such that f �(A× B) is 1-1 above or below the
diagonal.

Let T̂2 be the set of all function f : ωk → ω such that no term

u0(f (u1(?), u2(?), ...un(?))

(where each “?” can be either x or y , and all the ui are unary)
is 1-1 on the set ∇ := {(x , y) ∈ ω × ω : x < y}.

T̂2 is a clone; in fact, it is one of the two maximal clones
containing all unary functions.
T2 is the binary part of T̂2

Both T2 and T̂2 are complete Π1
1 sets.

Open Question

Does T2 generate T̂2?
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Completeness; finite base set

Let X be finite. Then

CLONE(X ) has finitely many coatoms (“precomplete
clones”).

All of these coatoms are explicitly known,

they have the form Pol(≤) for some order ≤, or . . .

Every clone other than O is contained in a coatom.

This gives a decision procedure for the question

Is 〈C〉 = O?
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Growth clones on ω

For any infinite A ⊆ ω we define hA(n) = min{k ∈ A : n < k}.

Let D be a filter on ω. CD is the clone of all functions which are
bounded by some iterate of hA, A ∈ D:

CD := { f ∈ O : ∃k ∃A ∈ D : f (~x) ≤ h(k)
A (max(~x)) }

For unary functions f , g we define f ≤D g iff f ∈ 〈CD ∪ {g}〉
(iff f is bounded by a finite composition of functions from
{g, hA} for some A ∈ D.)

Theorem

Assuming CH, we can construct an ultrafilter D such that ≤D is
linear without last element.
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Growth clones on ω

Let D be a filter. f ≤D g means that f can be dominated by g
with the help of enumerating functions of sets A ∈ D.
CD := {f : f ≤D id}.

Theorem

Assuming CH, we can construct an ultrafilter D such that ≤D is
linear but very long.
The interval [CD,O] is then isomorphic to the family of Dedekind
cuts in this order. (Hence has no penultimate element).

This shows that there is a clone without a coatom above it.

Proof Using CH, find a sufficiently generic filter for a certain
cleverly constructed σ-complete forcing notion.

In ZFC, the existence of such a clone is still open.
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Growth clones on uncountable cardinals

Theorem

Assume 2κ = κ+. Then there is a clone C on κ such that the
interval [C,O) contains a cofinal linear order of type κ+.

Proof Using 2κ = κ+, find a sufficiently generic filter for a certain
cleverly constructed κ+-complete forcing notion.
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Clones above the idempotent clone

Let Cip be the clone of all idempotent operations:

Cip = {f : ∀x f (x , . . . , x) = x}

For every filter D (including the trivial filter P(X )) on X let CD be
clone of D-idempotent functions.

Cip = {f : f (x , . . . , x) = xD-a.e.}

Theorem

Every clone in the interval [Cip,O] is of the form CD for some D.
Hence, the interval [Cip,O] is (as a lattice) isomorphic to the
family of open subsets of βX.

(This translates a problem from algebra to topology.)
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