Applications of Logic in Algebra: clones

Martin Goldstern

Institute of Discrete Mathematics and Geometry Vienna University of Technology

July 28, 2006

Outline

- 2 Descriptive set theory
- Infinite Combinatorics

4 Forcing

5 Structure or nonstructure?

Outline

- 2 Descriptive set theory
- Infinite Combinatorics

4 Forcing

5 Structure or nonstructure?

Background	Descriptive set theory	Infinite Combinatorics	Forcing	Structure or nonstructure?

Clones

We consider algebras (X, f, g, ...) on a fixed set A,

Note: In general, our algebras will have many operations.

Note: In general, our algebras will have many operations.

Example

$$(\mathbb{Q},+)<(\mathbb{Q},+,\cdot)<(\mathbb{Q},+,-,\cdot)=(\mathbb{Q},-,\cdot).$$

Note: In general, our algebras will have many operations.

Example

$$(\mathbb{Q},+)<(\mathbb{Q},+,\cdot)<(\mathbb{Q},+,-,\cdot)=(\mathbb{Q},-,\cdot).$$

general problem: Analyse the relationships between different algebras on the same set;
 by how much is (ℚ, +, ·) "richer" than (ℚ, +)?

Note: In general, our algebras will have *many* operations.

Example

$$(\mathbb{Q},+)<(\mathbb{Q},+,\cdot)<(\mathbb{Q},+,-,\cdot)=(\mathbb{Q},-,\cdot).$$

- general problem: Analyse the relationships between different algebras on the same set; by how much is $(\mathbb{Q}, +, \cdot)$ "richer" than $(\mathbb{Q}, +)$?
- specific problem: Which algebras are complete? (i.e., all functions are term functions)?

Background	Descriptive set theory	Infinite Combinatorics	Forcing	Structure or nonstructure?

Definition

Fix a set X. We write $\mathbb{O}^{(n)}$ for the set of n-ary operations: $\mathbb{O}^{(n)} = X^{X^n}$, and we let $\mathbb{O} = \mathbb{O}_X = \bigcup_{n=1,2,\dots} \mathbb{O}^{(n)}$. A clone on X is a set $C \subseteq \mathbb{O}$ which contains all the projection functions and is closed under composition.

Equivalently, a clone is the set of term functions of some universal algebra on X.

Fact

The set of clones on X forms a complete lattice: CLONE(X).

Background	Descriptive set theory	Infinite Combinatorics	Forcing	Structure or nonstructure?

Definition

Fix a set X. We write $\mathbb{O}^{(n)}$ for the set of n-ary operations: $\mathbb{O}^{(n)} = X^{X^n}$, and we let $\mathbb{O} = \mathbb{O}_X = \bigcup_{n=1,2,\dots} \mathbb{O}^{(n)}$. A clone on X is a set $C \subseteq \mathbb{O}$ which contains all the projection functions and is closed under composition.

Equivalently, a clone is the set of term functions of some universal algebra on X.

Fact

The set of clones on X forms a complete lattice: CLONE(X).

Definition: For any $C \subseteq 0$ let $\langle C \rangle$ be the clone generated by *C*.

• If |X| = 1, then \mathcal{O}_X is trivial.

- If |X| = 1, then \mathcal{O}_X is trivial.
- If |X| = 2, then CLONE(X) is countable, and completely understood. ("Post's lattice")

- If |X| = 1, then \mathcal{O}_X is trivial.
- If |X| = 2, then CLONE(X) is countable, and completely understood. ("Post's lattice")
- If 3 ≤ |X| < ℵ₀, then |CLONE(X)| = 2^{ℵ₀}, and not well understood.

- If |X| = 1, then \mathcal{O}_X is trivial.
- If |X| = 2, then CLONE(X) is countable, and completely understood. ("Post's lattice")
- If 3 ≤ |X| < ℵ₀, then |CLONE(X)| = 2^{ℵ₀}, and not well understood.

If X is finite, then \mathcal{O}_X is countable.

- If |X| = 1, then \mathcal{O}_X is trivial.
- If |X| = 2, then CLONE(X) is countable, and completely understood. ("Post's lattice")
- If 3 ≤ |X| < ℵ₀, then |CLONE(X)| = 2^{ℵ₀}, and not well understood.

If X is infinite, then

•
$$|\mathcal{O}_X| = 2^{|X|},$$

If X is finite, then \mathcal{O}_X is countable.

- If |X| = 1, then \mathcal{O}_X is trivial.
- If |X| = 2, then CLONE(X) is countable, and completely understood. ("Post's lattice")
- If 3 ≤ |X| < ℵ₀, then |CLONE(X)| = 2^{ℵ₀}, and not well understood.

If X is infinite, then

- $|\mathfrak{O}_X| = 2^{|X|},$
- $|\mathsf{CLONE}(X)| = 2^{2^{|X|}}$,

If X is finite, then \mathcal{O}_X is countable.

- If |X| = 1, then \mathcal{O}_X is trivial.
- If |X| = 2, then CLONE(X) is countable, and completely understood. ("Post's lattice")
- If 3 ≤ |X| < ℵ₀, then |CLONE(X)| = 2^{ℵ₀}, and not well understood.

If X is infinite, then

- $|\mathfrak{O}_X| = 2^{|X|}$,
- $|\mathsf{CLONE}(X)| = 2^{2^{|X|}}$,
- and only little is known about the structure of **CLONE**(X).

Completeness

Example

The functions \land , \lor , true, false do not generate all operations on {true, false}.

Completeness

Example

The functions \land , \lor , true, false do not generate all operations on {true, false}.

Proof: All these functions are monotone, and \neg is not.

Completeness

Example

The functions \land , \lor , true, false do not generate all operations on {true, false}.

Proof: All these functions are monotone, and \neg is not.

Now let X be any set.

Example

Assume that \leq is a nontrivial partial order on X, and that all functions in $C \subseteq 0$ are monotone with respect to \leq . Then $\langle C \rangle \neq 0$. Infinite Combinatorics

Forcing

Structure or nonstructure?

Polymorphisms

Let X be a set, $C \subseteq \mathcal{O}_X$.

Let X be a set, $C \subseteq \mathcal{O}_X$.

• If all functions in C respect some order \leq on X,

Let X be a set, $C \subseteq \mathfrak{O}_X$.

- If all functions in C respect some order \leq on X,
- or: if all functions in C respect some nontrivial equivalence relation θ

Let *X* be a set, $C \subseteq O_X$.

- If all functions in C respect some order \leq on X,
- or: if all functions in C respect some nontrivial equivalence relation θ
- or: if all functions in *C* respect some nontrivial fixed set A ⊂ X (i.e., f[A^k] ⊆ A)

Let *X* be a set, $C \subseteq O_X$.

- If all functions in C respect some order \leq on X,
- or: if all functions in C respect some nontrivial equivalence relation θ
- or: if all functions in *C* respect some nontrivial fixed set A ⊂ X (i.e., f[A^k] ⊆ A)
- or . . .

Let *X* be a set, $C \subseteq O_X$.

- If all functions in C respect some order \leq on X,
- or: if all functions in C respect some nontrivial equivalence relation θ
- or: if all functions in *C* respect some nontrivial fixed set A ⊂ X (i.e., f[A^k] ⊆ A)
- or . . .

Let *X* be a set, $C \subseteq O_X$.

- If all functions in C respect some order \leq on X,
- or: if all functions in C respect some nontrivial equivalence relation θ
- or: if all functions in *C* respect some nontrivial fixed set A ⊂ X (i.e., f[A^k] ⊆ A)
- or . . .

then $\langle \boldsymbol{C} \rangle \neq 0$.

Let *X* be a set, $C \subseteq O_X$.

- If all functions in C respect some order \leq on X,
- or: if all functions in C respect some nontrivial equivalence relation θ
- or: if all functions in *C* respect some nontrivial fixed set A ⊂ X (i.e., f[A^k] ⊆ A)
- or . . .

then $\langle \boldsymbol{C} \rangle \neq \boldsymbol{0}$.

We write $Pol(\leq)$, $Pol(\theta)$, Pol(A), ... for the clone of all functions respecting \leq , θ , A, ...

Let X be finite. Then

• **CLONE**(*X*) has finitely many coatoms ("precomplete clones").

- **CLONE**(*X*) has finitely many coatoms ("precomplete clones").
- All of these coatoms are explicitly known,

- **CLONE**(*X*) has finitely many coatoms ("precomplete clones").
- All of these coatoms are explicitly known,
- they have the form $Pol(\leq)$ for some order \leq , or ...

- **CLONE**(*X*) has finitely many coatoms ("precomplete clones").
- All of these coatoms are explicitly known,
- they have the form $Pol(\leq)$ for some order \leq , or ...
- Every clone other than 0 is contained in a coatom.

- **CLONE**(*X*) has finitely many coatoms ("precomplete clones").
- All of these coatoms are explicitly known,
- they have the form $Pol(\leq)$ for some order \leq , or ...
- Every clone other than 0 is contained in a coatom.

Completeness; finite base set

Let X be finite. Then

- **CLONE**(*X*) has finitely many coatoms ("precomplete clones").
- All of these coatoms are explicitly known,
- they have the form $Pol(\leq)$ for some order \leq , or ...
- Every clone other than 0 is contained in a coatom.

This gives a decision procedure for the question

Is $\langle \boldsymbol{C} \rangle = 0$?

Completeness; finite base set

Let X be finite. Then

- **CLONE**(*X*) has finitely many coatoms ("precomplete clones").
- All of these coatoms are explicitly known,
- they have the form $Pol(\leq)$ for some order \leq , or ...
- Every clone other than 0 is contained in a coatom.

This gives a decision procedure for the question

Is $\langle \boldsymbol{C} \rangle = 0$?

Outline

- 2 Descriptive set theory
 - 3 Infinite Combinatorics

4 Forcing

5 Structure or nonstructure?

Theorem

Let X be a finite set, and let $C \subseteq D$ be clones on X. Then the interval [C, D] in **CLONE**(X) is

- either finite,
- or countable,
- or of size 2^{\aleph_0} .

Theorem

Let X be a finite set, and let $C \subseteq D$ be clones on X. Then the interval [C, D] in **CLONE**(X) is

- either finite,
- or countable,
- or of size 2^{\aleph_0} .

Proof: Recall that \mathcal{O}_X is countable, so every $C \subseteq \mathcal{O}_X$ can be viewed as a real number.

The set [C, D] is a Borel set (even closed) in the natural Polish topology.

Theorem

Let X be a finite set, and let $C \subseteq D$ be clones on X. Then the interval [C, D] in **CLONE**(X) is

- either finite,
- or countable,
- or of size 2^{\aleph_0} .

Proof: Recall that \mathcal{O}_X is countable, so every $C \subseteq \mathcal{O}_X$ can be viewed as a real number.

The set [C, D] is a Borel set (even closed) in the natural Polish topology.

Note 1 All these possibilities are realized: $1, 2, ..., \aleph_0, 2^{\aleph_0}$.

Theorem

Let X be a finite set, and let $C \subseteq D$ be clones on X. Then the interval [C, D] in **CLONE**(X) is

- either finite,
- or countable,
- or of size 2^{\aleph_0} .

Proof: Recall that \mathcal{O}_X is countable, so every $C \subseteq \mathcal{O}_X$ can be viewed as a real number.

The set [C, D] is a Borel set (even closed) in the natural Polish topology.

Note 1 All these possibilities are realized: $1, 2, ..., \aleph_0, 2^{\aleph_0}$.

Note 2 Not true for clones on infinite sets; all cardinalities are possible.

Outline

- 2 Descriptive set theory
- Infinite Combinatorics

4 Forcing

5 Structure or nonstructure?

Let C_{un} be the clone of all (essentially) unary functions. We are interested in the interval [C_{un} , O]. ("Clone theory modulo semigroup theory")

Let C_{un} be the clone of all (essentially) unary functions. We are interested in the interval $[C_{un}, 0]$. ("Clone theory modulo semigroup theory")

If the base set X is finite with k elements, then [C_{un}, 0) is a chain of k elements; the last one (the **unique** maximal element in this interval) is the set of all functions that are essentially unary or not surjective.

Let C_{un} be the clone of all (essentially) unary functions. We are interested in the interval $[C_{un}, 0]$. ("Clone theory modulo semigroup theory")

- If the base set X is finite with k elements, then [C_{un}, 0) is a chain of k elements; the last one (the **unique** maximal element in this interval) is the set of all functions that are essentially unary or not surjective.
- If the base set *X* is countable or weakly compact, then $[C_{un}, 0)$ has **two** maximal elements.

Let C_{un} be the clone of all (essentially) unary functions. We are interested in the interval $[C_{un}, 0]$. ("Clone theory modulo semigroup theory")

- If the base set X is finite with k elements, then [C_{un}, 0) is a chain of k elements; the last one (the **unique** maximal element in this interval) is the set of all functions that are essentially unary or not surjective.
- If the base set *X* is countable or weakly compact, then $[C_{un}, 0)$ has **two** maximal elements.
- If the cardinality of the base set X satisfies a certain strong negative partition relation, then [C_{un}, 0) has very many maximal elements

Let C_{un} be the clone of all (essentially) unary functions. We are interested in the interval $[C_{un}, 0]$. ("Clone theory modulo semigroup theory")

- If the base set X is finite with k elements, then [C_{un}, 0) is a chain of k elements; the last one (the **unique** maximal element in this interval) is the set of all functions that are essentially unary or not surjective.
- If the base set *X* is countable or weakly compact, then $[C_{un}, 0)$ has **two** maximal elements.
- If the cardinality of the base set X satisfies a certain strong negative partition relation, then [C_{un}, 0) has very many maximal elements

The clone T_2

The following "canonisation theorem" follows from Ramsey's theorem:

For every function $f: \omega \times \omega \rightarrow \omega$ we can find infinite sets *A*, *B* such that $f \upharpoonright (A \times B) \cap \nabla$ (with $\nabla := \{(x, y) : x < y\}$)

- is injective,
- or depends injectively only on x: $f(x, y) = h_1(x), h_1$ 1-1
- or depends injectively only on y: $f(x, y) = h_2(y)$, h_2 1-1
- or is constant.

The clone T_2

The following "canonisation theorem" follows from Ramsey's theorem:

For every function $f : \omega \times \omega \to \omega$ we can find infinite sets *A*, *B* such that $f \upharpoonright (A \times B) \cap \nabla$ (with $\nabla := \{(x, y) : x < y\}$)

- is injective,
- or depends injectively only on x: $f(x, y) = h_1(x), h_1$ 1-1
- or depends injectively only on y: $f(x, y) = h_2(y)$, h_2 1-1
- or is constant.

This theorem motivates the definition of a clone; namely, the clone of all functions for which the first case ("injective") never happens.

Let T_2 be the set of all binary functions f such that there are no infinite sets A, B such that $f \upharpoonright (A \times B)$ is 1-1 above or below the diagonal.

Let T_2 be the set of all binary functions f such that there are no infinite sets A, B such that $f \upharpoonright (A \times B)$ is 1-1 above or below the diagonal.

Let \hat{T}_2 be the set of all function $f: \omega^k \to \omega$ such that no term

 $u_0(f(u_1(?), u_2(?), ..., u_n(?)))$

(where each "?" can be either x or y, and all the u_i are unary) is 1-1 on the set $\nabla := \{(x, y) \in \omega \times \omega : x < y\}.$

Let T_2 be the set of all binary functions f such that there are no infinite sets A, B such that $f \upharpoonright (A \times B)$ is 1-1 above or below the diagonal.

Let \hat{T}_2 be the set of all function $f: \omega^k \to \omega$ such that no term

 $u_0(f(u_1(?), u_2(?), ... u_n(?)))$

(where each "?" can be either *x* or *y*, and all the u_i are unary) is 1-1 on the set $\nabla := \{(x, y) \in \omega \times \omega : x < y\}.$

*Î*₂ is a clone; in fact, it is one of the two maximal clones containing all unary functions.

Let T_2 be the set of all binary functions f such that there are no infinite sets A, B such that $f \upharpoonright (A \times B)$ is 1-1 above or below the diagonal.

Let \hat{T}_2 be the set of all function $f: \omega^k \to \omega$ such that no term

 $u_0(f(u_1(?), u_2(?), ..., u_n(?)))$

(where each "?" can be either *x* or *y*, and all the u_i are unary) is 1-1 on the set $\nabla := \{(x, y) \in \omega \times \omega : x < y\}.$

- *Î*₂ is a clone; in fact, it is one of the two maximal clones containing all unary functions.
- T_2 is the binary part of \hat{T}_2

Let T_2 be the set of all binary functions f such that there are no infinite sets A, B such that $f \upharpoonright (A \times B)$ is 1-1 above or below the diagonal.

Let \hat{T}_2 be the set of all function $f: \omega^k \to \omega$ such that no term

 $u_0(f(u_1(?), u_2(?), ..., u_n(?)))$

(where each "?" can be either *x* or *y*, and all the u_i are unary) is 1-1 on the set $\nabla := \{(x, y) \in \omega \times \omega : x < y\}.$

- *Î*₂ is a clone; in fact, it is one of the two maximal clones containing all unary functions.
- T_2 is the binary part of \hat{T}_2
- Both T_2 and \hat{T}_2 are complete Π_1^1 sets.

Let T_2 be the set of all binary functions f such that there are no infinite sets A, B such that $f \upharpoonright (A \times B)$ is 1-1 above or below the diagonal.

Let \hat{T}_2 be the set of all function $f: \omega^k \to \omega$ such that no term

 $u_0(f(u_1(?), u_2(?), ..., u_n(?)))$

(where each "?" can be either *x* or *y*, and all the u_i are unary) is 1-1 on the set $\nabla := \{(x, y) \in \omega \times \omega : x < y\}.$

- *Î*₂ is a clone; in fact, it is one of the two maximal clones containing all unary functions.
- T_2 is the binary part of \hat{T}_2
- Both T_2 and \hat{T}_2 are complete Π_1^1 sets.

Let T_2 be the set of all binary functions f such that there are no infinite sets A, B such that $f \upharpoonright (A \times B)$ is 1-1 above or below the diagonal.

Let \hat{T}_2 be the set of all function $f: \omega^k \to \omega$ such that no term

 $u_0(f(u_1(?), u_2(?), ..., u_n(?)))$

(where each "?" can be either *x* or *y*, and all the u_i are unary) is 1-1 on the set $\nabla := \{(x, y) \in \omega \times \omega : x < y\}.$

- *Î*₂ is a clone; in fact, it is one of the two maximal clones containing all unary functions.
- T_2 is the binary part of \hat{T}_2
- Both T_2 and \hat{T}_2 are complete Π_1^1 sets.

Open Question

Does T_2 generate \hat{T}_2 ?

Outline

- 2 Descriptive set theory
- Infinite Combinatorics

4 Forcing

5 Structure or nonstructure?

Completeness; finite base set

Let X be finite. Then

- **CLONE**(*X*) has finitely many coatoms ("precomplete clones").
- All of these coatoms are explicitly known,
- they have the form $Pol(\leq)$ for some order \leq , or ...
- Every clone other than 0 is contained in a coatom.

This gives a decision procedure for the question

Is $\langle \boldsymbol{C} \rangle = 0$?

For any infinite $A \subseteq \omega$ we define $h_A(n) = \min\{k \in A : n < k\}$.

For any infinite $A \subseteq \omega$ we define $h_A(n) = \min\{k \in A : n < k\}$. Let *D* be a filter on ω . C_D is the clone of all functions which are bounded by some iterate of h_A , $A \in D$:

$$C_D := \{ f \in \mathcal{O} : \exists k \exists A \in D : f(\vec{x}) \le h_A^{(k)}(\max(\vec{x})) \}$$

Forcing

Growth clones on ω

For any infinite $A \subseteq \omega$ we define $h_A(n) = \min\{k \in A : n < k\}$. Let *D* be a filter on ω . C_D is the clone of all functions which are bounded by some iterate of h_A , $A \in D$:

$$C_D := \{ f \in \mathcal{O} : \exists k \exists A \in D : f(\vec{x}) \le h_A^{(k)}(\max(\vec{x})) \}$$

For unary functions f, g we define $f \leq_D g$ iff $f \in \langle C_D \cup \{g\} \rangle$ (iff f is bounded by a finite composition of functions from $\{g, h_A\}$ for some $A \in D$.)

Forcing

Growth clones on ω

For any infinite $A \subseteq \omega$ we define $h_A(n) = \min\{k \in A : n < k\}$. Let *D* be a filter on ω . C_D is the clone of all functions which are bounded by some iterate of h_A , $A \in D$:

$$C_{\mathcal{D}} := \{ f \in \mathbb{O} : \exists k \exists A \in \mathcal{D} : f(\vec{x}) \le h_A^{(k)}(\max(\vec{x})) \}$$

For unary functions f, g we define $f \leq_D g$ iff $f \in \langle C_D \cup \{g\} \rangle$ (iff f is bounded by a finite composition of functions from $\{g, h_A\}$ for some $A \in D$.)

Theorem

Assuming CH, we can construct an ultrafilter D such that \leq_D is linear without last element.

Let *D* be a filter. $f \leq_D g$ means that *f* can be dominated by *g* with the help of enumerating functions of sets $A \in D$. $C_D := \{f : f \leq_D id\}.$

Let *D* be a filter. $f \leq_D g$ means that *f* can be dominated by *g* with the help of enumerating functions of sets $A \in D$. $C_D := \{f : f \leq_D id\}.$

Theorem

Assuming CH, we can construct an ultrafilter D such that \leq_D is linear but very long.

The interval $[C_D, 0]$ is then isomorphic to the family of Dedekind cuts in this order. (Hence has no penultimate element).

Let *D* be a filter. $f \leq_D g$ means that *f* can be dominated by *g* with the help of enumerating functions of sets $A \in D$. $C_D := \{f : f \leq_D id\}.$

Theorem

Assuming CH, we can construct an ultrafilter D such that \leq_D is linear but very long. The interval $[C_D, 0]$ is then isomorphic to the family of Dedekind cuts in this order. (Hence has no penultimate element).

This shows that there is a clone without a coatom above it.

Let *D* be a filter. $f \leq_D g$ means that *f* can be dominated by *g* with the help of enumerating functions of sets $A \in D$. $C_D := \{f : f \leq_D id\}.$

Theorem

Assuming CH, we can construct an ultrafilter D such that \leq_D is linear but very long. The interval $[C_D, 0]$ is then isomorphic to the family of Dedekind cuts in this order. (Hence has no penultimate element).

This shows that there is a clone without a coatom above it.

Proof Using CH, find a sufficiently generic filter for a certain cleverly constructed σ -complete forcing notion.

Let *D* be a filter. $f \leq_D g$ means that *f* can be dominated by *g* with the help of enumerating functions of sets $A \in D$. $C_D := \{f : f \leq_D id\}.$

Theorem

Assuming CH, we can construct an ultrafilter D such that \leq_D is linear but very long. The interval $[C_D, 0]$ is then isomorphic to the family of Dedekind cuts in this order. (Hence has no penultimate element).

This shows that there is a clone without a coatom above it.

Proof Using CH, find a sufficiently generic filter for a certain cleverly constructed σ -complete forcing notion.

In ZFC, the existence of such a clone is still open.

Growth clones on uncountable cardinals

Theorem

Assume $2^{\kappa} = \kappa^+$. Then there is a clone C on κ such that the interval [C, 0) contains a cofinal linear order of type κ^+ .

Growth clones on uncountable cardinals

Theorem

Assume $2^{\kappa} = \kappa^+$. Then there is a clone C on κ such that the interval [C, 0) contains a cofinal linear order of type κ^+ .

Proof Using $2^{\kappa} = \kappa^+$, find a sufficiently generic filter for a certain cleverly constructed κ^+ -complete forcing notion.

Outline

Background

- 2 Descriptive set theory
- 3 Infinite Combinatorics

4 Forcing

Clones above the idempotent clone

Let C_{ip} be the clone of all idempotent operations:

$$C_{\rm ip} = \{f: \forall x \, f(x,\ldots,x) = x\}$$

Clones above the idempotent clone

Let C_{ip} be the clone of all idempotent operations:

$$C_{\rm ip} = \{f: \forall x \, f(x, \ldots, x) = x\}$$

For every filter *D* (including the trivial filter $\mathcal{P}(X)$) on *X* let C_D be clone of *D*-idempotent functions.

$$C_{\rm ip} = \{f: f(x,\ldots,x) = xD\text{-a.e.}\}$$

Clones above the idempotent clone

Let C_{ip} be the clone of all idempotent operations:

$$C_{\rm ip} = \{f: \forall x \, f(x, \ldots, x) = x\}$$

For every filter *D* (including the trivial filter $\mathcal{P}(X)$) on *X* let C_D be clone of *D*-idempotent functions.

$$C_{ip} = \{f : f(x, ..., x) = xD-a.e.\}$$

Theorem

Every clone in the interval $[C_{ip}, 0]$ is of the form C_D for some D. Hence, the interval $[C_{ip}, 0]$ is (as a lattice) isomorphic to the family of open subsets of βX .

(This translates a problem from algebra to topology.)