Martin Goldstern (TU Wien)

Structure and nonstructure in the clone lattice

"Applications of Mathematical Logic in Universal Algebra"

Martin.Goldstern@tuwien.ac.at http://www.tuwien.ac.at/goldstern/

THE GOAL of general algebra:

Classify all algebras!

What is an algebra?

 $(M, *, +, \prime, \ldots)$

(many operations allowed, even uncountable many.)

Subgoals:

- Describe all groups
 - $-\ldots$ all abelian groups
 - $-\ldots$ all finite groups
 - \dots all finite abelian groups
 - $-\ldots$ all simple groups
 - $-\ldots$ all finite simple groups
 - …

• all fields

- all finite fields
- all pairs $K \leq L$ of fields, together with their Galois group

- ...

• . . .

Comparing algebras

E.g., $(\mathbb{Z}, +)$ is "smaller" than $(\mathbb{Q}, +)$

E.g. $(\mathbb{Q}, +, \cdot)$ ist "smaller" than $(\mathbb{C}, +, \cdot)$.

"Completion"

Algebras with the same base set

- semigroup $(\mathbb{Q}, +)$
- group $(\mathbb{Q}, +, -)$
- ring $(\mathbb{Q}, +, -, \cdot)$
- field $(\mathbb{Q}, +, -, \cdot, /)$

semigroup < group < ring < field

ONE goal of general algebra:

Fix a set X.

Describe all algebras on X!

We identify algebras with the same term functions.

E.g., group (G, +, -) = (G, -). [because x + y = x - ((x - x) - y).]

I.e., we describe algebras not by their "basic operations", but rather by their set of term functions; we compare two algebras by \subseteq -comparing their sets of term functions.

Example (term functions)

Let (G, +, -) be an abelian group.

- unary term functions: $x, -x, x + x, x x, x + x + x, \dots, n \cdot x \ (n \in \mathbb{Z})$
- binary term functions: $n_1 \cdot x_1 + n_2 \cdot x_2$ $(n_1, n_2 \in \mathbb{Z})$
- k-ary term functions: $\sum_{i=1}^{k} n_i \cdot x_i$

Clones

The set of all term functions (of any arity) of an abelian group

• is a subset of the set

$$\mathscr{O}_X = \bigcup_{k=1}^{\infty} \{ f \mid f : X^k \to X \}$$

of all finitary operations on X.

- contains all projections π_k^n (where $\pi_k^n(x_1, \ldots, x_n) = x_k$).
- is closed under substitution

A subset $\mathscr{C} \subseteq \mathscr{O}_X$ is called "Clone on X", if \mathscr{C} contains all projections π_k^n and is closed under substitution.

Substitution: If
$$f, g_1, \dots, g_k \in \mathscr{C}$$
, then
 $f(g_1, \dots, g_k) \in \mathscr{C}$:
 $f: X^k \to X$
 $\frac{g_1, \dots, g_k: X^n \to X}{f(g_1, \dots, g_k): X^n \to X}$

Example: Clone of all linear functions (on a fixed vector space). Clone of all polynomials.Clone of all continuous functions. Clone of measure preserving functions.

Clone $\mathcal{O}^{(1)}$ of all essentially unary functions.

ONE goal of general algebra:

Let X be a fixed set. Describe all clones on X! (= all algebras on X, identifying algebras with the same term functions.)

Equivalently: (?)Describe the set Cl(X) of all clones on X!

Structure of Cl(X)

Let $C \subseteq \mathscr{O}_X$ be a set of operations. We write $\langle C \rangle$ for the smallest clone containing C.

If \mathscr{C}_1 and \mathscr{C}_2 are clones, then so are

 $\mathscr{C}_1\cap \mathscr{C}_2$

 $\langle \mathscr{C}_1 \cup \mathscr{C}_2 \rangle$

Thus the set Cl(X), ordered by \subseteq , is a lattice.

Additional structure: e.g., conjugation.

In fact Cl(X) is a *complete* lattice, and it is algebraic. (Each element is sup of compact elements; equivalently: isomorphic to the subalgebra lattice of some universal algebra.)

Notation: $\mathscr{O}_X = \sup Cl(X)$. $\mathscr{O}^{(1)} = \text{clone of unary functions.}$

A few natural questions

Completeness: For which sets $F \subseteq \mathcal{O}$ do we have $\langle F \rangle = \mathcal{O}$?

(remember nand and nor)

Relative completeness: Given \mathscr{C} : For which sets $F \subseteq \mathscr{C}$ do we have $\langle F \rangle = \mathscr{C}$?

Distance: How far are $\mathscr{C} \subseteq \mathscr{D}$ apart?

- How large/complicated is the interval $[\mathscr{C}, \mathscr{D}]$?
- Find small F with $\langle \mathscr{C} \cup F \rangle = \mathscr{D}$.

Structure: Classify clones, e.g. partition them according to their unary (or binary, etc) part. For each monoid $M \subseteq X^X$, describe the set of all clones \mathscr{C} whose unary part is M.

This is an interval.

A few answers

On finite base sets X,

- There are 2^{\aleph_0} many clones
- Each interval is either $\leq \aleph_0$ or of size 2^{\aleph_0} .
- There are finitely many coatoms in the clone lattice, all explicitly known
- $\langle F \rangle = \mathcal{O}$ iff F is not contained in any coatom.

Example: If \leq is a bounded partial order, X finite, then the set of monotone functions is a clone, and a coatom in the clone lattice.

Conversely, all coatoms in the clone lattice look "similar" to this example.

Example for $X = \mathbb{N}$

For the moment, we treat unary functions as trivial. So we are interested in the interval $[\mathscr{O}^{(1)}, \mathscr{O}]$ of all clones containing all unary functions.

- This interval is small:
 - 1. Exactly 2 coatoms
 - 2. $\mathscr{O} = \langle \mathscr{O}^{(1)} \cup \{p\} \rangle$ for any 1-1 $p : \mathbb{N} \times \mathbb{N} \to \mathbb{N}.$

(Hence: Every element is below a coatom.)

• This interval is large: Of cardinality 2^c. Proof sketch

An open question about binary clones

Definition:

 T_1 = The set of all "almost unary" binary functions:

 $\exists f \,\forall n \,\forall k \, F(n,k) \leq f(n)$

or $\exists f \forall n \forall k \ F(n,k) \leq f(k)$.

 T_2 = The set of all "never 1-1" functions:

Whenever $F \upharpoonright \{(n,k) \in A \times A : n \leq k\}$ is 1-1, then A must be finite (and also the dual holds: $\dots n \geq k \dots$)

These clones play an important role in the interval $[\mathscr{O}^{(1)}, \mathscr{O}]$.

Theorem [Pinsker]: The clones \mathscr{C} whose binary part is T_1 form a chain of type $1 + \omega^*$.

Question:

Describe all clones whose binary part is T_2 . (How many are there? More than 1?)