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Clones

We consider Algebras (X , f , g, . . .) on a fixed set X ,
and rank them according to their richness of term functions.

Note: In general, our algebras will have many operations.

Example

(Q,+) < (Q,+, ·) < (Q,+,−, ·) = (Q,−, ·).

general problem: Analyse the relationships between
different algebras on the same set;
by how much is (Q,+, ·) “richer” than (Q,+)?
specific problem: Which algebras are complete?
(i.e., all functions are term functions)?
Which are precomplete? (i.e., will become complete when
adding any new function)
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Definition

Fix a set X . We write O(n) for the set of n-ary operations:
O(n) = X X n

, and we let O = OX =
⋃

n=1,2,... O
(n).

A clone on X is a set C ⊆ O which contains all the projection
functions and is closed under composition.

Equivalently, a clone is the set of term functions of some
universal algebra on X .

Fact

The set of clones on X forms a complete Lattice: CLONE(X ).

Definition: For any C ⊆ O let 〈C〉 be the clone generated by C.
We write C(f ) for 〈C ∪ {f}〉.
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Size of CLONE(X )

If X is finite, then OX is countable.

If |X | = 1, then OX is trivial.
If |X | = 2, then CLONE(X ) is countable, and completely
understood. (“Post’s Lattice”)
If 3 ≤ |X | < ℵ0, then |CLONE(X )| = 2ℵ0 , and not well
understood.

If X is infinite, then
|OX | = 2|X |,

|CLONE(X )| = 22|X |
, (we will see many proofs of this fact)

and only little is known about the structure of CLONE(X ).
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Completeness

Example
The functions ∧,∨,true,false do not generate all operations
on {true,false}.

Proof: All these functions are monotone, and ¬ is not.

Now let X be any set.

Example
Assume that ≤ is a nontrivial partial order on X, and that all
functions in C ⊆ O are monotone with respect to ≤.
Then 〈C〉 6= O.
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Polymorphisms

Let X be a set, C ⊆ OX .

If all functions in C respect some order ≤ on X ,
or: if all functions in C respect some nontrivial equivalence
relation θ

or: if all functions in C respect some nontrivial fixed set
A ⊂ X
(i.e., f [Ak ] ⊆ A)
or . . .

then 〈C〉 6= O.

We write Pol(≤), Pol(θ), Pol(A), . . . for the clone of all functions
respecting ≤, θ, A, . . .
Instead of unary (A) or binary (≤, θ) relations, we may also
consider n-ary or even infinitary relations.
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Pol( ) and precomplete clones

Every set of the form Pol(A1) ∩ Pol(A2) ∩ Pol(θ3) ∩ · · · is a
clone.
Conversely, every clone is the intersection of (at most
countably many) sets of the form Pol(R).

The “maximal” or “precomplete” clones are the coatoms in the
clone lattice.
C 6= O is precomplete iff C(f ) = O for all f ∈ O \ C.

Every precomplete clone is of the form Pol(R) for some
relation R.

Question
Which relations R give rise to precomplete clones?

This is nontrivial, already for binary relations.
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Precomplete clones on finite sets

Example

Let ∅ 6= A 6= X.
Then Pol(A) is precomplete.

Example
Let X be finite. Let θ be a nontrivial equivalence relation.
Then Pol(θ) is precomplete.

Theorem (Rosenberg, 1970)

There is an explicit list of all (finitely many, depending on the
cardinality of X) relations R such that Pol(R) is precomplete.

Moreover, every clone C 6= O is below some precomplete
clone. This gives an effective (but not efficient) method for
checking 〈D〉 = O, for all D ⊆ O. (Check f ∈ D ⇒ f ∈ Pol(R), for
all relevant R.)
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Precomplete clones on infinite sets

Example

Let ∅ 6= A 6= X.
Then Pol(A) is precomplete.

Example
Let θ be a nontrivial equivalence relation with finitely many
classes.
Then Pol(θ) is precomplete.

For which R is Pol(R) precomplete?
Is every C 6= O below some precomplete clone?
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Fixpoint clones

Definition
Let A ⊆ X. fix(A) is the set of all functions f satisfying

∀x ∈ A : f (x , . . . , x) = x.
This is a clone.

Definition
Let F be a filter on X. fix((F )) is defined as

⋃
A∈F fix(A), i.e.,

fix((F )) = {g : ∃A ∈ F ∀x ∈ A : g(x , . . . , x) = x}

fix((F )) is a clone.
If F is the principal filter generated by the set A, then
fix((F )) = fix(A).
larger filter ⇒ larger clone.
maximal filter ⇒ maximal clone.
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Fixpoint clones, application

Let C0 := fix(X ), i.e. the clone of all functions f satisfying
f (x , . . . , x) = x for all x ∈ X .
Let C1 := fix(∅) = O, the clone of all functions. Then the
interval [C0, C1] in the clone lattice is rather complicated, and
yet we can “explicitly” describe it.

Theorem (Goldstern-Shelah, 2004)

The clones in the interval [C0, C1] are exactly the clones
fix((F )), for all possible filters (including the trivial filter P(X )).
(Maximal=precomplete clones correspond to ultrafilters.)

So this interval is order isomorphic to the lattice of closed
subsets of βX (with reverse inclusion).
(Leave it to Topologists . . .
. . . who work on Boolean spaces.)
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Clones from ideals

Definition
Let I be a nontrivial ideal on the set X containing all small sets.
f : X k → X preserves I if ∀A ∈ I : f [Ak ] ∈ I.
We write Pol((I )) for the set of all functions preserving I.

Pol((I )) is a clone.
If I is the principal ideal generated by the set A, then
Pol((I )) = Pol(A).
larger ideal 6⇒ larger clone.
maximal ideal ⇒ maximal clone.
However, many other ideals also yield maximal clones.
I−◦ := {A ⊆ X : ∀B ∈ [A]ω : [B]ω ∩ I 6= ∅}.
If I = I−◦, then Pol((I )) is maximal.
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Ideal clones, application

Let X := 2<ω, the full binary tree. Every η ∈ 2ω defines a
branch bη = {η�n : n ∈ ω} through this tree.
For every subset A ⊆ 2ω we define an ideal IA:

IA = {E ⊆ 2<ω : ∀η ∈ A |bη ∩ E | < ℵ0}

Easy to check that IA = I−◦
A , and that the ideals IA are all

different.

Theorem (Beiglböck-Goldstern-Heindorf-Pinsker, 2007)

While the ideals IA are not maximal, the clones Pol((IA )) are (for
nontrivial A).

This gives an explicit example of 2c many precomplete clones
on a countable set. (Even without AC.)

Question
Find such examples on uncountable sets.
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Equivalence relations

Example
Let θ be a nontrivial equivalence relation on a finite set.
Then Pol(θ) is a precomplete clone.

Example
Let θ be a nontrivial equivalence relation on any set, with finitely
many classes. Then Pol(θ) is a precomplete clone.
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Definition
Let E be a directed family of equivalence relations (coarser and
coarser).
Define Pol((E )) as the set of all functions f : X k → X with:
for all E ∈ E there is E ′ ∈ E such that: whenever ~x E ~y, then
f (~x)E ′f (~y).

When is Pol((E )) precomplete? Difficult. Because. . .

Fact
For every ideal I there is a family E as above such that
Pol((I )) = Pol((E )).
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Growth clones

Definition
Let X = ω = {0, 1, 2, . . .} for simplicity. For every infinite
A = {a0 < a1 < · · · } ⊆ X we define bound(A) as the set of
functions which do not jump to far in A:

bound(A) := {f : ∃k∀i : ~x < ai ⇒ f (~x) < ai+k}

(This is a clone.)

A similar construction is possible for uncountable Sets.
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Growth clones, continued

Definition
Let X = ω again. For every filter F of subsets of X we define
bound((F )) :=

⋃
A∈F bound(A).

bound((F )) := {f : ∃A ∈ F ∃k ∀i : ~x < aA
i ⇒ f (~x) < aA

i+k}

(where aA
0 < aA

1 < · · · is the increasing enumeration of A).

bound((F )) is a clone.
If F is the principal filter generated by the set A, then
bound((F )) = bound(A).
larger filter ⇒ larger clone.
maximal filter 6⇒ maximal clone.
(In fact, bound((F )) is never a maximal clone.)
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Growth clones, application

Theorem
G*-Shelah, 2006
Assume GCH. Then on every infinite set X there is a filter F
such that, letting C := bound((F )), we know the interval [C,O)
quite well,
and it is (more or less) a quite saturated linear order with no
last element.

In particular: not every clone is below a precomplete clone.

References: See http://arXiv/abs/math/0701030 , a
survey paper by Goldstern-Pinsker.


	Background
	Precomplete clones
	Fixpoint clones
	Ideal clones
	Growth clones

