More clones from ideals

Martin Goldstern

Institute of Discrete Mathematics and Geometry Vienna University of Technology

BLAST – Denver, August 2008

- 2 Precomplete clones
- 3 Fixpoint clones

Ideal clones

1 Background

- Precomplete clones
- 3 Fixpoint clones
- Ideal clones
- 5 Growth clones

Clones

We consider Algebras (X, f, g, ...) on a **fixed set** X, and rank them according to their richness of term functions.

Note: In general, our algebras will have *many* operations.

Example

 $(\mathbb{Q},+)<(\mathbb{Q},+,\cdot)<(\mathbb{Q},+,-,\cdot)=(\mathbb{Q},-,\cdot).$

- general problem: Analyse the relationships between different algebras on the same set;
 by how much is (Q, +, ·) "richer" than (Q, +)?
- **specific problem:** Which algebras are *complete*? (i.e., all functions are term functions)?
- Which are *precomplete*? (i.e., will become complete when adding any new function)

Definition

Fix a set X. We write $\mathbb{O}^{(n)}$ for the set of n-ary operations: $\mathbb{O}^{(n)} = X^{X^n}$, and we let $\mathbb{O} = \mathbb{O}_X = \bigcup_{n=1,2,\dots} \mathbb{O}^{(n)}$. A clone on X is a set $C \subseteq \mathbb{O}$ which contains all the projection functions and is closed under composition.

Equivalently, a clone is the set of term functions of some universal algebra on X.

Fact

The set of clones on X forms a complete Lattice: CLONE(X).

Definition: For any $C \subseteq 0$ let $\langle C \rangle$ be the clone generated by C. We write C(f) for $\langle C \cup \{f\} \rangle$.

Size of CLONE(X)

If X is finite, then \mathcal{O}_X is countable.

- If |X| = 1, then \mathcal{O}_X is trivial.
- If |X| = 2, then CLONE(X) is countable, and completely understood. ("Post's Lattice")
- If 3 ≤ |X| < ℵ₀, then |CLONE(X)| = 2^{ℵ₀}, and not well understood.
- If X is infinite, then
 - $|\mathfrak{O}_X| = 2^{|X|}$,
 - $|CLONE(X)| = 2^{2^{|X|}}$, (we will see many proofs of this fact)
 - and only little is known about the structure of **CLONE**(X).

Completeness

Example

The functions \land , \lor , true, false *do not generate all operations on* {true, false}.

Proof: All these functions are monotone, and \neg is not.

Now let X be any set.

Example

Assume that \leq is a nontrivial partial order on X, and that all functions in $C \subseteq 0$ are monotone with respect to \leq . Then $\langle C \rangle \neq 0$. Polymorphisms

Let X be a set, $C \subseteq \mathcal{O}_X$.

- If all functions in C respect some order \leq on X,
- or: if all functions in *C* respect some nontrivial equivalence relation θ
- or: if all functions in *C* respect some nontrivial fixed set
 A ⊂ X
 (i.e., f[A^k] ⊂ A)

• or . . .

then $\langle \boldsymbol{C} \rangle \neq \boldsymbol{0}$.

We write $Pol(\leq)$, $Pol(\theta)$, Pol(A), ... for the clone of all functions respecting \leq , θ , A, ... Instead of unary (A) or binary (\leq , θ) relations, we may also consider *n*-ary or even infinitary relations.

Background

- Precomplete clones
 - 3 Fixpoint clones

Ideal clones

5 Growth clones

Pol() and precomplete clones

- Every set of the form Pol(A₁) ∩ Pol(A₂) ∩ Pol(θ₃) ∩ · · · is a clone.
- Conversely, every clone is the intersection of (at most countably many) sets of the form Pol(*R*).

The "maximal" or "precomplete" clones are the coatoms in the clone lattice.

- $C \neq 0$ is precomplete iff C(f) = 0 for all $f \in 0 \setminus C$.
 - Every precomplete clone is of the form Pol(*R*) for some relation *R*.

Question

Which relations R give rise to precomplete clones?

This is nontrivial, already for binary relations.

Precomplete clones on finite sets

Example

Let $\emptyset \neq A \neq X$. Then Pol(A) is precomplete.

Example

Let *X* be finite. Let θ be a nontrivial equivalence relation. Then $Pol(\theta)$ is precomplete.

Theorem (Rosenberg, 1970)

There is an explicit list of all (finitely many, depending on the cardinality of X) relations R such that Pol(R) is precomplete.

Moreover, every clone $C \neq 0$ is below some precomplete clone. This gives an effective (but not efficient) method for checking $\langle D \rangle = 0$, for all $D \subseteq 0$. (Check $f \in D \Rightarrow f \in Pol(R)$, for all relevant *R*.)

Precomplete clones on infinite sets

Example

Let $\emptyset \neq A \neq X$. Then Pol(A) is precomplete.

Example

Let θ be a nontrivial equivalence relation with finitely many classes. Then $Pol(\theta)$ is precomplete.

For which *R* is Pol(R) precomplete? Is every $C \neq 0$ below some precomplete clone?

Background

- 2 Precomplete clones
- 3 Fixpoint clones
- Ideal clones
- 5 Growth clones

Fixpoint clones

Definition

Let $A \subseteq X$. fix(A) is the set of all functions f satisfying $\forall x \in A : f(x, ..., x) = x$. This is a clone.

Definition

Let F be a filter on X. fix((F)) is defined as $\bigcup_{A \in F} fix(A)$, i.e.,

$$\operatorname{fix}((F)) = \{g : \exists A \in F \,\forall x \in A : g(x, \ldots, x) = x\}$$

- fix((*F*)) is a clone.
- If F is the principal filter generated by the set A, then fix((F)) = fix(A).
- larger filter \Rightarrow larger clone.
- maximal filter \Rightarrow maximal clone.

Fixpoint clones, application

Let $C_0 := \operatorname{fix}(X)$, i.e. the clone of all functions f satisfying $f(x, \ldots, x) = x$ for all $x \in X$. Let $C_1 := \operatorname{fix}(\emptyset) = \emptyset$, the clone of all functions. Then the interval $[C_0, C_1]$ in the clone lattice is rather complicated, and yet we can "explicitly" describe it.

Theorem (Goldstern-Shelah, 2004)

The clones in the interval $[C_0, C_1]$ are exactly the clones fix((*F*)), for all possible filters (including the trivial filter $\mathfrak{P}(X)$). (Maximal=precomplete clones correspond to ultrafilters.)

So this interval is order isomorphic to the lattice of closed subsets of βX (with reverse inclusion).

(Leave it to Topologists ...

... who work on Boolean spaces.)

Background

- Precomplete clones
- 3 Fixpoint clones

Ideal clones

Clones from ideals

Definition

Let I be a nontrivial ideal on the set X containing all small sets. $f: X^k \to X$ preserves I if $\forall A \in I : f[A^k] \in I$. We write Pol((I)) for the set of all functions preserving I.

- Pol((1)) is a clone.
- If *I* is the principal ideal generated by the set *A*, then Pol((*I*)) = Pol(*A*).
- larger ideal \Rightarrow larger clone.
- maximal ideal \Rightarrow maximal clone.
- However, many other ideals also yield maximal clones.
 I^{-◦} := {*A* ⊆ *X* : ∀*B* ∈ [*A*]^ω : [*B*]^ω ∩ *I* ≠ Ø}.
 If *I* = *I*^{-◦}, then Pol((*I*)) is maximal.

Ideal clones, application

Let $X := 2^{<\omega}$, the full binary tree. Every $\eta \in 2^{\omega}$ defines a branch $b_{\eta} = \{\eta \upharpoonright n : n \in \omega\}$ through this tree. For every subset $A \subseteq 2^{\omega}$ we define an ideal I_A :

$$\textit{I}_{\textit{A}} = \{\textit{E} \subseteq \textit{2}^{<\omega} : \forall \eta \in \textit{A} \mid \textit{b}_{\eta} \cap \textit{E} \mid < \aleph_{\textit{0}}\}$$

Easy to check that $I_A = I_A^{-\circ}$, and that the ideals I_A are all different.

Theorem (Beiglböck-Goldstern-Heindorf-Pinsker, 2007)

While the ideals I_A are not maximal, the clones $Pol((I_A))$ are (for nontrivial A).

This gives an explicit example of 2^c many precomplete clones on a countable set. (Even without AC.)

Question

Find such examples on uncountable sets.

Equivalence relations

Example

Let θ be a nontrivial equivalence relation on a finite set. Then $Pol(\theta)$ is a precomplete clone.

Example

Let θ be a nontrivial equivalence relation on any set, with finitely many classes. Then $Pol(\theta)$ is a precomplete clone.

Background	Precomplete clones	Fixpoint clones	Ideal clones	Growth clones
Definition	n			
lat Cha	- dive at a diferentily	of any invalance	relations (acor	

Let \mathcal{E} be a directed family of equivalence relations (coarser and coarser). Define Pol((\mathcal{E})) as the set of all functions $f : X^k \to X$ with: for all $E \in \mathcal{E}$ there is $E' \in \mathcal{E}$ such that: whenever $\vec{x} \in \vec{y}$, then $f(\vec{x})E'f(\vec{y})$.

When is $Pol((\mathcal{E}))$ precomplete? Difficult. Because...

Fact

For every ideal I there is a family \mathcal{E} as above such that $Pol((I)) = Pol((\mathcal{E}))$.

Background

- Precomplete clones
- 3 Fixpoint clones

4 Ideal clones

Growth clones

Definition

Let $X = \omega = \{0, 1, 2, ...\}$ for simplicity. For every infinite $A = \{a_0 < a_1 < \cdots\} \subseteq X$ we define bound(*A*) as the set of functions which do not jump to far in *A*:

bound(
$$A$$
) := { $f : \exists \mathbf{k} \forall i : \vec{x} < a_i \Rightarrow f(\vec{x}) < a_{i+\mathbf{k}}$ }

(This is a clone.)

A similar construction is possible for uncountable Sets.

Growth clones, continued

Definition

Let $X = \omega$ again. For every filter F of subsets of X we define bound((F)) := $\bigcup_{A \in F}$ bound(A).

$$\operatorname{bound}((F)) := \{f : \exists A \in F \exists k \forall i : \vec{x} < a_i^A \Rightarrow f(\vec{x}) < a_{i+k}^A\}$$

(where $a_0^A < a_1^A < \cdots$ is the increasing enumeration of A).

- bound((F)) is a clone.
- If F is the principal filter generated by the set A, then bound((F)) = bound(A).
- larger filter \Rightarrow larger clone.
- maximal filter \neq maximal clone.
- (In fact, bound((F))) is never a maximal clone.)

Growth clones, application

Theorem

G-Shelah, 2006* Assume GCH. Then on every infinite set X there is a filter F such that, letting C := bound((F)), we know the interval [C, 0)quite well, and it is (more or less) a quite saturated linear order with no last element.

In particular: not every clone is below a precomplete clone.

References: See http://arXiv/abs/math/0701030, a survey paper by Goldstern-Pinsker.