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Clones

Definition

Fix a set X . We write O(n) for the set of n-ary operations:
O(n) = X X n

, and we let O = OX =
⋃

n=1,2,... O
(n).

A clone on X is a set C ⊆ O which contains all the projection
functions and is closed under composition.

Equivalently, a clone is the set of term functions of some
universal algebra on X .

Fact

The set of clones on X forms a complete lattice: CLONE(X ).
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Coatoms

O is the full clone (the set of all finitary operations on X ).
A coatom or precomplete clone or maximal clone is a clone
C 6= O such that there is no clone strictly between C and O.

Example

Let ∅ ( A ( X. Then the set

Pol(A) := {f : f [Ak ] ⊆ A}

is a coatom in the clone lattice.
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Rosenberg’s theorem

Let X be finite. Then

CLONE(X ) has finitely many coatoms (“precomplete
clones”).

All of these coatoms are explicitly known,

they have the form Pol(≤) for some order ≤, or . . .

Every clone other than O is contained in a coatom.

This gives a decision procedure for the question

Is 〈C〉 = O?
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Question

Is the clone lattice on infinite sets also dually atomic?

If YES, describe all coatoms. (Hopeless)

If NO, find some other cofinal set.
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Generators

For any set F of finitary operations on X , let 〈F 〉 be the smallest
clone containing F .
Often we fix a “base clone” B, and write 〈F 〉B instead of 〈B ∪ F 〉

Fact

Let B ( O be a clone such that O is finitely generated over B:

O = 〈f1, . . . , fk 〉B

Then the interval [B,O] is dually atomic.
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Consistently: no.

Theorem (G-Shelah 2003)

Assume CH. Then the clone lattice on countable sets is not
dually atomic.

(GoSh:808, Transactions of the AMS)

Theorem (G-Shelah 2006)

Let κ be a regular cardinal. Assume 2κ = κ+. Then the clone
lattice on a set of size κ is not dually atomic.

(GoSh:884)
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Growth clones

We fix a linear order on the base set X (or better: identify X
with its cardinal number).
Let Cmax := {f : ∀~x f (~x) ≤ max(~x)}.

Above the clone Cmax:

Clones are downward closed.

Clones are (more or less) determined by their unary
functions

Typical clones are described by growth conditions, e.g. the
clone of all functions of subexponential growth.

compact = principal:

〈f1, . . . , fk 〉Cmax = 〈max(f1, . . . , fk )〉Cmax



Background Theorems Proof ideas

Growth clones

We fix a linear order on the base set X (or better: identify X
with its cardinal number).
Let Cmax := {f : ∀~x f (~x) ≤ max(~x)}.

Above the clone Cmax:

Clones are downward closed.

Clones are (more or less) determined by their unary
functions

Typical clones are described by growth conditions, e.g. the
clone of all functions of subexponential growth.

compact = principal:

〈f1, . . . , fk 〉Cmax = 〈max(f1, . . . , fk )〉Cmax



Background Theorems Proof ideas

Growth clones

We fix a linear order on the base set X (or better: identify X
with its cardinal number).
Let Cmax := {f : ∀~x f (~x) ≤ max(~x)}.

Above the clone Cmax:

Clones are downward closed.

Clones are (more or less) determined by their unary
functions

Typical clones are described by growth conditions, e.g. the
clone of all functions of subexponential growth.

compact = principal:

〈f1, . . . , fk 〉Cmax = 〈max(f1, . . . , fk )〉Cmax



Background Theorems Proof ideas

Growth clones

We fix a linear order on the base set X (or better: identify X
with its cardinal number).
Let Cmax := {f : ∀~x f (~x) ≤ max(~x)}.

Above the clone Cmax:

Clones are downward closed.

Clones are (more or less) determined by their unary
functions

Typical clones are described by growth conditions, e.g. the
clone of all functions of subexponential growth.

compact = principal:

〈f1, . . . , fk 〉Cmax = 〈max(f1, . . . , fk )〉Cmax



Background Theorems Proof ideas

Growth clones

We fix a linear order on the base set X (or better: identify X
with its cardinal number).
Let Cmax := {f : ∀~x f (~x) ≤ max(~x)}.

Above the clone Cmax:

Clones are downward closed.

Clones are (more or less) determined by their unary
functions

Typical clones are described by growth conditions, e.g. the
clone of all functions of subexponential growth.

compact = principal:

〈f1, . . . , fk 〉Cmax = 〈max(f1, . . . , fk )〉Cmax



Background Theorems Proof ideas

Growth clones

We fix a linear order on the base set X (or better: identify X
with its cardinal number).
Let Cmax := {f : ∀~x f (~x) ≤ max(~x)}.

Above the clone Cmax:

Clones are downward closed.

Clones are (more or less) determined by their unary
functions

Typical clones are described by growth conditions, e.g. the
clone of all functions of subexponential growth.

compact = principal:

〈f1, . . . , fk 〉Cmax = 〈max(f1, . . . , fk )〉Cmax



Background Theorems Proof ideas

Growth clones

We fix a linear order on the base set X (or better: identify X
with its cardinal number).
Let Cmax := {f : ∀~x f (~x) ≤ max(~x)}.

Above the clone Cmax:

Clones are downward closed.

Clones are (more or less) determined by their unary
functions

Typical clones are described by growth conditions, e.g. the
clone of all functions of subexponential growth.

compact = principal:

〈f1, . . . , fk 〉Cmax = 〈max(f1, . . . , fk )〉Cmax



Background Theorems Proof ideas

Main idea

Reduce the problem from comparing clones to comparing
functions:

Program

Find a “base clone” B such that the relation

f ∈ 〈g〉B

is a linear quasiorder on O.
Clones above B will then correspond to Dedekind cuts in this
order.
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Main idea, continued

Slightly weaker:

Program

Find a “base clone” B and a partial order < on O such that:

The relation < is a preference relation,
i.e., the relation x ∼ y :⇔ x 6< y ∧ y 6< x is an equivalence
relation

∀f , g : f < g ⇒ f ∈ 〈g〉B ⇒ f . g

Clones above B will then be contained in Dedekind cuts of the
linear order O/∼.

IMPORTANT POINT: Make sure that the quotient order has no
last element.
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Random facts from the proof

Fact

Let (L,≤) be a well-order without last element.
For each unbounded set A ⊆ L define

hA(x) := min{y ∈ L : x < y}

Let U be a filter of unbounded set on L.
Then f ∈ 〈hA : A ∈ U}〉max iff there is some A ∈ U and some
k ∈ {1, 2, . . .} such that f (~x) ≤ h(k)

A (max(~x)) for all ~x.

(Most of the clones that we construct will be such “filter clones”
〈hA : A ∈ U}〉max.)
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More random facts from the proof

Fact

Let (Ui : i ∈ I) be ultrafilters on disjoint sets (Ai : i ∈ I). Let V
be an ultrafilter on I, A :=

⋃
i Ai . Then∫

Ui dV i := {B ⊆ A : {i : B ∩ Ai ∈ Ui} ∈ V}
is an ultrafilter on A.

This fact is a special case (trees with exactly 3 levels) of the
folowing more general (but still very easy) fact:

Fact

Let (T ,≤) be a tree with a least element. Assume that T does
not contain any infinite chains.
For each internal node η ∈ T let Dη be an ultrafilter on SuccT (η).
Then this family naturally induces an ultrafilter on the set of
external nodes (or: branches) of T .
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