Is the clone lattice on infinite sets dually atomic?

Martin Goldstern

Institute of Discrete Mathematics and Geometry Vienna University of Technology

June 2007

Outline

2 Theorems

Outline

- Clones
- Coatoms
- Finite sets
- Infinite sets

2 Theorems

3 Proof ideas

Definition

Fix a set X. We write $\mathbb{O}^{(n)}$ for the set of n-ary operations: $\mathbb{O}^{(n)} = X^{X^n}$, and we let $\mathbb{O} = \mathbb{O}_X = \bigcup_{n=1,2,\dots} \mathbb{O}^{(n)}$. A clone on X is a set $C \subseteq \mathbb{O}$ which contains all the projection functions and is closed under composition.

Equivalently, a clone is the set of term functions of some universal algebra on X.

Fact

Definition

Fix a set X. We write $\mathbb{O}^{(n)}$ for the set of n-ary operations: $\mathbb{O}^{(n)} = X^{X^n}$, and we let $\mathbb{O} = \mathbb{O}_X = \bigcup_{n=1,2,\dots} \mathbb{O}^{(n)}$. A clone on X is a set $C \subseteq \mathbb{O}$ which contains all the projection functions and is closed under composition.

Equivalently, a clone is the set of term functions of some universal algebra on X.

Fact

Definition

Fix a set X. We write $\mathbb{O}^{(n)}$ for the set of n-ary operations: $\mathbb{O}^{(n)} = X^{X^n}$, and we let $\mathbb{O} = \mathbb{O}_X = \bigcup_{n=1,2,\dots} \mathbb{O}^{(n)}$. A clone on X is a set $C \subseteq \mathbb{O}$ which contains all the projection functions and is closed under composition.

Equivalently, a clone is the set of term functions of some universal algebra on X.

Fact

Definition

Fix a set X. We write $\mathbb{O}^{(n)}$ for the set of n-ary operations: $\mathbb{O}^{(n)} = X^{X^n}$, and we let $\mathbb{O} = \mathbb{O}_X = \bigcup_{n=1,2,\dots} \mathbb{O}^{(n)}$. A clone on X is a set $C \subseteq \mathbb{O}$ which contains all the projection functions and is closed under composition.

Equivalently, a clone is the set of term functions of some universal algebra on X.

Fact

Definition

Fix a set X. We write $\mathbb{O}^{(n)}$ for the set of n-ary operations: $\mathbb{O}^{(n)} = X^{X^n}$, and we let $\mathbb{O} = \mathbb{O}_X = \bigcup_{n=1,2,\dots} \mathbb{O}^{(n)}$. A clone on X is a set $C \subseteq \mathbb{O}$ which contains all the projection functions and is closed under composition.

Equivalently, a clone is the set of term functions of some universal algebra on X.

Fact

Coatoms

O is the full clone (the set of all finitary operations on *X*).

A coatom or precomplete clone or maximal clone is a clone $C \neq 0$ such that there is no clone strictly between C and 0.

Example

Let $\emptyset \subsetneq A \subsetneq X$. Then the set

$$\mathsf{Pol}(A) := \{f : f[A^k] \subseteq A\}$$

is a coatom in the clone lattice.

Coatoms

 \bigcirc is the full clone (the set of all finitary operations on *X*). A *coatom* or *precomplete clone* or *maximal clone* is a clone $C \neq \bigcirc$ such that there is no clone strictly between *C* and \bigcirc .

Example

Let $\emptyset \subsetneq A \subsetneq X$. Then the set

```
\mathsf{Pol}(A) := \{f : f[A^k] \subseteq A\}
```

is a coatom in the clone lattice.

Coatoms

 \bigcirc is the full clone (the set of all finitary operations on *X*). A *coatom* or *precomplete clone* or *maximal clone* is a clone $C \neq \bigcirc$ such that there is no clone strictly between *C* and \bigcirc .

Example

Let $\emptyset \subsetneq A \subsetneq X$. Then the set

$$\mathsf{Pol}(A) := \{f : f[A^k] \subseteq A\}$$

is a coatom in the clone lattice.

Let X be finite. Then

- **CLONE**(*X*) has finitely many coatoms ("precomplete clones").
- All of these coatoms are explicitly known,
- they have the form $Pol(\leq)$ for some order \leq , or ...
- Every clone other than 0 is contained in a coatom.

This gives a decision procedure for the question

Is $\langle \boldsymbol{C} \rangle = 0$?

Let X be finite. Then

- **CLONE**(*X*) has finitely many coatoms ("precomplete clones").
- All of these coatoms are explicitly known,
- they have the form $\mathsf{Pol}(\leq)$ for some order \leq , or . . .
- Every clone other than 0 is contained in a coatom.

This gives a decision procedure for the question

Is $\langle \boldsymbol{C} \rangle = 0$?

Let X be finite. Then

- **CLONE**(*X*) has finitely many coatoms ("precomplete clones").
- All of these coatoms are explicitly known,
- they have the form $Pol(\leq)$ for some order \leq , or ...
- Every clone other than 0 is contained in a coatom.
 This gives a decision procedure for the question
 Is (C) = 0?

Let X be finite. Then

- **CLONE**(*X*) has finitely many coatoms ("precomplete clones").
- All of these coatoms are explicitly known,
- they have the form $Pol(\leq)$ for some order \leq , or ...
- Every clone other than O is contained in a coatom.

This gives a decision procedure for the question *Is* $\langle C \rangle = 0$?

Let X be finite. Then

- **CLONE**(*X*) has finitely many coatoms ("precomplete clones").
- All of these coatoms are explicitly known,
- they have the form $Pol(\leq)$ for some order \leq , or ...
- Every clone other than O is contained in a coatom.

This gives a decision procedure for the question *Is* $\langle C \rangle = 0$?

Let X be finite. Then

- **CLONE**(*X*) has finitely many coatoms ("precomplete clones").
- All of these coatoms are explicitly known,
- they have the form $Pol(\leq)$ for some order \leq , or ...
- Every clone other than O is contained in a coatom.

This gives a decision procedure for the question

Is $\langle \boldsymbol{C} \rangle = 0$?

Let X be finite. Then

- **CLONE**(*X*) has finitely many coatoms ("precomplete clones").
- All of these coatoms are explicitly known,
- they have the form $Pol(\leq)$ for some order \leq , or ...
- Every clone other than 0 is contained in a coatom.

This gives a decision procedure for the question

Is $\langle \boldsymbol{C} \rangle = 0$?

- If YES, describe all coatoms. (Hopeless)
- If NO, find some other cofinal set.

Is the clone lattice on infinite sets also dually atomic?

If YES, describe all coatoms. (Hopeless)If NO, find some other cofinal set.

- If YES, describe all coatoms. (Hopeless)
- If NO, find some other cofinal set.

- If YES, describe all coatoms. (Hopeless)
- If NO, find some other cofinal set.

- If YES, describe all coatoms. (Hopeless)
- If NO, find some other cofinal set.

- If YES, describe all coatoms. (Hopeless)
- If NO, find some other cofinal set.

- If YES, describe all coatoms. (Hopeless)
- If NO, find some other cofinal set.

- If YES, describe all coatoms. (Hopeless)
- If NO, find some other cofinal set.

For any set *F* of finitary operations on *X*, let $\langle F \rangle$ be the smallest clone containing *F*. Often we fix a "base clone" *B*, and write $\langle F \rangle_B$ instead of $\langle B \cup F \rangle$

Fact

Let $B \subsetneq 0$ be a clone such that 0 is finitely generated over B:

$$\mathcal{O} = \langle f_1, \ldots, f_k \rangle_B$$

For any set *F* of finitary operations on *X*, let $\langle F \rangle$ be the smallest clone containing *F*.

Often we fix a "base clone" *B*, and write $\langle F \rangle_B$ instead of $\langle B \cup F \rangle$

Fact

Let $B \subsetneq 0$ be a clone such that 0 is finitely generated over B:

$$\mathbb{O} = \langle f_1, \ldots, f_k \rangle_B$$

For any set *F* of finitary operations on *X*, let $\langle F \rangle$ be the smallest clone containing *F*. Often we fix a "base clone" *B*, and write $\langle F \rangle_B$ instead of $\langle B \cup F \rangle$

Fact

Let $B \subsetneq 0$ be a clone such that 0 is finitely generated over B:

$$0 = \langle f_1, \ldots, f_k \rangle_B$$

For any set *F* of finitary operations on *X*, let $\langle F \rangle$ be the smallest clone containing *F*.

Often we fix a "base clone" *B*, and write $\langle F \rangle_B$ instead of $\langle B \cup F \rangle$

Fact

Let $B \subsetneq 0$ be a clone such that 0 is finitely generated over B:

$$\mathfrak{O} = \langle f_1, \ldots, f_k \rangle_{\mathcal{B}}$$

Outline

TheoremsNo.

Theorem (G-Shelah 2003)

Assume CH. Then the clone lattice on countable sets is not dually atomic.

(GoSh:808, Transactions of the AMS)

Theorem (G-Shelah 2006)

Let κ be a regular cardinal. Assume $2^{\kappa} = \kappa^+$. Then the clone lattice on a set of size κ is not dually atomic.

Theorem (G-Shelah 2003)

Assume CH. Then the clone lattice on countable sets is not dually atomic.

(GoSh:808, Transactions of the AMS)

Theorem (G-Shelah 2006)

Let κ be a regular cardinal. Assume $2^{\kappa} = \kappa^+$. Then the clone lattice on a set of size κ is not dually atomic.

Theorem (G-Shelah 2003)

Assume CH. Then the clone lattice on countable sets is not dually atomic.

(GoSh:808, Transactions of the AMS)

Theorem (G-Shelah 2006)

Let κ be a regular cardinal. Assume $2^{\kappa} = \kappa^+$. Then the clone lattice on a set of size κ is not dually atomic.

Theorem (G-Shelah 2003)

Assume CH. Then the clone lattice on countable sets is not dually atomic.

(GoSh:808, Transactions of the AMS)

Theorem (G-Shelah 2006)

Let κ be a regular cardinal. Assume $2^{\kappa} = \kappa^+$. Then the clone lattice on a set of size κ is not dually atomic.

Theorem (G-Shelah 2003)

Assume CH. Then the clone lattice on countable sets is not dually atomic.

(GoSh:808, Transactions of the AMS)

Theorem (G-Shelah 2006)

Let κ be a regular cardinal. Assume $2^{\kappa} = \kappa^+$. Then the clone lattice on a set of size κ is not dually atomic.
Consistently: no.

Theorem (G-Shelah 2003)

Assume CH. Then the clone lattice on countable sets is not dually atomic.

(GoSh:808, Transactions of the AMS)

Theorem (G-Shelah 2006)

Let κ be a regular cardinal. Assume $2^{\kappa} = \kappa^+$. Then the clone lattice on a set of size κ is not dually atomic.

(GoSh:884)

Consistently: no.

Theorem (G-Shelah 2003)

Assume CH. Then the clone lattice on countable sets is not dually atomic.

(GoSh:808, Transactions of the AMS)

Theorem (G-Shelah 2006)

Let κ be a regular cardinal. Assume $2^{\kappa} = \kappa^+$. Then the clone lattice on a set of size κ is not dually atomic.

(GoSh:884)

Outline

Proof ideas

- Growth clones
- Preference order
- Random facts

We fix a linear order on the base set *X* (or better: identify *X* with its cardinal number). Let $C_{\max} := \{f : \forall \vec{x} f(\vec{x}) \le \max(\vec{x})\}.$

- Clones are downward closed.
- Clones are (more or less) determined by their unary functions
- Typical clones are described by *growth* conditions, e.g. the clone of all functions of subexponential growth.
- compact = principal:

$$\langle f_1, \ldots, f_k \rangle_{C_{\max}} = \langle \max(f_1, \ldots, f_k) \rangle_{C_{\max}}$$

We fix a linear order on the base set X (or better: identify X with its cardinal number).

Let $C_{\max} := \{f : \forall \vec{x} f(\vec{x}) \le \max(\vec{x})\}.$

- Clones are downward closed.
- Clones are (more or less) determined by their unary functions
- Typical clones are described by *growth* conditions, e.g. the clone of all functions of subexponential growth.
- compact = principal:

$$\langle f_1, \ldots, f_k \rangle_{C_{\max}} = \langle \max(f_1, \ldots, f_k) \rangle_{C_{\max}}$$

We fix a linear order on the base set X (or better: identify X with its cardinal number).

Let $C_{\max} := \{f : \forall \vec{x} f(\vec{x}) \le \max(\vec{x})\}.$

- Clones are downward closed.
- Clones are (more or less) determined by their unary functions
- Typical clones are described by growth conditions, e.g. the clone of all functions of subexponential growth.
- compact = principal:

$$\langle f_1, \ldots, f_k \rangle_{C_{\max}} = \langle \max(f_1, \ldots, f_k) \rangle_{C_{\max}}$$

We fix a linear order on the base set X (or better: identify X with its cardinal number).

Let $C_{\max} := \{f : \forall \vec{x} f(\vec{x}) \le \max(\vec{x})\}.$

Above the clone C_{max} :

- Clones are downward closed.
- Clones are (more or less) determined by their unary functions
- Typical clones are described by *growth* conditions, e.g. the clone of all functions of subexponential growth.
- compact = principal:

$$\langle f_1, \ldots, f_k \rangle_{C_{\max}} = \langle \max(f_1, \ldots, f_k) \rangle_{C_{\max}}$$

We fix a linear order on the base set X (or better: identify X with its cardinal number).

Let $C_{\max} := \{f : \forall \vec{x} f(\vec{x}) \le \max(\vec{x})\}.$

Above the clone C_{max} :

- Clones are downward closed.
- Clones are (more or less) determined by their unary functions
- Typical clones are described by *growth* conditions, e.g. the clone of all functions of subexponential growth.
- compact = principal:

$$\langle f_1, \ldots, f_k \rangle_{C_{\max}} = \langle \max(f_1, \ldots, f_k) \rangle_{C_{\max}}$$

We fix a linear order on the base set X (or better: identify X with its cardinal number).

Let $C_{\max} := \{f : \forall \vec{x} f(\vec{x}) \le \max(\vec{x})\}.$

- Clones are downward closed.
- Clones are (more or less) determined by their unary functions
- Typical clones are described by *growth* conditions, e.g. the clone of all functions of subexponential growth.
- o compact = principal:

$$\langle f_1, \ldots, f_k \rangle_{C_{\max}} = \langle \max(f_1, \ldots, f_k) \rangle_{C_{\max}}$$

We fix a linear order on the base set X (or better: identify X with its cardinal number).

Let $C_{\max} := \{f : \forall \vec{x} f(\vec{x}) \le \max(\vec{x})\}.$

Above the clone C_{max} :

- Clones are downward closed.
- Clones are (more or less) determined by their unary functions
- Typical clones are described by *growth* conditions, e.g. the clone of all functions of subexponential growth.
- compact = principal:

$$\langle f_1, \ldots, f_k \rangle_{C_{\max}} = \langle \max(f_1, \ldots, f_k) \rangle_{C_{\max}}$$

Reduce the problem from comparing clones to comparing functions:

Program

Find a "base clone" B such that the relation

$f \in \langle g angle_B$

is a linear quasiorder on \mathbb{O} .

Reduce the problem from comparing clones to comparing functions:

Program

Find a "base clone" B such that the relation

 $f \in \langle g
angle_B$

is a linear quasiorder on 0.

Reduce the problem from comparing clones to comparing functions:

Program

Find a "base clone" B such that the relation

 $f\in \langle g
angle_B$

is a linear quasiorder on O.

Reduce the problem from comparing clones to comparing functions:

Program

Find a "base clone" B such that the relation

 $f \in \langle g
angle_B$

is a linear quasiorder on O.

Slightly weaker:

Program

Find a "base clone" B and a partial order < on 0 such that:

- The relation < is a preference relation,
 i.e., the relation x ~ y :⇔ x ≮ y ∧ y ≮ x is an equivalence relation
- $\bullet \ \forall f,g: f < g \ \Rightarrow \ f \in \langle g \rangle_B \ \Rightarrow \ f \lesssim g$

Clones above B will then be contained in Dedekind cuts of the linear order $0/\sim$.

Slightly weaker:

Program

Find a "base clone" B and a partial order < on 0 such that:

- The relation < is a preference relation,
 i.e., the relation x ~ y :⇔ x ≮ y ∧ y ≮ x is an equivalence relation
- $\forall f, g : f < g \Rightarrow f \in \langle g \rangle_B \Rightarrow f \lesssim g$

Clones above B will then be contained in Dedekind cuts of the linear order $\mathbb{O}/{\sim}.$

Slightly weaker:

Program

Find a "base clone" B and a partial order < on 0 such that:

i.e., the relation $x \sim y :\Leftrightarrow x \not< y \land y \not< x$ is an equivalence relation

• $\forall f, g : f < g \Rightarrow f \in \langle g \rangle_B \Rightarrow f \lesssim g$

Clones above B will then be contained in Dedekind cuts of the linear order $0/\sim$.

Slightly weaker:

Program

Find a "base clone" B and a partial order < on 0 such that:

• The relation < is a preference relation,

i.e., the relation $x \sim y :\Leftrightarrow x \not< y \land y \not< x$ is an equivalence relation

• $\forall f, g : f < g \Rightarrow f \in \langle g \rangle_B \Rightarrow f \lesssim g$

Clones above B will then be contained in Dedekind cuts of the linear order $0/\sim$.

Slightly weaker:

Program

Find a "base clone" B and a partial order < on 0 such that:

The relation < is a preference relation,
 i.e., the relation x ~ y :⇔ x ≮ y ∧ y ≮ x is an equivalence relation

•
$$\forall f, g: f < g \Rightarrow f \in \langle g \rangle_B \Rightarrow f \lesssim g$$

Clones above B will then be contained in Dedekind cuts of the linear order $0/\sim$.

Slightly weaker:

Program

Find a "base clone" B and a partial order < on 0 such that:

The relation < is a preference relation,
 i.e., the relation x ~ y :⇔ x ≮ y ∧ y ≮ x is an equivalence relation

•
$$\forall f, g: f < g \Rightarrow f \in \langle g \rangle_B \Rightarrow f \lesssim g$$

Clones above B will then be contained in Dedekind cuts of the linear order $0/\sim$.

Slightly weaker:

Program

Find a "base clone" B and a partial order < on 0 such that:

The relation < is a preference relation,
 i.e., the relation x ~ y :⇔ x ≮ y ∧ y ≮ x is an equivalence relation

•
$$\forall f, g : f < g \Rightarrow f \in \langle g \rangle_B \Rightarrow f \lesssim g$$

Clones above B will then be contained in Dedekind cuts of the linear order $0/\sim$.

Slightly weaker:

Program

Find a "base clone" B and a partial order < on 0 such that:

The relation < is a preference relation,
 i.e., the relation x ~ y :⇔ x ≮ y ∧ y ≮ x is an equivalence relation

•
$$\forall f, g : f < g \Rightarrow f \in \langle g \rangle_B \Rightarrow f \lesssim g$$

Clones above B will then be contained in Dedekind cuts of the linear order $0/\sim$.

Fact

Let (L, \leq) be a well-order without last element. For each unbounded set $A \subseteq L$ define

 $h_A(x) := \min\{y \in L : x < y\}$

Let U be a filter of unbounded set on L. Then $f \in \langle h_A : A \in U \rangle_{max}$ iff there is some $A \in U$ and some $k \in \{1, 2, ...\}$ such that $f(\vec{x}) \leq h_A^{(k)}(\max(\vec{x}))$ for all \vec{x} .

Fact

Let (L, \leq) be a well-order without last element. For each unbounded set $A \subseteq L$ define

 $h_A(x) := \min\{y \in L : x < y\}$

Let U be a filter of unbounded set on L. Then $f \in \langle h_A : A \in U \rangle_{max}$ iff there is some $A \in U$ and some $k \in \{1, 2, ...\}$ such that $f(\vec{x}) \leq h_A^{(k)}(\max(\vec{x}))$ for all \vec{x} .

Fact

Let (L, \leq) be a well-order without last element. For each unbounded set $A \subseteq L$ define

 $h_A(x) := \min\{y \in L : x < y\}$

Let U be a filter of unbounded set on L. Then $f \in \langle h_A : A \in U \} \rangle_{max}$ iff there is some $A \in U$ and some $k \in \{1, 2, ...\}$ such that $f(\vec{x}) \leq h_A^{(k)}(\max(\vec{x}))$ for all \vec{x} .

Fact

Let (L, \leq) be a well-order without last element. For each unbounded set $A \subseteq L$ define

 $h_A(x) := \min\{y \in L : x < y\}$

Let U be a filter of unbounded set on L.

Then $f \in \langle h_A : A \in U \} \rangle_{\max}$ iff there is some $A \in U$ and some $k \in \{1, 2, ...\}$ such that $f(\vec{x}) \leq h_A^{(k)}(\max(\vec{x}))$ for all \vec{x} .

Fact

Let (L, \leq) be a well-order without last element. For each unbounded set $A \subseteq L$ define

 $h_A(x) := \min\{y \in L : x < y\}$

Let U be a filter of unbounded set on L. Then $f \in \langle h_A : A \in U \rangle_{max}$ iff there is some $A \in U$ and some $k \in \{1, 2, ...\}$ such that $f(\vec{x}) \leq h_A^{(k)}(\max(\vec{x}))$ for all \vec{x} .

Fact

Let (L, \leq) be a well-order without last element. For each unbounded set $A \subseteq L$ define

 $h_A(x) := \min\{y \in L : x < y\}$

Let U be a filter of unbounded set on L. Then $f \in \langle h_A : A \in U \rangle_{max}$ iff there is some $A \in U$ and some $k \in \{1, 2, ...\}$ such that $f(\vec{x}) \leq h_A^{(k)}(\max(\vec{x}))$ for all \vec{x} .

Fact

Let (L, \leq) be a well-order without last element. For each unbounded set $A \subseteq L$ define

 $h_A(x) := \min\{y \in L : x < y\}$

Let U be a filter of unbounded set on L. Then $f \in \langle h_A : A \in U \rangle_{max}$ iff there is some $A \in U$ and some $k \in \{1, 2, ...\}$ such that $f(\vec{x}) \leq h_A^{(k)}(\max(\vec{x}))$ for all \vec{x} .

Fact

Let $(U_i : i \in I)$ be ultrafilters on disjoint sets $(A_i : i \in I)$. Let V be an ultrafilter on I, $A := \bigcup_i A_i$. Then $\int U_i d_V i := \{B \subseteq A : \{i : B \cap A_i \in U_i\} \in V\}$ is an ultrafilter on A.

This fact is a special case (trees with exactly 3 levels) of the folowing more general (but still very easy) fact:

Fact

Fact

Let $(U_i : i \in I)$ be ultrafilters on disjoint sets $(A_i : i \in I)$. Let V be an ultrafilter on $I, A := \bigcup_i A_i$. Then $\int U_i d_V i := \{B \subseteq A : \{i : B \cap A_i \in U_i\} \in V\}$ is an ultrafilter on A.

This fact is a special case (trees with exactly 3 levels) of the folowing more general (but still very easy) fact:

Fact

Let (T, \leq) be a tree with a least element. Assume that T does not contain any infinite chains. For each internal node $\eta \in T$ let D_n be an ultrafilter on Succ_T (η) .

Then this family naturally induces an ultrafilter on the set of external nodes (or: branches) of T.

Fact

Let $(U_i : i \in I)$ be ultrafilters on disjoint sets $(A_i : i \in I)$. Let V be an ultrafilter on I, $A := \bigcup_i A_i$. Then $\int U_i d_V i := \{B \subseteq A : \{i : B \cap A_i \in U_i\} \in V\}$ is an ultrafilter on A.

This fact is a special case (trees with exactly 3 levels) of the folowing more general (but still very easy) fact:

Fact

Fact

Let $(U_i : i \in I)$ be ultrafilters on disjoint sets $(A_i : i \in I)$. Let V be an ultrafilter on I, $A := \bigcup_i A_i$. Then $\int U_i d_V i := \{B \subseteq A : \{i : B \cap A_i \in U_i\} \in V\}$ is an ultrafilter on A.

This fact is a special case (trees with exactly 3 levels) of the folowing more general (but still very easy) fact:

Fact

Fact

Let $(U_i : i \in I)$ be ultrafilters on disjoint sets $(A_i : i \in I)$. Let V be an ultrafilter on I, $A := \bigcup_i A_i$. Then $\int U_i d_V i := \{B \subseteq A : \{i : B \cap A_i \in U_i\} \in V\}$ is an ultrafilter on A.

This fact is a special case (trees with exactly 3 levels) of the folowing more general (but still very easy) fact:

Fact

Fact

Let $(U_i : i \in I)$ be ultrafilters on disjoint sets $(A_i : i \in I)$. Let V be an ultrafilter on I, $A := \bigcup_i A_i$. Then $\int U_i d_V i := \{B \subseteq A : \{i : B \cap A_i \in U_i\} \in V\}$ is an ultrafilter on A.

This fact is a special case (trees with exactly 3 levels) of the folowing more general (but still very easy) fact:

Fact

Fact

Let $(U_i : i \in I)$ be ultrafilters on disjoint sets $(A_i : i \in I)$. Let V be an ultrafilter on I, $A := \bigcup_i A_i$. Then $\int U_i d_V i := \{B \subseteq A : \{i : B \cap A_i \in U_i\} \in V\}$ is an ultrafilter on A.

This fact is a special case (trees with exactly 3 levels) of the folowing more general (but still very easy) fact:

Fact

Let (T, \leq) be a tree with a least element. Assume that T does not contain any infinite chains.

For each internal node $\eta \in T$ let D_{η} be an ultrafilter on $Succ_T(\eta)$. Then this family naturally induces an ultrafilter on the set of external nodes (or: branches) of T.
More random facts from the proof

Fact

Let $(U_i : i \in I)$ be ultrafilters on disjoint sets $(A_i : i \in I)$. Let V be an ultrafilter on I, $A := \bigcup_i A_i$. Then $\int U_i d_V i := \{B \subseteq A : \{i : B \cap A_i \in U_i\} \in V\}$ is an ultrafilter on A.

This fact is a special case (trees with exactly 3 levels) of the folowing more general (but still very easy) fact:

Fact

Let (T, \leq) be a tree with a least element. Assume that T does not contain any infinite chains. For each internal node $\eta \in T$ let D_{η} be an ultrafilter on $\operatorname{Succ}_{T}(\eta)$. Then this family naturally induces an ultrafilter on the set of external nodes (or: branches) of T.

More random facts from the proof

Fact

Let $(U_i : i \in I)$ be ultrafilters on disjoint sets $(A_i : i \in I)$. Let V be an ultrafilter on I, $A := \bigcup_i A_i$. Then $\int U_i d_V i := \{B \subseteq A : \{i : B \cap A_i \in U_i\} \in V\}$ is an ultrafilter on A.

This fact is a special case (trees with exactly 3 levels) of the folowing more general (but still very easy) fact:

Fact

Let (T, \leq) be a tree with a least element. Assume that T does not contain any infinite chains. For each internal node $\eta \in T$ let D_{η} be an ultrafilter on $\operatorname{Succ}_{T}(\eta)$. Then this family naturally induces an ultrafilter on the set of external nodes (or: branches) of T.

More random facts from the proof

Fact

Let $(U_i : i \in I)$ be ultrafilters on disjoint sets $(A_i : i \in I)$. Let V be an ultrafilter on I, $A := \bigcup_i A_i$. Then $\int U_i d_V i := \{B \subseteq A : \{i : B \cap A_i \in U_i\} \in V\}$ is an ultrafilter on A.

This fact is a special case (trees with exactly 3 levels) of the folowing more general (but still very easy) fact:

Fact

Let (T, \leq) be a tree with a least element. Assume that T does not contain any infinite chains. For each internal node $\eta \in T$ let D_{η} be an ultrafilter on $\operatorname{Succ}_{T}(\eta)$. Then this family naturally induces an ultrafilter on the set of external nodes (or: branches) of T.