A SINGLE BINARY FUNCTION IS ENOUGH

MARTIN GOLDSTERN

THEOREM:¹

Let X be any infinite set, and let g_1, g_2, \ldots be finitely or countably many operations on X. Then there is a binary operation f on X such that the clone generated by f contains each g_i .

Proof: Any k-ary operation $g : X^n \to X$ can be obtained from a 1-1 binary function p(x, y) and a suitable unary function u(x); nesting p will give a 1-1 function $p^{(n)} : X^n \to X$; find u such that $g = u \circ p^{(n)}$. (Due to Sierpiński?) So we assume that all q_i are binary.

We may assume $X = Z \times \mathbb{N}$, where X and Z have the same cardinality. Let $i : X \to Z \times \{0\}$ be a bijection. For $x = (z, n) \in X$ write x + 1 for (z, n + 1); similarly for x + k.

We can now find a function $f: X \times X \to X$ satisfying the following for all x, y:

- (1) f(x,x) = x+1
- (2) f(x, x+1) = i(x).

(3) $f(i(x) + k, i(y)) = g_k(x, y)$ for k = 1, 2, ...

So the functions $x \mapsto x+1$, *i* and g_k are all in the clone generated by *f*.

Date: 2010-09-21.

¹This theorem is probably well-known. Perhaps even with this particular proof? Agnes Szendrei has pointed out that for finite sets, this appears in Webb, Donald L. Generation of any N-valued logic by one binary operation. Proc. Natl. Acad. Sci. USA 21, 252-254 (1935). Zentralblatt 0012.00103. Webb generalized the Sheffer stroke to k-element sets as follows: $p|p = p+1 \pmod{k}$, p|q = 0 for $p \neq q$.