VU Diskrete Mathematik

Exercises for Dec 1, 2023

41) Find the homeomorphy classes of the set of topological spaces $\{B, C, D, O, Z, 1,2,8\}$, if the characters are regarded as point sets in \mathbb{R}^{2} with the usual metric.
42) Which of the following sets are connected?

- the unit disk in \mathbb{R}^{2};
- the set $\left\{(x, y) \in \mathbb{R}^{2} \mid \exists r \in \mathbb{Q}: x^{2}+y^{2}=r^{2}\right\}$ in \mathbb{R}^{2};
- the set $f(X)$, if $f: X \rightarrow Y$ is continuous and X is connected (X, Y being arbitrary topological spaces);
- the union of the intervals $(0,1)$ and $(1,2)$ in \mathbb{R}.

43) Let $X=\{1,2,3,4,5\}$ and $\mathcal{T}=\{\emptyset,\{1\},\{1,2\},\{1,2,5\},\{1,3,4\},\{1,2,3,4\}, X\}$. Show that \mathcal{T} is a topology and find all closed subsets of X.
44) Let X be a topological space and $f: X \rightarrow[0,1]$ be a continuous function, where $[0,1]$ is equipped with the usual topology. Prove that for every $a \in[0,1]$ the set $f^{-1}(\{a\})$ is a closed set. Assume that X is connected. Characterize all continuous functions $f: X \rightarrow[0,1]$ for which $f^{-1}(\{a\})$ is open as well.

45-46) If M is a set, then $\bar{M}, \partial M, M^{\circ}$ denote the closure, the boundary, the interior of M, respectively. The closure of M is defined as the smallest closed set C with $M \subseteq C$. So, any subset of \bar{M} is either not closed or does not contain M as a subset. The interior is the largest open set which is subset of M. It is the union of all open subsets of M. The boundary is defined by $\partial M=\bar{M} \backslash M^{\circ}$.
45) Let X and \mathcal{T} be as in exercise 43. Determine the following sets: $\overline{\{1\}}, \overline{\{2\}}, \overline{\{3,5\}}$
46) Let X and \mathcal{T} be as in exercise 43. Determine the following sets: $\{1,4,5\}^{\circ}, \partial\{1,2,4,5\}$.
47) Let (X, d) be a metric space and $A \subseteq X$ an open set. Prove that A is the union of ε-balls, i.e., there is an index set I and $x_{i} \in A$ as well as $\varepsilon_{i}>0$ for all $i \in I$ such that $A=\bigcup_{i \in I} K\left(x_{i}, \varepsilon_{i}\right)$.
48) Let (X, d) be a metric space and $A \subseteq X$. For $x \in X$ define $d(x, A):=\inf \{d(x, a) \mid a \in A\}$. Prove that $f: X \rightarrow \mathbb{R}, x \mapsto d(x, A)$, is continuous. Then use the result of Exercise 44 to show that the set of zeros of f is closed. Finally, use what you have shown so far to prove that $d(x, A)=0$ if and only if $x \in \bar{A}$.

