VU Diskrete Mathematik Exercises for Dec 1, 2023

41) Find the homeomorphy classes of the set of topological spaces $\{B, C, D, O, Z, 1, 2, 8\}$, if the characters are regarded as point sets in \mathbb{R}^2 with the usual metric.

42) Which of the following sets are connected?

- the unit disk in \mathbb{R}^2 ;
- the set $\{(x, y) \in \mathbb{R}^2 \mid \exists r \in \mathbb{Q} : x^2 + y^2 = r^2\}$ in \mathbb{R}^2 ;
- the set f(X), if $f : X \to Y$ is continuous and X is connected (X, Y being arbitrary topological spaces);
- the union of the intervals (0,1) and (1,2) in \mathbb{R} .

43) Let $X = \{1, 2, 3, 4, 5\}$ and $\mathcal{T} = \{\emptyset, \{1\}, \{1, 2\}, \{1, 2, 5\}, \{1, 3, 4\}, \{1, 2, 3, 4\}, X\}$. Show that \mathcal{T} is a topology and find all closed subsets of X.

44) Let X be a topological space and $f: X \to [0,1]$ be a continuous function, where [0,1] is equipped with the usual topology. Prove that for every $a \in [0,1]$ the set $f^{-1}(\{a\})$ is a closed set. Assume that X is connected. Characterize all continuous functions $f: X \to [0,1]$ for which $f^{-1}(\{a\})$ is open as well.

45–46) If M is a set, then \overline{M} , ∂M , M° denote the closure, the boundary, the interior of M, respectively. The closure of M is defined as the smallest closed set C with $M \subseteq C$. So, any subset of \overline{M} is either not closed or does not contain M as a subset. The interior is the largest open set which is subset of M. It is the union of all open subsets of M. The boundary is defined by $\partial M = \overline{M} \setminus M^{\circ}$.

45) Let X and \mathcal{T} be as in exercise 43. Determine the following sets: $\overline{\{1\}}, \overline{\{2\}}, \overline{\{3,5\}}$

46) Let X and \mathcal{T} be as in exercise 43. Determine the following sets: $\{1, 4, 5\}^{\circ}, \partial\{1, 2, 4, 5\}$.

47) Let (X, d) be a metric space and $A \subseteq X$ an open set. Prove that A is the union of ε -balls, i.e., there is an index set I and $x_i \in A$ as well as $\varepsilon_i > 0$ for all $i \in I$ such that $A = \bigcup_{i \in I} K(x_i, \varepsilon_i)$.

48) Let (X, d) be a metric space and $A \subseteq X$. For $x \in X$ define $d(x, A) := \inf\{d(x, a) \mid a \in A\}$. Prove that $f: X \to \mathbb{R}, x \mapsto d(x, A)$, is continuous. Then use the result of Exercise 44 to show that the set of zeros of f is closed. Finally, use what you have shown so far to prove that d(x, A) = 0 if and only if $x \in \overline{A}$.