VU Diskrete Mathematik

Exercises for Nov 10 - Session 2, 2023

33) Let $G=(V, E)$ be a graph and $u, v \in V$ two adjacent vertices of G. Define $G^{\prime}=(V, E \backslash\{u v\})$ and $G^{\prime \prime}$ to be the graph obtained from G by merging u and v to a new vertex w that is adjacent to all $x \in \Gamma(u) \cup \Gamma(v) \backslash\{u, v\}$. For any graph H, let $f_{H}(n)$ denote the number of feasible vertex colourings of H that use only colours from the n-element colour set $\left\{c_{1}, \ldots, c_{n}\right\}$. Prove that $f_{G}(n)=f_{G^{\prime}}(n)-f_{G^{\prime \prime}}(n)$. Use this equation to show that $f_{G}(n)$ is a polynomial in n.
34) A block of a graph is a maximal (induced) subgraph which contains no cut vertex ${ }^{1}$ and therefore no bridge as well. Every graph can be decomposed into blocks in a unique way and two different blocks have at most one vertex and no edge in common. The common vertex is always a cut vertex.
Given a connected graph G which has the blocks $H_{1}, H_{2}, \ldots, H_{k}$. Assume that $\chi\left(H_{i}\right), i=$ $1,2, \ldots, k$, is known. Compute $\chi(G)$.
35) Consider K_{n}, the complete graph with n vertices. A proper edge-coloring is a coloring of the edges such that any two edges that share a vertex receive different colors. Show that a proper edge-coloring of K_{n} with exactly $n-1$ colors decomposes K_{n} into $n-1$ perfect matchings.
36) Prove that K_{n} has a proper edge-coloring (see Exercise 35) if and only if n is even.

Hint: Exercises 28 and 35.
37) Show the following inequality for Ramsey numbers: If $r \geq 3$ then

$$
R\left(n_{1}, \ldots, n_{r-2}, n_{r-1}, n_{r}\right) \leq R\left(n_{1}, \ldots, n_{r-2}, R\left(n_{r-1}, n_{r}\right)\right)
$$

Hint: Let $n=R\left(n_{1}, \ldots, n_{r-2}, R\left(n_{r-1}, n_{r}\right)\right)$ and consider an edge colouring of K_{n} with r colours, say c_{1}, \ldots, c_{r}. Identify the colours c_{r-1} and c_{r} and apply the Ramsey property for $r-1$ colours.
38) We abbreviate $R(3,3, \ldots, 3)$, where 3 is used k times, by R_{k}. Prove that $R_{k} \leq k\left(R_{k-1}-1\right)+2$.
39) Find all 2 -colourings of $\{1,2, \ldots, 7\}$, say with colours red and blue, that do neither contain a red triple (x, y, z) (x, y, z not necessarily distinct!) with $x+y=z$ nor a blue triple (x, y, z) such that $z-y=y-x>0$.
40) Prove that it is impossible to colour $\{1,2, \ldots, 8\}$ with colours red and blue in such a way that there is neither a red triple $(x, y, z)(x, y, z$ not necessarily distinct!) with $x+y=z$ nor a blue triple (x, y, z) such that $z-y=y-x>0$.

[^0]
[^0]: ${ }^{1}$ A cut vertex is a vertex such that its removal increases the number of connected components. A bridge is an edge having this property. Thus the end vertices of a bridge are always cut vertices.

