VU Diskrete Mathematik Exercises for Nov 10 - Session 1, 2023

25) Let G_{n} denote the n-dimensional hypercube. Show that G_{n} is Hamiltonian if $n \geq 2$.
26) Prove that every simple, connected and planar graph with at least 3 vertices satisfies $\alpha_{1}(G) \leq$ $3 \alpha_{0}(G)-6$. Show that this implies that K_{5} is not planar.
27) Let $G=(V, E)$ be a simple, connected graph where each vertex has degree 3. Furthermore, assume that G is planar and that every vertex lies on the boundary of exactly three faces, one having a boundary consisting of 6 edges, the other two one of 4 edges each. Determine $\alpha_{0}(G)$, $\alpha_{1}(G), \alpha_{2}(G)$ and draw a plane graph which is isomorphic to G.
28) Follow the hint below to construct a schedule for the matches in a league of $2 n$ teams which meets the following constraints:
(a) In each round each team plays exactly one match.
(b) In the end each team must have played against each of the other teams exactly once.

Hint: Consider the graph $K_{2 n}$ on the vertex set $\{1,2, \ldots, 2 n\}$ and show that each of the sets $M_{i}=\{1 i\} \cup\{x y \mid x+y \equiv 2 i \bmod 2 n-1$ and $x \neq y, x \neq 1, y \neq 1\}$ is a perfect matching (for $i=2, \ldots, 2 n)$.
29) Show that the n-dimensional hypercube $(n>1)$ has a perfect matching.
30) Determine the chromatic number of the following graph.

Likewise, determine the chromatic number of the line graph of the graph above.
31) Show that a graph is bipartite if and only if there is a feasible coloring with two colors.
32) Show that a graph which has exactly one odd cycle has chromatic number 3.

