VU Diskrete Mathematik Exercises for Oct 27, 2023

17) Let (E, S_1) and (E, S_2) be matroids. Examine whether $(E, S_1 \cap S_2)$ is a matroid. Give a proof or a concrete counter-example!

18) Let M = (E, S) be a matroid and \mathcal{B} the family of all its bases. Let $A, B \in \mathcal{B}$ such that $A \neq B$. Prove that

- (a) neither of the inclusions $A \subseteq B$ and $B \subseteq A$ holds,
- (b) for each $x \in A$ there exists $y \in B$ such that $(A \setminus \{x\}) \cup \{y\} \in \mathcal{B}$.

Hint: Show first that, if $x \in A \cap B$ in (b), then by (a) we must have y = x, and if $x \in A \setminus B$, then we must have $y \in B \setminus A$.

19) Use Dijkstra's algorithm to determine d(x, y) in the following graph.

20) Find a graph G = (V, E) and two vertices $x, y \in V$ such that Dijkstra's algorithm does not compute the distance d(x, y) correctly.

21) Let ϕ_1 and ϕ_2 be to flows on a flow network G = (V, E, w, s, t). Moreover, let γ_1, γ_2 be to nonnegative reals satisfying $\gamma_1 + \gamma_2 \leq 1$. Prove that $\gamma_1 \phi_1 + \gamma_2 \phi_2$ is a flow on G.

22) Use the algorithm of Ford and Fulkerson to compute a maximal flow in the network below!

23) For a simple and undirected graph G we define the *line graph* \overline{G} as follows: $V(\overline{G}) = E(G)$ and $(e, f) \in E(\overline{G})$ if and only if the edges e and f share a vertex. Let G be a simple, undirected and connected graph for which every vertex has degree r. Prove that the line graph \overline{G} of G is Eulerian.

24) For which m and n is the complete bipartite graph $K_{m,n}$ an Eulerian graph?