VU Diskrete Mathematik Exercises for Oct 27, 2023

17) Let $\left(E, S_{1}\right)$ and $\left(E, S_{2}\right)$ be matroids. Examine whether $\left(E, S_{1} \cap S_{2}\right)$ is a matroid. Give a proof or a concrete counter-example!
18) Let $M=(E, S)$ be a matroid and \mathcal{B} the family of all its bases. Let $A, B \in \mathcal{B}$ such that $A \neq B$. Prove that
(a) neither of the inclusions $A \subseteq B$ and $B \subseteq A$ holds,
(b) for each $x \in A$ there exists $y \in B$ such that $(A \backslash\{x\}) \cup\{y\} \in \mathcal{B}$.

Hint: Show first that, if $x \in A \cap B$ in (b), then by (a) we must have $y=x$, and if $x \in A \backslash B$, then we must have $y \in B \backslash A$.
19) Use Dijkstra's algorithm to determine $d(x, y)$ in the following graph.

20) Find a graph $G=(V, E)$ and two vertices $x, y \in V$ such that Dijkstra's algorithm does not compute the distance $d(x, y)$ correctly.
21) Let ϕ_{1} and ϕ_{2} be to flows on a flow network $G=(V, E, w, s, t)$. Moreover, let γ_{1}, γ_{2} be to nonnegative reals satisfying $\gamma_{1}+\gamma_{2} \leq 1$. Prove that $\gamma_{1} \phi_{1}+\gamma_{2} \phi_{2}$ is a flow on G.
22) Use the algorithm of Ford and Fulkerson to compute a maximal flow in the network below!

23) For a simple and undirected graph G we define the line graph \bar{G} as follows: $V(\bar{G})=E(G)$ and $(e, f) \in E(\bar{G})$ if and only if the edges e and f share a vertex. Let G be a simple, undirected and connected graph for which every vertex has degree r. Prove that the line graph \bar{G} of G is Eulerian.
24) For which m and n is the complete bipartite graph $K_{m, n}$ an Eulerian graph?

