
Dissertation

Studies on several parameters in latticepaths
ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors der

Naturwissenschaften

eingereicht an der Technischen Universität Wien, Fakultät für Mathematik und Geoinformation
von

Valerie Roitner
Matrikelnummer: 00903538

unter der Anleitung von

Ao. Univ.-Prof. Dipl.-Ing. Dr.techn. Bernhard Gittenberger
Institut für Diskrete Mathematik und Geometrie (E104)

D E C L A R AT I O N

I declare in lieu of oath, that I wrote this thesis and performed the associated research myself,
using only literature cited in this volume. If text passages from sources are used literally, they are
marked as such. I confirm that this work is original and has not been submitted elsewhere for any
examination, nor is it currently under consideration for a thesis elsewhere. This thesis however
draws on previous publications of the author. For a complete list of my relevant publications, I
refer to page IV.

place, date Valerie Roitner

I

A B S T R A C T

This thesis deals with enumerative as well as asymptotic aspects of directed lattice paths. Several
parameters appearing in lattice paths will be analyzed, e.g. the area enclosed by or the number of
contacts between two paths or the number of occurrences of certain patterns in a path.

The first chapter gives an overview over the history of lattice path theory as well as basic
definitions and an overview of the applications of lattice paths in mathematical models arising in
natural sciences or computer science. In the second chapter the methods used in enumerative
and asymptotic combinatorics will be introduced: combinatorial classes and their generating
functions for exact enumeration as well as singularity analysis for asymptotic results.

There are two lattice path configurations on which this thesis mostly focuses: non-intersecting
pairs (or tuples) of paths and paths which avoid patterns, i.e., fixed sequences of consecutive
steps. Chapter 3 deals with non-intersecting pairs of lattice paths. We will derive results about
their average number of contacts as well as the average area between them.

Chapter 4 deals with pattern avoidance in lattice paths. First, the vectorial kernel method
developed by Andrei Asinowski, Axel Bacher, Cyril Banderier, and Bernhard Gittenberger will
be introduced, since it is a very powerful tool for enumerating lattice paths avoiding a fixed
pattern as well as enumerating the occurrences of a fixed pattern in a lattice path. Then it will be
generalized in two directions: for enumerating lattice paths with longer steps and for enumerating
lattice paths which avoid several patterns at once. The tools developed in this section have also
been used to prove a conjecture by David Callan about the asymptotic behavior of the expected
number of ascents in Schröder paths.

In Chapter 5 we will combine the methods from Chapter 3 and 4 for studying pattern
avoidance as well as the lower height in pairs of non-intersecting lattice paths.

Some of the results in this thesis have already been published in scientific papers. For a
complete list of the publications this thesis is based on, see page IV.

II

Z U S A M M E N FA S S U N G

Diese Dissertation behandelt abzählende und asymptotische Aspekte von gerichteten Gitterwegen.
Es werden zahlreiche in Gitterwegen auftauchende Parameter untersucht, wie beispielsweise die
Fläche oder die Anzahl der Kontakte zwischen zwei nicht-schneidenden Gitterwegen oder die
Anzahl des Auftretens eines gewissen Musters in einem Pfad.

Das erste Kapitel liefert sowohl einen geschichtlichen Überblick über Gitterweg-Theorie als
auch einen Überblick über die Anwendungsgebiete von Gitterwegs-Modellen in den Naturwis-
senschaften und der Informatik. Des weiteren werden auch die Begriffe Gitter und Gitterweg
präzise definiert. Im zweiten Kapitel werden die in der abzählenden und asymptotischen Kom-
binatorik verwendeten Methoden vorgestellt: kombinatorische Klassen und ihre erzeugenden
Funktionen für exakte Abzählung sowie Singularitätenanalyse für asymptotische Resultate.

Der Schwerpunkt dieser Dissertation liegt auf den folgenden beiden Gitterwegskonfiguratio-
nen: einerseits nicht-schneidende Paare (oder Tupel) von Gitterwegen, andererseits Gitterwege,
die ein oder mehrere Muster, d. h. eine vorgegebene Folge von aufeinanderfolgenden Schritten,
vermeiden. In Kapitel drei werden nicht-schneidende Paare von Gitterwegen behandelt und die
Anzahl der Kontakte zwischen ihnen sowie die Fläche zwischen ihnen analysiert.

Kapitel vier handelt von Mustervermeidung in Gitterwegen. Zunächst wird die von Andrei
Asinowski, Axel Bacher, Cyril Banderier und Bernhard Gittenberger entwickelte vektorielle
Kernel-Methode vorgestellt, da sie sich sowohl bei der Aufzählung von Gitterwegen, die ein
Muster vermeiden, als auch bei Untersuchungen, wie oft ein gewisses Muster in Gitterwegen
vorkommt, als sehr nützlich erweist. Anschließend wird sie in zwei Richtungen verallgemeinert:
einerseits zur Aufzählung von Gitterwegen mit längeren Schritten, andererseits zur Aufzählung
von Gitterwegen, die mehrere Muster zugleich vermeiden. Die in diesem Abschnitt entwickelten
Methoden wurden auch dazu verwendet, um eine Vermutung von David Callan über das
asymptotische Verhalten über die erwartete Anzahl von Aufstiegen in Schröder-Pfaden zu
beweisen.

In Kapitel fünf werden die Methoden aus Kapitel drei und vier kombiniert, um Musterver-
meidung sowie die untere Höhe in Paaren von nicht-schneidenden Gitterwegen zu untersuchen.

Manche der Resultate aus dieser Dissertation wurden bereits in Form von wissenschaftlichen
Artikeln veröffentlicht. Für eine vollständige Liste der Publikationen, die Teil dieser Dissertation
sind, siehe Seite IV.

III

P U B L I C AT I O N S

This thesis is based on the following publications and preprints:

[4] A. Asinowski, C. Banderier, and V. Roitner. Generating functions for lattice paths
with several forbidden patterns. Proceedings of the 32nd Conference on Formal
Power Series and Algebraic Combinatorics Article #95, 12 pp., 2020.

[67] V. Roitner. Contacts and returns in 2-watermelons without wall. Bulletin of the
ICA (89), pp. 75–92, 2020.

[68] V. Roitner. The vectorial kernel method for walks with longer steps. preprint, 2020.
ArXiv: 2008.02240

IV

A C K N O W L E D G E M E N T S

There are many people whom I want to thank for their support related to this thesis. First of all, I
want to thank my supervisor Bernhard Gittenberger for his support and for introducing me to
many interesting problems in lattice path combinatorics. I am also thankful for the opportunities
he offered me to attend international conferences.

I want to thank my co-authors Cyril Banderier and Andrei Asinowski for the great collabora-
tion and for many interesting discussions. I learned a lot from working with them which I am
grateful for.

There are many researchers I would like to thank for valuable comments or discussions,
namely Michael Drmota, Manuel Kauers, and Christian Krattenthaler. Furthermore I am also
grateful to the anonymous referee of one of my papers for some valuable remarks. I also want to
thank Bernhard Gittenberger, Alois Panholzer, and Cyril Banderier for accepting to review my
thesis.

My thanks also goes to my (former and current) colleagues and roomates at the TU for the
good times and the friendly atmosphere at our department. These are in particular: Andrei
Asinowski, Gwendal Collet, Danièle Gardy, Katarzyna Grygiel, Emma Yu Jin, Isabella Larcher,
Benoı̂t Loridant, Marefatollah Mansouri, Clemens Müllner, Clément Requilé, Lukas Spiegelhofer,
Johann Verwee, Michael Wallner, and Guan-Ru Yu. I also want to thank our secretaries Barbara
Dolezal-Rainer, Marietta Meszlenyi, and Sonja Rees for their good work and their help with any
sort of problem.

Last, but not least, I want to thank my partner Patrick as well as my family and friends for
their continuous encouragement and support.

V

C O N T E N T S

1 introduction 1
1.1 The beginnings of lattice path theory – a historical introduction 1
1.2 What is a lattice path? . 3
1.3 Important classes of lattice paths . 6

2 methods – generating functions and analytic combinatorics 9
2.1 Formal power series and generating functions . 9

2.1.1 Formal power series . 9
2.1.2 Combinatorial classes and ordinary generating functions 13
2.1.3 Multivariate generating functions . 17
2.1.4 Probability generating functions . 19

2.2 Coefficient asymptotics . 23
2.2.1 Preliminaries: Asymptotic notation and complex analysis 23
2.2.2 Singularity analysis . 26

3 parameters related to nonintersecting lattice paths (watermelons) 31
3.1 Introduction and Definitions . 31
3.2 Contacts and Returns in 2-watermelons without wall 37
3.3 The area between 2-watermelons without wall . 46

4 the vectorial kernel method and pattern avoidance in lattice paths 51
4.1 Definitions and notations . 51
4.2 The kernel method – an introduction . 53
4.3 The vectorial kernel method . 57
4.4 The vectorial kernel method for walks with longer steps 65
4.5 Lattice paths avoiding several patterns . 74

5 the vectorial kernel method and watermelons 87
5.1 Pattern avoidance in watermelons . 87
5.2 The vectorial kernel method and height-related parameters 92

6 conclusion 107
7 appendix 109

Notations . 109
Bibliography . 110
Curriculum vitae . 114

VI

1
I N T R O D U C T I O N

In this chapter we are going to introduce lattice paths. We will first present a brief historical
introduction before giving precise definitions. We will finish the chapter by giving an overview
of some applications of lattice path theory as well as several special classes of lattice paths.

1.1 the beginnings of lattice path theory – a historical introduction

The so-called ballot problem was one of the earliest occurrences of lattice path combinatorics. It
is formulated as follows:

“Suppose that two candidates A and B are in an election. The number of the voters is µ. A
obtains m votes and is elected, B obtains µ−m. Find the probability that, during the counting
of the votes, the number of votes for A always exceeds those of his competitor.”

J. Bertrand. Solution d’un problème. (Translated from French by M. Renault [65])

In 1887 Joseph Bertrand published an answer to this question in [17], where he sketches a
proof using recursion relations and deduces that the probability is

2m− µ

µ
.

He also remarks that it might be possible that such a simple result could be proved by a more
direct method. Such a proof was later given by Désiré André in [2] with a bijection between
certain permutations. This later became known as André’s reflection method, although André
himself did not use any reflections in his proof. The reflection method is a variation of André’s
proof, however it is not accurate to say that André employed the reflection method in his proof
(more details on this can be seen in [65]).

The sequence of such votes can be visualized by paths in the Euclidean plane. We start at
the origin (0, 0) and move one step for each vote: an (1, 1)-step (”up-step”) for each vote for
candidate A and an (1,−1)-step (”down-step”) for each vote for candidate B. If there are µ votes
in total and candidate A receives m votes, we end in the point (µ, 2m− µ), since we do m up-steps
and µ−m down-steps, thus ending up at altitude m− (µ−m) = 2m− µ. The condition that
candidate A is always ahead of candidate B then corresponds to the condition that the lattice
path never touches the x-axis (except at (0, 0) in the beginning).

Figure 1: Two sequences of votes represented as lattice paths. Only the blue path has the property that
candidate A is always ahead of candidate B.

In Figure 1, the blue lattice path corresponds to the sequence of votes AAABBABAABAAABB
and the red path corresponds to the sequence AABBBABABAABAAA (for the example in the

1

2 introduction

figure the values for m and µ are 9 and 15 respectively). In both cases, candidate A wins the
election with m out of µ votes. However, only the first (blue) sequence has the desired property
that candidate A is always ahead of candidate B.

If we want to compute the probability of this event, we have to count all lattice paths from
(0, 0) to (µ, 2m− µ) with the desired property that the lattice path only touches the x-axis at the
origin as well as all lattice paths from (0, 0) to (µ, 2m− µ) (without any constraints) and then
compute their quotient.

The latter one is easily achieved: We take µ steps in total, m of them being up-steps and these
up-steps can be anywhere among the µ steps. Thus, we have to choose m out of µ steps and end
up with (µ

m) paths in total.
Counting all lattice paths that obey the constraint that they only touch the x-axis at the origin

turns out to be a bit trickier. First of all, let us note that each of these paths has to start with an
up-step. Otherwise, candidate B receives the first vote, thus violating the condition from the very
beginning (also, the lattice path would have to touch the x-axis somewhere between (1,−1) and
(µ, 2m− µ), which we do not want). Thus, what remains is a path from (1, 1) to (µ, 2m− µ) that
never goes below x = 1.

To count these objects we use the approach: ”The good guys are everyone minus the bad
guys”. The ”good guys” being all lattice paths from (1, 1) to (µ, 2m− µ) that never go below
x = 1, ”everyone” being all lattice paths from (1, 1) to (µ, 2m− µ) without any further constraints
and the ”bad guys” being all lattice paths from (1, 1) to (µ, 2m− µ) which do go below x = 1.
The paths we labeled ”everyone” are easy to count. By a similar argument as before, we obtain
that their number is (µ−1

m−1).
Counting the ”bad guys” turns out to be a bit trickier, but can be achieved via the following

reflection: Each ”bad” path touches the x-axis at least once. Let us consider the first intersection
of the path and the x-axis and reflect the remaining path along the x-axis. We end up with a
path from (1, 1) to (µ,−2m + µ), as can be seen in Figure 2 (the initial segment of the red path
continued by the dashed red path).

(µ, 2m− µ)

(µ,−2m+ µ)

(1, 1)

Figure 2: The reflection argument.

Conversely, each path from (1, 1) to (µ,−2m + µ) can be mapped to a ”bad” path via the
same reflection argument. Thus the number of ”bad” paths is the same as the number of all paths
from (1, 1) to (µ,−2m + µ). But these paths can be easily counted by a similar computation as
above (choosing up-steps among all steps). We obtain that their number is (µ−1

µ−m−1) = (µ−1
m).

Thus, we now can compute the number of the ”good guys”, the paths we are actually
interested in, and obtain that it is

(
µ− 1
m− 1

)
−
(

µ− 1
m

)
.

After some computations with binomial coefficients, this becomes
(

µ− 1
m− 1

)
−
(

µ− 1
m

)
=

2m− µ

µ

(
µ

m

)
.

1.2 what is a lattice path? 3

The probability of candidate A always being ahead of candidate B is then given by

2m−µ
µ (µ

m)

(µ
m)

=
2m− µ

µ
.

Variants and special cases of the ballot problem

In the original ballot problem we were interested in the probability that candidate A is strictly
ahead of candidate B when counting the votes. However, we could also ask how likely it is that
candidate A is ahead (but not necessarily strictly, i.e., ties are allowed) of candidate B throughout
the counting of the votes. In this case the probability is 2m−µ+1

m+1 , as can be shown by similar
methods. Visualizing these vote sequences as lattice paths, we obtain lattice paths that never go
below the x-axis.

If we now consider the special case that the election as such also ends in a tie between
candidate A and B, we obtain lattice paths with steps (1, 1) and (1,−1) from (0, 0) to (2n, 0) that
never go below the x-axis. These class of lattice paths is called Dyck paths. These paths will
reappear at many places throughout this thesis.

This introductory example of the ballot problem already shows some of the reasons why lattice
paths are useful and interesting. They turned out to be very helpful in various mathematical
models (e.g., for vote counting in an election, as in the ballot problem example). In physics,
lattice paths appear in models of wetting and melting processes [35] or Brownian motion [57].
In computer science lattice paths are used in the analysis of algorithms, e.g. shellsort [49] or
dual-pivot-quicksort [5]. In chemistry lattice paths are used to describe certain polymers or
DNA-denaturation as well as DNA-unzipping, as can be seen in [58, 66, 45]. Furthermore, lattice
paths can also be used to describe birth-death-processes, see for example [36].

Lattice paths also stand in bijection with numerous other combinatorial objects (for example,
the permutations from André’s proof). Dyck paths in particular stand in bijection with numerous
combinatorial objects. In his book [71] Stanley lists over 200 bijections between objects counted by
the Catalan numbers (listed as A000108 in the OEIS [63]), Dyck paths of length 2n being one of
them. Other examples include:

• Expressions containing n pairs of correctly matched parentheses.

• Plane rooted trees with n + 1 nodes.

• Different ways a convex (n + 2)-gon can be triangulated.

• Permutations of the set {1, 2, . . . , n} that avoid 321. We say a permutation π avoids 321 if
there is no subsequence xyz of π such that x > y > z (i.e., x, y and z are ordered in the
same way as 321).

• Schröder paths (lattice paths on Z2 with step set {(1, 1), (1,−1), (2, 0)} that never go below
the x-axis) of length 2n where no up-step is immediately followed by a down step. This
is probably not the most famous example of objects counted by the Catalan numbers, but
since this thesis also deals with pattern avoidance in lattice paths in Chapter 4, it is listed
here as some kind of preview.

1.2 what is a lattice path?

In the historical introduction we have already dealt with lattice paths without properly defining
them. This will be made up for in this section where we will give precise definitions. This section
is mostly based on [54].

In order to define a lattice path, we first need to define a lattice.

4 introduction

Definition 1.2.1. A lattice Λ = (V, E) is a mathematical model of a discrete space. It consists of a set
V ⊆ Rd of vertices and a set E ⊆ V ×V of edges. If two vertices are connected via an edge, we call them
nearest neighbors.

An important subclass of lattices are periodic lattices. A lattice is called periodic if the there are
vectors v1, . . . , vk such that the lattice is mapped to itself under any translation of the form ∑k

j=1 αjvj
where αj ∈ Z for j = 1, . . . , k.

Some examples of lattices can be seen in Figure 3.

Figure 3: Three examples of periodic lattices. From left to right: the Euclidean (or square) lattice Z2, the
triangular lattice and the hexagonal lattice.

The term ”lattice” comes from physics, where lattices are studied in crystallography, solid-state
physics or surface physics. In mathematics and computer science lattices are also called graphs.

A lattice path is exactly what the name suggests: a path on some lattice, taking steps from a
vertex to one of its neighbors. More precisely,

Definition 1.2.2. A n-step lattice path or lattice walk on a lattice Λ = (V, E) from s ∈ V to x ∈ V is a
sequence w = (w0, w1, . . . , wn) of vertices such that

1. w0 = s and wn = x

2. (wi, wi + 1) ∈ E for i = 0, . . . , n− 1

Figure 4: A lattice path

In this thesis we are going to work on the Euclidean lattice Zd. On this lattice, an alternative
definition of lattice paths via the so-called step set can be used.

Definition 1.2.3. An n-step lattice path from s ∈ Zd to x ∈ Zd relative to a step set S is a sequence
w = (w0, w1, . . . , wn) of points in Zd such that

1. w0 = s and wn = x

2. (wi, wi + 1) ∈ S for i = 0, . . . , n− 1

In this definition the set of possible edges is implicitly defined over the set of allowed steps.
Note that the step set is defined globally, thus the lattice has the same structure at each vertex.
The advantage of this definition is its compact form. Unless stated otherwise, we will be using
this definition in this thesis and the underlying lattice will always be Z2.

The step set can be both finite or infinite. Unless stated otherwise, we will only consider finite
step sets in this thesis.

1.2 what is a lattice path? 5

Definition 1.2.4. A lattice path in Z2 is called directed if all its steps have positive first coordinate. A
lattice path is in Z2 called simple if all of its steps are of the form (1, b). These objects are essentially
one-dimensional objects.

Definition 1.2.5. Let w be a directed lattice path in Z. Then we define the following parameters:

• The first entry ui of a step is called its length. The length of a walk w, denoted by |w| is the sum
of the lengths of all its steps, i.e. |w| = u1 + · · ·+ um. If the length of a certain class of walks is
always even, we defined the semilength of a walk to be half of its length.

• The size of a walk is defined to be the number of its steps. Length and size of a walk do not always
coincide. Only for simple lattice paths length and size are the same.

• The final altitude of a walk w, denoted by alt(w) is the sum of the altitudes of all steps, i.e. alt(w) =
v1 + · · ·+ vm. Thus, a walk starting in (0, 0) terminates in (|w|, alt(w)).

Definition 1.2.6. For some application it is useful to associate weights to the steps of a lattice path. In this
case, the step set S is coupled with a system of weights G = {wj}j where wj > 0 is the weight associated
to the step sj = (aj, bj) ∈ S . The weight of a path is defined to be the product of the weight of its steps.

Often used choices of weights are:

• Combinatorial paths in the standard sense, where wj = 1 for all steps

• Paths with colored steps, where wj ∈ Z+. The weight wj = k means that there are k possible
ways to color the corresponding step sj.

• Probabilistic models, where ∑j wj = 1. In this model the step sj is chosen with probability
wj ∈ (0, 1] among all steps in the step set.

Example: A famous historical example of a lattice path with weighted steps is the visualization
gambler’s ruin problem. This problem can be stated in the following way:

Two players, Alice and Bob make a sequence of bets. For each bet, Alice wins with probability
p and Bob wins with probability q := 1− p. The loser of a bet has to pay 1 dollar to the winner.
In the beginning, Alice has a dollars and Bob has b dollars. The game ends if one of the players is
broke and the other player has a + b dollars.

This can be visualized as lattice path, illustrating Alice’s finances over time. The path starts
at (0, a), never going below the boundary line y = 0 (Alice runs out of money) and never going
above y = a + b (Alice has won all the money). At each point in time, an up-step is taken with
probability p and a down-step is taken with probability 1− p. The lattice path ends if it hits one
of the boundaries.

In the symmetric case, i.e., if p = q = 1
2 , the probability that Alice wins all the money is a

a+b .

In the asymmetric case, i.e., if p 6= q, the probability that Alice wins all the money is 1−(q/p)a

1−(q/p)a+b .

Definition 1.2.7. Let w be a simple lattice path with step set S = {s1, . . . , sm} with associated weights
G = {w1, . . . , wm}. The step polynomial of w is then defined as

P(u) :=
m

∑
j=1

wju
sj .

For most step sets P is actually a Laurent polynomial in u and not a polynomial in the classical sense.

As we will see in later chapters, when working with generating functions, the step polynomial
is a convenient way to encode the step set. In Chapter 4, we will also see a generalization of the
step polynomial to walks that are not simple.

6 introduction

1.3 important classes of lattice paths

There are several important subclasses of lattice paths. One way to categorize them is by their
step set. This gives rise to the following definitions:

• We have already encountered Dyck paths, which are paths from (0, 0) to (2n, 0) that never go
below the x-axis with step set S = {U,D} = {(1, 1), (1, 1)}. Note that the endpoint (2n, 0)
is always even, because we have to take the same number of up- and down-steps in order to
return to altitude zero. In this case, n is called the semilength of the path. If we drop the
condition on the endpoint or the region the path is not allowed to leave, but still have the
same step set, we say the path has Dyck step set (and analogously for other kinds of paths
defined here).

• If we also allow horizontal steps, we obtain Motzkin paths. More precisely, Motzkin paths
are lattice paths from (0, 0) to (n, 0) that never go below the x-axis and have the step set
S = {U,H,D} = {(1, 1), (1, 0), (1,−1)}.

• A similar concept as Motzkin-paths are Schröder paths, however, their horizontal step is
longer: These are paths from (0, 0) to (2n, 0) that never go below the x-axis and have the
step set S = {U,F,D} = {(1, 1), (2, 0), (1,−1)}.

• Łukasiewicz paths are paths where all step vectors lie in {1} × (N ∪ {−1}). Dyck and
Motzkin paths are a special case of Łukasiewicz paths. However, Schröder paths are not
Łukasiewicz paths.

• Walks, where the step set is a subset of the eight cardinal directions

S ⊆ {(0, 1), (1, 1), (1, 0), (1,−1), (0,−1), (−1,−1), (−1, 0), (−1, 1)},

or more intuitively,
S ⊆ {N, NE, E, SE, S, SW, W, NW}

are called walks with small steps. There are 28 = 256 such step sets. All quarter-plane-walks
with these step sets have been classified according to the algebraic nature of their generating
function in [23].

The above list is, of course, far from complete, but gives a brief overview about important and
often used step sets.

Many applications of lattice paths in models also call for restrictions on either the endpoints
of the lattice path or the region the path is not allowed to leave. This leads us to the following
concepts for directed lattice paths:

• A walk is an unconstrained lattice path.

• A bridge is a lattice path whose endpoint lies on the x-axis.

• A meander is a lattice path that lies in the quarter-plane Z≥0 ×Z≥0. For directed lattice
paths, this is equivalent to lattice paths that never attain negative altitude.

• An excursion is a lattice path that is both a bridge and a meander, i.e., a lattice path that
ends on the x-axis, but never crosses the x-axis.

• An arch is an excursion that stays at strictly positive altitude except at the start and the end
point.

• Lattice paths confined to a strip are lattice paths that never go below altitude g and never
exceed altitude h, i.e., all the lattice points (x, y) along the path fulfill g ≤ y ≤ h. An
example of lattice paths confined to a strip is the gamblers ruin problem, where g = 0 and
h = a + b.

1.3 important classes of lattice paths 7

There are several identities among these objects, for example ”An excursion is a sequence
of arches.” Such identities and decompositions will become of interest and importance when
calculating generating functions for combinatorial objects, as can be seen in Chapter 2. More such
identities as well as generalizations of some of the objects defined above (e.g. generalized arches)
can be found in [12].

ending anywhere ending at 0

W (t, 1) = 1
1−tP (1)

unconstrained

constrained

walks bridges

meanders excursions

B(t) = W0(t) = t
∑c

i=1
u′i(t)
ui(t)

M(t, 1) = 1
1−tP (1)

∏c
i=1(1− ui(t)) E(t) = M0(t) =

(−1)c−1

p−ct

∏c
i=1 ui(t)

on Z

on Z≥0

Figure 5: Walks, bridges, meanders, and excursions. The functions listed below the graphics are the
generating functions of the counting sequences of these objects which were derived in [9].

Other conditions that sometimes will be imposed on lattice paths are self-avoiding lattice paths,
mutually avoiding (non-touching or non-crossing) pairs or tuples of lattice paths or avoidance of
certain patterns (by pattern we mean a consecutive sequence of steps). We will not be dealing
with self-avoiding lattice paths in this thesis, more information on them can be found in [42, 46].
Mutually avoiding pairs of walks will be the main focus of Chapter 3, while Chapter 4 will be
dealing with walks that avoid one or more patterns.

For a good overview about several other conditions that can be imposed on lattice paths,
see [52].

2
M E T H O D S – G E N E R AT I N G F U N C T I O N S A N D A N A LY T I C
C O M B I N AT O R I C S

The main focus of this thesis is the enumeration of certain combinatorial objects, namely lattice
paths. A useful tool for handling such enumeration problems are generating functions. The idea
behind generating functions is to encode combinatorial objects with formal power series. Let x be
a variable. Then an object of size n is encoded by xn. Thus, the number of all objects of size n
corresponds to the coefficient of xn in the power series. Or, as Herbert Wilf very vividly puts it in
his textbook on generating functions [76]:

“A generating function is a clothesline on which we hang up a sequence of numbers for
display.”

H. Wilf. generatingfunctionology, p. 1.

The usage of generating functions turned out to be very fruitful and gave rise to many new
solution strategies, e.g. deriving a functional equation for the generating function instead of
dealing with recurrences which are often hard to solve (this is called the kernel method and will
be explained in more detail in Chapter 4). The rich structure of the ring of generating functions is
also very useful, especially since operations like addition, multiplication or formal derivative of
formal power series also have a combinatorial interpretation.

Furthermore, generating functions also give rise to many interdisciplinary approaches. One
field that turned out to be particularly useful is complex analysis, which can be used for obtaining
asymptotic results for the growth of the coefficients of a series. By interpreting a formal power
series as an analytic function on its disk of convergence one also gains access to the tools
and theorems of complex analysis. This particular branch of combinatorics is called Analytic
Combinatorics. A detailed overview over this field can be found in the book of Flajolet and
Sedgewick [37].

2.1 formal power series and generating functions

In this section we will introduce formal power series and discuss their relation with combinatorial
objects via their generating function. This section is based on [76] as well as [37].

2.1.1 Formal power series

Definition 2.1.1. Let R be a ring with unity. The ring of formal power series over R, denoted by R[[z]]
consists of all formal sums of the form

∑
n≥0

anzn = a0 + a1z + a2z2 + . . . ,

where the coefficients an lie in R. The sum of two formal power series A(z) := ∑n≥0 anzn and B(z) :=
∑n≥0 bnzn is given by

A(z) + B(z) := ∑
n≥0

(an + bn)zn.

The product of two formal power series A(z) and B(z) is given by

A(z) · B(z) =
(

∑
n≥0

anzn

)
·
(

∑
n≥0

anzn

)
= ∑

n≥0

(
n

∑
k=0

akbn−k

)
zn.

This type of product is also called Cauchy product or convolution.

9

10 methods – generating functions and analytic combinatorics

A series
A(z) = ∑

n≥0
anzn ∈ R[[z]]

is (multiplicatively) invertible if and only if its constant coefficient a0 is invertible in R. Suppose
B(z) = ∑n≥0 bnzn is the inverse of A, i.e., A · B = 1, then by comparing coefficients we obtain

b0 =
1
a0

and

bn = − 1
a0

(
n

∑
k=1

akbn−k

)
for n ≥ 1.

These two equations explain why a0 ∈ R∗ is both a necessary and sufficient condition for A to be
invertible.

An important special case is the geometric series

1
1− z

= ∑
n≥0

zn,

which is the inverse of 1− z. The geometric series can be seen as a special case of another
important series, the binomial series

(1 + x)α = ∑
n≥0

(
α

n

)
xn

where (α
n) =

α(α−1)...(α−n+1)
n! . Taking α = −1 and x = −z yields the above geometric series.

Definition 2.1.2. Given the power series A(z) and B(z), where a0 = 0, the composition of A and B is
given by

B(A(z)) = ∑
n≥0

bn A(z)n = ∑
n≥0

cnzn

where the coefficients cn can be computed by expanding the powers of A:

cn = ∑
0≤k≤n,j1+···+jk=n

bkaj1 . . . ajk .

The condition a0 = 0 is important to make sure that the coefficients cn are well defined.

The series I(z) = z is the neutral element of the composition. If R is a field, then A(z) is
invertible under composition if a0 = 0 and a1 is an invertible element in R.

Example 2.1.3. The series

A(z) = ez − 1 = ∑
n≥1

zn

n!

and

B(z) = log(1 + z) = ∑
n≥1

(−1)n+1

n
zn

are inverse under composition.

Definition 2.1.4. Let A(z) = ∑n≥0 anzn be a formal power series. Then

A′(z) := ∑
n≥0

(n + 1)an+1zn

is the formal derivative of A. Sometimes the formal derivative is also denoted by DA(z).

Theorem 2.1.5. The formal derivative satisfies the following properties:

2.1 formal power series and generating functions 11

• Linearity: (A(z) + B(z))′ = A′(z) + B′(z) and (c · A(z))′ = c · A′(z).

• Product rule: (A · B)′ = A′B + AB′.

• If R is commutative, the formal derivative also satisfies the chain rule: A(B(z))′ = A′(B(z)) · B′(z).

Definition 2.1.6. Let A(z) = ∑n≥0 anzn be a formal power series. Then the operator [zn] : R[[z]]→ R
defined as

[zn]A(z) := an

is called the coefficient extractor operator.

Theorem 2.1.7. The coefficient extractor operator fulfills the following properties:

• Linearity: [zn](A(z) + B(z)) = [zn]A(z) + [zn]B(z) and [zn](cA(z)) = c[zn]A(z)

• [zn]A(cz) = cn[zn]A(z)

• [zn]z`A(z) = [zn−`]A(z)

The following formula often turns out to be helpful for coefficient extraction.

Theorem 2.1.8. Lagrange inversion formula. The coefficients of an inverse function and its powers are
determined by the coefficients of powers of the direct function: let φ(T) be a formal power series in T with
φ(0) = 1. Then there is a unique formal power series T = T(z) that satisfies z = T

φ(T) . Then one has for
any k ∈N:

[zn]T(z) =
1
n
[Tn−1]φ(T)n, [zn]T(z)k =

k
n
[Tn−k]φ(T)n. (1)

Furthermore, if F is any formal power series in T the value F(T(z)) when expanded into a power series in
z satisfies

[zn]F(T(z)) =
1
n
[Tn−1]F′(T)φ(T)n. (2)

Proof. A proof for 2 can be found in [76]. Note that 1 is just a special case of 2 with F(T) = T or
F(T) = Tk respectively.

If R is a field of characteristic zero, we furthermore have the following relation between the formal
derivative and the coefficient extractor operator:

an =
1
n!
(Dn A(z))|z=0

where the notation f (x)|x=a stands for the evaluation of the function f at x = a.

When viewing formal power series as a complex-valued function (as will be done in Section 2.2
when dealing with coefficient asymptotics and singularity analysis), the following definition is of
importance:

Definition 2.1.9. Let A(z) = ∑n≥0 anzn be a power series. The radius of convergence is defined as

R := sup{z : ∑
n≥0

anzn converges}.

For |z| < R we have that anzn → 0 (as n→ ∞) and the series converges. Similarly, for |z| > R we have
that anzn → ∞ and the series diverges. For |z| = R both convergence and divergence is possible, however,
there has to be at least one point on the circle of convergence such that the series diverges.

Sometimes it is also useful to allow (finitely many) negative powers in a formal power series.
This leads to the following

12 methods – generating functions and analytic combinatorics

Definition 2.1.10. A formal Laurent series is a series of the form

A(z) = ∑
n≥n0

anzn

for some n0 ∈ Z

The condition that there are only finitely many negative powers is important for the multi-
plication of two formal Laurent series to be well defined. It can be defined in a similar fashion
to the Cauchy-Product. More precisely, if A(z) = ∑n≥n0

anzn and B(z) = ∑n≥m0
bnzn then the

coefficient zn of the product of these series is

cn = ∑
i∈Z

aibn−i.

In particular, cn = 0 if n < n0 + m0.

Definition 2.1.11. For a nonzero Laurent series A(z), the order of A, denoted by ord(A) is the smallest
integer n such that an 6= 0.

Definition 2.1.12. If a Laurent series only has finitely many nonzero coefficients it is called a Laurent
polynomial. The largest integer n such that an 6= 0 is called its degree, denoted by deg(A).

Definition 2.1.13. Let A(z) := ∑n≥n0
anzn be a formal Laurent series. Then the negative part operator

{z<0}A(z) is defined as

{z<0}A(z) :=
−1

∑
n=n0

anzn.

This sum is zero if ord(A) > −1. Similarly we define {z>0}A(z), {z≤0}A(z) and {z≥0}A(z).

These operators fulfill similar properties as the coefficient extraction operator, e.g., linearity.

Definition 2.1.14. Let K be a field of characteristic zero. Then formal power series in K[[z]] can be
classified in the following way:

• A formal power series F(z) ∈ K[[z]] is called rational if there are polynomials P(z), Q(z) ∈ K[z]
(with Q(z) 6= 0) such that

F(z) =
P(z)
Q(z)

.

• A formal power series F(z) ∈ K[[z]] is called algebraic if there are polynomials P0(z), . . . Pd(z) ∈
K[z] (with Pd(z) 6= 0) such that F fulfills the equation

Pd(z)F(z)d + Pd−1(z)F(z)d−1 + · · ·+ P1(z)F(z) + P0(z) = 0.

The smallest positive integer d for which such an equation is satisfied by F is called the degree of F.

• A formal power series F(z) ∈ K[[z]] is called D-finite (or holonomic) if there are polynomials
P0(z), . . . Pd(z) ∈ K[z] (with Pd(z) 6= 0) such that F satisfies a linear differential equation with
polynomial coefficients

Pd(z)F(d) + Pd−1(z)F(d−1) + · · ·+ P1F′(z) + P0(z)F = 0,

where F(j) = dj F
dzj .

It is easy to see from these definitions that each rational power series is also algebraic and
each algebraic power series is also D-finite. We have the following hierarchy (a proof for this can
be found in [37] p. 749):

2.1 formal power series and generating functions 13

D-finite

algebraic

OO

rational

OO

This hierarchy is not exhaustive, there are various other classes that could be added, but these
three are the ones most useful in enumerative combinatorics (for several other classes as well
as their definition see for example [78]). This classification is of particular interest in computer
algebra, since there exist efficient algorithms for problems within these specific classes.

Example 2.1.15. Rational, algebraic and holonomic series:

• The geometric series G(z) = 1
1−z is rational since it can be written as P(z)

Q(z) where P(z) = 1
and Q(z) = 1− z. It is also algebraic since (1− z)G(z) = 1 (this already illustrates the
idea of the proof why every rational series is also algebraic) and D-finite since it fulfills
(1− z)F′(z)− F(z) = 0.

• The generating function for Dyck paths D(z) = 1−
√

1−4z
2 (which we will encounter several

times in this thesis) is algebraic, since it fulfills the polynomial equation zD2 − D + 1 = 0.

• The power series cos(z) = 1− z2

2! +
z4

4! −+ . . . is D-finite since it satisfies cos′′+ cos = 0.
However, it is neither algebraic nor rational (without proof). Similarly, the power series
sin(z) = z− z3

3! +
z5

5! −+ . . . is D-finite.

Another reason why holonomic functions are of interest are their rich closure properties, as
can be seen in the following theorem.

Theorem 2.1.16. The class of holonomic functions in one variable is closed under the following operations:

• sum

• product

• differentiation (∂z)

• indefinite integration (
∫

. . . dz)

• algebraic substitution (z→ a(z) for some algebraic function a(z))

Proof. See [37] p. 749.

2.1.2 Combinatorial classes and ordinary generating functions

In combinatorics, mathematicians are usually interested in counting objects with certain properties
of a given size, e.g., all possible ways to write n as a sum of positive integers, all Dyck paths of
semilength n or all words of size n over a given alphabet. Formalizing such problems leads us to
the notion of combinatorial classes.

Definition 2.1.17. A combinatorial class, or simply a class, is a finite or denumerable set C and a
function w : C →N, called the size function, such that all sets

w−1({n}) = {c ∈ C : w(c) = n} n ∈N

are finite, i.e., the number of elements of a given size is finite. An element c ∈ C is called combinatorial
object and w(c) is called the size of c. Sometimes we will also write |c| for the size (or |c|C if the underlying
class is not clear from context).

14 methods – generating functions and analytic combinatorics

The enumeration problem is to determine the number of objects of a given size, or, phrased
differently, to determine the numbers

cn := |w−1({n})|

for all n ∈N. Writing Cn for the sets w−1({n}) we obtain a decomposition of C into disjoint sets.

Definition 2.1.18. The counting sequence of a combinatorial class C is defined as the sequence of integers
(cn)n≥0. This sequence can be written as the coefficients of a formal power series

C(z) = ∑
n≥0

cnzn.

This series is called the generating function of the class C. We say that the variable z marks (or encodes)
the size in the generating function.

As we will see later, the usage of generating functions has many benefits. Many combinatorial
constructions directly translate to generating functions. Furthermore, viewing a formal power
series as an analytic function and using theorems from complex analysis turns out to be a
powerful tool for the analysis of the asymptotic growth of the counting sequence.

Definition 2.1.19. Two combinatorial structures A and B are called (combinatorially) isomorphic, written
A ∼= B if their counting sequences are identical. This is equivalent to the existence of a bijection from A to
B that preserves size.

Such a bijection is not always easy to find, despite its need to exist. Some bijections between
isomorphic structures can be constructed in a very straightforward manner, others however are
very complicated to construct.

Example 2.1.20. In Section 1.1 we mentioned that Dyck paths of size 2n and planar rooted trees
with n + 1 nodes are counted by the same sequence. Thus, there has to be a bijection between
these two objects. This bijection is easy to construct: Start at the root of the tree then traverse the
nodes of the tree in the order they are discovered by a depth first search. Whenever a new node is
discovered, take an up-step. Whenever we have to backtrace to an already discovered node, take
a down-step. Or, phrased more visually, but less precise: draw a line around the tree, passing
each inner node twice, whenever we pass a node from below, take an up-step, whenever we pass
it from above take a down-step. This construction can be seen in Figure 6.

Since each inner node is passed twice it is clear that the resulting path has length 2n. It is also
clear that it has to end at the x-axis, but never goes below the x-axis, since we start and finish in
the root and the root has no parent.

The inverse mapping is constructed similarly: an up-step means we discover a new node as a
child of the current node, a down step means we go back to the current node’s parent.

Figure 6: The bijection between planar rooted trees with n + 1 nodes and Dyck paths of size 2n

It is obvious from the definition, but important to note that two isomorphic structures have
the same generating function. Sometimes, the fact that two structures are isomorphic is only
known because they have the same generating function, an explicit construction of the bijection
however is unknown.

2.1 formal power series and generating functions 15

Definition 2.1.21. There are two special classes which often appear as building blocks for more complicated
classes. The first one is the empty class E , it consists only of one element of size zero (namely the empty
set, hence the name even if the class itself is not empty). Its generating function is given by E(z) = 1. The
second one is the atomic class Z , which consists of one element of size one, i.e., an ”atom”. Its generating
function is Z(z) = z. It can be viewed as the smallest building block which cannot be decomposed into
smaller parts, hence the name.

There are several constructions in which combinatorial structures can be glued together to
create a new structure, some of the most important ones listed below. In the following, A,B, C
are classes, a, b, c their objects, (an), (bn), (cn) their counting sequences and A(z), B(z), C(z) their
generating functions.

• Disjoint union: Let A and B be two disjoint classes. Their union (or sum) C = A∪̇B
represents a new class with size defined as |c|C = |c|A if c ∈ A and |c|C = |c|B if c ∈ B.
This translates to cn = an + bn. Thus, the generating function of C is

C(z) = A(z) + B(z) = ∑
n≥0

(an + bn)zn.

• Cartesian product: Let A and B be two classes. Then their Cartesian product is defined as

C = A×B = {c = (a, b) : a ∈ A, b ∈ B},
i.e., the set of ordered pairs of objects from A and B. For an object c = (a, b) ∈ C the size is
defined as

|c|C = |a|A + |b|B .

If we want to count all objects of size n in C, we have to consider all pairs of objects in A
and B whose sizes sum up to n in the manner of a Cauchy product. Hence

cn =
n

∑
k=0

akbn−k

which translates to generating functions as

C(z) = A(z) · B(z) = ∑
n≥0

(
n

∑
k=0

akbn−k

)
zn.

Note that the empty class is the neutral element with respect to Cartesian product, i.e.,

A× E ∼= E ×A ∼= A.

• Sequence: Using sum and product, we can define the sequence class C = SEQ(A) as

SEQ(A) := E +A+A×A+A×A×A+

This construction only makes sense if A contains no object of size zero. Otherwise the
union would contain infinitely many objects of size zero, which contradicts the condition
that the number of elements of a given size has to be finite for a combinatorial class. Using
the knowledge about the generating functions for sum and product, we obtain for the
generating functions of sequences

C(z) = 1 + A(z) + A(z)2 + A(z)3 + · · · = 1
1− A(z)

.

• Multiset: If we ”forget about the order” in a sequence of objects, we obtain the multiset class
C = SET(A). Again, we have to assume that the class A contains no object of size zero for
this construction to make sense. For the generating function we have that

C(z) = exp
(

A(z) +
A(z2)

2
+

A(z3)

3
+ . . .

)
.

16 methods – generating functions and analytic combinatorics

The usefulness of these constructions are probably best seen in examples.

Example 2.1.22. Unrestricted paths with Dyck step set. LetW be the class of unrestricted lattice
paths on Z2 with step set S = {(1, 1), (1,−1)}. We want to compute how many such paths of
length n there are. A very natural way to solve this problem is to use a step-by-step construction,
as illustrated in figure 7.

Figure 7: The step-by-step construction: The two steps marked in red are possible extensions of a lattice
path of length n (marked in blue) to a lattice path of length n + 1.

A path of length n + 1 is obtained by appending a step at the end of a path of length n. This
is indeed always a path lying inW , since there are no restrictions on the path. This gives us the
following recurrence relation

wn+1 = 2wn,

since there are two possible steps that can be appended in the end, an up-step or a down-step.
Using w0 = 1 (the empty path has length 0) we obtain wn = 2n.

Alternatively, we can solve this problem using generating functions. A walk inW is either the
empty walk or a shorter walk with an up-step (1,1) or a down-step (1,-1) appended in the end. It
is easy to check that these three classes of objects (the empty walk, walks ending with an up-step
and walks ending with a down step) involved in the construction are disjoint. This gives us

W = E +W ×ZU +W ×ZD, (3)

where ZU denotes the class that consists only of one up-step and ZD is defined analogously. Both
an up-step and a down-step have size one and since we do not distinguish between up- and
down-steps, we have ZU ∼ ZD ∼ Z . Hence, when translate the step-by-step construction (3) to
the world of generating functions we obtain:

W(z) = 1 + zW(z) + zW(z) = 1 + 2zW(z). (4)

Solving this equation for W(z) we obtain

W(z) =
1

1− 2z
= ∑

k≥0
2kzk

from which we can easily read off the coefficients wn and obtain that the number of unrestricted
paths with step set S of length n is

wn = [zn]W(z) = 2n.

At first glance, the generating function approach might look much more complicated than
the direct approach via recurrences. However, the recurrence approach often fails where the
generating function approach still turns out to be fruitful.

Example 2.1.23. Let D be the class of Dyck paths. In this case, a step-by-step construction does
not work as easily as in the previous example, since if the path is on the x-axis, it is not allowed
to take a down step. However, we can solve this problem by decomposing a Dyck path at its
first return to the x-axis, as illustrated in Figure 8 (this is called a first passage decomposition, an

2.1 formal power series and generating functions 17

argument often used in lattice path combinatorics). A Dyck path is either empty or consists of an
up-step, a path from (1, 1) to (2m− 1, 1) (0 ≤ m ≤ n) which never goes below the line y = 1, a
down step from (2m− 1, 1) to (2m, 0) (the first return to the x-axis), and a path from (2m, 0) to
(2n, 0) which never goes below the x-axis. By a simple shift argument, we see that both the path
from (1, 1) to (2m− 1, 1) as well as the path from (2m, 0) to (2n, 0) themselves are Dyck-paths.

Figure 8: A Dyck path decomposed into two Dyck paths (blue) as well as an up- and a down-step (red) at its
first return to the x-axis.

This gives us the following decomposition:

D = E +ZU ×D ×ZD ×D. (5)

Since we do not distinguish between up- and down-steps and both these classes consist of one
object of size one we have ZU ∼ ZD ∼ Z . Translating equation (5) into generating functions we
obtain:

D(z) = 1 + z2D(z)2. (6)

This equation can be solved with the quadratic formula and we obtain

D(z) =
1−
√

1− 4z2

2z2 .

The solution with +
√

1− 4z2 can be discarded, since it is not a power series.
From this generating function we already see that there are no Dyck paths of odd length. So,

instead of counting Dyck paths of length 2n we can count them by their semilength, i.e., half their
length. Using the binomial series and property 3 from Theorem 2.1.7 we obtain for the numbers
dn which count Dyck paths of length 2n (resp. semilength n):

dn := [z2n]D(z) = [zn]
1−
√

1− 4z
2z

= −1
2
·
(1

2
n + 1

)
(−4)n+1.

After some elementary manipulations of the binomial coefficients this becomes

dn =
1

n + 1

(
2n
n

)
= Cn,

the n-th Catalan number.

Remark: We will later see how a functional equation for the generating function of Dyck paths
can still be derived and solved with a step-by-step construction when introducing the kernel
method in Chapter 4.

2.1.3 Multivariate generating functions

Often, combinatorialists are not only interested in counting certain objects of size n, but are also
in keeping track of some additional parameters. To name some lattice path examples, one might
ask how many walks with Dyck step set of length n end at final altitude k. Or how many Dyck
paths of semilength n there are that return to altitude 0 exactly k times? Such questions can be
tackled by generalizing the concept of generating functions to multivariate generating functions.

18 methods – generating functions and analytic combinatorics

In the case of (univariate) functions, the coefficients and powers of the variable z kept track of
how many objects of size n there are. The idea is now to introduce a second (or third, fourth, ...)
variable that keeps track of the parameters we are interested in.

More precisely, consider a sequence of numbers (fn,k) depending on two integer-valued
indices n and k. Usually, fn,k is the number of objects φ in a combinatorial class F such that their
size |φ| is equal to n and some parameter χ(φ) is equal to k. This sequence can be encoded with
the help of a bivariate generating function, consisting of a primary variable z corresponding to
the size and a secondary variable u corresponding to the value of the parameter. In the case of
several parameters, one has several secondary variables.

Furthermore, multivariate generating functions help us answer questions about random
combinatorial structures, like ”What does a large random object look like?”. With the help of
multivariate generating functions we gain easy access to mean and variance – or even higher
moments – of parameters of combinatorial structures. This allows a precise characterization of
large random structures. How this can be done will be the subject of the next subsection.

Definition 2.1.24. The bivariate generating function of a double indexed sequence or array (fn,k) is the
formal power series in two variables defined by

f (z, u) := ∑
n,k

fn,kznuk.

Furthermore we define the horizontal generating functions fn(u) to be

fn(u) := ∑
k

fn,kuk = [zn] f (z, u)

and the vertical generating functions f 〈k〉(z) as

f 〈k〉(z) := ∑
n

fn,kzn = [uk] f (z, u).

Remark: The terminology of the vertical and horizontal generating function becomes more
intuitive if we imagine the elements (fn,k) arranged as an infinite matrix, where fn,k is placed
in row n and column k. Then the horizontal and the vertical generating functions appear as
generating functions of the rows or columns respectively. Naturally one has

f (z, u) = ∑
k

uk f 〈k〉(z) = ∑
n

fn(u)zn.

Definition 2.1.25. Let A be a combinatorial class. A parameter is a function χ : A →N that associates
to any object a ∈ A an integer value χ(a). The sequence

an.k = |{a ∈ A : |a| = n, χ(a) = k}|

is called the counting sequence of the pair (A, χ). The bivariate generating function of A and χ is
defined as

A(z, u) := ∑
n,k≥0

an,kznuk.

One says that the variable z marks size and the variable u marks the parameter χ.

Remark: A parameter can also be defined as a function χ : A → Z which gives us a formal
Laurent series (in u) as generating function. This is useful for parameters that can attain negative
values like for example final altitude of an unrestricted walk.

Naturally we have that A(z, 1) = A(z) where A(z) is the generating function associated with
the structure A. Similarly we have

an = [zn]A(z, 1) = ∑
k

an,k.

2.1 formal power series and generating functions 19

A word of caution however: In general, we have to be careful when inserting special values (like
u = 1 here) into formal power series. These series are not always convergent or well defined, so
we have to ensure that all operations are legitimate.

Trivariate or multivariate generating functions are defined in a similar manner as bivariate
generating functions (Definition 2.1.24). Combinatorial classes with several parameters are
defined analogously to combinatorial classes with one parameter (Definition 2.1.25). The following
example illustrates the usage of multivariate generating functions.

Example 2.1.26. Unrestricted walks with Dyck step set and final altitude k. For counting unre-
stricted walks with final altitude k we will use a similar approach as in Example 2.1.22 where
we counted the same objects without paying any attention to final altitude. This time, we will
introduce a new variable that marks altitude in addition to the variable marking size. Using a
step-by-step construction we see that a walk is either the empty walk or a shorter walk with an
up- or down-step attached in the end. This gives us the following equation for the class W of
walks:

W = E +W ×ZU +W ×ZD.

This time however we have to distinguish between up- and down-steps: while both contribute z1

to size, an up-step contributes u1 to altitude and a down-step contributes u−1 to altitude. This
gives us the following bivariate generating function for W(z, u):

W(z, u) = 1 + W(z, u) · zu + W(z, u) · zu−1.

Solving it for W we obtain

W(z, u) =
1

1− z(u + u−1)
. (7)

In order to read off the coefficient [znuk] we first expand W into a geometric series and then use
the binomial theorem to expand the powers of u and obtain

W(z, u) = ∑
n≥0

zn(u + u−1)n = ∑
n≥0

zn
n

∑
j=0

(
n
j

)
un−j(u−1)j = ∑

n≥0
zn

n

∑
j=0

(
n
j

)
un−2j.

Making the substitution n− 2j =: k we obtain

W(z, u) = ∑
n≥0

n

∑
k=−n

(
n

n−k
2

)
znuk.

Now we can easily read off the [znuk]-th coefficient and obtain that the number of unrestricted
walks of length n and final altitude k is

wn,k = [znuk]W(z, u) =
(

n
n−k

2

)
.

Plugging in u = 1 into 7 we obtain

W(z) = W(z, 1) =
1

1− 2z

as expected from the result we had earlier in Example 2.1.22.

2.1.4 Probability generating functions

As already mentioned in the previous subsection, combinatorialists are often interested in the
mean, variance or distribution of a certain parameter. This leads us to the notion of probability
generating functions.

20 methods – generating functions and analytic combinatorics

Definition 2.1.27. Let X be a discrete random variable taking values in N. Then the probability
generating function of X is defined as

P(u) = E(uX) = ∑
k≥0

p(k)uk (8)

where
p(k) := P(X = k).

Since ∑∞
k=0 p(k) = 1 we immediately obtain that

P(1) = 1

for any probability generating function P.

Let us recall several important definitions from probability theory:

Definition 2.1.28. Let X be a discrete random variable.

• The expected value or mean of X is the probability-weighted average over all its possible values, i.e.

E[X] = ∑ P(X = x) · x.

• The variance of X is the expected value of the squared deviation from the mean, i.e.

V[X] = E[(X−E[X])2] = E[X2]−E[X]2.

• The r-th moment of X is defined as

mr(X) = E[Xr].

The mean, the variance, and higher moments of a random variable can be easily computed
from its associated probability generating function as the following theorem shows.

Theorem 2.1.29. Let X be a discrete random variable taking values in N and P its associated probability
generating function. Then the mean, the variance, and the r-th moment of X can be computed from the
probability generating function in the following way:

• E[X] = P′(1).

• V[X] = P′′(1) + P′(1)− (P′(1))2.

• mr(X) = (uDu)rP(u)|u=1.

Proof. For P(u) = ∑k≥0 pkuk we have that P′(x) = ∑k≥0 kpkuk thus P′(1) = ∑k≥0 kpk. On the
other hand EX = ∑k≥0 kpk. The other two parts of the theorem follow similarly.

Probability generating functions from bivariate generating functions: Given a combinatorial class A
with parameter χ, we have that

PAn(χ = k) =
an,k

an
=

an,k

∑k an,k
. (9)

Let A(z, u) be the bivariate generating function of the combinatorial class A with parameter
χ. Then from (9) and the definition of probability generating functions (8) we obtain that the
probability generating function of χ over An is given by

∑
k

PAn(χ = k)uk =
[zn]A(z, u)
[zn]A(z, 1)

. (10)

2.1 formal power series and generating functions 21

Corollary 2.1.30. Mean, variance, and moments from BGFs. Let A(z, u) be a bivariate generating
function of a combinatorial structure A with parameter χ. Then the expected value, variance, and moments
of the parameter in an object of size n are given by

EAn [χ] =
[zn]∂u A(z, u)|u=1

[zn]A(z, 1)
,

VAn [χ] =
[zn]∂2

u A(z, u)|u=1

[zn]A(z, 1)
+

[zn]∂u A(z, u)|u=1

[zn]A(z, 1)
−
(
[zn]∂u A(z, u)|u=1

[zn]A(z, 1)

)2

,

EAn [χ
r] =

[zn](u∂u)r A(z, u)|u=1

[zn]A(z, 1)
.

Proof. Follows immediately from Equation (10) and Theorem 2.1.29.

Example 2.1.31. Returns to the x-axis in Dyck paths. The number of returns to the x-axis in Dyck
paths as well as several other parameters (like peaks or valleys, i.e. consecutive UD- or DU-steps)
related to Dyck paths have been studied in [27]. Let D be the class of Dyck-paths of semilength n
with a parameter χ that counts how many times the Dyck path touches the x-axis. Furthermore,
let D(z, u) be its generating function where z marks semilength and u marks returns.

Using the decompositions ”a Dyck path is a sequence of arches and at the end of each arch
there is a return” and ”an arch is a Dyck path only touching the x-axis at its very end, it can be
decomposed into an up-step, a Dyck path, and a down-step” we obtain the following equation
for the generating function

D(z, u) =
1

1− zuD(z)
.

Note that since we are considering semilength, the pair of the up-step and the down-step at the
beginning and end of an arch contributes only z1 to semilength. We already know that

D(z) = D(z, 1) =
1−
√

1− 4z
2z

from Example 2.1.23 (again, note that z now encodes semilength where it previously encoded
length, hence the occurrence of z instead of z2). Plugging in we obtain

D(z, u) =
2

2− u + u
√

1− 4z
.

In order to compute the expected value of returns we need

∂uD(z, u)|u=1 =
1− 3z + (z− 1)

√
1− 4z

2z2 .

Reading off coefficients we obtain

[zn]∂uD(z, u)|u=1 =
1

n + 2

(
2n + 2
n + 1

)
− 1

n + 1

(
2n
n

)
=

3n
(n + 1)(n + 2)

(
2n
n

)
.

Thus we have that

EDn [χ] =
[zn]∂uD(z, u)|u=1

[zn]D(z, 1)
=

3n
n + 2

.

Some important probability distributions are:

• A random variable X which takes value 1 with probability p and value 0 with probability
1− p =: q is called Bernoulli distributed. We denote this by X ∼ B(p). An experiment which
is described by a Bernoulli distributed random variable is called a Bernoulli trial. From this
fundamental distribution many other discrete probability distributions are derived.

22 methods – generating functions and analytic combinatorics

• The binomial distribution describes the number of successes in a sequence of n independent
and identically distributed Bernoulli trials. Let X be the random variable counting the
number of successes in n trials and the probability of success in each trial be denoted by p.
Then its probability mass function (PMF) is given by

P(X = k) =
(

n
k

)
pk(1− p)n−k

for 0 ≤ k ≤ n. This is denoted by X ∼ B(n, p).

• The geometric distribution describes the number of failures before the first success in
a (potentially arbitrarily long) sequence of Bernoulli trials. Let X be a random variable
counting this number of failures. Then

P(X = k) = (1− p)k p

and we write X ∼ Geom(p).

• The negative binomial distribution describes the number of failures in a sequence of inde-
pendent and identically distributed Bernoulli trials before a specified number of successes
(called r) occurs. Let X be the random variable counting the number of failures. Then

P(X = k) =
(

k + r− 1
k

)
· (1− p)k pr.

We denote this by X ∼ NB(r, p). The geometric distribution is a special case of the negative
binomial distribution where r = 1.

If the support of a distribution is not discrete we enter the realm of continuous probability
distributions. Instead of being characterized by their probability mass function they are char-
acterized by their cumulative distribution function (i.e. the function f (x) which describes the
probability that the random variable X will take a value less than or equal to x). If their mass
function exists, we call it probability density function (PDF).

• The Gaussian or normal distribution is the probably most famous and most often appearing
probability distribution. It is given by the density function

f (x) =
1√

2πσ2
e−

(x−µ)2

2σ2 ,

where the parameter µ is its expected value and σ is its standard deviation. A Gaussian
distributed normal variable X is denoted by X ∼ N (µ, σ). One reason why the normal
distribution appears in many places is the central limit theorem, which states that the
normalized sum of independent and identically distributed random variables with finite
variance tends to normal distribution (even if the original random variables were not
normally distributed).

• The half-normal distribution is a probability distribution closely related to the normal distri-
bution. Let Y be a normal distributed variable with mean µ = 0. Then X := |Y| follows
a half-normal distribution. We denote this by X ∼ H(σ). The density function of a
half-normal distribution is given by

f (x) =
√

2√
πσ2

e−
x2

2σ2 .

• The Rayleigh distribution with parameter σ is obtained by considering the Euclidean norm
of two independent normally distributed variables Y1, Y2 with Yi ∼ N (0, σ2). Then the

random variable X :=
√

Y2
1 + Y2

2 is Rayleigh distributed, denoted by X ∼ R(σ). Its density
function is given by

f (x) =
x

σ2 e−
x2

2σ2 .

2.2 coefficient asymptotics 23

Tables 1 and 2 summarize the results:

Distribution Bernoulli binomial geometric negative binomial

Plot
2 3 4 5

Support k ∈ {0, 1} k ∈ {0, 1, . . . , n} k ∈N k ∈N

PMF

{
p if k = 1
1− p if k = 0

(n
k)pk(1− p)n−k (1− p)k p (k+r−1

k) · (1− p)k pr

Mean p np 1−p
p

r(1−p)
p

Variance p(1− p) np(1− p) 1−p
p2

r(1−p)
p2

Table 1: An overview over some important discrete distributions: Bernoulli, binomial, geometric, and
negative binomial. For the graphics, the values p = 1

4 , n = 40 and r = 3 were used.

Distribution Gaussian half-normal Rayleigh

Plot
6 7 8

Support x ∈ R x ∈ R≥0 x ∈ R≥0

PDF f (x) = 1√
2πσ2 e−

(x−µ)2

2σ2 f (x) =
√

2√
πσ2 e−

x2

2σ2 f (x) = x
σ2 e−

x2

2σ2

Mean µ σ
√

2√
π

σ
√

π√
2

Variance σ2 σ2 (1− 2
π

)
σ2 (2− π

2
)

Table 2: An overview over some important continuous distributions: Gaussian, half-normal, and Rayleigh.
For the graphics, the values µ = 0 and σ = 1 were used.

2.2 coefficient asymptotics

Often combinatorialists are not only interested in counting the exact numbers of certain combina-
torial objects of size n, but also in giving an estimate on how fast these numbers grow as n grows
large. This leads us to coefficient asymptotics. This section is based on the book [37].

2.2.1 Preliminaries: Asymptotic notation and complex analysis

Definition 2.2.1. Asymptotic notation. Let S be a set on which the notion of neighborhoods exists and
x0 ∈ S. Let f and g be two functions f , g : S \ {x0} → R or C.

• O-notation: Define

f (x) = O(g(x)) for x→ x0

24 methods – generating functions and analytic combinatorics

if the quotient f (x)
g(x) stays bounded as x → x0. This is equivalent to the existence of a neighborhood

U of x0 and a constant c > 0 such that

| f (x)| ≤ c|g(x)|, for all x ∈ U \ {x0}.

• o-notation: Define
f (x) = o(g(x)) for x → x0

if the quotient f (x)
g(x) tends to zero as x → x0. In other words, for all ε > 0 there exists a neighborhood

Uε of x0 such that
| f (x)| ≤ ε|g(x)|, for all x ∈ Uε \ {x0}.

• ∼-notation: Define
f (x) ∼ (g(x)) for x → x0

if f (x)
g(x) = 1 as x → x0. One says that f is asymptotically equivalent to g (for x tends to x0) if

this holds. The relation ∼ is indeed an equivalence relation which can easily be verified.

In most cases, we will be using these notations for x0 = ∞.

Example 2.2.2. In Example 2.1.31 we computed that the average number of returns of a Dyck
path of semilength n to the x-axis is 3n

n+2 . For n → ∞ this number asymptotically behaves like
3n

n+2 ∼ 3.

If the coefficients of a formal power series are explicitly known and consist of expressions
involving factorials and binomial coefficients (as the sizes of combinatorial objects often do) the
following formula often turns out to be helpful for analyzing their growth.

Theorem 2.2.3. Stirling’s formula. For x→ ∞ one has

Γ(x + 1) ∼
√

2πx
(x

e

)x

where

Γ(x) :=
∫ ∞

0
e−ttx−1dt

is the Gamma function, an extension of the factorial to non-integer arguments such that Γ(n + 1) = n!.
More precisely

Γ(x + 1) ∼
√

2πx
(x

e

)x
(

1 +
1

12x
+

1
288x2 −

139
51840x3 +O

(
1
x4

))
.

Proof. Five different proofs can be found in [37] (p. 407, p. 410, p. 555, p. 760, and p. 766).

Example 2.2.4. In Example 2.1.23 we computed that the number of Dyck paths of semilength n is
given by the Catalan number

Cn =
1

n + 1

(
2n
n

)
=

(2n)!
(n + 1)(n!)2 .

Applying Stirling’s formula gives us after some cancellations that the Catalan numbers Cn
asymptotically behave like

Cn ∼
4n
√

πn3
.

2.2 coefficient asymptotics 25

If the coefficients of a generating function are explicitly known, it is easier to analyze the
asymptotic growth of its coefficients, as seen in the example about the asymptotic behavior of
the Catalan numbers or the number of returns to the x-axis in Dyck paths. However, sometimes
obtaining explicit expressions for coefficients is very hard or even impossible. In such cases
however it is sometimes still possible to obtain statements about the asymptotic growth with the
help of singularity analysis. The fact that the coefficients need not be explicitly known to obtain
information about their asymptotics is one of the main advantages of singularity analysis.

When doing singularity analysis we are going to examine generating functions from the
viewpoint of complex analysis. More specifically, we will be interested in their singularities,
since they provide information about the growth of the coefficients. Analyzing singularities also
appears in many other fields of mathematics. To name a famous example, Euler [32] recognized
the fact that the Riemann zeta function ζ(s) becomes infinite (and thus has a singularity) at s = 1
implies the existence of infinitely many prime numbers.

First, let us recall some important theorems from complex analysis. In the following, we will
assume that all paths are piecewise continuously differentiable and loops are oriented positively.

Theorem 2.2.5 (Null Integral Property). Let f be analytic in Ω and let γ be a simple loop in Ω. Then
∫

γ
f (z)dz = 0.

For f meromorphic, we have a similar result. Curve integrals along a positively oriented
simple loop only depend on the poles and their residues enclosed by the loop. The next theorem
makes this more precise.

Theorem 2.2.6 (Cauchy’s residue theorem). Let h(z) be a meromorphic function in the region Ω.
Furthermore, let γ pe a positively oriented simple loop in Ω along which h is analytic. Then

1
2iπ

∫

γ
h(z)dz = ∑

s
Ress(h(z))

where the sum runs over all poles s of h(z) in the region enclosed by γ.

Theorem 2.2.7 (Cauchy’s integral formula). If f is analytic in Ω, z0 ∈ Ω, and γ is a simple loop in Ω
encircling z0 one has

f (z0) =
1

2iπ

∫

γ
f (ζ)

dζ

ζ − z0
.

Proof. Follows directly since Resz0

(
f (ζ)

ζ−z0

)
= f (z0).

By differentiation with respect to z0 it follows that

1
k!

f (k)(z0) =
1

2iπ

∫

γ
f (ζ)

dζ

(ζ − z0)k+1 . (11)

An important application of the Cauchy’s integral formula in combinatorics is the following

Theorem 2.2.8. Let f (z) be analytic in a region Ω with 0 ∈ Ω and let γ be a simple positive oriented
loop around 0 in Ω. Then the coefficient fn = [zn] f (z) has the following integral representation

fn =
1

2iπ

∫

γ
f (z)

dz
zn+1 .

Proof. Using [zn] f (z) = 1
n! f (n)(0) and Equation (11) with z0 = 0 the theorem immediately

follows.

26 methods – generating functions and analytic combinatorics

2.2.2 Singularity analysis

In order to define singularities, we first need the concept of analytic continuation.

Definition 2.2.9. Let f (z) be an analytic function defined over a region Ω determined by the interior of a
simple closed curve γ. Let z0 be a point on the curve γ. The function f (z) is called analytic continuable
at z0 if there exists an analytic function f ∗(z) defined over some open set Ω∗ containing z0 such that
f ∗(z) = f (z) in Ω ∩Ω∗. The function f ∗ is then called an analytic continuation of f .

Figure 9: Analytic continuation.

Now we can define singularities as well as dominant singularities, which play an important
rôle in coefficient asymptotics.

Definition 2.2.10. Let f be a function defined in a region Ω determined by the interior of a simple closed
curve γ. A point z0 on the boundary of the region is called a singular point or a singularity if f is not
analytically continuable at z0. A point z0 where f is not singular is also called regular. A singularity is
called dominant singularity of f if there is no other singularity of f with smaller modulus.

The following two theorems provide information about the location of singularities of certain
types of functions.

Theorem 2.2.11. A function f which is analytic at the origin and whose series expansion at the origin
has finite radius of convergence R always has a singularity on the boundary of its disk of convergence.

Proof. The main idea of the proof is to construct a contradiction. We know that there can be no
singularity of f inside the disk |z| < R. Suppose there is also no singularity on the boundary
of the disk |z| = R. Then it can be shown that the series expansion of f would have a larger
convergence radius r > R, a contradiction. The details can be found in [37], p. 240.

Theorem 2.2.12 (Pringsheim’s Theorem). Let f (z) be an analytic function representable by a series
expansion around the origin that has only non-negative coefficients and radius of convergence R. Then the
point z = R is a singularity of f .

Proof. See [37].

This theorem is of particular interest in analytic combinatorics, since the series arising as
generating functions related to combinatorial problems have non-negative integer coefficients
(since the coefficients encode sizes of certain combinatorial objects). Thus, in order to find a
dominant singularity one only has to determine the radius of convergence of the generating
function. A function can have more than one dominant singularity, each of them contributing to
coefficient asymptotics.

Next we will give the asymptotics for some standard functions. As we will see later in
Theorem 2.2.16, they also turn out helpful for determining asymptotics of other functions not
fitting these standard forms.

Theorem 2.2.13. Standard function scale. Let α be a number in C \Z≤0. Then the coefficient of zn in

f (z) = (1− z)−α

2.2 coefficient asymptotics 27

admits for large n the asymptotical expansion

[zn] f (zn) ∼ nα−1

Γ(α)

(
1 +

∞

∑
k=1

ek

nk

)

where ek is a polynomial in α of degree 2k. In particular, the first few terms are given by

[zn] f (z) ∼ nα−1

Γ(α)

(
1 +

α(α− 1)
2n

+O
(

1
n3

))
.

Proof. (Sketch.) By the binomial theorem [zn](1− z)−α = (−1)n(−α
n) = (n+α−1

n). This can be
expanded with the help of Stirlings’s formula 2.2.3, which gives us the result.

Another way to prove this is with the help of Cauchy’s integral formula 2.2.7 along a suitable
curve. The details of this can be found in [37], pp. 381-383.

Theorem 2.2.14. Standard function scale for logarithms. Let α be a number in C \Z≤0. Then the
coefficient of zn in the function

f (z) = (1− z)−α

(
1
z

log
1

1− z

)

admits for large n the asymtotic expansion

[zn] f (z) ∼ nα−1

Γ(α)
(log n)β

(
1 +

c1

log n
+

c2

log2 n
+ . . .

)

where

ck =

(
β

k

)
Γ(α)

dk

dsk
1

Γ(s)

∣∣∣∣∣
s=α

.

Proof. (Sketch.) Again, Cauchy’s integral formula 2.2.7 on a suitable contour can be employed,
for details see [37].

Note that it is enough to consider only singularities at z = 1 since with the virtue of
[zn]A(cz) = cn[zn]A(z) (see Theorem 2.1.7) we can rescale the function A its singularity lies at
z = 1.

These two theorems already give us asymptotics for a large class of functions. However,
they turn out for deriving asymptotics for many other functions, too, because of the so-called
Transfer Theorem. In essence, it says that if two functions behave similarly, their coefficients also
behave similarly. Before we can state the theorem, we first need the definition of ∆-analyticity for
technical reasons.

Definition 2.2.15. Let R be a real number greater than one, and φ be an angle such that 0 < φ < π
2 . An

open ∆-domain (at 1), denoted ∆(φ, R) is then defined as

∆(φ, R) := {z : |z| < r, z 6= 1, | arg(z− 1)| < φ}.

For any complex number ζ 6= 0 a ∆-domain at ζ is the image of a ∆-domain at 1 under the mapping
z 7→ ζz. A function is called ∆-analytic if it is analytic in some ∆-domain.

Theorem 2.2.16 (Transfer theorems). Let α and β be arbitrary real numbers and let f (z) be a function
that is ∆-analytic.

28 methods – generating functions and analytic combinatorics

Im

Re

|z| = R

|z| = 1

arg(z − 1) = φ

arg(z − 1) = −φ

Figure 10: A ∆-domain at 1.

1. Assume that f (z) satisfies

f (z) = O
(
(1− z)−α

(
log

1
1− z

)β
)

in the intersection of a neighborhood of 1 with its ∆-domain. Then

[zn] f (z) = O
(

nα−1(log n)β
)

.

2. Assume that f (z) satisfies

f (z) = o

(
(1− z)−α

(
log

1
1− z

)β
)

in the intersection of a neighborhood of 1 with its ∆-domain. Then

[zn] f (z) = o
(

nα−1(log n)β
)

.

Proof. (Sketch.) The main idea is to apply Cauchy’s coefficient formula on a curve γ = γ1 ∪ γ2 ∪
γ3 ∪ γ4 which is internal to the ∆-domain of f . More precisely, γ consists of

• a small inner circle γ1 = {z : |z− 1| = 1
n , | arg(z− 1)| ≥ θ},

• a line segment γ2 = {z : 1
n ≤ |z− 1|, |z| ≤ r, arg(z− 1) = θ},

• an outer circle γ3 = {z : |z| = r, | arg(z− 1)| ≥ θ}
• and another line segment γ4 = {z : 1

n ≤ |z− 1|, |z| ≤ r, arg(z− 1) = −θ},
Then one proceeds by finding bounds for the absolute value of each integral. The main contri-
bution comes from the small circle and the line segments and is exactly of the form stated in
the theorem, the contribution from the integral over the outer circle is exponentially small. The
details can be found in [37], pp. 390–392.

Corollary 2.2.17 (sim-transfer). Assume that f (z) is ∆-analytic and

f (z) ∼ (1− z)−α

as z→ 1 (for z ∈ ∆) and α ∈ C \Z≥0. Then the coefficients of f fulfill

[zn] f (z) ∼ nα−1

Γ(α)
.

2.2 coefficient asymptotics 29

Proof. Observe that f (z) ∼ g(z) ⇔ f (z) = g(z) + o(g(z)). Using g(1 − z)α and applying
Theorem 2.2.13 to the main term as well as Theorem 2.2.16 to the o-term completes the proof.

These three theorems and the corollary lie at the heart of coefficient asymptotics. They define
the so-called singularity analysis. This process can be summarized in an almost algorithmic
manner:

1. Locate singularities: Determine the dominant singularities of f and check that f (z) as a
single singularity ρ on its circle on convergence.

2. Check continuation: Find a ∆-domain at ρ such that f is analytic in this domain.

3. Express with standard functions: Find an expression of the form

f (z) = g(z/ρ) +O(h(z/ρ))

for z→ ρ with h(z) = o(g(z)) such that g and h belong to the standard scale of functions
from Theorems 2.2.13 and 2.2.14.

4. Transfer: Transfer the main term g using Theorem 2.2.13 and the error term h using
Theorem 2.2.14. Use the Transfer Theorem 2.2.16 to conclude

[zn] f (z) = ρ−n[zn]g(z) +O(ρ−n[zn]h(z))

for n→ ∞.

Example 2.2.18. Let us have again a look at Dyck paths of semilength n, counted by the Catalan
numbers Cn = 1

n+1 (
2n
n). Their generating function is D(z) = 1−

√
1−4z

2z , as computed in Exam-
ple 2.1.23. We already computed their asymptotic growth with the help of Stirling’s formula in
Example 2.2.4. This time we will do it with the help of singularity analysis.

1. First, we have to find the dominant singularities of the generating function. It can easily be
seen that D(z) has its only singularity at z = 1

4 .

2. Since D(z) is analytic in C \ { 1
4} it is in particular analytic in any ∆-domain around z = 1

4 .

3. Making the substitution x := 4z gives us

[zn]
1−
√

1− 4z
2z

= 4n · 2[xn+1]−
√

1− x.

This expresses the function we are interested in in terms of standard functions.

4. Applying a sim-transfer (see Corollary 2.2.17) and Theorem 2.2.13 with α = − 1
2 we obtain

[zn]
1−
√

1− 4z
2z

∼ −4n · 2 · n−3/2

Γ(− 1
2)

=
4n
√

πn3
,

as expected.

3
PA R A M E T E R S R E L AT E D T O N O N I N T E R S E C T I N G L AT T I C E PAT H S
(WAT E R M E L O N S)

3.1 introduction and definitions

In this chapter we are going to study a certain class of vicious walkers, i.e., pairs or tuples of
lattice paths where no two paths occupy the same lattice site. This model has been introduced by
Fisher [35] to study wetting and melting processes. These objects have since been of much interest
because they can also be used to model polymer networks [30] as well as DNA denaturation [58,
66]. They also are of purely mathematical interest because they stand in bijection with other
combinatorial objects like Young tableaux [43], certain walks in the quarter plane [23] or random
matrices [7].

Friendly walkers form a similar notion, where the paths are allowed to touch but not to cross
each other. Watermelons are a special case of vicious (respectively friendly) walkers where the
underlying step set is the Dyck step set (i.e. (1,1) and (1,-1)) and there are certain conditions on
the start- and endpoints of the paths.

Definition 3.1.1. A p-watermelon of length n is a family of p nonintersecting paths P1, . . . , Pp in Z2

with Dyck step set such that

1. Pi starts at (0, 2i− 2) and ends at (n, h + 2i− 2) where n ≡ h mod 2.

2. no two paths occupy the same lattice point.

The name watermelon might seem odd at first glance, but becomes quite descriptive if we color
the areas between the paths alternating in light and dark green. The resulting image almost looks
like the skin of a watermelon, hence the name.

Figure 11: A 5-watermelon with deviation zero ... and the reason why these objects are called watermelons.
(Image to the right by user Lebensmittelfotos on Pixabay)

Definition 3.1.2. The y-coordinate of the endpoint (n, h) is called the deviation of the watermelon.

It is also possible to use the following definition:

Definition 3.1.3. A p-watermelon of length n is a family of paths with Dyck step set (i.e., S =
{(1, 1), (1,−1)}) such that all paths start at (0, 0) and end at (n, h), where these paths may touch but not
cross each other. In other words, if (m, yi) denotes the coordinates of the i-th path after m steps, we have
that y1 ≤ y2 ≤ · · · ≤ yp for all m.

By a simple shift argument (moving the i-th path 2i − 2 units up/down) we can see that
Definition 3.1.3 and 3.1.1 are equivalent.

31

32 parameters related to nonintersecting lattice paths (watermelons)

Note that ”no two paths occupy the same lattice site” is not the same as ”no two paths
intersect” for any underlying step set. It is the same for Dyck paths (if all start points are
congruent modulo two), but not for Motzkin paths, as can be seen in the following example:

Figure 12: Two walks with Motzkin-step-set. Here ”no two paths occupy the same lattice site” is not the
same as ”no two paths intersect”. The above paths never occupy the same lattice site, they do intersect,
however.

If we drop the condition on the endpoints of the paths, we obtain the following

Definition 3.1.4. A p-star of length n is a family of p nonintersecting lattice paths P1, . . . , Pp in Z2 with
Dyck step set such that

1. Pi starts at (0, 2i− 2) and ends at (2n, ei) where e1 < · · · < ep (and ei ≡ n mod 2).

2. no two paths occupy the same lattice point.

This is equivalent to

Definition 3.1.5. A p-star of length n is a family of p lattice paths P1, . . . , Pp in Z2 with Dyck step set
such that

1. Pi starts at (0, 0) and ends at (2n, di) where d1 < · · · < dp (and di ≡ n mod 2).

2. no two paths cross each other.

Often, there are also constraints imposed on the region the paths of the watermelon are
allowed to be in.

Definition 3.1.6. Region constraints for stars and watermelons.

• A wall condition means that none of the paths is allowed to go below the x-axis. It is sufficient to
impose this condition only on the lowest path, because the non-touching (or non-crossing) condition
immediately implies that all other paths do not go below the x-axis.

• Vicious (or non-crossing) walkers confined to a strip of width h are tuples of non-touching (or
non-crossing) lattice paths such that they never go below the x-axis and never go above the horizontal
line y = h. Again, it is enough to impose the condition of not going below on the lowest path only
and the condition of not going above the line y = h on the highest path only.

3.1 introduction and definitions 33

Known results

Several parameters related to watermelons and stars have already been studied. We will give a
short overview of some known results.

Let us start with a lemma that plays an important role in counting pairs of nonintersect-
ing paths. It was first formulated by Lindström [55] in 1973 and later proven by Gessel and
Viennot [39] in 1989.

Lemma 3.1.7. Lindström–Gessel–Viennot Lemma. Let G be a locally finite, directed acyclic graph.
We assign a weight we to each edge e, where all weights are elements of some commutative ring. Let
A = {a1, . . . , ap} and B = {b1, . . . , bp} be the set of start and destination vertices respectively. For each
directed path P let w(P) be the product of the weights of the edges contained in this path. For any two
vertices a and b let e(a, b) = ∑P:a→b w(P) the sum of the weights of all paths from a to b (this sum is well
defined since for any two vertices there are only finitely many paths between them). If each edge has weight
1, then e(a, b) counts the number of paths between a and b.
Define

M := (e(ai, bj))1≤i,j≤n.

A p-tuple of nonintersecting paths from A to B is an n-tuple (P1, . . . , Pp) of paths in G such that

• There exists a permutation σ of {1, 2, . . . , p} such that Pi is a path from ai to bσ(i) for all i.

• For i 6= j the paths Pi and Pj have no vertex in common.

Given a p-tuple of paths we denote by σ(P) the permutation from the first condition. Then we have that

det(M) = ∑
(P1,...,Pn):A→B

sign(σ(P))
n

∏
i=1

w(Pi).

Remark: If the only possible permutation is the identity (every tuple of nonintersecting paths takes
ai to bi) and all weights are 1, then det(M) is exactly the number of non-intersecting n-tuples of
paths from A to B. In our setting of p-watermelons this is the case.

Proof. First, we introduce some notation. An p-path from a p-tuple (a1, . . . , ap) of vertices to
another p-tuple (b1, . . . , bp) of vertices is a p-tuple of paths (P1, . . . , Pp) in the underlying graph
G, where each Pi begins in ai and ends in bi. An p-path will be called nonintersecting if for i 6= j
the paths Pi and Pj have no two vertices (not even endpoints) in common. The weight w(P) of
an p-path P = (P1, . . . , Pp) is defined as the product of the weights of the paths it consists of, i.e.
w(P) := w(P1) . . . w(Pp).

A twisted p-path from (a1, . . . , ap) to (b1, . . . , bp) is an p-path from (a1, . . . , ap) to (bσ(1), . . . , bσ(p))
where σ ∈ Sp is some permutation of p elements. This permutation will be called the twist of the
twisted p-path, denoted by σ(P) (where P is the original p-path).

Expanding the determinant of M as a signed sum of permutations, we get

det(M) = ∑
σ∈Sp

sgn(σ) · e(a1, bσ(1)) . . . e(ap, bσ(p))

= ∑
σ∈Sp

· ∑
P is p−path

from (a1,...,ap)
to (bσ(1),...,bσ(p))

w(P).

We can simplify the right hand side using the definition of a twisted p-path to

∑
P is twisted p−path

from (a1,...,ap)
to (b1,...,bp)

sgn(σ(P))w(P).

34 parameters related to nonintersecting lattice paths (watermelons)

It remains to prove that this is equal to

∑
(P1,...,Pp):A→B

sgn(σ(P))
p

∏
i=1

w(Pi) = ∑ sgn(σ(P))w(P),

where the latter sum runs over all nonintersecting twisted p-paths from (a1, . . . , ap) to (b1, . . . , bp).
Phrased differently, we have to prove that the sum of the expressions sgn(σ(P))w(P) over all
twisted p-paths equals the same sum but only over nonintersecting p-paths. In order to do this,
we will prove that the sum of sgn(σ(P))w(P) over all twisted p-paths that are not nonintersecting
vanishes.

The idea is to find an involution of the set of all not nonintersecting twisted p-paths from
(a1, . . . , ap) to (b1, . . . , bp). This involution will flip the sign sgn(σ(P)) but leaves the weight w(P)
invariant. Thus the sum over all intersecting twisted p-paths has to be 0 because the involution
splits it into pairs of mutually canceling summands.

It remains to construct this involution, which will be called f . The idea is to take two
intersecting paths Pi and Pj and switch their tails after the point of intersection. Because there
are (in general) several pairs of intersecting paths and two paths can intersect several times, a
choice needs to be made. Let i be the smallest index such that the path Pi (the path starting in ai)
contains an intersection. Let q be the first point along Pi where Pi intersects another path and let j
be the largest index such that q lies on Pj. Then we define f (P) to be the same set of paths as
P but with the tails (the segments from q to the endpoints) of the two paths Pi and Pj swapped.
Clearly, f (P) is a twisted p-path and its twist σ(f (P)) differs from σ(P) by a transposition of σ(i)
and σ(j). Thus sgn(σ(f (P))) = −sgn(σ(P)).

It is easy to see that f is indeed an involution. In f (P), the smallest index of an intersecting
path will again be i, the first point of intersection along it will again be q and the largest index of a
path containing q will again be j. The existence of such an involution with the desired properties
completes the proof.

Both exact and asymptotic results about the number of watermelons and stars with or without
various constraints have been given by Guttmann, Krattenthaler, Owczarek and Viennot in the
series of articles [43, 50, 51].

Theorem 3.1.8. Stars, arbitrary endpoints, no wall. The number of stars with p branches of length n
with no wall is equal to

∏
1≤i≤j≤n

p + i + j− 1
i + j− 1

(12)

Proof. The proof can be found in [43].

Theorem 3.1.9. Stars, fixed endpoints, no wall. The number of p-stars with starting points Ai =
(0, 2i− 2) and end points Ei = (n, ei) (where n and all ei have the same parity) where no wall condition is
imposed is given by

2−(
p
2)

p

∏
i=1

(n− i− p)!(
n+ei

2

)
!
(

n−ei
2 + p− 1

)
!

∏
1≤i<j≤p

(ej − ei). (13)

Proof. The proof can be found in [50].

Corollary 3.1.10. The number of watermelons of length n (with deviation k) and no wall is given by

∏ i = 1p (n− i− p)!
(n+2i−2+k

2)!(n−2i+2−k
2 + p− 1)!

∏
1≤i<j≤p

(j− i) (14)

Proof. Follows directly from Equation (13) with ei = 2i− 2 + k and some cancellations.

3.1 introduction and definitions 35

Theorem 3.1.11. Stars, arbitrary endpoints, no wall, asymptotics. The number of stars with p
branches of length n is asymptotically




2np+p2/4n−p2/4+p/4π−p/4
(

∏
p/2
`=1(2`− 2)!

)
(1 +O(n−1) for p even

2np + p2/4− 1/4n−p2/4+p/4π−p/4+1/4
(

∏
(p−1)/2
ell=1 (2`− 1)!

)
(1 +O(n−1) for p odd

(15)

as n tends to infinity.

Proof. The proof can be found in [50].

Theorem 3.1.12. Stars, arbitrary endpoints, wall. The number of stars of length n with p branches
which do not go below the x-axis and whose endpoints hate y-coordinate at least s (with s ≡ m mod 2) is
given by

p

∏
i=1

∏
j=1

(m + s)/2
(m−s)/2

∏
k=1

i + j + k− 1
i + j + k− 2

. (16)

Proof. The proof can be found in [50].

Theorem 3.1.13. Stars, fixed endpoints, wall. Let 0 ≤ e1 < e2 < · · · < ep with ei ≡ n mod 2, i =
1, . . . , p. The number of stars with p branches and wall, where the i-th branch goes from Ai = (0, 2i− 2)
to Ei = (n, ei), is given by

2−p2+p
p

∏
i=1

(ei + 1)(n + 2i− 2)!
(n+ei

2 + p)!(n−ei
2 + p− 1)!

∏
1≤i<j≤p

(ej − ei)(ej + ei + 2). (17)

Proof. The proof can be found in [50].

Corollary 3.1.14. The number of watermelons of length n with p branches and wall and deviation k ≥ 0
is given by

p
2−1

∏
i=0

(k + 2p− 1− 2i)!
(k + 2i)!

p−1

∏
j=0

(n + 2j)!j!
(n−k

2 + j)!(n+k
2 + j + p)!

.

Alternatively, this expression can be written as

p

∏
`=1

(`− 1)!(k + 2l − 1)p−`+1(n + 2`− 2)!

(n−k
2 + j)!(n+k

2 + j + p)!
.

Theorem 3.1.15. Stars, arbitrary endpoints, wall, asymptotics. The number of stars with p branches
of length n which do not go below the x-axis and whose endpoints have y-coordinates at least s (with
s ≡ n mod 2) is asymptotically

2np+p2−p/2n−p2/2π−p/2

(
p

∏
ell=1

(`− 1)!

)
(1 +O(1/n))

as n→ ∞.

Proof. The proof can be found in [50].

Theorem 3.1.16. Stars, fixed endpoints, strip. Let 0 ≤ a1 < a2 < . . . ap ≤ h such that all ai have the
same parity. Furthermore, let 0 ≤ e1 < e2 < · · · < ep ≤ h such that all ei are of the same parity and
ai + ei ≡ n mod 2 for i = 1, 2, . . . , p. The number of vicious walkers with p branches of length n, with the
i-th branch running from Ai = (0, ai) to Ei = (n, ei), which go neither below the x-axis nor above the line
y = h is given by

det
1≤s,t≤p

(
∞

∑
k=−∞

((
n

n+et−as
2 + k(h + 2)

)
−
(

n
n+et+as

2 + k(h + 2) + 1

)))
(18)

36 parameters related to nonintersecting lattice paths (watermelons)

Proof. The proof can be found in [51]. The main idea is using formulas for lattice paths with given
start- and endpoints in a strip (as given in [59]) and then apply the Lindström–Gessel–Viennot
lemma 3.1.7.

For certain start- or endpoints the above determinant formula can be simplified a bit. There
is also a way to rewrite this formula involving trigonometric functions instead of binomial
coefficients which is useful for deriving asymptotics. The details on this can also be seen in [51].

Theorem 3.1.17. Stars, fixed endpoints, strip, asymptotics. Let 0 ≤ a1 < a2 < . . . ap ≤ h such that
all ai have the same parity. Furthermore, let 0 ≤ e1 < e2 < · · · < ep ≤ h such that all ei are of the same
parity and ai + ei ≡ n mod 2 for i = 1, 2, . . . , p. Then the number of vicious walkers with p branches of
length n with the i-th branch running from Ai = (0, ai) to Ei = (n, ei), which go neither below the x-axis
nor above the line y = h is asymptotically

4p2

(h + 2)p

(
2p

p

∏
s=1

cos
sπ

h + 2

)n

∏
1≤s<t≤p

sin
π(at − as)

2(h + 2)
· sin

π(et − es)

2(h + 2)

× ∏
1≤s<t≤p

sin
π(at + as + 2)

2(h + 2)
· sin

π(et + es + 2)
2(h + 2)

Proof. The proof can be found in [51].

Some parameters related to watermelons have already been studied as well, for example the
height as well as the range of watermelons.

Definition 3.1.18. The height of a watermelon is the y-coordinate of the highest lattice point along any
of the paths of the watermelon (due to the non-touching constraint it will always be along the uppermost
path).
A similar parameter is the range of a watermelon: The range of a watermelon is the difference of the
maximum of its uppermost branch and the minimum of its lowest branch. In the case of watermelons with
wall height and range always coincided (the lowest branch is not allowed to go below altitude zero, but it
has altitude zero at the beginning).

In his paper [38] Fulmek proved the following

Theorem 3.1.19. The average height H(n, p) of a p-watermelon with deviation zero and wall of length
2n is given by

H(n, p) =
1

C(n, p)

n+2p−2

∑
h=1

C(n, p)− C(n, p, h− 1),

where C(n, p) is the number of all p-watermelons with deviation zero and wall of length 2n which can be
computed as a special case of Corollary 3.1.14 and equals

C(n, p) =
p−1

∏
j=0

(2n+2j
n)

(n+2j+1
n)

,

and C(n, p, h) is the number of all p-watermelons of length 2n which do not exceed height h and given by
the following determinant

C(n, p, h) = det

(
∑

k∈Z

((
2n

n− i + j− k(h + 2)

)
−
(

2n
n + i + j− k(h + 2) + 1

)))

0≤i,j≤p−1

.

Proof. The proof can be found in [38]. The Lindström–Gessel–Viennot formula again plays a
central role in this proof.

Fulmek also analyzed the asymptotic behavior for the average height of 1-watermelons
with wall (i.e. Dyck paths) and 2-watermelons with wall in [38]. These results have later been
generalized by Feierl in [33] by computing asymptotics for p-watermelons with p ≥ 2 as well as
computing higher moments. In [34] the same was done for the height and range of p-watermelons
without wall.

3.2 contacts and returns in 2-watermelons without wall 37

3.2 contacts and returns in 2-watermelons without wall

In this section we are going to study the number of contacts in a 2-watermelon, i.e., the number
of times when the two paths meet at a lattice point. We will distinguish between two types of
contacts whether the paths were apart before and meet again (returns) or whether they take
a common step and also analyze these numbers. We will also derive the complete probability
distribution for all these parameters.

This chapter is based on the article [67].
In the following we will be using the friendly walkers model, since in this model the notion of

contacts is more visible and intuitive.

Definition 3.2.1. A contact in a 2-watermelon is a point (not counting the starting point) where both
paths occupy the same lattice point, i.e. all points (m, y) such that (m, y) lies both on the lower path P1
and the upper path P2.

Note that for more than two paths there are several possible ways to define contacts – either
as points lying on all of the paths or as a point lying on two (or more) of the paths, but not
necessarily on all of them. The first version is much more restrictive than the second one, each
point that is a contact in the first sense is also a contact in the second sense. One could also count
weighted contacts, i.e. if two paths meet it is counted as a simple contact with weight c, if three
paths meet it is counted as double contact with weight d and so on.

Average number of contacts

Theorem 3.2.2. Let Xn be the random variable counting the number of contacts in a 2-watermelon without
wall, where the watermelon is chosen uniformly at random among all possible 2-watermelons of length n
and arbitrary deviation. Then

EXn =
(7n + 13)n

(n + 4)(n + 3)
= 7− 36

n
+

168
n2 + O

(
1
n3

)
.

Before giving the proof of Theorem 3.2.2, let us observe the following bijection, which turns
out to be helpful for this proof, but also for other parameters related to 2-watermelons without
wall and arbitrary deviation, since this bijection preserves many parameters.

Lemma 3.2.3. 2-watermelons without wall and arbitrary deviation stand in bijection with weighted
Motzkin paths (excursions) where there are two different kinds of level steps.

Proof. We can construct a bijection between 2-watermelons with arbitrary deviation and weighted
Motzkin paths that start and end on the x-axis, but never cross the x-axis in the following way:

step of the upper path ↗ ↗ ↘ ↘
step of the lower path ↘ ↗ ↘ ↗

step of the Motzkin path ↗ u→ d→ ↘

These are weighted Motzkin paths with two different kinds of level steps. The height of the
Motzkin path corresponds to (half of) the distance of the paths in the watermelon. Because the
paths are not allowed to cross, this distance may not be negative, i.e., the Motzkin path may
never cross the x-axis. The condition that both paths of the watermelon end on the same altitude
corresponds to the condition that the Motzkin path has to end on the x-axis.

A contact between the two paths occurs each time the Motzkin path touches the x-axis. Hence
we are interested in counting the number of returns of the Motzkin path to the x-axis.

38 parameters related to nonintersecting lattice paths (watermelons)

u
d u d d

Figure 13: The bijection between 2-watermelons and weighted Motzkin paths

Now, let F denote the generating function. A Motzkin path can be constructed as a sequence
of the following objects: a level step with weight u, a level step with weight d, an up-step and a
down step with a Motzkin path in-between.

Figure 13 illustrates the bijection between 2-watermelons with arbitrary deviation and Motzkin
paths with wall. Contacts are marked with black dots.

Using this bijection and the decomposition “a Motzkin path is a sequence of arches and level
steps” we obtain a functional equation:

F(z) =
1

1− z2F(z)− 2z
.

Multiplying with the denominator and solving the quadratic equation gives us

F(z) =
1− 2z−

√
1− 4z

2z2 (19)

Technically we get two solutions, but the solution with +
√

1− 4z does not make sense since it is
not a power series.

Proof of Theorem 3.2.2: Using the bijection from Lemma 3.2.3 and introducing a new variable u,
which counts the number of contacts of the Motzkin-path with the x-axis, we get

F(z, u) =
1

1− u(z2F(z, 1) + 2z)
.

Using F(z, 1) = F(z) and (19) we obtain

F(z, u) =
2

2− u− 2uz + u
√

1− 4z
(20)

Differentiating with respect to u and plugging in u = 1 we get

∂uF(z, u)|u=1 =
2(1 + 2z−

√
1− 4z

(1− 2z−
√

1− 4z)2
. (21)

By rationalizing this fraction we can rewrite this as

∂uF(z, u)|u=1 =
2− 8z + 2z2 + 4z3 + (2z2 + 4z− 2)

√
1− 4z

4z4 .

The average number of contacts of a watermelon of length n (with deviation, without wall) is
given by

EXn =
[zn]∂uF(z, u)|u=1

[zn]F(z, 1)
.

3.2 contacts and returns in 2-watermelons without wall 39

By expanding
√

1− 4z with the binomial series, we can read off coefficients from (19) and obtain

[zn]F(z, 1) = Cn+1 =
1

n + 2

(
2n + 2
n + 1

)
, (22)

where Cn := 1
n+1 (

2n
n) is the n-th Catalan number.

To obtain [zn]∂uF(z, u)|u=1 we use that [zn]
√

1− 4z = −2Cn−1. We have

[zn]∂uF(z, u)|u=1 = [zn]
2− 8z + 2z2 + 4z3

4z4 + [zn]
(2z2 + 4z− 2)

√
1− 4z

4z4

=
1
2
[zn+2]

√
1− 4z + [zn+3]

√
1− 4z− [zn+4]

1
2

√
1− 4z

= −Cn+1 − 2Cn+2 + Cn+3.

Now we can compute

EXn =
Cn+3 − 2Cn+2 − Cn+1

Cn+1
=

1
n+4 (

2n+6
n+3)− 2

n+3 (
2n+4
n+2)− 1

n+2 (
2n+2
n+1)

1
n+2 (

2n+2
n+1)

.

Pulling out the common factor 1
n+2 (

2n+2
n+1) this becomes after some simplifications

EXn =
(7n + 13)n

(n + 4)(n + 3)
. (23)

Expanding (23) as a series, we get the assertion of Theorem 3.2.2. �

Variance of the number of contacts

Theorem 3.2.4. Let Xn be defined as in Theorem 3.2.2. Then the variance of the number of contacts in a
2-watermelon is given by

VXn =
12n(2n5 + 13n4 + 17n3 − 7n2 − 19n− 6)

(n + 3)2(n + 4)2(n + 5)(n + 6)
= 24− 444

n
+

5136
n2 + O

(
1
n3

)
.

Proof. The variance of the number of contacts in a watermelon of length n is given by

VXn =
[zn]∂2

uuF(z, 1)
[zn]F(z, 1)

+
[zn]∂uF(z, 1)
[zn]F(z, 1)

−
(
[zn]∂uF(z, 1)
[zn]F(z, 1)

)2

.

Because the last two terms can be computed via (23) it remains to determine

∂2
uuF(z, u)|u=1 =

(−z4 − 4z3 − z2 + 4z− 1)
√

1− 4z− 2z5 − 3z4 + 6z3 + 7z2 − 6z + 1
z6 .

Reading off coefficients gives us

[zn]∂2
uuF(z, 1) = 2Cn+1 + 8Cn+2 + 2Cn+3 − 8Cn+4 + 2Cn+5.

Hence
[zn]∂2

uuF(z, 1)
[zn]F(z, 1)

=
66n4 + 276n3 + 54n2 + 396n
(n + 3)(n + 4)(n + 5)(n + 6)

. (24)

Combining (23) and (24) we obtain

VXn =
12n(2n5 + 13n4 + 17n3 − 7n2 − 19n− 6)

(n + 3)2(n + 4)2(n + 5)(n + 6)
= 24− 444

n
+

5136
n2 + O

(
1
n3

)
,

which finishes the proof.

40 parameters related to nonintersecting lattice paths (watermelons)

Returns and common steps

Definition 3.2.5. A return is a point where the two paths of a watermelon meet, but have been apart one
step before. In the Motzkin path setting this corresponds to a step which ends on the x-axis but does not
start on the x-axis. Here the only possible return is being at altitude 1 and then taking a down-step. Level
steps at altitude 0 do not count as return.

Definition 3.2.6. A common step occurs if both paths of a watermelon are at the same altitude and then
take either an up-step or a down-step together. In the Motzkin path setting this corresponds to a level step
at height 0.

Obviously the number of returns plus the number of common steps is the number of contacts.
Thus it is sufficient to analyze only one of these numbers. We will consider returns. Their mean
and variance can be computed in a similar manner as the mean and variance of contacts.

Figure 14: Returns and common steps in a 2-watermelon (with deviation -1). Returns are marked in black,
common steps are marked in green.

Average number of returns

Theorem 3.2.7. Let Yn be the random variable counting the number of returns in a 2-watermelon without
wall, where the watermelon is chosen uniformly at random among all possible 2-watermelons of length n
and arbitrary deviation. Then

EYn =
3n(n− 1)

(n + 4)(n + 3)
= 3− 24

n
+

132
n2 + O

(
1
n3

)
.

Proof. The generating function which counts returns is given by

F(z, x) =
1

1− (xz2F(z, 1) + 2z)

where x encodes the number of returns to the x-axis. Here we only have to mark contacts
occurring from a down step, thus the +2z-part remains unmarked. Plugging in the expression of
F(z, 1) we computed in (19) we obtain

F(z, x) =
2

2− x(1− 2z−
√

1− 4z)− 4z
. (25)

Derivating with respect to x and plugging in x = 1 this becomes

∂xF(z, x)|x=1 =
2(1− 2z−

√
1− 4z)

(1− 2z +
√

1− 4z)2
. (26)

This looks very similar to what we had in Formula (21) when computing contacts. The only
difference is the term (1− 2z−

√
1− 4z) instead of (1 + 2z−

√
1− 4z) in the numerator.

Multiplying out and then rationalizing, we get

∂xF(z, x)|x=1 =
(−3z2 + 4z− 1)

√
1− 4z + 1− 6z + 9z2 − 2z3

2z4 .

3.2 contacts and returns in 2-watermelons without wall 41

Reading off coefficients, we obtain:

[zn]∂xF(z, x)|x=1 = [zn]
(−3z2 + 4z− 1)

√
1− 4z

2z4 = 3Cn+1 − 4Cn+2 + Cn+3

=
3

n + 2

(
2n + 2
n + 1

)
− 4

n + 3

(
2n + 4
n + 2

)
+

1
n + 4

(
2n + 6
n + 3

)
.

Now we can compute the average number of returns in a watermelon of length n via

Er =
[zn]∂xF(z, x)|x=1

[zn]F(z, 1)
=

3
n+2 (

2n+2
n+1)− 4

n+3 (
2n+4
n+2) +

1
n+4 (

2n+6
n+3)

1
n+2 (

2n+2
n+1)

.

Pulling out common factors, we get that the above expression is

Er =
3n(n− 1)

(n + 4)(n + 3)
= 3− 24

n
+

132
n2 + O

(
1
n3

)
, (27)

which completes the proof.

Corollary 3.2.8. A 2-watermelon has asymptotically on average 7 contacts and 3 returns. Thus it has
asymptotically on average 7− 3 = 4 common steps.

Variance of the number of returns

Theorem 3.2.9. Let Yn be defined as in Theorem 3.2.7. Then the variance of the number of returns in a
2-watermelon is given by

VYn =
4n(n− 1)(n4 − 4n3 + 4n2 + 279n + 450)

(n + 3)2(n + 4)2(n + 5)(n + 6)
= 4− 120

n
+

2004
n2 + O

(
1
n3

)

Proof: The variance of the number of returns is given by

VYn =
[zn]∂2

xxF(z, 1)
[zn]F(z, 1)

+
[zn]∂xF(z, 1)
[zn]F(z, 1)

−
(
[zn]∂xF(z, 1)
[zn]F(z, 1)

)2

.

Since the last two terms in this expression can be obtained with the help of (27) it remains to
compute

∂2
xxF(z, x)|x=1 =

1− 10z + 35z2 − 50z3 + 25z4 − 2z5 + (−5z4 + 20z3 − 21z2 + 8z− 1)
√

1− 4z
z6 .

Thus, we get that
[zn]∂2

xxF(z, 1)
[zn]F(z, 1)

=
10n4 − 60n3 + 110n2 − 60n
(n + 3)(n + 4)(n + 5)(n + 6)

. (28)

Combining (27) and (28) we get that the variance of the number of returns in a watermelon of
size n is given by

VYn =
4n(n− 1)(n4 − 4n3 + 4n2 + 279n + 450)

(n + 3)2(n + 4)2(n + 5)(n + 6)
.

Asymptotic expansion of this expression finishes the proof. �

Distributions

The number of contacts

Theorem 3.2.10. Let Xn be the random variable counting the number of contacts in a 2-watermelon
without wall, where the watermelon is chosen uniformly at random among all possible 2-watermelons of

42 parameters related to nonintersecting lattice paths (watermelons)

length n and arbitrary deviation. Then the probability that such a watermelon has exactly k contacts is
given by

P(Xn = k) =
1
2k ∑n

`=0 ∑k
m=0 (

k
m)(

m
n−`)2

n+`(−1)k−m+`(
k−m

2
`
)

1
n+2 (

2n+2
n+1)

.

Proof. In order to figure out the distribution of the number of contacts, we need to consider

P(Xn = k) =
[znuk]F(z, u)
[zn]F(z, 1)

where Xn is the random variable counting the number of contacts in a 2-watermelon of length n
(without wall). We rationalize (20) to get rid of the square root in the denominator

F(z, u) =
2

2− u− 2uz + u
√

1− 4z
=

1
2
(2− u− 2uz− u

√
1− 4z)

1
u2z2 + 2u2z− 2uz− u + 1

.

The idea is to decompose

R(z, u) :=
1

u2z2 + 2u2z− 2uz− u + 1
=

a(z)
1− α(z)u

+
b(z)

1− β(z)u

by partial fraction decomposition. From this expression we then can read off the coefficient of uk.
The zeroes of the denominator (as a quadratic polynomial in u) are

u1(z) =
1 + 2z +

√
1− 4z

2z(z + 2)
and u2(z) =

1 + 2z−
√

1− 4z
2z(z + 2)

.

Thus, we have

R(z, u) =
1√

1− 4z

(
1

u2(z)− u
− 1

u1(z)− u

)

=
1√

1− 4z


 1

u2(z)(1− 1
u2(z)

u)
− 1

u1(z)(1− 1
u1(z)

u)


 .

Now we can read off coefficients using [uk] 1
1−cu = ck and obtain

[uk]R(z, u) =
1√

1− 4z

(
1

u2(z)k+1 −
1

u1(z)k+1

)
.

Plugging in u1(z) and u2(z) this becomes

[uk]R(z, u) =
1√

1− 4z

(
(2z(z + 2))k+1

(1 + 2z−
√

1− 4z)k+1
− (2z(z + 2))k+1

(1 + 2z +
√

1− 4z)k+1

)

=
(1 + 2z +

√
1− 4z)k+1 − (1 + 2z−

√
1− 4z)k+1

2k+1
√

1− 4z
.

Thus, we get

[uk]F(z, u) =
2
2
[uk]R(z, u)− 1 + 2z +

√
1− 4z

2
[uk−1]R(z, u)

=
(1 + 2z +

√
1− 4z)k+1 − (1 + 2z−

√
1− 4z)k+1

2k+1
√

1− 4z

− (1 + 2z +
√

1− 4z)((1 + 2z +
√

1− 4z)k − (1 + 2z−
√

1− 4z)k)

2k+1
√

1− 4z

=
(1 + 2z−

√
1− 4z)k

2k . (29)

3.2 contacts and returns in 2-watermelons without wall 43

For reading off the coefficient of [zn] of this expression, the expansion into a binomial series is
helpful:

(1 + 2z−
√

1− 4z)k

2k =
1
2k

k

∑
m=0

(
k
m

)
(1 + 2z)m(−1)k−m√1− 4z

k−m

=
1
2k

k

∑
m=0

(−1)k−m
(

k
m

)(m

∑
r=0

(
m
r

)
2rzr

)(
∑
`≥0

(k−m
2
`

)
(−4z)`

)
.

If we want to read off [zn], the variables r and ` have to add up to n. Thus

[znuk]F(z, u) =
1
2k

n

∑
`=0

k

∑
m=0

(
k
m

)(
m

n− `

)
2n+`(−1)k−m+`

(k−m
2
`

)
. (30)

Dividing (30) by the number of all watermelons of length n as counted by (22) we obtain the
statement of the theorem.

The number of returns

Theorem 3.2.11. Let Yn be the random variable counting the number of contacts in a 2-watermelon
without wall, where the watermelon is chosen uniformly at random among all possible 2-watermelons of
length n and arbitrary deviation. The probability that such a watermelon has exactly k contacts is given by

P(Xn = k) =
∑n

j=0 A(k)
j B(k)

n−j
1

n+2 (
2n+2
n+1)

.

where

A(k)
n :=

1
2k

n

∑
`=0

k

∑
m=0

(
k
m

)(
m

n− `

)(k−m
2
`

)
2n+l(−1)k−m+n

and

B(k)
n := [zn]

1
(1− 2z)k+1 =

(
n + k

n

)
2n.

Proof. We want to compute

P(Xn = k) =
[znxk]F(z, x)
[zn]F(z, 1)

.

From rationalizing (25) we get

F(z, x) =
2− 4z− x(1− 2z +

√
1− 4z)

2(x2z2 − 4xz2 + 4xz + 4z2 − x− 4z + 1)
.

Again, we apply a partial fraction decomposition to

R(z, x) =
1

x2z2 − 4xz2 + 4xz + 4z2 − x− 4z + 1

and read off coefficients from that. The zeros of the denominator are

x1(z) =
(1− 2z)(1− 2z−

√
1− 4z)

2z2 and x2(z) =
(1− 2z)(1− 2z +

√
1− 4z)

2z2 .

We obtain

R(z, x) =
1

(1− 2z)
√

1− 4z

(
1

x1(z)(1− x
x1(z)

)
− 1

x2(z)(1− x
x2(z)

)

)
.

44 parameters related to nonintersecting lattice paths (watermelons)

Reading off coefficients, we obtain

[xk]R(z, x) =
1

(1− 2z)
√

1− 4z

(
1

x1(z)k+1 −
1

x2(z)k+1

)

=
1

(1− 2z)k+2
√

1− 4z

(
2k+1z2k+2

(1− 2z−
√

1− 4z)k+1
− 2k+1z2k+2

(1− 2z +
√

1− 4z)k+1

)
.

=
1

2k+1(1− 2z)k+2
√

1− 4z

(
(1− 2z +

√
1− 4z)k+1 − (1− 2z−

√
1− 4z)k+1

)
.

Rewriting (25) as

F(z, x) = (1− 2z)R(z, x)− 1− 2z +
√

1− 4z
2

xR(z, x),

reading off the coefficient [xk] and simplifying, we obtain

[xk]F(z, x) =
(1− 2z−

√
1− 4z)k

2k(1− 2z)k+1 = A(k)(z)B(k)(z),

where

A(k)(z) =
(1− 2z−

√
1− 4z)k

2k and B(k)(z) =
1

(1− 2z)k .

Expanding

B(k)
n := [zn]

1
(1− 2z)k+1 =

(
n + k

n

)
2n

in a binomial series and a similar reasoning as before yields

A(k)
n := [zn]A(k)(z) =

1
2k

n

∑
`=0

k

∑
m=0

(
k
m

)(
m

n− `

)(k−m
2
`

)
2n+`(−1)k−m+n.

Note that A(k)
n looks similar to (30), the only difference between these two expressions are the

powers of (−1), namely (−1)k−m+n and (−1)k−m+` respectively.
Using the Cauchy-Product of A and B we obtain

[znxk]F(z, x) =
n

∑
j=0

A(k)
j B(k)

n−j =
n

∑
j=0

j

∑
`=0

k

∑
m=0

(
k
m

)(
m

j− `

)(k−m
2
`

)(
n− j + k

n− j

)
2n+`−k(−1)k−m+j.

Dividing this by the number of all watermelons of length n given by (22) we get the assertion of
the theorem.

Asymptotic behavior of the distributions

In this section we will analyze the asymptotic behavior of the distributions of contacts and returns
in 2-watermelons. The theoretical background of this section are the methods for coefficient
asymptotics from Flajolet and Sedgewick as introduced in Section 2.2.

Contacts

Theorem 3.2.12. Let Xn be the random variable counting the average number of contacts be defined as in
Theorem 3.2.2. Then Xn → X in probability where X is distributed as follows

P(X = 0) = 0 and P(X = k) = P(B = k− 1) for k ≥ 1

where B is a negative-binomially distributed random variable with parameters r = 2 and p = 3
4 , i.e.

P(B = k) =
(

r + k− 1
k

)
pk(1− p)r.

3.2 contacts and returns in 2-watermelons without wall 45

Proof. We want to compute [znuk]F(z, u) for n→ ∞ and k fixed. The function

[uk]F(z, u) =
(1 + 2z−

√
1− 4z)k

2k

has its dominant singularity at z = 1
4 (and no other singularities). Using Theorem 2.2.13 we obtain

[znuk]F(z, u) ∼ − k
2k

(
3
2

)k−1 n−3/24n

Γ(− 1
2)

=
k3k−14n

4k
√

πn3

for n→ ∞. Using Cn ∼ 4n√
πn3

(
1 + O

(
1
n

))
we obtain than

P(Xn = k) =
[znuk]F(z, u)

Cn+1
∼ k3k−1

4k+1

(
1 + O

(
1
n

))

for n → ∞. Observing that P(X = 0) = 0 and introducing a new random variable B with
P(X = k) = P(B = k− 1) we see that B is a negative-binomially distributed random variable
with parameters r = 2 and p = 3

4 , which finishes the proof.

Returns

Theorem 3.2.13. Let the random variable Yn counting the number of returns be defined as in Theorem 3.2.7.
Then Yn → Y in probability where Y is distributed as follows

P(Y = 0) = 0 and P(Y = k) = P(B̃ = k− 1) for k ≥ 1

where B̃ is a negative-binomially distributed random variable with parameters r = 2 and p = 1
2 .

Proof. The proof of this theorem resembles the proof of Theorem 3.2.12. Now we look at
[znxk]F(z, x) for n→ ∞ and k fixed. The function

F(z, x) =
(1− 2z−

√
1− 4z)k

2k(1− 2z)k

has singularities at z = 1
4 and z = 1

2 . The singularity at z = 1
4 is dominant, the other singularity

at z = 1
2 lies outside of every ∆-region around z = 1

4 . By expanding the denominator with the
help of the binomial series and by using Theorem 2.2.13 we obtain

[znxk]F(z, x) ∼ − k
2k ·

(1
2)

k

(1
2)

k+1
· n−3/24n

Γ(− 1
2)

=
k4n

2k−1
√

n3π

for n→ ∞. We obtain

P(Xn = k) =
[znxk]F(z, x)

Cn+1
∼ k

2k+1

(
1 + O

(
1
n

))

for n→ ∞. Introducing the random variable B̃ as in the theorem and observing that it indeed is
negative-binomially distributed with parameters r = 2 and p = 1

2 concludes the proof.

Comparison with similar results

There are some other results which also study contacts in watermelons in slightly different
settings:

• In [53] both exact and asymptotic results for the average number of contacts between the
lowest path in a p-watermelon and the wall were derived.

46 parameters related to nonintersecting lattice paths (watermelons)

• In [64] the authors considered the number of contacts in 2-watermelons in a strip. They com-
pute the generating function as well as the free energy κ(c, w) = limn→∞ 1/n log(Zn(c, w)
(where w is the width of the strip and c is the variable that encodes the number of contacts
in the generating function) of the system.

• In [73] the authors studied contacts in a 3-watermelon without wall. They obtained the
generating function of these objects with the help of the kernel method. They also studied
the singularity structure and phase transitions of the model.

There are also some ways in which the results of this section could be expanded: the deviation,
i.e. the height of the endpoints of our watermelons, was arbitrary. A natural question would
be to ask what happens for watermelons with a fixed deviation. This can be encoded in the
following way: let z mark the length of the watermelon (or Motzkin path) and y the deviation.
The deviation is then given by the number of level steps marked with u minus the number of
level steps marked with d. Taking this into account when constructing the functional equation we
obtain

F(z, y) =
1

1− (z2F + (y + y−1)z)
.

This then could be used to derive similar results for watermelons with a given deviation.

3.3 the area between 2-watermelons without wall

In this section we are going to study the area enclosed by the two paths of a 2-watermelon without
wall and arbitrary deviation. As already hinted earlier the bijection with Motzkin paths presented
in Theorem 3.2.3 turns out to be helpful again, since it also preserves the area (up to a scaling
factor).

More precisely, the area between the two paths of the 2-watermelon corresponds to twice the
area between the Motzkin-path and the x-axis. This can easily be verified by considering what
appending a new step at the end contributes to the area in each setting. If the two paths are 2k
units apart (the distance is always even since the underlying steps are Dyck steps) the next step
contributes 2k + ε to the area where ε is 1 if the upper path goes up and the lower path goes
down, 0 if both paths go up or down and −1 if the lower path goes up and the upper path goes
down. In the Motzkin-path-setting, if the path is at altitude k and a new step is appended the
contribution to the area is k + δ where δ is 1

2 for an up step, 0 for a level step labeled with u or d
and − 1

2 for a down step.

u
d u d d

Figure 15: The bijection between 2-watermelons and weighted Motzkin paths. On the left is a 2-watermelon
with area 12, on the right a weighted Motzkin path with area 6.

Thus, we are interested in the area under an excursion. These areas have been studied by
Banderier and Gittenberger [10]. Using their results, we can derive results for the average area
between the two paths of a 2-watermelon as well as the paths of 2-stars (which correspond to
meanders in the Motzkin-setting).

3.3 the area between 2-watermelons without wall 47

Definition 3.3.1. Let fnkm denote the number of stars of length n with final difference of the altitudes of
the paths being k and area m, which is the same as the number of weighted Motzkin paths of length n, final
altitude k, and area m

2 . Then the area generating function is

F(z, u, q) = ∑
n,k,m≥0

fnkmznukqm = ∑
k≥0

Fk(z, q)uk.

For watermelons, we want the final difference of the paths to be zero, i.e. to consider F(z, 0, q).
By a step by step construction we obtain a functional equation for the generating function.

Theorem 3.3.2. The area generating function satisfies the following functional equation

F(z, u, q) = 1 + zP(uq)F(z, uq2, q)− z(uq)−1F0(z, q)

where P(u) = u−1 + 2 + u is the step polynomial of weighted Motzkin paths with two different kinds of
level steps.

Proof. A Motzkin path is either an empty path, this corresponds to the 1 on the right-hand side
of the functional equation, or a shorter path with a step attached in the end. This corresponds to
zP(uq)F(z, uq2, q) because the step polynomial describes the steps one is allowed to attach and
attaching a step at height k adds a rectangle of double area 2k and a triangle described by the step
that is added, which explains the occurrence of uq instead of q in the step polynomial and the
occurrence of uq2 in the generating function. Finally we have to make sure that the path doesn’t
cross the x-axis. This is ensured by −z(uq)−1F0(z, q), i.e. by subtracting those walks that do cross
the x-axis.

This is a special case of Theorem 1 in [10]:

Theorem 3.3.3. For a weighted walk with step polynomial

P(u) =
d

∑
i=−c

piui

where c is the largest downward jump and d is the largest upward jump, where the walk may not cross the
x-axis, the area enclosed by the walk and the x-axis is described by the generating function F(z, u, q) which
satisfies

F(z, u, q) = 1 + zP(uq)F(z, uq2, q)− z
c−1

∑
k=0

rk(uq)Fk(z, q)qk

where rk are Laurent polynomials defined by

rk(u) := [u<0](P(u)uk) =
−k−1

∑
j=−c

pjuj+k.

Again z encodes length, u encodes final altitude and q encodes doubled1 area.

Proof. See [10], Theorem 1.

Definition 3.3.4. A Łukasiewicz walk is a lattice path with (1,−1) ∈ S and all other steps lie in {1}×N,
i.e., there is only one downwards jump of length 1.

For these kinds of paths the area between excursions and the x-axis respectively meanders
and the x-axis has been well studied.

1 The reason why doubled area is considered is mainly convenience: with doubled area the generating function has integer
exponents. Using just the area leads to Puiseux series, i.e. power series that also allow negative and fractional exponents
of the indeterminate.

48 parameters related to nonintersecting lattice paths (watermelons)

Theorem 3.3.5. The generating function for the average area below a (weighted) Łukasiewicz excursion is
given by

∂qF0(z, 1) =
2

zp−1
u1 +

u1u′′1
p−1u′1

− 2
p−1

u′1. (31)

where u1 is the (unique) small root of the kernel 1− zP(u) = 0 and p−1 is the coefficient of z−1 in the
step polynomial P(u). The average area below an excursion behaves asymptotically like

τ
√

πP(τ)
ρp−1

√
2P′′(τ)

n3/2 − 3
ρp−1

n− 3τ
√

πP(τ)
8p−1ρ

√
2P′′(τ)

√
n +

7
2ρp−1

+ O
(

1√
n

)
. (32)

Proof. The proof can be found in [10], Theorem 5.

To make sure we can apply these results in this weighted Motzkin-path setting we need
to check that the following technical properties (which were needed in the proof of the above
theorem) are fulfilled:

• There are c distinct roots u1(z), . . . , uc(z) of the kernel 1− zP(u) = 0 which are analytic at
zero.

• There is a unique positive real number τ such that P′(τ) = 0. The radius of convergence of
the generating function is given by ρ := 1

P(τ) .

• The root u1 which is singular at ρ has square root behavior near its singularity, i.e. u1(z) ∼
τ + K

√
1− z/ρ, the other roots are analytical at ρ.

In our case P(u) = u−1 + 2u + u, thus c = 1 and d = 1. The kernel 1− zP(u) has the roots

u− =
1− 2z−

√
1− 4z

2z
and u+ =

1− 2z +
√

1− 4z
2z

.

The root u1 := u− is analytical at zero, the other root is not. Thus, we have indeed c = 1 distinct
roots of the kernel which are analytical at zero. The derivative of the step polynomial is

P′(u) = −u2 + 1

and its zeros are ±1. Thus τ = 1 and ρ = 1
P(τ) =

1
4 . The root u1 has indeed square root behavior

at its singularity at 1
4 .

Plugging in these values in (31) we obtain after some simplifications that the generating
function of the average area below a Motzkin path is

∂qF(MP)
0 (z, 1) =

(2z2 − 4z + 1)
√

1− 4z− 8z2 + 6z− 1
z2(1− 4z)3/2 . (33)

Asymptotically the average area below such a Motzkin path is

[zn]∂qF(MP)
0 (z, 1)

[zn]F(MP)
0 (z, 1)

∼ 4
√

πn3/2 − 12n− 3
√

π

2
√

n + 14 + O
(

1√
n

)
. (34)

Since the generating function (33) already describes the double area, it is also the generating
function of the average area below a 2-watermelon without wall.

For 2-stars with arbitrary endpoints and no wall, similar results can be obtained.

Theorem 3.3.6. The generating function of the average area below Łukasiewicz meanders is given by

(∂qF)(z, 1, 1) =
δz(1 + zP(1))(1− u1)

(1− zP(1))3 +
2zP(1)u1

(1− zP(1))2 −
u1 +

zu1u′′1
u′1
− zu′1

1− zP(1)
(35)

where δ := P′(1) is the drift of the walk. The asymptotics of the area also depend on the drift:

3.3 the area between 2-watermelons without wall 49

• If δ > 0 then the area asymptotically behaves like

τ

√
P′′(τ)
P(τ)

√
2πn3/2 − 2n + O(

√
n).

• If δ = 0 the area asymptotically behaves like

3
4

√
P′′(τ)
P(1)

√
2πn3/2 − 2

√
πn + O(

√
n).

• If δ > 0 then the area asymptotically behaves like

δ

P(1)
n2 + O(n3/2).

Proof. The proof can be found in [10], Theorem 6.

In the case of weighted Motzkin-paths, the drift δ is zero. Plugging in and carrying out some
simplifications the generating function for the average area under a meander becomes

∂qF(MP)(z, 1, 1) =
(−6z + 3)

√
1− 4z + 12z− 3

(1− 4z)5/2 . (36)

The area under such a meander behaves asymptotically like

[zn]∂qF(MP)(z, 1, 1)

[zn]F(MP)(z, 1, 1)
=

3
√

π

4
n3/2 − 2

√
πn + O(

√
n). (37)

The functional equation (36) also describes the average area enclosed by the two paths of a
2-star without wall.

A natural question arising in this context would be ”What is the average area between the two
paths of a 2-watermelon with wall?” (or variations thereof, like ”What is the average area enclosed
by the upper path of a 2-watermelon with wall and the x-axis?”). However, since the bijection
used here does not encode the wall condition, this approach will probably fail for answering
these questions.

We however will encounter this bijection between Motzkin paths and watermelons again in
Chapter 5 when dealing with pattern avoidance in watermelons.

4
T H E V E C T O R I A L K E R N E L M E T H O D A N D PAT T E R N AV O I D A N C E I N
L AT T I C E PAT H S

4.1 definitions and notations

In this chapter we are going to analyze lattice paths that avoid certain patterns.
Let w be a lattice path with a simple step set, i.e., where all steps have length one. A pattern is

a fixed path (or word)
p = [a1, . . . , a`]

where ai ∈ S . The length of a pattern is the number of its steps. An occurrence of a pattern p in a
lattice path w is a contiguous sub-string of w, which coincides with p. We say a lattice path w
avoids the pattern p if there is no occurrence of p in w. For example, the path w = [1, 3, 3, 1,−2, 3, 1]
(where i stands for the step (i, 1)) has two occurrences of the pattern p = [3, 1] but avoids the
pattern p̃ = [−2,−2].

A prefix of length k of a string is a contiguous non-empty sub-string that matches the first k
letters (or steps, to phrase it with words more familiar for a lattice path setting). Similarly, a suffix
of length k of a string is a contiguous non-empty sub-string that matches the last k letters. For
example, [1, 3, 3] is a prefix (of length 3) of the path w from the previous example and [−2, 3, 1] is
a suffix. A presuffix of a pattern is a non-empty string that is both prefix and suffix. In our above
example, [1] is the only presuffix of this given path.

Several patterns in lattice paths have been studied in the past, both in the context of counting
paths avoiding a pattern as well as counting the number of occurrences of a fixed pattern in a
path, as can be seen in [6, 15, 27, 60, 61, 72, 69]. The methods used are many different techniques
like bijective proofs, decomposition arguments as well as finite operator calculus and have to be
adapted and reinvented for each different pattern (or certain classes of patterns). The vectorial
method, however, is a unified approach to solve the enumeration problem for lattice paths
avoiding any kind of pattern.

Some authors use a different definition of a pattern, namely when the pattern is contained in
the path as non-contiguous substring, see for example [6]. The path w as defined in the previous
example contains [1, 3, 1, 3] in the non-contiguous-sense, but not in the contiguous sense. Lattice
paths avoiding patterns in the non-contiguous sense also can be dealt with the vectorial kernel
method. In this chapter however we will only consider consecutive patterns, unless mentioned
otherwise.

In order to describe pattern avoidance we will need the concept of finite automata.

Definition 4.1.1. A finite automaton is a quadruple (Σ,M, s0, δ) where

• Σ is the input alphabet (in our case, Σ will usually be associated to the step set)

• M is a finite, nonempty set of states

• s0 ∈ M is the initial state

• δ :M×Σ→M is the state transition function. In many cases, it is useful to allow δ to be a partial
function as well, i.e., not every image δ(Si, x) has to be defined. Especially for pattern avoidance the
usage of partial functions is very helpful.

Sometimes there is also a set F ⊆ M of final states given in the definition of a finite automaton. Here,
however, we will not have any final states (i.e. F = ∅).

51

52 the vectorial kernel method and pattern avoidance in lattice paths

A finite automaton can be described as a weighted directed graph (the states being the vertices,
the edges and their weights given by the transition function) or by an adjacency matrix A, where
the entry Aij consists of the formal sum of all letters x that, when being in state Si and reading
the letter x, transition to state Sj. Phrased differently,

Aij = ∑
x:δ(Si ,x)=Sj

x.

Example 4.1.2. Let S = {U,H,D} where U = (1, 1),H = (1, 0) and D = (1,−1) be the step set
and p = [U,H,U,D] the forbidden pattern. We will build an automaton with s = 4 states, where s
is the number of steps in the pattern. Each state corresponds to a proper prefix of p collected so
far by walking along the lattice path. Let us label these states X0, . . . , Xs−1 (in our case X0, . . . , X3).
The first state X0 is labeled by the empty word. The next states are labeled by proper prefixes
of p, more precisely Xi is labeled by Xi = [a1, . . . , ai] where aj are the letters of the forbidden
pattern. For i, j ∈ {1, . . . , s} we have δ(Xi, λ) = Xj (or, in the graph setting, an arrow labeled λ) if
j is the maximal number such that Xj is a suffix of Xiλ.

When the automaton reads a path w, it ends in the state labeled with the longest prefix of p
that coincides with a suffix of w. The automaton is completely determined by the step set and the
pattern.

X0

ε

X1 X2 X3

U UH UHU

H,D
U H U

U U

D
H,D

H

Figure 16: The automaton for S = {U,H,D} and p = [U,H,U,D]

The adjacency matrix is then given by the adjacency matrix of the directed weighted graph
described by the automaton (note that we use the final altitudes of the steps encoded as powers
of the variable u instead of the steps themselves, i.e., σ = {u, 1, 1

u} instead of σ = {U,H,D}):

A = A(u) =




1 + u−1 u 0 0
u−1 u 1 0

1 + u−1 0 0 u
0 u 1 0


 .

In each row except the last one, all entries sum up to P(u), because at each state except the last
one, all possible steps are allowed. The entries in the last row of the matrix sum up to P(u)− ws,
where ws is the weight of the last step in the forbidden pattern p. This is because in the last state
Xs−1 all steps except the one that would make p complete are allowed.

Automata can not only be used to describe the avoidance of one pattern, but also for other
constraints, e.g. the aforementioned non-contiguous notion of patterns, the avoidance of several
patterns at once (see Section 4.5) or height constraints.

Definition 4.1.3. The kernel of an automaton is defined to be the determinant of I − tA, where A is the
adjacency matrix of the automaton, i.e.,

K(t, u) := det(I − tA).

Why this kernel is of importance and what we will use it for will be explained in the next
sections after we have introduced the kernel method. For certain kinds of automata, for example

4.2 the kernel method – an introduction 53

the automata that arise when considering walks that avoid a pattern, there are easier expressions
for the kernel that avoid the computation of the adjacency matrix and its determinant. For more
details on this, see [3].

4.2 the kernel method – an introduction

The kernel method1 is a tool to study generating functions that satisfy functional equations.
The main idea behind the kernel method is to introduce a catalytic variable and then bind the
variables in a way such that one side of the equation vanishes. In its easiest form, i.e., for solving
equations of the type

K(z, u)F(z, u) = A(z, u) + B(z, u)G(z), (38)

where K, A and B are known functions, F and G are unknown functions, and where the kernel
K(z, u) = 0 has only one small root u1(z) = 0. The kernel method has been folklore in statistics
and statistical physics. One identifiable source is Knuth’s book [48] from 1968, where he used
this idea as a new method for solving the ballot problem. Ever since there have been several
extensions and applications of this method, see for example [13, 14, 21, 23, 11]. One very recent
extension is the so-called vectorial kernel method developed by Asinowski, Bacher, Banderier, and
Gittenberger in [3] which deals with the enumeration of simple walks avoiding a pattern. We will
examine this particular extension in the next section, then we will expand it even further to walks
with longer steps and to walks avoiding more than one pattern.

In the current section we will explain the idea behind the kernel method. This section is
mostly based on the talk “What is ... the kernel method?” I gave at the SFB Statusseminar meeting
in Strobl, 2019.

The kernel method can be decomposed into the following four steps:

1. Enlarge the class of objects we want to count by add a catalytic or also called auxiliary
variable that contains additional information about them.

2. Establish a functional equation. Rewrite it in kernel form.

3. Eliminate one of the unknowns.

4. Extract the generating function and read off the coefficients.

In Equation (38), the variable z encodes the quantity we are interested in, whereas u is an
auxiliary variable. This equation is already in kernel form, where the unknown G depending
only on the initial variable z and the unknown F depending both on the initial variable z and the
auxiliary variable u are on different sides of the equation.

There are two ways to execute step three. The first possibility is to eliminate the left hand side
in

K(z, u)F(z, u) = A(z, u) + B(z, u)G(z).

In order to do so, we insert values u(z) for u such that the kernel vanishes, reducing the equation
to

0 = A(z, u(z)) + B(z, u(z))G(z).

Solving it for G(z) then gives us the information we are interested in. Then we could also obtain
F(z, u), which would provide further information.

The other option is to eliminate the right-hand side of (38). This can be done by letting a group
of transformations act on the kernel equation, which leaves the kernel fixed and then combining
the equations obtained under the group action in a way such that the right-hand side vanishes.

How these two variants work out is probably best explained by an example. In the following,
we will give two examples, one for each variant.

1 The “kernel method” mentioned here has nothing to do with the “kernel method” or “kernel trick” from statistics or
machine learning.

54 the vectorial kernel method and pattern avoidance in lattice paths

Example 4.2.1. The first example comes from the aforementioned book [48], which is one of the
earliest identifiable sources of the kernel method:

“Consider a word composed of n ’S’ symbols and n ′X′ symbols, where S stands for ’add an
element’ to some specific stack and X stands for ’remove an element’ from the stack. Such
a word is called admissible if it specifies no operations that cannot be performed – i.e. if the
number of X’s never exceeds the number of S’s when read from left to right. Find the number
of admissible words as a function of n.”

D.E. Knuth, [48], Exercise 2.2.1.4

We have already encountered this example several times in this thesis, albeit in different clothes.
Rephrasing it, it boils down to ”Find the number of Dyck paths of semilength n” since the
symbol S can be interpreted as up step, the symbol X as down step, and the admissibility
condition corresponds to the condition that the path never goes below the x-axis. We solved this
enumeration problem with the help of the reflection principle in section 1.1, with the help of a
first passage decomposition and generating functions in Example 2.1.23 , but now “We present
here a new method for solving the ballot problem with the use of double generating functions,
since this method lends itself to the solution of more difficult problems ...”, as Knuth put it in [48].

1. First, we want to introduce an auxiliary variable. Let z be the variable that marks the length
of the walk, i.e., the quantity we are interested in. Now, introduce another variable u that
encodes the final altitude of the walk. This variable will play the role of the catalytic variable
in the following.

2. Using a step-by-step construction ”A walk is either empty or a shorter walk with a step
attached in the end” we obtain the following functional equation

F(z, u) = 1 + z(u + u)F(z, u)− zuF(z, 0),

where u is shorthand for 1
u and the term −zuF(z, 0) ensures that the walks never go below

the x-axis. We are interested in the number of Dyck paths that end on the x-axis, which are
encoded by the generating function F(z, 0).

Rewriting it in kernel form ”Bulk on the left, initial and boundary on the right” we obtain

(1− z(u + u))︸ ︷︷ ︸
kernel

F(z, u) = 1− zuF(z, 0).

3. Now, we want to eliminate one of the unknowns F(z, u) or F(z, 0). Since we are interested
in F(z, 0), we are going to eliminate F(z, u). To do so, we will insert certain values for u that
will make the left hand side vanish. First, multiply the kernel equation by (−u) to get rid
of negative powers

(zu2 − u + z)F(z, u) = zF(z, 0)− u.

We have that

K(z, u) = zu2 − u + z = z

(
u− 1−

√
1− 4z2

2z

)(
u− 1−

√
1 + 4z2

2z

)
.

Plugging in u = u1(z) = 1−
√

1−4z2

2z or u = u2(z) = 1+
√

1−4z2

2z into the kernel equation causes
the left hand side to vanish. However, plugging in u2 would lead to a solution which is not
a power series. Hence, we plug in u1 and obtain

0 = zF(z, 0)− u1(z).

4.2 the kernel method – an introduction 55

4. Thus, extracting the generating function gives us

F(z, 0) =
u1(z)

z
=

1−
√

1− 4z2

2z2 .

Reading off coefficients we obtain that the number of Dyck paths of semilength n is 1
n+1 (

2n
n).

If we for some reason are also interested in the final altitude, we can plug the above solution
for F(z, 0) in the kernel equation and obtain

F(z, u) =
u1(z)− s

zu2 − u + z
=

1−
√

1− 4z2 − 2zu
2z(zu2 − u + z)

.

As we have seen above, not all roots of the kernel lead to solutions that are power series. In
order to decide which roots to plug in, we need the notion of small and large roots.

Definition 4.2.2. A small root is a root ui(z) of the kernel K(z, u) which tends to zero as z tends to zero.
Similarly, a large root is a root ui(z) of the kernel K(z, u) such that |ui(z)| tends to infinity as z tends to
zero.

For the kernel method to work we have to use small roots.

Example 4.2.3. Consider walks with step set S = {W, N, SE} = {x, y, xy} in the quarter plane.
How many such walks of length n are there?

This example is taken from [23], where not only this step set, but all other walks with small
steps in the quarter plane have been classified according to the algebraic nature of their generating
function (except for Gessel walks, i.e., the step set S = {W, E, NE, SW}). The algebraicity of the
generating function of these walks has been proved with the aid of the computer by Kauers,
Koutschan, and Zeilberger [47] in 2008, seven years later in 2015 Bostan, Kurkova, and Raschel [20]
finally gave a proof which was not computer aided.

Figure 17: A walk in the quarter plane consisting of steps W, N, and SE.

Again, we will be using the kernel method to solve this problem.

1. Let t mark the variable we are interested in in the generating function, namely the length
of the walk. Furthermore let us introduce two catalytic variables x and y, encoding the
coordinates of the end point.

2. A step-by-step construction gives us the following functional equation in the three unknowns
F(x, y, t), F(x, 0, t), and F(0, y, t):

F(x, y, t) = 1 + t(x + y + xy)F(x, y, t)− txF(0, y, t)− txyF(x, 0, t). (39)

Note that now we have to take care not to leave the region the walk is confined to at two
instances. We are not allowed to take a step to the west when we are on the y-axis because
by doing so we would leave the quarter plane, this corresponds to the term −txF(0, y, t).
Furthermore, we are not allowed to take a south-east step when we are on the x-axis, this
corresponds to the term −txyF(x, 0, t).

56 the vectorial kernel method and pattern avoidance in lattice paths

If our walk had a south-west step we would have take extra care. If we are at the origin
and then take an south-west-step, leaving the quarter plane, we counted this twice, once by
the correction terms coming from the x-axis, once by the correction terms coming from the
y-axis. Hence, we would have to add the term corresponding to taking an south-west step
at the origin in order to fix this double counting, in an inclusion-exclusion-like manner. In
three or more dimensions the inclusion-exclusion-like nature becomes even more visible, as
can be seen in [19].

Rewriting Equation (39) in kernel form by bringing all unknowns depending on both x and
y to the left hand side we obtain:

(1− t(x + y + xy))F(x, y, t) = 1− txF(0, y, t)− txyF(x, 0, t).

To get rid of negative powers we multiply with xy and obtain:

(1− tS(x, y))︸ ︷︷ ︸
kernel K(x,y)

xyF(x, y) = xy + tyF(0, y)︸ ︷︷ ︸
depends only on y

− tx2F(x, 0)︸ ︷︷ ︸
depends only on x

, (40)

where S(x, y) := (x + y + xy) is shorthand for the step polynomial.

3. Now, we want the right-hand side to vanish. Since it contains two unknowns whereas the
left-hand side contains only one unknown, this seems like a wise choice. To do so, we
consider a group of birational transformations that leave the kernel fixed. Furthermore, we
want the generators Φ and Ψ of this group also to leave x and y respectively fixed in order
to obtain cancellations of the terms tx2F(x, 0) and tyF(0, y).

Such birational transformations can be found by writing the step polynomial as

S(x, y) = A−1(x)y + A0(x) + A1(x)y = B−1(y)x + B0(y) + B1(y)x,

where A1, A−1, B1, B−1 6= 0. Then define

Φ : (x, y) 7→
(

x
B−1(y)
B1(y)

, y
)

and Ψ : (x, y) 7→
(

x, y
A−1(x)
A1(x)

)
.

Clearly the actions Φ and Ψ leave S(x, y) fixed. Furthermore, we have that Φ2 = id and
Ψ2 = id. For the group acting on the Kernel Equation (40), consider the group generated by
Φ and Ψ. In our case we have

A1(x) = 1 A0(x) = x A−1(x) = x

B1(y) = y B0(y) = y B−1(x) = 1

Thus we arrive at

Φ(x, y) = (xy, y) and Ψ(x, y) = (x, xy).

The group of the walk is then given by

(x, y) Φ↔ (xy, y) Ψ↔ (xy, x) Φ↔ (y, x)
Ψ↔ (y, xy) Φ↔ (x, xy) Ψ↔ (x, y).

Let this group act on the functional equation and form alternating sums (also called orbit
sums). Each group element leaves the step polynomial and the kernel fixed. Furthermore,

4.3 the vectorial kernel method 57

all these actions are indeed well defined, since these objects are all power series in t (the
dependency on t will be omitted in the following). Thus we arrive at

K(x, y)xyF(x, y) = xy− tyF(0, y)− tx2F(x, 0)

−K(x, y)xy2F(xy, y) = −xy2 + tyF(0, y) + tx2y2F(xy, 0)

K(x, y)x2yF(xy, x) = x2y− txF(0, x)− tx2y2F(xy, 0)

−K(x, y)xyF(y, x) = −xy + txF(0, x) + ty2F(y, 0)

K(x, y)xy2F(y, xy) = xy2 − txyF(0, xy)− ty2F(y, 0)

−K(x, y)x2yF(x, xy) = −x2y + txyF(0, xy) + tx2F(x, 0)

Summing up we obtain:

K(x, y)(xyF(x, y)− xy2F(xy, y) + x2yF(xy, x)− xyF(y, x) + xy2F(y, xy)− x2yF(x, xy))

= xy− xy2 + x2y− xy + xy2 − x2y. (41)

Note that the right-hand side now does not contain any unknowns anymore. Furthermore,
the left hand side contains only one expression that has both positive x-powers and positive
y-powers. This will help us extracting the generating function.

4. Dividing Equation (41) by the kernel and xy and reading off nonnegative parts we obtain

F(x, y) = {x≥0y≥0}1− x2y + x3 − x2y2 + y3 − xy2

K(x, y)
.

Let n = 3m + 2i + j where (i, j) are the coordinates of the endpoint and n is the length of
the walk. Then we have

[xiyjtn]F(x, y, t) =
(i + 1)(j + 1)(i + j + 2)(3m + 2i + j)!

m!(m + i)!(m + i + j)!
.

This follows from K(x, y) = 1− t(x + y + xx) and [xiyj](x + y + xx) = (3m+2i+j)!
m!(m+i)!(m+i+j)! by

the binomial theorem and some simplifications.

A word of caution however: The approach with the orbit sums does not always work. There
are two phenomena that can occur:

1. The right-hand side can vanish entirely. This happens for example for the walks with step
set S = {N, E, SW}. In this case, looking at half-orbit sums turns out to be helpful.

2. The group can be infinite. This happens for example for walks with the step set S =
{N, E, NW, SE}. In this case the argument fails, because we would encounter infinite sums.
Proving that the group of a walk is infinite is not easy, either. How this can be done can be
seen in [23].

4.3 the vectorial kernel method

Let us now return to the problem of walks with a simple step set avoiding a pattern from [3],
where the vectorial kernel method was developed as an unified approach for dealing with such
problems.

Definition 4.3.1. For any word p, letQ be the set of its presuffixes. Then the autocorrelation polynomial
of p is

R(t, u) := ∑
q∈Q

t|q|ualt(q), (42)

where q denotes the complement of q in p, i.e. the suffix of p such that p = qq is the concatenation of q and
q.

58 the vectorial kernel method and pattern avoidance in lattice paths

Example 4.3.2. For example, consider the pattern p = [1, 2, 1,−3, 1, 1, 2, 1]. It has the following
three presuffixes: [1], [1, 2, 1] and [1, 2, 1,−3, 1, 1, 2, 1]. They contribute to the autocorrelation
polynomial as follows:

Presuffix [1] [1, 2, 1] [1, 2, 1,−3, 1, 1, 2, 1]
Length of complement 7 5 0
Height of complement 5 2 0
Contribution t7u5 t5u2 1

Thus we have that the autocorrelation polynomial of p is R(t, u) = 1 + t5u2 + t7u5.

If p is a pattern without any autocorrelation, we have Q = {p} and thus R(t, u) = 1.
The notion of the autocorrelation polynomial already appeared back in 1985 in a work of

Guibas and Odlyzko [41] when they analyzed a string searching algorithm and properties of
periodic words. It also stands in relation with the kernel of a walk avoiding a pattern, as we will
see in the following theorem and its corollaries.

Equipped with these definitions we can now finally state the theorems from [3] for generating
functions for walks, bridges, meanders, and excursions avoiding a pattern:

Theorem 4.3.3. Let S be a simple set of steps and let p be a pattern with steps from S . Then the bivariate
generating function for walks avoiding the pattern p is given by

W(t, u) =
(1, 0, . . . , 0) adj(I − tA)~1

K(t, u)
.

It can also be written as

W(t, u) =
R(t, u)
K(t, u)

.

If we do not keep track of the final altitude, we obtain

W(t) = W(t, 1) =
1

1− tP(1) + t`
R(t,1)

where ` is the length of the pattern.

Proof. By a step-by-step construction, we obtain the following functional equation

(W1, . . . , W`) = (1, 0, . . . , 0) + t(W1, . . . , W`)A

since the adjacency matrix describes into which state we transition after taking a step. This can
be rewritten as

(W1, . . . , W`)(I − tA) = (1, 0, . . . , 0)

(W1, . . . , W`) = (1, 0, . . . , 0)
adj(I − tA)

det(I − tA)
.

Note that the generating function W(t, u) is the sum of all the generating functions Wα(t, u) over
all states. This gives us

W(t, u) =
`

∑
α=1

Wα = (W1, . . . , W`)~1 =
(1, 0, . . . , 0) adj(I − tA)~1

det(I − tA)
.

Since K(t, u) was defined as det(I − tA) we obtain

W(t, u) =
(1, 0, . . . , 0) adj(I − tA)~1

K(t, u)
.

4.3 the vectorial kernel method 59

On the other hand, the generating function W(t, u) can be constructed by the following combina-
torial argument. Denote W{p}(t, u) the generating function of walks with step set S that end with
p but have no other occurrence of p. If we add a letter from S to a p-avoiding walk, we either
obtain another p-avoiding walk or a walk with a single occurrence of p at the end. This gives us

W + W{p} = 1 + tPW. (43)

If we append p at the end of a p-avoiding walk, we obtain the same result as we would obtain by
appending the complement of a presuffix of p to a walk with a single occurrence of p at the end.
Phrased differently

Wt`ualt(p) = W{p}R(t, u). (44)

The equations (43) and (44) form a system of two linear equations in the two unknowns W and
W{p}. Solving it for W we obtain

W(t, u) =
R(t, u)

(1− tP(u))R(t, u) + t|p|ualt(p)
.

Thus we have two representations for W(t, u) and obtain

W(t, u) =
(1, 0, . . . , 0) adj(I − tA)~1

det(I − tA)
=

R(t, u)
(1− tP(u))R(t, u) + t|p|ualt(p)

. (45)

Corollary 4.3.4. Let S be a simple set of steps and let p be a pattern with steps from S . The the generating
function for bridges avoiding the pattern p is given by

B(t) = −
e

∑
i=1

u′i(t)
ui(t)

R(t, ui)

Kt(t, ui)
,

where u1(t), . . . , ue(t) are the small roots of the kernel K(t, u) and Kt is derivative of K with respect to t.

Proof. The generating function of bridges is given by B(t) = [u0]W(t, u). This coefficient can be
computed with the help of Cauchy’s coefficient formula (2.2.7):

B(t) = [u0]W(t, u) =
1

2πi

∫

|u|=ε

W(t, u)
u

.

By Theorem 4.3.3 we have that

W(t, u) =
R(t, u)
K(t, u)

hence the poles are exactly at the small roots u1(t), . . . , ue(t) of the kernel and we obtain

B(t) =
e

∑
i=1

Resu=ui

W(t, u)
u

.

Computing these residues we obtain

Resu=ui(t)
W(t, u)

u
=

R(t, u)
d

du (u((1− tP(u))R(t, u) + t`ualt(p)

∣∣∣∣∣
u=ui(t)

.

The denominator of this expression is

−tuP′(u)R(t, u) + u(1− tP(u))Ru(t, u) + alt(p)t`ualt(p)
∣∣∣
u=ui(t)

. (46)

Differentiating K(t, ui) = 0 with respect to t we obtain an expression for P′(ui(t)). Substituting it
into (46), we obtain the corollary.

60 the vectorial kernel method and pattern avoidance in lattice paths

We can state another corollary that allows easier computation of the kernel in the case of the
avoidance of a single pattern. This is of interest because the autocorrelation polynomial is usually
much easier to compute than the determinant of the adjacency matrix.

Corollary 4.3.5 (Alternative representation of the kernel). Let S be a step set and p a pattern with
steps from S . Furthermore, let A be the adjacency matrix of the corresponding automaton. Then we have

K(t, u) := det(I − tA) = (1− tP(u))R(t, u) + t|p|ualt(p).

Proof. It remains to show that the two representations from Equation (45) are the same, i.e., that
numerators and denominators in both fractions are the same. To do so, notice that det(I − tA) is
a polynomial of degree ` in t and constant term 1. This is also the case for (1− tP(u))R(t, u) +
t|p|ualt(p). From this we obtain that the two numerators in Equation (45) are in fact equal.

Before proving a similar result as Theorem 4.3.3 for meanders we first need the following

Lemma 4.3.6. All roots u(t) of the kernel K(t, u) are either small or large. Let dK denote the degree
of K(t, u) in u and let `K denote the lowest power of u in the monomials of K. Then K has exactly
e = max(0,−`K) small roots and f = max(0, dK) large roots.

Proof. See [3].

Theorem 4.3.7. Let S be a simple set of steps and let p be a pattern with steps from S . The bivariate
generating function of meanders avoiding the pattern p is

M(t, u) =
G(t, u)

ueK(t, u)

e

∏
i=1

(u− ui(t)), (47)

where u1(t), . . . , ue(t) are the small roots of the kernel K(t, u) and G(t, u) is a polynomial in u which will
be characterized in the proof.

Proof. By a similar step-by-step construction as in Theorem 4.3.3 we obtain the vectorial functional
equation for the generating function of meanders:

(M1, . . . , M`) = (1, 0, . . . , 0) + t(M1, . . . , M`)A− t{u<0}((M1, . . . , M`)A). (48)

However, we have to take into account that the meanders may not cross the x-axis, which is taken
care of by −t{u<0}((M1, . . . , M`)A) (remember that {u<0} denotes all powers of u which are
negative). Rewriting 48 we obtain

(M1, . . . , M`)(I − tA) = (1, 0, . . . , 0)− t{u<0}((M1, . . . , M`)A). (49)

The right-hand side of (49) is a vector, its components are power series in t and Laurent polynomi-
als in u (their lowest degree is ≥ −c). Denote this vector by F and its components by Fα = Fα(t, u)
for α = 1, . . . , ` (the letter F can be interpreted as shorthand for ”forbidden”, since this vector
encodes the forbidden transitions below the x-axis). Using this notation we have that

(M1, . . . , M`)(I − tA) = (F1, . . . , F`). (50)

We multiply (50) from the right by (I − tA)−1 =
(adj(I−tA))·~1

det(I−tA)
, where ~1 is the column vector

consisting only of ones, i.e.,~1 = (1, . . . , 1)>. Furthermore, denote ~v := ~v(t, u) = (adj(I − tA)) ·~1.
We obtain

M(t, u) =
(F1, . . . , F`)~v

K(t, u)
. (51)

Write
Φ(t, u) := ue(F1(t, u), . . . , F`(t, u)) ·~v (52)

4.3 the vectorial kernel method 61

where e is the number of small roots of K(t, u) and multiply (51) with ueK(t, u) to get rid of the
denominator and negative u-powers. We obtain

ueK(t, u)M(t, u) = Φ(t, u). (53)

What we have done so far were steps one and two of the kernel method. The variable u plays the
rule of a catalytic variable (we are not actually interested in final height, although the additional
information provided by it is nice to have) and after lots of rewriting we arrived at Equation (53)
that resembles the kernel form. We now want to make the left-hand side of (53) vanish. This can
be done by plugging in u = ui(t) into (53) where ui is any small root of the kernel. Thus, the
equation

Φ(t, u) = 0

is satisfied by every small root of the kernel. Note that Φ is a Laurent polynomial since Φ = ueF ·~v
and Fi as well as ~v are Laurent polynomials by construction. Furthermore, because of Equation
(53) we have that Φ = ue M(t, u)K(t, u) and since M is a power series in u and ueK(t, u) is a
polynomial in u, the function Φ(t, u) has no negative powers of u and is thus a polynomial in u.
Since every small root ui(t) of the kernel K(t, u) is a root of the polynomial equation

Φ(t, u) = 0

it follows that

Φ(t, u) = G(t, u)
e

∏
i=1

(u− ui(t)) (54)

for some G(t, u) which is a power series in t and a polynomial in u. Substituting this into (51) we
obtain

M(t, u) =
G(t, u)

ueK(t, u)

e

∏
i=1

(u− ui(t)),

as stated in the theorem.

Corollary 4.3.8. Let S be a simple set of steps and let p be a pattern with steps from S . The generating
function of excursions avoiding the pattern p is

E(t) = M(t, 0) = lim
t→0

G(t, u)
ueK(t, u)

e

∏
i=1

(u− ui(t)), (55)

where G and ui are as in Theorem 4.3.7.

Proof. Follows directly from Theorem 4.3.7 and the fact that excursions are meanders ending at
altitude 0.

Example: To illustrate Theorem 4.3.7 and its corollary, let us have a look at Dyck paths of
semilength n avoiding the pattern DUDU. For the means of obtaining a generating functions
for such excursions, let us first consider full length and then transition back to semilength. The
pattern is p = DUDU and it can be described by the automaton given in Figure 18.

The corresponding adjacency matrix is

A =




u u−1 0 0
0 u−1 u 0
u 0 0 u−1

0 u−1 0 0


 .

Thus
K(t, u) = det(I − tA) =

1
u
(−(t3 + t)u2 + (1 + t2 + t4)u− (t3 − t)).

62 the vectorial kernel method and pattern avoidance in lattice paths

X0

ε
X1

D
X2

DU
X3

DUD

D

D U D
U

U D

Figure 18: The automaton describing DUDU-avoiding Dyck paths.

Its zeroes are

u1/2(t) =
1 + t2 + t4 ±

√
1− 2t2 − 5t4 − 2t6 + t8

2t(1 + t2)

the solution u1(t) with minus being a small root, the other one a large root. The number of small
roots is e = 1. Computing the autocorrelation vector ~v via ~v = adj(I − tA) ·~1 we obtain

~v =




1 + t2

1 + t2 − t3u
1

−(t2 + 1)(tu− 1)


 .

In order to compute F we first need to compute

{u<0}(M0, . . . , M3)A = {u<0}(u(M0 + M2), u−1(M0 + M1 + M3), uM1, u−1M2) = (0, u−1m, 0, 0),

where m := [u0]M(t, u) = [u0]M0 + M1 + M2 + M3. The last equation holds because [u0]M2 = 0,
since meanders counted by M2 end in an up step and thus always at altitude greater than zero.
We arrive at

F = (1, 0, 0, 0)− t{u<0}(M0, . . . , M3)A = (1,−tu−1m, 0, 0).

Thus we have that
Φ(t, u) = ueF~v = (t4m + t2 + 1)u− t3m− tm.

Using Φ = G(t, u)(u− u1(t)) and comparing coefficients we obtain that degu(G) = 0 and

G = t4m + t2 + 1

Gu1 = t3m + tm.

Solving this linear system in the two unknowns G and m we obtain

G = − t4 − 2t2 + 1
t3u1 − t2 − 1

m = − u1(t2 + 1)
t(t3u1 − t2 − 1)

We could now compute M(t, u) and subsequently E(t) via Theorem 4.3.7 and Corollary 4.3.8, but
since we reasoned that m = [u0]M(t, u) = E(t) earlier there is no need to do that anymore, since
we already know m. Plugging in the value for u1 we obtain after some simplifications

E(t) =
1 + t2 − t4 −

√
1− 2t2 − 5t4− 2t6 + t8

2t2 .

Transitioning to semilength we obtain that the number of Dyck paths of semilength n avoiding
DUDU is counted by the generating function

E(x) =
1 + x− x2 −

√
1− 2x− 5x2 − 2x3 + x4

2x
.

4.3 the vectorial kernel method 63

For certain types of patterns, the polynomial G from Theorem 4.3.7 has a nice form and we obtain
the following special cases.

Definition 4.3.9. A quasimeander is a lattice path which does not cross the x-axis, except, possibly, at
the last step. A reversed meander is a lattice path whose end point has a strictly smaller y-coordinate
than all other points along the path.

Theorem 4.3.10 (Generating function of meanders, quasimeander pattern subcase). Let p be a
pattern which is a quasimeander. Then the bivariate generating function of meanders avoiding the pattern
p is given by

M(t, u) =
R(t, u)

ucK(t, u)

e

∏
i=1

(u− ui(t)),

where u1(t), . . . , ue(t) are the small roots of K(t, u) = 0.

Proof. See [3].

Theorem 4.3.11 (Generating function of meanders, reversed meander pattern subcase). Let p be a
reversed meander. The bivariate generating function of meanders avoiding the pattern p is given by

M(t, u) =
1

ueK(t, u)

e

∏
i=1

(u− ui(t)),

where u1(t), . . . , ue(t) are the small roots of K(t, u) = 0.

Proof. See [3].

As illustrated in [3] the vectorial kernel method can not only be used to count walks avoiding
a given pattern, but also for counting the number of occurrences of a given pattern. Instead of
prohibiting the step that would complete the pattern in the automaton, one weights this step
with a new variable, marking the number of times the pattern occurs. This leads us to the use of
trivariate generating functions. We will also use this in Example 4.4.2 when counting ascents in
Schröder paths.

Definition 4.3.12. An occurrence of a pattern p in a walk w is any substring of w that coincides with p.
When counting them, these occurrences need not be disjoint. For example, 121111 has three occurrences of
the pattern 11.

Theorem 4.3.13. The trivariate generating function of the number of occurrences of the pattern p in walks
(where t encodes length, u encodes final altitude and v encodes the number of occurrences) is given by

W(t, u, v) =
1

1− tP(u)− t`ualt(p)(v− 1)/(1− (v− 1)(R(t, u)− 1))
. (56)

Proof. Using a similar approach as for counting walks with a forbidden pattern, let W ≡W(t, u, v)
be the generating function of all walks and Wp ≡ Wp(t, u, v) be the generating function of walks
ending with p. Then the following two identities hold:

1 + WtP = W −Wp + v−1Wp (57)

Wt`ualt(p) = v−1WpR− (R− 1)Wp. (58)

Identity (57) can be shown by taking a walk and appending a step to it. If the resulting walk does
not end with p it is counted by W −Wp, otherwise it is counted by v−1Wp, the factor v−1 comes
from the fact that the new occurrence of p hasn’t been marked on the left-hand side.

To obtain identity (58), take a walk with i occurrences of p and consider what appending p
at the end of the walk (denoted by w.p) contributes to both sides of the equation. Adding the
pattern p at the end of the walk w creates j ≥ 1 extra occurrences of p (this number may be
greater than 1 because of overlaps). Thus, there are j different ways in which w.p can be written

64 the vectorial kernel method and pattern avoidance in lattice paths

as w′.r where w′ ends with p and r is an autocorrelation factor, or j− 1 ways if we impose r 6= ε.
Therefore the word w.p contributes a factor vi to Wt`ualt(p), a factor vi+1 + · · ·+ vi+j to WpR and
with a factor vi+1 + · · ·+ vi+j−1 to Wp(R− 1).

Solving the system of equations (57) and (58) for W then gives us formula (56).

In order to get a similar result for meanders, let us again consider the automaton associated
with the pattern. Instead of forbidding the transition that completes the pattern we now associate
a weight v to the edge whose transition would lead to an occurrence of p. The adjacency matrix
A(u, v) has now entries which are Laurent polynomials in u and v. This is illustrated in the
following example where the automaton counts the occurrences of the pattern DUDU in a Dyck
path. The arrow completing the pattern and the weight v are marked in red.

A =




u u−1 0 0
0 u−1 u 0
u 0 0 u−1

0 u−1 uv 0




Accordingly we define the trivatiate kernel as

K(t, u, v) := det(I − tA(u, v)).

Note that for v = 0 we get the same kernel as in the avoidance case and for v = 1 we get
K(t) = 1− tP(u), which is the kernel for walks where any patterns are allowed. The formulas
for the trivariate generating functions for meanders can now be obtained as in Theorem 4.3.7,
where the ui’s now are the small roots of the trivariate kernel. Similarly, the trivariate generating
function for bridges or excursions can be obtained as in Corollary 4.3.4 and 4.3.8.

With the notion of the automaton we also obtain the following alternative form for the
trivatiate generating function of walks:

W(t, u, v) =
(1, 0, . . . , 0) adj(I − tA(u, v)) ~b f 1

det(I − tA(u, v))
. (59)

As a consequence of Theorem 4.3.13 and Equation (59) we obtain

K(t, u, v) := det(I − tA(u, v)) = (1− v)
(
(1− tP(u))R(t, u)t`ualt(p)

)
+ v(1− tP(u)).

This equation follows because the denominators of the rational functions in Theorem 4.3.13 and
Equation (59) are the same irreducible polynomial of degree ` in t.

These trivatiate generating functions allow us to study the asymptotic behavior of the number
of occurrences of a pattern in a walk. Before we do so we first need to define generic walks.

Definition 4.3.14. A constrained walk model is called generic if it fulfills the following five properties.

• The generating functions for bridges, meanders, and excursions denoted by B(t), M(t) and E(t) are
algebraic and not rational.

• These generating functions have a unique dominant singularity, which is algebraic and not a pole.

• The factor G(t, u) defined in Equation (54) is a polynomial in t.

• Let $ be the smallest positive real number such that a large branch meets a small branch at t = $
(the branches refer to the roots of the kernel K(t, u) = 0). No large negative branch (i.e. a branch
such that limt→0+ = −∞) meets a small negative branch at t = $.

4.4 the vectorial kernel method for walks with longer steps 65

• The smallest positive root of K(t, 1) is simple.

These properties are natural and hold in most cases. For a detailed analysis of cases where
they are not holding, we refer to [3].

Theorem 4.3.15. Let Xn be the random variable counting the number of occurrences of a pattern in a
generic walk, bridge, meander or excursion model. Then Xn has Gaussian limiting distribution with
expected vaule E[Xn] = µn + O(1) and variance V[Xn] = σ2n + O(1) for some constants µ > 0 and
σ2 ≥ 0, i.e.

1√
n
(Xn −E[Xn])→ N (0, σ2).

Proof. See [3].

This is an instance of what Flajolet and Sedgewick [37] called Borges’ Theorem: Any pattern
not forbidden by design will appear a linear number of times with Gaussian fluctuations in large enough
structures.

Note that this is more a principle or credo than a mathematical theorem, the claim still needs
to be established rigorously in each case. However, this claim is proven to hold true in many
combinatorial structures like maps, trees, Markov chains, permutations, context-free grammars,
and – as seen above – lattice paths.

The name Borges’ Theorem is a tribute to the short story ”The Library of Babel” by the
Agentinian writer Jorge Luis Borges. This library is described as so huge that it contains:

“All – the detailed history of the future, the autobiographies of the archangels, the faithful
catalog of the Library, thousands and thousands of false catalogs, the proof of the falsity of
those false catalogs, a proof of the falsity of the true catalog, the gnostic gospel of Basilides, the
commentary upon that gospel, the commentary on the commentary on that gospel, the true
story of your death, the translation of every book into every language, the interpolations of
every book into all books, the treatise Bede could have written (but did not) on the mythology
of the Saxon people, the lost books of Tacitus.”

J. L. Borges. The Library of Babel. (Translated from Spanish by Andrew Hurley)

4.4 the vectorial kernel method for walks with longer steps

In the previous section we studied simple walks avoiding a pattern. This will be generalized to
walks with longer steps now. This section is based on the paper [68].

The vectorial kernel method also works for directed walks with longer steps if the right
adaptions are made. Instead of the adjacency matrix A = A(u) we now have to consider the
adjacency matrix A(t, u) that takes into account the different lengths of the steps by weighting
them with the corresponding powers of t, i.e. a step of length i is weighted with ti.

The length of a pattern is now defined to be the sum of the length of its steps, which does not
necessarily coincide with the number of steps in the pattern anymore.

Example: Let S = {U,F,D} where U = (1, 1),F = (2, 0) and D = (1,−1) be the step set and
p = [U,F,U,D] the forbidden pattern. It has length 5 albeit it has only four steps, i.e., size four.

When computing the adjacency matrix of this automaton we have to keep track not only of
the altitude but also of the length of the steps. We obtain

A =




t2 + tu−1 tu 0 0
tu−1 tu t2 0

t2 + tu−1 0 0 tu
0 tu t2 0


 .

66 the vectorial kernel method and pattern avoidance in lattice paths

X0

ε

X1 X2 X3

U UF UFU

F,D
U F U

U U

D
F,D

F

Figure 19: The automaton for S = {U,F,D} and p = [U,F,U,D]

Definition 4.4.1. The kernel of an automaton is defined to be the determinant of I − A(t, u), where A is
the adjacency matrix of the automaton, i.e.,

K(t, u) := det(I − A(t, u)).

For simple walks we can pull out the factor t from A(t, u) = tA(u) where A(u) is now
independent of the variable t and obtain the definition of the kernel we had earlier.

With this adapted notion of the adjacency matrix we obtain the following theorems:

Theorem 4.4.2. The bivariate generating function for walks obeying constraints that can be described by a
finite automaton (e.g. pattern avoidance) is given by

W(t, u) =
(1, 0, . . . , 0)adj(I − A(t, u))~1

det(I − A(t, u))
(60)

where t marks length and u marks final altitude.

Theorem 4.4.3. The bivariate generating function for meanders obeying constraints that can be described
by a finite automaton is given by

M(t, u) =
G(t, u)

ueK(t, u)

e

∏
i=1

(u− ui(t)) (61)

where t marks length and u marks final altitude, ui (i = 1, . . . , e) are the small roots of the kernel K(t, u)
and G(t, u) is a polynomial in u which will be characterized in the proof in Equation (65).

Proof of Theorem 4.4.2: The proof follows the same idea as in the case with steps of length one,
which was studied in [3]. Writing Wi := Wi(t, u) for the generating function of walks ending in
state Xi and using a step-by-step-construction we obtain the functional equation

(W1, . . . , W`) = (1, 0, . . . , 0) + (W1, . . . , W`) · A(t, u),

or equivalently
(W1, . . . , W`)(I − A(t, u)) = (1, 0, . . . , 0).

Multiplying this equation from the right with (I − A(t, u))−1 =
adj(I−A(t,u))
det(I−A(t,u)) gives us

(W1, . . . , W`) =
(1, 0, . . . , 0)adj(I − A(t, u))

det(I − A(t, u))
.

The generating function W(t, u) is the sum of the generating functions Wi(t, u), thus

W(t, u) = (W1, . . . , W`)~1 =
(1, 0, . . . , 0)adj(I − A(t, u))~1

det(I − A(t, u))

which finishes the proof. �

4.4 the vectorial kernel method for walks with longer steps 67

Corollary 4.4.4. The generating function for bridges is

B(t) = [u0]W(t, u) =
1

2πi

∫

|u|=ε

W(t, u)
u

=
e

∑
i=1

Resu=ui

W(t, u)
u

.

Proof of Theorem 4.4.3: This proof works similarly as the one for walks, but now we also have
to take care that the walk is not allowed to attain negative altitude. Writing Mi = Mi(t, u) for the
generating function of meanders ending in state Xi of the automaton and using a step-by step
construction we obtain the following vectorial functional equation

(M1, . . . , M`) = (1, 0, . . . , 0) + (M1, . . . , M`) · A(t, u)− {u<0}((M1, . . . , M`) · A(t, u)).

This is equivalent to

(M1, . . . , M`)(I − A(t, u)) = (1, 0, . . . , 0)− {u<0}((M1, . . . , M`) · A(t, u)).

Writing F := (F1, . . . , F`) for the right-hand side of the above equation leads to

(M1, . . . , M`)(I − A(t, u)) = (F1, . . . , F`). (62)

Multiplying (62) from the right by (I − A(t, u))−1 =
adj(I−A(t,u))
det(I−A(t,u)) gives us

(M1, . . . , M`) = (F1, . . . , F`) ·
adj(I − A(t, u))
det(I − A(t, u))

.

The generating function M(t, u) is the sum of all the generating functions Mi. Using this, defining

~v := adj(I − A(t, u))~1

and using
det(I − A(t, u)) = K(t, u)

we obtain

M(t, u) =
(F1, . . . , F`)~v

K(t, u)
. (63)

Let ui = ui(t) be a small root of the kernel K(t, u). We plug u = ui into (62). The matrix (I −
A(t, u))|u=ui is singular. Furthermore, we observe that ~vu=ui is an eigenvector of (I− A(t, u))|u=ui

for the eigenvalue λ = 0.
Hence, multiplying (62) from right with ~vu=ui causes the left-hand side of the equation to

vanish. Said differently, the equation

(F1(t, u), . . . , F`(t, u))~v(t, u) = 0

is satisfied by all small roots ui(t) of K(t, u).
Define

Φ(t, u) := ue(F1(t, u), . . . , F`(t, u))~v(t, u). (64)

Note that Φ is a Laurent polynomial in u, because Fi and ~v are Laurent polynomials in u by
construction. Because of (63) we have that

Φ(t, u) = ue M(t, u)K(t, u)

and because M is a power series in u and K has exactly e small roots the Laurent-polynomial Φ
contains no negative powers in u and is a polynomial in u. Each small root ui is a root of the
polynomial equation Φ(t, u) = 0. This gives us the factorization

Φ(t, u) = G(t, u)
e

∏
i=1

(u− ui(t)) (65)

68 the vectorial kernel method and pattern avoidance in lattice paths

where G(t, u) is a polynomial in u and formal power series in t. Plugging G in (63) we obtain

M(t, u) =
G(t, u)

ueK(t, u)

e

∏
i=1

(u− ui(t))

which finishes the proof. �

Corollary 4.4.5. The generating function E(t) for excursions with restrictions described by a finite
automaton A(t, u) satisfies

E(t) = M(t, 0) =
G(t, u)

ueK(t, u)

e

∏
i=1

(u− ui(t))

∣∣∣∣∣
u=0

.

Examples

In the following we will consider some examples illustrating applications of the previous theorems.
The first example is more of the simple and introductory kind and deals with Schröder paths
avoiding the pattern UF, the second one counts Schröder paths having k ascents and proves a
conjecture about the asymptotic behavior of the expected number of ascents.

Number of Schröder paths of semilength n avoiding UF

Schröder paths are lattice paths consisting of the steps U = (1, 1),D = (1,−1) and F = (2, 0)
starting at (0, 0), ending at (2n, 0) and never going below the x-axis. Here we consider Schröder
paths of length 2n avoiding the pattern p = UF. These objects are enumerated by OEIS A007317

and have been studied by Yan in [77], where bijections between Schröder paths avoiding UF
and Schröder paths without peaks at even level as well as two pattern avoiding partitions were
constructed.

The generating function for Schröder paths avoiding the pattern UF can be obtained by a first
passage decomposition – if S∗ denotes all Schröder paths avoiding UF, then

S∗ = ε ∪ F× S∗ ∪ UD× S∗ ∪ U× (S∗ \ {ε ∪ F× S∗)×D× S∗,

i.e. a Schröder path avoiding UF is either empty, or starts with either F followed by another
Schröder path avoiding UF, UD and another Schröder path avoiding UF or starts with an up step,
followed by an nonempty Schröder path avoiding UF which does not start with F (otherwise we
would obtain an occurrence of UF), a down step to altitude zero (the first passage) and another
Schröder path avoiding UF. For generating functions, this translates to

F(x) = 1 + 2xF(x) + x(F(x)− 1− xF(x))F(x),

where x encodes semilength. From here, the generating function can be obtained by solving a
quadratic equation. However, in other cases a first passage decomposition may not be possible
whereas the enumeration problem can still be solved by the vectorial kernel method.

The automaton describing Schröder paths avoiding UF is

X0

ε

X1

U

U

U

D,F

D

4.4 the vectorial kernel method for walks with longer steps 69

Its adjacency matrix is

A(t, u) =
(

t2 + tu−1 tu
tu−1 tu

)
.

Thus the kernel is

K(t, u) = det(I − A) =
t3u2 − t2u− tu2 − t + u

u
.

Its roots are

u1/2 =
1− t2 ±

√
1− 6t2 + 5t4

2t(1− t2)
,

the root with minus being the small root.
Denote M0 the generating function of the walks ending in state X0, i.e., with a D or F-step,

and M1 the generating function of the walks ending in state X1, i.e., in an U-step. A step-by-step
construction gives us the following system of equations for the generating functions:

(M0, M1) = 1 + (M0, M1)A− {u<0}(M0, M1)A.

This can be rewritten as

(M0, M1)(I − A) = 1− {u<0}(M0, M1)A.

We have that
{u<0}(M0, M1)A = (tu−1m0, 0),

where m0 = [u0]M0 + M1. Thus the forbidden vector F is

F = 1− {u<0}(M0, M1)A = (1− tu−1m0, 0).

Using

adj(I − A) =

(
1− tu tu
tu−1 1− tu−1 − t2

)

we obtain

~v = adj(I − A) ·
(

1
1

)
=

(
1

1− t2

)
.

Thus
Φ(t, u) = ueF~v = u− tm0.

Using
Φ(t, u) = G(t, u)(u− u1)

and comparing coefficients we obtain
G(t, u) = 1.

From

M(t, u) =
G(t, u)

ueK(t, u)
(u− u1(t)) =

1
t3u− t2u− tu2 − t + u

(
u− 1− t2 −

√
1− 6t2 + 5t4

2t(1− t2)

)

we obtain for the generating function M(t) of meanders

M(t) = M(t, 1) =
2 t3 − t2 − 2 t−

√
5 t4 − 6 t2 + 1 + 1

2t (t2 − 1) (t3 − t2 − 2 t + 1)

and the generating function E(t) of excursions

E(t) = M(t, 0) =
1− t2 −

√
1− 6t2 + 5t4

2t2(1− t2)
.

Making a transition to semilength (i.e., the substitution x := t2) we end up exactly the same result
for the generating function as in [77].

70 the vectorial kernel method and pattern avoidance in lattice paths

Figure 20: A Schröder path with k = 4 ascents (marked in red).

Schröder paths of semilength n having k ascents

Definition 4.4.6. An ascent in a Schröder path is a maximal string of up-steps.

Theorem 4.4.7. Let Xn be the random variable counting ascents in a Schröder path of length 2n which is
chosen uniformly at random among all Schröder paths of length 2n. Then E[Xn] ∼ (

√
2− 1)n for n→ ∞

Remark: This theorem was formulated as conjecture by D. Callan in the OEIS, entry A090981.

Proof. The (contiguous) patterns UD and UF mark the end of an ascent. Thus, when counting
ascents we want to enumerate how many times these two patterns occur. Problems like this can
also be dealt with the vectorial kernel method: Instead of forbidding a transition from one state
to another which would complete the pattern, we mark such transitions with a new variable
and then read off the corresponding coefficients in the generating function in order to obtain the
number of walks where this pattern occurs k times, since it is encoded by the k-th power of this
new variable.

Our problem can be described by the automaton:

X0

ε

X1

U

U

U

D,F

D,F

The red arrow marks the ascents we want to count and will be marked by a new variable v in the
adjacency matrix. The adjacency matrix of this automaton is

A =

(
tu−1 + t2 tu

(tu−1 + t2)v tu

)

where u encodes altitude, t encodes length of the path, and v counts the number of ascents. Thus
we have

I − A =

(
1− tu−1 − t2 −tu
−tu−1v− t2v 1− tu

)
.

The kernel is then given by

K(t, u) = det(I − A) = u−1((t3 − t3v− t)u2 + (1− t2v)u− t). (66)

Its roots are

u1,2 =
1− t2v±

√
t4(v− 2)2 − 2t2(v + 2) + 1

2t(1 + t2(v− 1))
,

the one with minus being the small root. Hence, the number of small roots is e = 1.

4.4 the vectorial kernel method for walks with longer steps 71

Writing Mi = Mi(t, u, v) for the walks ending in state Xi we obtain the vectorial functional
equation

(M0, M1)(I − A) = (1, 0)− {u<0}((M0, M1)A). (67)

We are interested in M(t, 0, v) = M0(t, 0, v), i.e. walks ending at altitude zero (since walks ending
in state X1 end in an up-step, they have final altitude at least 1, they will not contribute). In order
to compute the forbidden vector F = (1, 0)− {u<0}((M0, M1)A we cosider

{u<0}((M0, M1)A = (tu−1M0 + t2M0 + tu−1vM1 + t2vM1, tu(M0 + M1)).

Writing m0 := [u0]M0(t, u) and using [u0]M1(t, u) = 0 we arrive at

{u<0}((M0, M1)A) = (tu−1m0, 0)

and subsequently
F = (1− tu−1m0, 0).

The adjoint of the adjacency matrix is

adj(I − A) =

(
1− tu tu

t2v + tu−1v −t2 − tu−1 + 1

)
.

Thus the autocorrelation vector ~v is

~v = adj(I − A) ·
(

1
1

)
=

(
1

t2v + tu−1v− t2 − tu−1 + 1

)
.

We obtain
Φ(t, u) = ueF ·~v = u− tm0.

Using
Φ(t, u) = G(t, u)(u− u1)

where u1 is the small root of the kernel we conclude that degu G = 0 and by comparing coefficients
we obtain that

G = 1 and Gu1 = tm0.

Thus

M(t, 0, v) = E(t, v) = m0 =
Gu1

t
=

1− t2v−
√

t4(v− 2)2 − 2t2(v + 2) + 1
2t2(1 + t2(v− 1))

.

Transitioning to semilength x := t2 (and omitting the dependency on u) we arrive at

E(x, v) =
1− xv−

√
1− 2x(v + 2) + x2(v− 2)2

2x(1 + x(v− 1))
.

We are interested in the asymptotic behavior of

EXn =
[xn]∂vE(x, v)|v=1

[xn]E(x, 1)
.

We have

E(x, 1) =
1− x−

√
1− 6x + x2

2x
, (68)

which is the generating function of Schröder paths, and

∂vE(x, v)|v=1 =
x2 − 5x + 2 + (x + 2)

√
1− 6x + x2

2
√

1− 6x + x2
=

x + 2
2

+
x2 − 5x + 2

2
√

1− 6x + x2
. (69)

By the rules for computing limits we have

lim
n→∞

EXn = lim
n→∞

[xn]∂vE(x, v)|v=1

[xn]E(x, 1)
=

limn→∞[xn]∂vE(x, v)|v=1

limn→∞[xn]E(x, 1)

72 the vectorial kernel method and pattern avoidance in lattice paths

thus it remains to compute the coefficient asymptotics for (68) and (69). This can be done with
the help of the methods introduced in Section 2.2.2.

First, we want to compute

[xn]E(x, 1) = [xn+1]
−
√

1− 6x + x2

2

for n large. The discriminant 1− 6x + x2 has the roots x1,2 = 3±
√

8, where ρ = 3−
√

8 is the
dominant singularity and the other singularity at 3 +

√
8 lies outside every ∆-domain around ρ.

First, we want to move the dominant singularity to one in order to fit into the framework from
Section 2.2.2. This is achieved by the substitution z = x

3−
√

8
. We have

√
1− 6x + x2 =

√
3−
√

8− x ·
√

3 +
√

8− x

=

√
3−
√

8
√

1− z ·
√

3 +
√

8− (3−
√

8)z

∼ (3−
√

8)1/2(2
√

8)1/2
√

1− z

locally for z→ 1. Thus, by Corollary 2.2.17 with α = − 1
2 we obtain

[xn]E(x, 1) ∼ [xn+1]
1
2
(2
√

8(3−
√

8))1/2
(
−
√

1− x
3−
√

8

)

= −1
2
(2
√

8(3−
√

8))1/2(3−
√

8)−n−1[zn+1]
√

1− z

= −1
2
(2
√

8)1/2(3−
√

8)−n−1/2 (n + 1)−3/2

Γ(1
2)

∼ 1
2
(3−

√
8)−n−1/2 (2

√
8)1/2

2
√

π
n−3/2 (70)

for n → ∞. In order to compute [xn]∂vE(x, v)|v=1 we first determine [xn](1 − 6x + x2)−1/2

because this expression will appear in the computation of [xn]∂vE(x, v)|v=1. By the substitution
z = x

3−
√

8
and Corollary 2.2.17 with α = 1

2 we obtain

[xn](1− 6x + x2)−1/2 = [xn]((3−
√

8)− x)−1/2((3 +
√

8)− x)−1/2

= [zn](3−
√

8)−n−1/2(1− z)−1/2((3 +
√

8)− (3−
√

8)z)−1/2

∼ (3−
√

8)−n−1/2(2
√

8)−1/2 n−1/2
√

π
(71)

for n→ ∞. For n large we have that

[xn]∂vE(x, v)|v=1 =
1
2
[xn](x2 − 5x + 2)(1− 6x + x2)−1/2

=
1
2
[xn−2](1− 6x + x2)−1/2 − 5

2
[xn−1](1− 6x + x2)−1/2

+ [xn](1− 6x + x2)−1/2.

Using (71) and the fact that (n− k)−1/2 ∼ n−1/2 for k constant and n→ ∞, after some simplifica-
tions we arrive at

[xn]∂vE(x, v)|v=1 ∼
(2
√

8)1/2
√

π
n−1/2(3−

√
8)−n−1/2(2−

√
2) (72)

Using the expressions for (70) and (72) we obtain that for n→ ∞ the expected value of ascents
behaves like

EXn ∼
(3−

√
8)−n−1/2(2−

√
2)√

πn1/2(2
√

8)1/2
· 2 · 2√πn3/2

(3−
√

8)−n−1/2(2
√

8)1/2

4.4 the vectorial kernel method for walks with longer steps 73

which, after some simplifications, becomes

EXn ∼ (
√

2− 1)n. (73)

This proves Callan’s conjecture.

Theorem 4.4.8. Let Xn be the random variable counting ascents in a Schröder path of length n which is
chosen uniformly at random among all Schröder paths of length n. Then

VXn ∼
188− 133

√
2

8
√

2− 12
n ≈ 0.1317 n (74)

for n→ ∞.

Proof. The variance can be computed using similar means as the expected value. We have that

V(Xn) =
[xn]∂2

vE(x, v)|v=1

[xn]E(x, 1)
+

[xn]∂vE(x, v)|v=1

[xn]A(x, 1)
−
(
[xn]∂vE(x, v)|v=1

[xn]A(x, 1)

)2

. (75)

The second derivative of E with respect to v is given by

∂2
vE(x, v)|v=1 = (−x5 + 11x4 − 33x2 + 21x2 + 2x)(x2 − 6x + 1)−3/2 − x4 − 8x3 + 13x2 − 2x

x2 − 6x + 1
.

Using the substitution z = x
3−
√

8
and the tables for the asymptotics of standard functions

from [37], p. 388, we obtain

[zn](1− z)1/2 ∼ − 1√
πn3

(
1
2
+

3
16n

+
25

256n2 +O
(

1
n3

))
,

[zn](1− z)−1/2 ∼ 1√
πn

(
1− 1

8n
+

1
128n2 +O

(
1
n3

))
,

[zn](1− n)−1 ∼ 1

[zn](1− z) ∼
√

n
π

(
2 +

3
4n
− 7

64n2O
(

1
n3

))

(we need the additional terms because there will be a cancellation of the leading terms of order
n2, just the previously computed terms will not do the trick).

Inserting these as well as the correct asymptotic growth rates into the formula for the variance
(75) we arrive at the claim of the theorem after some cancellations and computing limits.

We can obtain even more information about the limiting distribution of the number of ascents
with the help of the Drmota-Lalley-Woods theorem.

Theorem 4.4.9 (Drmota-Lalley-Woods theorem, limiting distribution version from [8]). Suppose
that y = P(z, y, u) is a strongly connected and analytically well defined entire or polynomial system of
equations that depends on u and has a solution f that exists in a neighborhood of u = 1. Furthermore, let
h(z, u) be given by

h(z, u) = ∑
n≥0

hn(u)zn = H(z, f(z, u), u),

where H(z, y, u) is entire or a polynomial function with non-negative coefficients that depends on y and
suppose that hn(u) 6= 0 for all n ≥ n0 (for some n0 ≥ 0).

Let Xn be a random variable whose distribution is defined by

E
[
uXn

]
=

hn(u)
hn(1)

.

Then Xn has a Gaussian limiting distribution. More precisely, we have E[Xn] = µn + O(1) and
V[Xn] = σ2n + O(1) for constants µ > 0 and σ2 ≥ 0 and

1√
n
(Xn −E[Xn])→ N(0, σ2).

74 the vectorial kernel method and pattern avoidance in lattice paths

Proof. See [8] or [29].

Corollary 4.4.10. The number of ascents in Schröder paths has a Gaussian limiting distribution with
parameters µ =

√
2− 1 and σ2 = 188−133

√
2

8
√

2−12
.

Proof. Let
P(z, y, u) = z(1 + z(u− 1))y2 + zuy + 1.

Solving the system y = P(z, y, u) gives us

f (z, u) =
1− zu−

√
1− 2z(u + 2) + z2(u− 2)2

2z(1− z(u− 1))

which is a formal power series in a neighborhood of u = 1 (the other solution with plus is not and
can be disregarded). The function f coincides with E(x, v) (after a substitution z = x and u = v).
The system is strongly connected since it consists of only one equation in one unknown. Let
H(z, y, u) = y such that H(z, f , u) = f (z, u). From the combinatorial interpretation we see that
hn(u) 6= 0 for n ≥ n0 (remember, hn(u) counts ascents in Schröder paths of length n, thus being
a power series of the form 1 + c1u + O(u2) for any n > 0, the 1 comes from the Schröder path
consisting only of flat steps, thus having no ascent). The random variable Xn counting ascents
has distribution defined by

E
[
uXn

]
=

hn(u)
hn(1)

.

Thus, we can apply the Drmota-Lalley-Woods theorem and obtain that Xn has Gaussian limiting
distribution. We already computed the constants µ =

√
2− 1 and σ2 = 188−133

√
2

8
√

2−12
earlier in

Equations (73) and (74).

In the light of Borges’ Theorem the Gaussian limiting distribution probably does not come as
surprise (however, here we were counting the cumulative appearances of two patterns, not one as
in Theorem 4.3.15 where only one pattern was considered, thus we could not apply the theorem
directly).

This example also serves as some kind of preview for the next section where we will study
lattice paths avoiding several patterns at once.

4.5 lattice paths avoiding several patterns

In this section, the vectorial kernel method will be further generalized to the case where the
path avoids several patterns. While it was expected that the generating functions counting such
paths would be algebraic, it is a nice surprise that they have a nice closed-form, involving some
combinatorial determinants, and directly generalize previous results. This section is based on
joint work with Andrei Asinowski and Cyril Banderier [4].

Again, let t mark the length of a walk, u its final altitude, and let P(u) be the step polyno-
mial. Furthermore, let us assume that none of the forbidden patterns pi is a substring of another
pattern pj. There is no loss of generality in this assumption, since otherwise we can restrict the
set of patterns to the set of its minimal elements.

In addition to autocorrelation of one pattern, we now have to take care of mutual correlation
between two patterns. This leads us to the notion of mutual correlation polynomials and the
mutual correlation matrix.

Definition 4.5.1. Let pi and pj be two patterns. An overlap of pj and pi is a non-empty suffix of pj that
is also a prefix of pi. Denote by Cij the set of all complements q (in pi) of overlaps between pj and pi. Using
these sets, we define the mutual correlation polynomials

Cij(t, u) := ∑
q∈Cij

t|q|ualt(q). (76)

4.5 lattice paths avoiding several patterns 75

Furthermore, we define the mutual correlation matrix of m patterns to be

C(t, u) :=




C11 . . . C1m
...

. . .
...

Cm1 . . . Cmm


 . (77)

Remark: The polynomial Cii(t, u) is the classical autocorrelation polynomial of pi, as defined in
(42).

Example 4.5.2. Let p1 = aabb and p2 = bba. Then we have the following overlap (marked with
fat black border) between p2 and p1:

b b a
a a b b

q = abb

Thus, C12 = {abb}.
Furthermore, we have the following overlaps between p1 and p2:

a a b b
b b a

q = ba

a a b b
b b a

q = a

We obtain that C21 = {a, ba}.

Theorem 4.5.3. The generating function of walks with steps encoded by the step polynomial P(u) and
avoiding the patterns p1, . . . , pm is given by

W(t, u) =
∆(t, u))

(1− tP(u))∆(t, u) + ∑m
i=1 t|pi |ualt(pi)∆i(t, u)

, (78)

where ∆(t, u) := det(C(t, u)) is the determinant of the mutual correlation matrix C defined in (77) and
∆i is the determinant of the mutual correlation matrix where the i-th row of the matrix is replaced with
ones, i.e., Cji = 1 for j = 1, . . . , m.

Proof. Let W be the set of walks avoiding all of the patterns p1, . . . , pm. Let W(t, u) be the
generating function ofW . Furthermore, let W(i)(t, u) be the generating function of all walks that
have exactly one occurrence of pi at the very end, but no occurrence of pi earlier, as well as no
occurrence of any of the other patterns pj.

If we append one step from S to a walk from W we either obtain another walk in W or a
walk with a single occurrence of a pattern pi at the end. This pattern is uniquely determined,
thus these walks are counted by W(i). For the generating functions this means

1 + W(t, u)tP(u) = W +
m

∑
i=1

W(i). (79)

Now take a walk w ∈ W and append a pattern pi to it. Write w.pi for such constructions. We
end up with a walk that ends in pi, but might have occurrences of other patterns earlier. More
precisely, let q be the maximal (possible empty) suffix of w.pi such that w.pi = w′.pj.q where w′

is another walk inW and pj is one of the forbidden patterns (pj = pi is possible). Then q is the
complement of an overlap of pj and pi.

76 the vectorial kernel method and pattern avoidance in lattice paths

w ∈ W pi

pj

w′.pj ∈ Wj q ∈ Cij

Recall that these complements of overlaps are described by the mutual correlation polynomials
Cij defined in (76). Using these notations we have





Wt|p1|ualt(p1) =
m

∑
j=1

W(j)C1j(t, u)

...

Wt|pm |ualt(pm) =
m

∑
j=1

W(j)Cmj(t, u).

(80)

The equations (79) and (80) form a linear system in m + 1 equations and m + 1 unknowns, namely
W, W(1), . . . , W(m). We want to solve it for W. Because of Equation (79) we have

W =
1−∑ W(i)

1− tP(u)
.

The sum ∑ W(i) can be determined from (80) with the help of Cramer’s rule:

∑ W(i) =
W
∆
·
(

m

∑
k=1

t|pi |ualt(pi)∆i

)
,

where ∆ and ∆i are defined as stated in the theorem. Putting everything together, we obtain the
claim of the theorem.

Remark: Alternatively, one could also encode the simultaneous avoidance of patterns by a finite
automaton. However, obtaining generating functions via this approach is quite costly in time
and memory, since it requires the inversion of an `× ` matrix, where ` = ∑m

i=1 |pi| is the sum of
the lengths of the forbidden patterns. The computation via formula (78) is algorithmically much
more efficient. This formula can also be established via Goulden and Jackson’s cluster method,
which was established in [40] and generalized in [62].

Definition 4.5.4. Define the denominator of W(t, u) to be the kernel of the model

K(t, u) := denom(W(t, u)) = (1− tP(u))∆(t, u) +
m

∑
i=1

t|pi |ualt(pi)∆i(t, u). (81)

In addition to the mutual correlation matrix this kernel plays an important role in enumeration
lattice paths avoiding several patterns. The kernel has e distinct small roots u1, . . . , ue which,
similarly as in the classical model of directed lattice paths, play an important role in expressing
the generating function of lattice paths avoiding several patterns.

Here is what it gives for bridges:

Theorem 4.5.5. The generating function for bridges avoiding the patterns p1, . . . , pm is

B(t) = −
e

∑
i=1

u′i
ui

∆(t, ui)

Kt(t, ui)
(82)

where ui are the small roots of the kernel.

4.5 lattice paths avoiding several patterns 77

Proof. The proof uses a similar residue computation as 4.3.4. We have

B(t) = [u0]W(t, u) =
1

2πi

∫

|u|=ε

W(t, u)
u

du =
e

∑
i

Resu=ui(t)
W(t, u)

u
.

The residues inside the small circle |u| = ε are exactly the e small roots ui(t) of K(t, u). This leads
to the theorem.

Theorem 4.5.6. The generating function for meanders avoiding the patterns p1, . . . , pm is

M(t, u) =
G(t, u)

ueK(t, u)

e

∏
i=1

(u− ui(t)), (83)

where u1(t), . . . , ue(t) are all the small roots of the kernel K(t, u) (defined in Formula (81)), and G(t, u)
is some formal power series in t and polynomial in u (as defined in (65)).

Proof. The proof works exactly like the proof of Theorem 4.3.7, using the automaton that describes
the avoidance of all patterns and its corresponding states.

If Φ(t, u) is a monic polynomial of degree e, then we have the complete factorization Φ(t, u) =
∏e

i=1(u− ui) and thus G(t, u) = 1: this yields an explicit formula for M(t, u) in terms of K(t, u)
and its small roots. It is shown in 4.3.10 and 4.3.11 that this happens for some natural cases of a
single forbidden pattern.

When considering the avoidance of several patterns, it is generically not the case that G(t, u) =
1. In the next sections, we show how, in many cases, this factor G(t, u) can be obtained. We also
show how to obtain the formula for E(t) without computing first M(t, u).

Example: We illustrate the procedure outlined above by the example of Dyck paths avoiding the
patterns UDU and DUD. These walks are encoded by the following automaton:

XU

Xε

XUD

XDU XD

D

U

D

D

D

U

U

U

The corresponding adjacency matrix is (the states are ordered Xε, XU, XUD, XD, XDU):

A =




0 u 0 u−1 0
0 u u−1 0 0
0 0 0 u−1 0
0 0 0 u−1 u
0 u 0 0 0




.

The kernel K(t, u) = −u−1(tu2 − (1 + t2 − t4)u + t) can be calculated directly as det(I − tA), but
also by Theorem 4.5.3 with the mutual correlation matrix

C =

(
1 + t2 tu
t/u 1 + t2

)
.

78 the vectorial kernel method and pattern avoidance in lattice paths

The kernel has a unique small root, namely

u1(t) =
1 + t2 − t4 −

√
(1 + t + t2)(1 + t− t2)(1− t + t2)(1− t− t2)

2t
.

The functional equation for the generating function has the form

(M1, M2, M3, M4, M5)(I − tA) = (1, 0, 0, 0, 0)−
(
{u<0}t(M1, M2, M3, M4, M5)A

)
.

It is easy to see that

(
{u<0}t(M1, M2, M3, M4, M5)A

)
=

t
u
(0, 0, 0, E(t), 0)

because a path w.a (where w is a meander and a is a step) goes below the x-axis if and only
if w is an excursion and the appended step a is a D-step, and upon making a down-step the
path enters the 4th state XD. Hence, we only need to compute the components~v1 and~v4 of the
autocorrelation vector ~v = adj(I − tA)~1 which are given by ~v1 = 1 + t2 + t4 and ~v4 = 1 + t3u.
Thus

Φ(t, u) = (1 + t2 + t4)u− tE(t)(1 + t3u). (84)

Solving Φ(t, u) = 0 for E(t) and keeping in mind that u1(t) is a root of Φ(t, u) = 0 we obtain

E(t) =
u1(t)(1 + t2 + t4)

t(1 + t3u1(t))
=

1 + t2 + t4 −
√
(1 + t + t2)(1 + t− t2)(1− t + t2)(1− t− t2)

2t2 .

Since Φ = G(t, u)(u − u1) is a polynomial of degree 1 in u we see by equating coefficients
that G(t) is the leading coefficient of Φ (as a polynomial in u). From (84) we obtain G(t) =
1+ t2 + t4− t4E(t). Using Theorem 4.5.6 we obtain the bivariate generating function for meanders,
which, after inserting u = 1 gives the univariate function

M(t) = −
(

1− t3

2t
− (1 + t)

√
(1 + t + t2)(1 + t− t2)(1− t + t2)(1− t− t2)

2t(1− t− t2)

)
.

The enumerating sequence for meanders is the sequence A329703 from the On-Line Encyclopedia
of Integer Sequences, and the one for excursions (counted by semilength) is A004148. The latter
also counts some other constrained paths (like peakless Motzkin paths – see below), as well as
some classes of RNA structures, ordered trees or permutations, see [26, 15, 45, 75].

A multi-multivariate generating function for Motzkin paths with any set of forbidden patterns of length
two

There is a vast amount of literature on Dyck or Motzkin lattice paths in which some combinations
of forbidden patterns (like valleys or peaks) are considered. These works often rely on some ad-
hoc context-free grammar decompositions; see e.g. [60, 31, 24]. Here, we show how our approach
can extend and unify such results by directly finding a generating function with markers which
indicate whether a certain pattern appears or not. For example, for Motzkin paths avoiding any
combination of forbidden patterns of length 2, one introduces 9 markers – auxiliary variables vp
that encode occurrences of all possible patterns p of length 2 (marker vUD for the pattern UD,
etc.). This leads to the following theorem.

Theorem 4.5.7. The generating function E(t) of Motzkin excursions, where vp counts the number of
occurrences of the pattern p, is

(vDD − 1)− t((vDD − 1)vHH − (vDH − 1)vHD − vDD + vDH) +
(
1 + t(vDH − vHH)

) u~v1
t~v4

∣∣
u=u1(t)

vDD + t(vDHvHD − vDDvHH)
,

(85)
where u1(t) is the unique small solution of det(I − tA) = 0 for the matrix A defined below, and~v1 and
~v4 are the first and the fourth components of the autocorrelation vector~v := adj(I − tA)~1.

4.5 lattice paths avoiding several patterns 79

Proof. These paths are encoded by the following automaton:

The corresponding adjacency matrix is

A =




0 u 1 u−1

0 vUUu vUH vUDu−1

0 vHUu vHH vHDu−1

0 vDUu vDH vDDu−1




.

From this matrix we can compute the kernel K(t, u) = det(I − tA) which is given by

K(t, u) =− 1
u
((vHUvUH − vHHvUU + vUU)t

2u2 + (vDUvUD − vDDvUU)t
2u + vHHtu− u

+ (vDDvHHvUU − vDDvHUvUH − vDHvHDvUU)t
3u

+ (vDHvHUvUD + vDUvHDvUH − vDUvHHvUD)t
3u

+ (vDHvHD − vDDvHH)t
2 + vDDt).

Since only the second column of the adjacency matrix contains u1, only the last column contains
u−1 and all other columns contain only powers u0 we have that uK(t, u) is a polynomial of degree
(at most) 2 in u and has one small root u1(t).

A path can cross the x-axis only by being on the x-axis and then taking a down step, hence
entering the fourth state. Thus only the fourth component of t{u<0} ~MA has terms with negative
powers of u. Therefore, only the first and the fourth component of ~F = (1, 0, 0, 0)− t{u<0} ~MA
are nonzero and one has

Φ(t, u) := ~v1(t, u)−~v4(t, u)N(t, u) = 0, (86)

where ~v1(t, u) and ~v4(t, u) are the first and the fourth components of adj(I − tA)~1, and N(t, u)
is the generating function for the terms with negative powers of u in the fourth component of
t{u<0} ~MA.

In order to use (86) for computing E(t) we need to relate N(t, u) to E(t). This can be achieved
in the following way: Let EH(t) and ED(t) be the generating functions for excursions whose last
step is H or D respectively. Clearly we have

E(t) = 1 + EH(t) + ED(t).

Furthermore we have
N(t, u) =

t
u
(1 + vHDEH(t) + vDDED(t))

and
EH(t) = t(1 + vHHEH(t) + vDHED(t)).

These three equations allow us to express N in terms of E, namely

N(t, u) =
t
u

(
1 + (vDH − vDD) ·

t + tvDH(E(t)− 1)
1 + tvDH − tvHH

+ vDDE(t)− vDD

)
.

80 the vectorial kernel method and pattern avoidance in lattice paths

Plugging this expression in (86) and using that u1(t) is a root of Φ we obtain the formula for E(t)
stated in the theorem.

Setting vp = 1 in (85) allows the pattern p, while setting vp = 0 forbids it. An exhaustive analysis
of all the 29 = 512 cases leads to the following 75 distinct sequences for excursions, summarized
in Table 3.

Allowed
patterns

OEIS2

entry
GF

Growth
rate

Allowed
patterns

OEIS
entry

GF
Growth

rate
Allowed
patterns

OEIS
entry

GF
Growth

rate
000000000 A019590 pol 0 010011100 A020711† rat ≈ 1.466 101010101 A329696 alg 2
010001000 A329670 pol 0 010011110 A000930 rat ≈ 1.466 011110101 A329695† alg 2
010001010 A329677 pol 0 011110001 A020711† rat ≈ 1.466 101010111 A110199 alg 2
001000000 A130716 pol 0 001110010 A068921 rat ≈ 1.466 011110011 A216604† alg 2
001000010 A329678 pol 0 010101101 A329687 alg ≈ 1.587 101110011 A329698 alg 2
011001010 A329679 pol 0 011100011 A329688 alg ≈ 1.587 010111011 A023432† alg ≈ 2.148
010001100 A329680 rat 1 010101011 A329689 alg ≈ 1.618 011111010 A023432† alg ≈ 2.148
110001001 A135528 rat 1 110011011 A324969 rat ≈ 1.618 101001111 A329699 alg ≈ 2.206
010001110 A011655† rat 1 011101010 A320690 alg ≈ 1.618 101100111 A329700 alg ≈ 2.206
001000100 A329681 rat 1 011011100 A001611† rat ≈ 1.618 110011111 A217282† alg ≈ 2.241
011100001 A329682 rat 1 011011110 A000045† rat ≈ 1.618 101111011 A217282 alg ≈ 2.241
000010000 A000012 rat 1 110001101 A329691 alg ≈ 1.755 110101111 A329676 alg ≈ 2.247
001100010 A100063 rat 1 011100101 A329692 alg ≈ 1.755 011101111 A329666 alg ≈ 2.247
010011000 A329683 rat 1 101100011 A329693 alg ≈ 1.755 010111111 A023431 alg ≈ 2.315
110011001 A065033 rat 1 010101111 A248100 alg ≈ 1.835 011111011 A023431† alg ≈ 2.315
010011010 A000027† rat 1 011101011 A329694 alg ≈ 1.835 101011111 A329701 alg ≈ 2.325
001010000 A329684 rat 1 110001111 A025250† alg ≈ 1.947 101110111 A329702 alg ≈ 2.325
001010100 A040001 rat 1 011100111 A166289 alg ≈ 1.947 101101111 A007477 alg ≈ 2.383
001010011 A046698† rat 1 110101011 A329664 alg 2 110111011 A004149† alg ≈ 2.414
001010110 A008619 rat 1 101000101 A126120† alg 2 011111110 A004149† alg ≈ 2.414
011011010 A028310 rat 1 101000111 A208355† alg 2 101111111 A090344 alg ≈ 2.562
110001011 A000931† rat ≈ 1.325 110011101 A329695 alg 2 110111111 A004148 alg ≈ 2.618
011001100 A000931† rat ≈ 1.325 010111101 A216604 alg 2 011111111 A004148† alg ≈ 2.618
001100110 A000931† rat ≈ 1.325 010111010 A023426† alg 2 111101111 A104545 alg ≈ 2.732
010101010 A329686 alg ≈ 1.414 011101110 A329671 alg 2 111111111 A001006 alg 3

Table 3: Motzkin excursions avoiding a set of patterns of length 2. The allowed patterns are indicated via
a binary word of length 9, whose bits correspond to the allowance (or not) of UU, UH, UD, HU, HH, HD,
DU, DH, DD (in this order). The column GF indicates whether the generating function is polynomial (pol),
rational but not polynomial (rat), or algebraic but not rational (alg).

This exhaustive analysis also shows that the 512 cases lead to 158 distinct sequences for
meanders.

Via our approach, it is not difficult to get the explicit formulas for E(t) and M(t). These
generating functions with all the markers vp are however quite lengthy (written out in the same
font as used in this thesis, they take up almost 3 meters).

Thus we only give these explicit formulas when the set of patterns is a subset of {UU,HH,DD}
or a subset of {UD,HH,DU}, see Table 4.

2 All the sequences labeled A329xxx are entries that we added to the On-Line Encyclopedia of Integer Sequences [63].The
sequences marked by † are in the OEIS, but with a few terms of offset.

4.5 lattice paths avoiding several patterns 81

Forbidden
patterns

Generating functions of meanders and excursions OEIS3 Growth rate

UU,HH,DD
M = −(1 + t)

(
(1 + t)(1− 2t)−

√
1− 2t + t2 − 4t3 + 4t4

)
/
(
2t2(1− 2t)

)

E = (1 + t)
(

1− t2 − 2t3 − (1 + t)
√

1− 2t + t2 − 4t3 + 4t4
)

/(2t4)

A329665

A329671
2

UU,HH
M = −(1 + t)

(
1− 3t2 − t3 −

√
1− 2t2 − 6t3 − 3t4 + 2t5 + t6

)
/
(
2t2(1− 2t− t2)

)

E =
(

1− t2 − t3 −
√

1− 2t2 − 6t3 − 3t4 + 2t5 + t6
)

/(2t3).

A329667

A329666

AUU,HH :=
ρ(1− t− 2t2 + t3)

UU,DD
M = −

(
(1 + t)(1− 2t− t2)−

√
1− 2t− t2 − t4 + 2t5 + t6

)
/
(
2t2(1− 2t− t2)

)

E =
(

1− t− t2 − t3 −
√

1− 2t− t2 − t4 + 2t5 + t6
)

/(2t4)

A308435

A004149† 1 +
√

2

HH,DD
M = −

(
1− 2t− 3t2 − t3 −

√
1− 2t2 − 6t3 − 3t4 + 2t5 + t6

)
/
(
2t(1 + t)(1− 2t− t2)

)

E =
(

1− t2 − t3 −
√

1− 2t2 − 6t3 − 3t4 + 2t5 + t6
)

/(2t3)

A329669

A329666

1 +
√

2
AUU,HH

UU
M = −(1 + t)

(
1− t− 3t2 −

√
1− 2t− t2 − 2t3 + t4

)
/
(
2t2(1− 2t− 2t2)

)

E =
(

1− t− t2 −
√

1− 2t− t2 − 2t3 + t4
)

/(2t3)

A329672

A004148† (3 +
√

5)/2

HH
M = −

(
1− 2t− 2t2 −

√
1− 4t2 − 8t3 − 4t4

)
/
(
2t(1− 2t− 2t2)

)

E =
(

1−
√

1− 4t2 − 8t3 − 4t4
)

/
(
2t2(1 + t)

) A329673

A104545
1 +
√

3

DD
M = −

(
1− 3t− t2 −

√
1− 2t− t2 − 2t3 + t4

)
/
(
2t(1− 2t− 2t2)

)

E =
(

1− t− t2 −
√

1− 2t− t2 − 2t3 + t4
)

/(2t3)

A329674

A004148†
1 +
√

3
(3 +

√
5)/2

UD,HH,DU
M = −(1 + t)

(
(1 + t)(1− 2t)−

√
1− 2t + t2 − 4t3 + 4t4

)
/
(
2t2(1− 2t)

)

E = (1 + t)
(

1− t−
√

1− 2t + t2 − 4t3 + 4t4
)

/(2t3)

A329665

A329664
2

UD,HH
M = −

(
1− 2t− t2 + t3 −

√
1− 2t2 − 6t3 − 3t4 + 2t5 + t6

)
/
(
2t(1− 2t− t2 + t3)

)

E =
(

1 + t2 + t3 −
√

1− 2t2 − 6t3 − 3t4 + 2t5 + t6
)

/
(
2t2(1 + t)

) A329675

A329676
AUU,HH

UD,DU
M = −

(
(1 + t)(1− 2t− t2)−

√
1− 2t− t2 − t4 + 2t5 + t6

)
/
(
2t2(1− 2t− t2)

)

E =
(

1− t− t2 − t3 −
√

1− 2t− t2 − t4 + 2t5 + t6
)

/(2t4)

A308435

A004149† 1 +
√

2

HH,DU
M = −(1 + t)

(
1− t− 3t2 + t4 − (1− t)

√
1− 2t2 − 6t3 − 3t4 + 2t5 + t6

)
/
(
2t2(1− 2t− t2 + t3)

)

E =
(

1− t2 − t3 −
√

1− 2t2 − 6t3 − 3t4 + 2t5 + t6
)

/(2t3)

A329668

A329666
AUU,HH

UD
M = −

(
1− 3t + t2 −

√
1− 2t− t2 − 2t3 + t4

)
/
(
2t(1− 3t + t2)

)

E =
(

1− t + t2 −
√

1− 2t− t2 − 2t3 + t4
)

/(2t2)

A088518∗

A004148† (3 +
√

5)/2

DU
M = −

(
(1 + t)(1− 3t + t2)− (1− t)

√
1− 2t− t2 − 2t3 + t4

)
/
(
2t2(1− 3t + t2)

)

E =
(

1− t− t2 −
√

1− 2t− t2 − 2t3 + t4
)

/(2t3)

A088518∗

A004148† (3 +
√

5)/2

none
M = −

(
1− 3t−

√
1− 2t− 3t2

)
/
(
2t(1− 3t)

)

E =
(

1− t−
√

1− 2t− 3t2
)

/(2t2).

A005773†

A001006
3

Table 4: Generating functions and growth rates of Motzkin excursions and meanders where the set of
forbidden patterns is a subset of {UU,HH,DD} or a subset of {UD,HH,DU}.

The asymptotic behavior of these sequences is C√
π

Annα, where the constant C and the growth
rate A are algebraic numbers depending on the model. The notation ρ(P) used in the definition
of AUU,HH in the table stands for the largest positive root of the polynomial P.
The drift is the quantity

δ := lim
n→∞

average final altitude of walks on Z of length n
n

.

Unlike in the article [9], it is no longer the case that δ = P′(1) because there is an interplay
between the forbidden patterns and the allowed steps S .

The exponent α depends only on the sign of the drift. It is:

• α = −3/2 for meanders with negative drift (above, when {UU,HH} or {UU} are forbidden)
and for excursions,

• α = 0 for meanders with positive drift (above, when {HH,DD} or {DD} are forbidden),

• α = −1/2 for meanders with zero drift.

3 See footnote 2 for the † symbol. Also, the sequences marked by ∗ are bisections of A088518 that enumerates “symmetric
secondary structures of RNA molecules with n nucleotides”, see [45].

82 the vectorial kernel method and pattern avoidance in lattice paths

Another interesting feature of the above tables is that they suggest there could be natural
bijections between different classes of pattern-avoiding Motzkin paths, namely between:

• UU,HH,DD avoiding meanders and UD,HH,DU avoiding meanders

• UU,HH avoiding excursions and HH,DD avoiding excursions (time reversal)

• UU,DD avoiding meanders and UD,DU avoiding meanders

• UU,DD avoiding excursions of length n and UD,DU avoiding excursions of length n + 1

• UU avoiding excursions of length n, DD avoiding excursions of length n (time reversal), UD
avoiding excursions of length n + 1 and DU avoiding excursions of length n

Some of these bijections are easy to construct, for example, UU-avoiding walks become DD
avoiding walks under time reversal. Others however are not so straightforward, as some of the
following bijections show.

DU avoiding excursions of length n and UD-avoiding excursions of length n + 1

In a DU avoiding excursions, replace each occurrence of UD by UHD and each occurrence of
UHkD by UHk+1D. This yields a longer walk (more precisely, a walk of length n + m, where m is
the number of plateaus UHkD) which is still an excursion. But we want a walk of length n + 1, thus
some corrections have to be made. Note that for each UHkD (except the last one) there is a trough
DH`U (with nonzero `, since the walk we started with avoids DU). Delete one of these horizontal
steps, i.e. map DHkU to DHk−1U. This way we end up with a walk of length n + 1, because we
expanded m occurrences of UHkD’s and shortened m− 1 occurrences of DHkU. Furthermore, we
map the walk Hn to Hn+1 (this is the only walk without any UHkD’s, thus left unchanged by the
above moves, hence we have to deal with it separately). We end up with a walk that avoids UD
and has length n + 1.

Figure 21: The bijection between DU avoiding excursions of length n and UD-avoiding excursions of length
n + 1, illustrated with an example of length n = 13. Plateaus and their expansions are marked in red.

The inverse mapping works similar: Shrink UHk+1D to UHkD and expand DHkU to Dk+1U. The
new walk now avoids DU. Furthermore, we observe that it is one unit shorter than the original
UD-avoiding excursion, since we shrank it m times and expanded m− 1 times.

Thus, we found a bijection between DU avoiding excursions of length n and UD-avoiding
excursions of length n + 1.

DD avoiding excursions of length n and DU avoiding excursions of length n

The main idea of the bijection between DD avoiding excursions and DU avoiding excursions is
to leave excursions that avoid both DU and DD fixed and map excursions that contain DU to
excursions containing DD.

Let w be an excursion containing DU. Decompose it at the first occurrence in the following
way:

(prefix)DU(infix)D(suffix)

4.5 lattice paths avoiding several patterns 83

where the prefix is DU-free and the infix is an excursion. Furthermore, the prefix has to contain at
least one U or starts at altitude greater than zero, because otherwise the D would cause the walk
to drop to negative altitude and it would not be an excursion anymore. Prefix, infix, and suffix
may be empty. This decomposition is unique, since the first occurrence of DU in a walk as well as
the first return to the same altitude is well defined.

Now, consider the following map:

φ : (prefix)DU(infix)D(suffix)→ (prefix)U(infix)DD(suffix). (87)

The result now contains DD but might still contain DU. In order to get rid of DUs, recursively
apply φ to (prefix)U(infix)D and D(suffix) (in case no DU is found in these subsequences, just
leave it unchanged). This process terminates, since after each step the two subwalks to which φ is
applied to is strictly shorter. Call the result Φ. Then Φ(w) is DU-avoiding, because any occurrence
of DU will be eliminated by successively applying φ.

The inverse mapping works similar. Decompose at the first occurrence of DD and map:

φ−1 : (prefix)U(infix)DD(suffix)→ (prefix)DU(infix)D(suffix)

If the result still contains DD, apply φ−1 recursively to the subsequences (prefix)D as well as
U(infix)D(sufffix).

This is indeed a bijection which can be shown via an inductive argument (over the length
of the walk). However, the two segments from the decomposition are not excursions. But the
bijection also works on the class of DU containing (and DD avoiding) walks that return to the
same altitude as the valley DU to the class of DD containing (and DU avoiding) walks that have at
leas one up-step earlier than the first occurrence of DD. Since this bijection also preserves start-
and endpoints, excursions are mapped to excursions. This bijection however fails for general
meanders, since not every DU containing meander has a return to the altitude as the valley (as
already expected, since the generating functions for meanders are different).

DD,HH avoiding excursions of length n and DU,HH avoiding excursions of length n

Since the previous bijection preserves H steps, it also preserves HH avoidance. Thus, we can use
the same bijection as between DD avoiding excursions of length n and DU avoiding excursions
of length n also for DD,HH avoiding excursions of length n and DU,HH avoiding excursions of
length n.

UU,DD avoiding excursions of length n and UD,DU avoiding excursions of length n + 1

The main idea behind this bijection is to combine the bijections ”DU-avoiding, length n → UD-
avoiding, length n + 1”, ”DU-avoiding → DD-avoiding” and time reversal (which maps UU to
DD) in a clever way to successively get rid of any pattern we do not want.

To do so, we also need a modified version of Φ, which will be called Φ̃. It maps a DU-
containing walk to a DD-containing walk as described by the mapping φ only if the prefix in the
decomposition for φ does not end in U, i.e.

φ̃ : pDUiDs→ pUiDDs if p 6= p̃U.

Recursively apply φ̃ to pUiD and Ds, until the only DU remaining are preceded by an U, and call
the result upon termination Φ̃ (this terminates for the same reasons Φ terminates). The mapping
Φ̃−1 is defined similarly. The only remaining DD after successively applying Φ̃−1 are DD which
are preceded by UUe, where e is a (possibly empty) excursion.

If a walk contains no DU (or DU only as part of UDU) it remains invariant under Φ̃.
The mapping Φ̃ is a bijection from ”HDU or DDU-containing, but DUeDD and HUeDD avoiding

walks (where e is any excursion)” to ”DUeDD or HUeDD containing, but HDU and DDU avoiding
walks”.

84 the vectorial kernel method and pattern avoidance in lattice paths

Lemma 4.5.8. The mappings Φ̃ and Φ̃−1 both preserve UU-freeness and UD-freeness, i.e. if w is UU-free,
then Φ̃(w) is also UU-free (and analogously for Φ̃−1 as well as UD).

Proof. This proof consists of four steps

1. First, we show that φ̃ preserves UU-freeness. If a path w = pDUiDs is UU-free then all
its subpaths p, i, s from the decomposition (87) are UU-free. Furthermore the infix i does
not start with U (otherwise Ui would create an UU) and the prefix p does not end in U
(otherwise the path would remain unchanged under φ̃ and thus remain UU-free). After
applying φ̃ the walk w is mapped to pUiDDs, thus the only possible occurrences of an UU
are from pU or Ui. But since we already established that p does not end in U and i does not
start with U, this is not possible.

2. Next, we show that φ̃ also preserves UD-freeness. Similarly as above, we know that all the
subpaths p, i and s are UD-free. Furthermore, since i is an excursion, it does not start with
D nor does it end with U. After applying φ̃, the only possible occurrences of UD in φ̃ are at
Ui or iD, but we already know that i does not begin with D, nor end with U, thus this is not
possible.

3. Now we consider the inverse mapping φ̃−1. First we show that it preserves UU-freeness.
We know that the walks p, i and s from the decomposition φ̃−1 : pUiDDs → pDUiDs are
UU-free. Furthermore, we know that p does not end in U (otherwise the mapping would
not be applicable) and that i does not start with U (otherwise Ui would create an occurrence
of UU). After applying ˜phi−1 an occurrence of UU is only possible at Ui, but we already
established that i does not start with U. Thus, the result is UU-free

4. Finally, we show that φ̃−1 also preserves UD-freeness. We know that p, i and s are UD-free.
Furthermore we know that p does not end in U (see above) and that i does not start with D
nor end with U (since i is an excursion). After applying φ̃−1 an UD can only occur at pD,Ui
or iD. But we already reasoned why all of these are not possible.

Since Φ̃ is a concatenation of several applications of φ̃, each preserving UU- and UD-freeness, the
mapping Φ̃ also preserves UU- and UD-freeness. Analogously, we obtain the same statement for
Φ̃−1, which finishes the proof.

Now that we have established all the needed properties, we can have a look at the actual
bijection:

UU,DD avoiding excursions of length n → UD,DU avoiding excursions of length n + 1

This bijection consists of six steps (technically, the first one could be omitted, but applying time
reversal twice results in better readability in which walk is mapped to which when representing
them graphically).

1. Apply time reversal.
The result is still an UU,DD avoiding walk of length n (which might contain UD and DU)

2. Apply Φ̃.
The result is UU-free (it might still contain UD,DU and DD. We might have mapped some
DUs to DDs in this step, we will deal with the remaining DUs later on).

3. Apply time reversal again.
The result is DD-free (it might contain UU,UD or DU).

4. Apply Φ to get rid of DU.
The result is DU-free (but might contain UU,UD or DD).

4.5 lattice paths avoiding several patterns 85

5. Expand plateaus and shrink troughs (as in the bijection ”DU-avoiding, length n ↔ UD-
avoiding, length n + 1”). This is possible since the walk contains no DU, thus all troughs
are of length at least one.
The result is UD-free and of length n + 1 (it might contain UU,DD or DU since shrinking
troughs might have created some new DUs).

6. Finally, apply Φ̃ to get rid of the remaining DUs. Each prefix p from the decomposition (87)
does not end in U, otherwise the path would have an instance of UD. Thus Φ̃ coincides with
Φ here and gets rid of any DU in the walk. Since Φ̃ also preserves UD-freeness, we end up
with a UD,DU-free path of length n + 1, as desired (it may or may not contain UU or DD).

The inverse direction is basically this mapping read from bottom to top, as we will see in the
next step.

UD,DU avoiding excursions of length n + 1→ UU,DD avoiding excursions of length n

1. Start with an UD,DU-avoiding walk of length n + 1. Apply Φ̃−1.
The result is UD-free, since Φ̃−1 preserves UD-freeness (it might contain UU,DD or DU).

2. Expand troughs and shrink plateaus. We are allowed to do this, since the walk is UD-free.
This way we got rid of DUs and shortened the length by 1.
The result is DU-free and has length n (it might contain UU,UD or DD).

3. Apply Φ−1 to get rid of all DDs.
The result is a DD-avoiding walk of length n (it might contain UU,UD or DU).

4. Apply time reversal. This way, DD is mapped to UU (and vice versa), DUs and UDs are left
invariant however.
The result is a UU-avoiding walk of length n (it might contain DD,UD or DU).

5. Apply Φ̃−1 to get rid of remaining DDs. The mapping Φ̃−1 coincides here with Φ̃−1 because
any prefix ending in U would create an UU. Thus the mapping gets indeed rid of any
occurrence of DD. Since Φ̃−1 preserves UU-freeness, the result is UU-free, too.
We end up with a UU and DD-free excursion of length n (it might contain UD or DU).

6. Apply time reversal.
We end up with a UU and DD-free excursion of length n (it might contain UD or DU), as
desired.
(again, technically we could skip this step if we skipped the initial time reversal earlier.)

Finally we map Hn to Hn+1 (and vice versa), since this is the only walk which has no plateaus
(or troughs respectively).

To see that the above mapping is indeed a bijection, consider the properties of the intermediate
results. They always coincide. Furthermore, each walk is either left invariant by the mappings
involved, or, if it is changed, the change can be undone by the corresponding inverse mapping.

5
T H E V E C T O R I A L K E R N E L M E T H O D A N D WAT E R M E L O N S

In this chapter we will combine the ideas and methods from Chapter 3 and 4 to analyze pattern
avoidance as well as some other parameters in watermelons.

5.1 pattern avoidance in watermelons

After looking at pattern avoidance in one path, it might be interesting to have a look at pattern
avoidance in pairs or tuples of paths. When looking at two or more paths, there are several ways
to define pattern avoidance:

• Any simultaneous occurrence of the pattern in all paths is forbidden. E.g., it is forbidden
that the upper and the lower path in a 2-watermelon both take three consecutive up-steps
at the same time.

• One of the paths has to avoid a pattern, the other path, however, is unconstrained.

• All paths avoid the same pattern (or set of patterns) independently.

In the case of 2-watermelons without wall and arbitrary deviation it is possible to translate
the problem of pattern avoidance in watermelons to pattern avoidance in one path. This can
be done via the bijection from Lemma 3.2.3 with weighted Motzkin paths. Since this bijection
is constructed step-by-step, patterns in the watermelon are more or less directly translated into
patterns in the Motzkin path. However, there are some caveats and subtleties, which we are going
to discuss in the following example.

Example 5.1.1. Pattern avoidance in watermelons. We will discuss all three possible definitions
of pattern avoidance (simultaneous avoidance of a pattern, one of the paths avoids a pattern, both
paths avoid the same pattern independently) in the case of the avoidance for the pattern UU in a
2-watermelon with arbitrary deviation and no wall.

Case 1: Simultaneous avoidance of the pattern UU.

If both paths of the watermelon simultaneously avoid the same pattern, this directly trans-
lates to the avoidance of a single pattern in the weighted Motzkin path (in the pattern in the
weighted Motzkin path only level steps will appear, since both paths in the watermelon take the
same step, thus their distance is unaffected, which results in a level step in the Motzkin path).
Vice versa, the avoidance of one pattern in the weighted Motzkin paths corresponds uniquely to a
sequence of pairs of steps in the watermelon. Since ”both paths making an up step” corresponds
to a level step weighted with u in the Motzkin path, here the pattern uu has to be avoided. This
avoidance can be described by the following simple automaton:

Xε Xu
u

U,D, d

U,D, d

Its adjacency matrix is

A =

(
1 + z + z−1 1
1 + z + z−1 0

)
.

87

88 the vectorial kernel method and watermelons

In order to avoid confusion with the level step with label u the variable encoding the altitude of
the Motzkin path is called z, whereas in the previous chapters it always was called u. Its kernel is
given by

K(t, z) = − t2z2 + t2z + tz2 + t2 + tz + t− z
z

.

It has two roots, a large and a small one, the small one being

z1(t) =
1− t− t2 −

√
1− 2t− 5t2 − 6t3 − 3t4

2
.

In order to compute the forbidden vector we have to consider

(M1, M2)A = ((1 + z + z−1)(M1 + M2), M1)

and thus
z<0 ~M · A = (z−1m, 0) and F = (1− tz−1m, 0)

where m := [z0](M1 + M2). Thus, we obtain that

Φ(t, z) = z · F(t, z) adj(A)~1 = (t + 1)z− (t + 1)m.

Using Φ(t, z) = G(t, z)(z− z1) and comparing coefficients we obtain G(t, z) = t + 1 and subse-
quently

M(t, z) =
G(t, z)
zK(t, z)

(z− z1) =
1− (1 + 2z)(t2 + t)−

√
1− 2t− 5t2 − 6t3 − 3t4

2t(t2(1 + z + z2) + t(1 + z + z2)− z)
.

Since watermelons correspond to excursions under the bijection, we have to set z = 0 and obtain
the following theorem:

Theorem 5.1.2. The generating function of 2-watermelons without wall and arbitrary deviation where
both paths simultaneously avoid the pattern UU is

E(t) = M(t, 0) =
1− t− t2 −

√
1− 2t− 5t2 − 6t3 − 3t4

2t2(1 + t)
.

The counting sequence of these objects is thus given by

1, 2, 4, 11, 31, 92, 283, 893, 2875, 9407, 31189, 104555, 353794, 1206821, 4145350, 14326184, . . .

as can be obtained by reading off coefficients. It has no OEIS [63] entry so far.

Case 2a: The upper path avoids UU.

Using the bijection with weighted Motzkin paths, we see that if the upper path takes two
consecutive up steps, the Motzkin path has an occurrence of one of the following patterns: UU,
Uu, uU, and uu. Thus, these patterns all have to be avoided. Conversely, if the Motzkin path
has an occurrence of UU, Uu, uU or uu, the upper path always takes two consecutive up-steps.
Thus, these four patterns cover exactly everything we want to avoid, but nothing extraneous. The
avoidance of one pattern in the upper path thus translates into the avoidance of several patterns
in the Motzkin-path. We already dealt with such problems in Section 4.5.

The avoidance of all these four patterns can be described by the following automaton:

Xε

XU

Xu

d,DU

u

d

d,D

5.1 pattern avoidance in watermelons 89

Its adjacency matrix is (states ordered ε,U, u)

A =




1 + z−1 z 1
1 + z−1 0 0
1 + z−1 0 0


 .

Its kernel is

K(t, z) = − t2z2 + 2t2z + tz− z + t2 + t
z

.

It has a large and a small root, the small root being

z1 =
1− t− 2t2 −

√
1− 2t− 3t2

2t2 .

We have that
(M1, M2, M3)A = ((1 + z−1)(M1 + M2 + M3), zM1, M1).

Its negative components are
{z<0} ~MA = (z−1m, 0, 0)

where m := [z0]M1 + M2 + M3. Thus the forbidden vector is

F = (1− tz−1m, 0, 0)

and Φ can be computed to be

Φ(t, z) = tz2 + (1 + t−mt2)−mt2 −mt.

Via Φ = G(t, z)(z− z1) and comparing coefficients we obtain that

G(t, z) = tz + t + 1.

Using this, we can compute

M(t, z) =
G(t, z)
zK(t, z)

(z− z1) =
(1 + t + tz)(1− t− 2t2 − 2t2z−

√
1− 2t− 3t2

2t2((z + 1)2t2 + (z + 1)t− z)

and subsequently we arrive at the following theorem:

Theorem 5.1.3. The generating function of 2-watermelons with no wall and arbitrary deviation where the
upper path avoids UU is

E(t) = M(t, 0) =
1− t− 2t2 −

√
1− 2t− 3t2

2t3 , (88)

This generating function looks a lot like the generating function of Motzkin-numbers (A001006)
which is given by

1− t−
√

1− 2t− 3t2

2t2 .

This suggests that there is a bijection between 2-watermelons with no wall and arbitrary deviation
where the upper path avoids UU of length n and (ordinary, unweighted) Motzkin paths of length
n + 1.

Case 2b: The lower path avoids UU.

This case is rather similar to the previous one. Here, the Motzkin path has to avoid the patterns
DD, Du, uD, and uu. This is encoded by the automaton

90 the vectorial kernel method and watermelons

Xε

XuXD

u

d, U

D

d, U

d, U

Its adjacency matrix is given by

A =




1 + z z−1 1
1 + z 0 0
1 + z 0 0




and its kernel is

K(t, z) = − (t2 + t)z2 + (2t2 + t− 1)z + t2

z
.

It has one small root namely

z1 =
1− t− 2t2 −

√
1− 2t− 3t2

2t(t + 1)
.

We have that
(M1, M2, M3)A = ((1 + z)(M1 + M2 + M3), z−1M1, M1).

Its negative component is
{z<0} ~MA = (0, z−1m1, 0),

where m1 := [z0]M1. Thus, the forbidden vector is given by

~F = (1,−tz−1m1, 0)

and
Φ(t, z) = (t + 1)z−m1t + t.

Equating coefficients gives us
G(t, z) = t + 1.

From this we can then obtain the generating function for meanders:

M(t, z) =
G
zK

(z− z1) =
1− (1 + 2z)t− (2 + 2z)t2 −

√
1− 2t− 3t2

2t((1 + z)2t2 + (z2 + z)t− z)

Considering the generating function for excursions gives us:

Theorem 5.1.4. The generating function for 2-watermelons where the lower path avoids UU is

E(t) = M(t, 0) =
1− t− 2t2 −

√
1− 2t− 3t3

2t3 .

Surprisingly, this coincides with the generating function (88) of 2-watermelons where the
upper path avoids UU. On second glance, however, this is not surprising at all, since there is an
easy bijection explaining this: First apply time reversal and obtain a watermelon where the upper
path avoids DD (and the deviation has changed sign, but since we are considering watermelons
with arbitrary deviation this does not matter), then apply a horizontal flip which reverses the role
of upper and lower path as well as the role of up-steps and down-steps. Thus, we end up with a
watermelon where the lower path avoids UU. This is illustrated in Figure 22.

5.1 pattern avoidance in watermelons 91

original time reversal (vertical flip)

upper path avoids UU upper path avoids DD

1) original

upper path avoids UU

2) time reversal (vertical flip)

upper path avoids DD

3) horizontal flip

lower path avoids UU

Figure 22: The bijection between 2-watermelons where the upper path avoids UU and 2-watermelons where
the lower path avoids UU

Case 3: Both paths avoid UU independently.

Using the bijection with weighted Motzkin paths, we see that if the upper path takes two
consecutive up steps, the Motzkin path has an occurrence of one of the following patterns: UU,
Uu, uU, and uu. Thus, these patterns all have to be avoided. Similarly, if the lower path takes two
consecutive up-steps the Motzkin path has an occurrence of one of the following patterns: DD,
Du, uD, and uu. These have to be avoided as well. By a similar reasoning as in the previous cases
we see that these patterns cover everything we want to avoid, but nothing extraneous.

Putting everything together, the Motzkin path has to avoid a total of seven patterns, namely:
UU, Uu, uU, uu, DD, Du, and uD. The avoidance of all these patterns can be encoded by the
following automaton:

Xε

XU

XuXD

dU

U

u

d

D

d

D
d

Its adjacency matrix is given by

A =




1 z 1 z−1

1 0 0 z−1

1 0 0 0
1 z 0 0




(states ordered ε, U, u, D). Thus, the kernel is given by

K(t, z) = det(I − tA) =
−t2z2 + (t4 − t3 − 2t2 − t + 1)u− t2

u
.

It has two roots, a large one and a small one. The small root is given by

z1 =
1− t− 2t2 − t3 + t4 −

√
1− 2t− 3t2 + 4t4 + 2t5 − 3t6 − 2t7 + t8

2t2 .

92 the vectorial kernel method and watermelons

Furthermore we have that

(M1, M2, M3, M4) · A = (M1 + M2 + M3 + M4, z(M1 + M4), M1, z−1(M1 + M2)).

Since M2 counts all meanders ending in an up-step (of the Motzkin-path) we have that [z0]M2 = 0
and thus the only remaining negative powers are

{z<0}(M1, M2, M3, M4) · A = (0, 0, 0,−tz−1m1),

where m1 = [z0]M1, i.e., the constant term of the generating function of all meanders ending in
state Xε. Thus

~F = (1, 0, 0− tz−1m1).

Hence Φ can be computed to be

Φ(t, z) = tz2 + (−t2m1 − t3 + t2 + t + 1)z− tm1 + t.

Using Φ(t, z) = G(t, z)(z− z1) we can compute G and obtain

G(t, z) = tz +
1 + t + tz1 − t3

1 + tz1
.

From this we obtain:

Theorem 5.1.5. The generating function of 2-watermelons without wall and with arbitrary deviation
where both paths avoid the pattern UU independently is given by

E(t) = M(t, 0) =
G
zK

(z− z1)

∣∣∣∣
z=0

=
−1 + t + 2t2 + t3 − t4 − 2t5 +

√
1− 2t− 3t2 + 2t3 + 4t4 + 2t5 − 3t6 − 2t7 + t8

2t4(t2 − 1)
.

Reading off coefficients, we see that the counting sequence of 2-watermelons without wall
and arbitrary deviation where both paths avoid UU is given by

1, 2, 4, 8, 17, 37, 82, 185, 423, 978, 2283, 5373, 12735, 30372, 72832, 175502, 424748, 1032004, . . .

which is not listed in the OEIS [63] as of now.

5.2 the vectorial kernel method and height-related parameters

The vectorial method can not only be used to enumerate walks avoiding or containing a certain
pattern, but other constraints that can be encoded by a finite automaton. The height of a walk
is a classic example of this. In this section we will use the vectorial kernel method to re-derive
the number of Dyck not exceeding height h (which has already been studied in [59] and later in
fuller generality for excursions with finite step set S ⊂ Z not exceeding height h in [22]) as an
illustrating example for the ideas and methods and then use a similar approach to obtain results
about the lower height in 2-watermelons. The latter one has only been done for some fixed values
of h, since for arbitrary h some difficulties not present in the Dyck path case arise.

Dyck paths of height ≤ h

The number of Dyck paths not exceeding a certain given height h is an already well-known result.
For example, it can be obtained as a special case of Theorem 2, Chapter 1.3 in [59], which counts
paths with Dyck step set between two boundaries. There, Mohanty used a combination of a
reflection-argument and inclusion-exclusion to obtain this result. Here we will re-derive this
result with the vectorial kernel method before generalizing it to the lower height in 2-watermelons
in the next subsection. We will start with a small value of h as illustrating example before giving
the general result.

5.2 the vectorial kernel method and height-related parameters 93

Dyck paths of length 2n height not exceeding 3

Consider an automation with h + 1 states X0, X1, . . . , Xh (here h = 3). The path is in state Xi if it
is at altitude i currently. Taking an up step from there makes the path reach state Xi+1, taking a
down step makes it reach state Xi−1. In state Xh only down steps are allowed, otherwise the path
would exceed height h. In state X0 only up steps are allowed, otherwise the path would go below
the x-axis.

For h = 3 the automaton looks like this:

X0

U **
X1

D
jj

U **
X2

D
jj

U **
X3

D
jj

The adjacency matrix of this automaton is given by

A =




0 u 0 0
u−1 0 u 0

0 u−1 0 u
0 0 u−1 0


 .

The kernel of the automation is

K(t, u) = det(I − tA) = 1− 3t2 + t4.

It has no zeroes (in u), thus the number e of small roots of the kernel is e = 0.
Now apply the vectorial kernel method to find the generating function for those Dyck paths

(excursions). Let Mα = Mα(t, u) denote the bivariate generating function of the meanders that
terminate in state α (for α = 0, 1, 2, 3). Obviously we have that M(t, u) = ∑α Mα(t, u), or, phrased
differently M(t, u) = (M0, M1, M2, M3) ·~1, where~1 denotes the column vector (1, 1, 1, 1)>. By a
step-by-step construction we obtain the following functional equation

(M0, M1, M2, M3) = (1, 0, 0, 0) + t(M0, M1, M2, M3)A− t{u<0}((M0, M1, M2, M3)A),

where {u<0} denotes all terms in which the power of u is negative. Rewriting this we obtain

(M0, M1, M2, M3)(I − tA) = (1, 0, 0, 0)− t{u<0}((M0, M1, M2, M3)A).

Define Fα to be the α-th component of the vector on the right-hand side. With this notation the
equation becomes

(M0, M1, M2, M3)(I − tA) = (F0, F1, F2, F3). (89)

Let us have a closer look at {u<0}((M0, M1, M2, M3)A) in order to compute the vector F. We
have that

M · A = (u−1M1, u−1M2 + uM0, u−1M3 + uM1, uM2).

Note that Mi(t, u), the generating function of meanders ending in state Xi, only contains powers
ui, but no higher or lower powers of u. This is because the variable u encodes the altitude of the
walk and here the state Xi denotes that the walk is at altitude i. Thus MA contains no negative
powers of u and we have

{u<0}((M0, M1, M2, M3)A) = (0, 0, 0, 0)

and thus
(F0, F1, F2, F3) = (1, 0, 0, 0).

Next, multiply equation (89) from the right with

(I − tA)−1~1 =
(adj(I − tA))~1

det(I − tA)
,

94 the vectorial kernel method and watermelons

where adj(I − tA) denotes the adjoint of I − tA. We already know that det(I − tA) = K(t, u) =
1− 3t2 + t4. Denote

~v = ~v(t, u) := (adj(I − tA))~1.

We obtain

M(t, u) =
(F0, F1, F2, F3)~v

K(t, u)
. (90)

In our case

adj(I − tA) =




1− 2t tu(1− t2) t2u2 t3u3

tu−1(1− t2) 1− t2 tu t2u2

t2u−2 tu−1 1− t2 tu(1− t2)
t3u−3 t2u−2 tu−1(1− t2) 1− 2t2


 ,

and thus

~v =




1− 2t2 + (t− t3)u + t2u2 + t3u3

(t− t3)u−1 + 1− t2 + tu + t2u2

t2u−2 + tu−1 + 1− t2 + (t− t3)u
t3u−3 + t2u−2 + (t− t3)u−1 + 1− 2t2




Denote

Φ(t, u) := ue(F0(t, u), F1(t, u), F2(t, u), F3)~v(t, u).

From the proof of Theorem 4.4.3 we know that Φ is a polynomial in u and that each small root
ui(t) of the kernel K(t, u) is also a root of Φ. It follows that

Φ(t, u) = G(t, u)
e

∏
i=1

(u− ui(t)) (91)

for some G(t, u) which is a polynomial in u and a formal power series in t. Substituting this into
(90) we obtain

M(t, u) =
G(t, u)

ueK(t, u)

e

∏
i=1

(u− ui(t)).

In our case ue = 1 and the product is the empty product, because the kernel has no (small) roots
in u. It remains to determine G(t, u). Because the product ∏e

i=1(u− ui(t)) is empty, it follows
that

G(t, u) = Φ(t, u) = (F0, F1, F1, F3)~v,

which after plugging in the known expressions for F and ~v becomes

G(t, u) = 1− 2t2 + (t− t3)u + t2u2 + t3u3.

Thus

M(t, u) =
1− 2t2 + (t− t3)u + t2u2 + t3u3

1− 3t2 + t4 .

For excursions we obtain

E(t) = M(t, 0) =
1− 2t2

1− 3t2 + t4 .

Transitioning to semilength, we obtain that the generating function for Dyck paths of height at
most 3 and semilength n is

E(x) =
1− 2x

1− 3x + x2 .

5.2 the vectorial kernel method and height-related parameters 95

Dyck paths of length 2n height ≤ h

The same approach as in the previous subsection also works for arbitrary height h, but the
computation of the determinant (the kernel) and the adjoint of the matrix I − tA now becomes a
bit trickier.

The automaton describing Dyck paths not exceeding height h has h + 1 states, in state Xh only
the down step is allowed, whereas in state X0 only the up step is allowed:

X0

U **
X1

D
jj

U
((. . .

D
jj

U ,,
Xh−1

D
jj

U ** Xh
D
ll

The corresponding adjacency matrix Ah+1 is a (h + 1)× (h + 1) tridiagonal matrix with main
diagonal entries zero, entries u in the first diagonal above the main diagonal, and entries u−1 in
the first diagonal below the main diagonal, i.e.

Ah+1 =




0 u 0 . . . 0

u−1 0 u
...

.
... u−1 0 u
0 . . . 0 u−1 0




h+1×h+1

.

Thus

Ih+1 − tAh+1 =




1 −tu 0 . . . 0

−tu−1 1 −tu
...

.
... −tu−1 1 −tu
0 . . . 0 −tu−1 1




h+1×h+1

.

To compute the kernel Kh+1(t, u) = det (Ih+1 − tAh+1), we compute its Laplace expansion along
the first column and obtain

Kh+1 = 1 · det (Ih − tAh) + tu−1 · det




−tu 0 0 . . . 0

−tu−1 1 −tu
...

.
... −tu−1 1 −tu
0 . . . 0 −tu−1 1




h×h

= Kd + tu−1 · (−tu)det




1 −tu 0 . . . 0

−tu−1 1 −tu
...

.
... −tu−1 1 −tu
0 . . . 0 −tu−1 1




h−1×h−1

= Kh − t2Kh−1,

where the second line comes from expanding the determinant of the matrix along the first row.
Thus we obtain the recursion

Kh+1 = Kh − t2Kh−1.

96 the vectorial kernel method and watermelons

Solving it with the help of generating functions and reading off coefficients we obtain for the
kernel Kh+1 of walks not exceeding height h that

Kh+1 =
h+1

∑
j=0

(
h + 1− j

j

)
(−1)jt2j. (92)

It does only depend on t, but not on u, thus it has no small roots in u, i.e. the number e of small
roots is zero. Writing Mi := Mi(t, u) for the meanders that end in state i (i.e. at height i) we
obtain by a step by step construction of the walk the following vectorial functional equation

(M0, M1, . . . , Mh)(Ih+1 − tAh+1) = (1, 0, . . . , 0)− t{u<0}((M0, M1, . . . , Mh)Ah+1). (93)

Write F := (F0, F1, . . . , Fh) for the right-hand side of (93). We have that

(M0, M1, . . . , Mh)Ah+1 = (u−1M1, uM0 + u−1M2, . . . , uMi−1 + u−1Mi+1, . . . , uMh−1).

Since Mi is the generating function of meanders ending in height i only powers ui occur in Mi.
Thus

t{u<0}((M0, M1, . . . , Mh)Ah+1) = (0, . . . , 0)

and
(F0, F1, . . . , Fh) = (1, 0, . . . , 0).

In order to compute the autocorrelation vector

~v = adj(Ih+1 − tAh+1) · (1, . . . , 1)>

we first need to compute adj(Ih+1 − tAh+1). More specifically, we only need to compute the first
row of adj(Ih+1 − tAh+1) or the first entry of ~v since multiplication of ~v with F from the left
annihilates all but the first entry. The adjugate matrix adj(Ih+1 − tAh+1) = C>h+1 is defined as the
transpose of the cofactor matrix, i.e. the matrix with entries Cij = (−1)i+j Mij where Mij is the
minor obtained by deleting the i-th row and j-th column from Ih+1 − tAh+1. To compute the first
row, i.e. the entries adj(Ih+1 − tAh+1)1j we need to compute the first column with entries Cj1 of
the cofactor matrix. By deleting the first row and column we obtain that M11 = det Ah = Kh.

Next, we want to show that all the entries Cj1 have order at least 1 in u, thus contribute
nothing after plugging in u = 0 in the expression for M(t, 0) which will be done later on.

Lemma 5.2.1. For j > 1 the entries Cj1 have order at least 1 in u.

Proof. Consider the minor obtained after deleting the j-th row and first column of Ih+1 − tAh+1,
which is

Mj1 = det




−tu 0 0
1 −tu 0

−tu−1 1 −tu 0

0
.

... −tu−1 1 −tu 0

0 −tu−1 1 −tu
...

. 0
... 0 −tu−1 1 −tu
0 0 −tu−1 1




.

The first j− 1 rows have entries −tu in the main diagonal, entries 1 in the diagonal one unit
below the main diagonal, and entries −tu−1 in the diagonal two units below the main diagonal.
We have at least one such row since j > 1. Now, we will use induction over the dimension of the

5.2 the vectorial kernel method and height-related parameters 97

matrix to complete the proof. Clearly, the claim of the lemma holds true for a one-dimensional
matrix, which consists only of an entry −tu, thus has determinant −tu. Suppose the lemma
holds for all matrices of the above type and dimension h. To compute the determinant of such a
h + 1-dimensional matrix, let us expand Mj1 by the first row. If j > 2 we obtain that

M(h+1)
ji = (−tu) · (the determinant of some matrix of the same type and dimension h),

which by induction has order at least one in u. Multiplying with (−tu) just increases the order
further.

If j = 2 we only have one row with −tu in the main diagonal, namely the first row. Thus, we
obtain

M(h+1)
21 = (−tu) · det (Ih − tAh).

We already computed det Ih − tAh = Kh before and saw that it does not depend on u, thus has
order and degree zero in u. Multiplying with (−tu) gives us order 1 in u, which finishes the
proof.

The previous lemma gives us that Φ(t, u) = F ·~v = ∑j Cj1 = Kh + O(u). Since the number of
small roots is zero we have ∏(u− ui) = 1 and thus G(t, u) = Φ(t, u). We obtain for the generating
function M(t, u) of meanders

M(t, u) =
G(t, u)
K(t, u)

=
Kh + O(u)

Kh+1
.

Computing the generating function for excursions we need to plug in u = 0 and obtain

E(t) = M(t, 0) =
Kh

Kh+1

where

Kh =
h

∑
j=0

(
h− j

j

)
(−1)jt2j.

Towards the lower height in 2-watermelons with wall

There are two ways to define height in 2-watermelons. In Definition 3.1.18 we already encountered
the definition of the (upper) height of a (2-)watermelon studied by Fulmek [38] and Feierl [33, 34].
Here, the condition that the path may not exceed height h is imposed on the topmost path (and
by the non-crossing condition implicitly also on all other paths). However, it is also possible to
impose the height restriction on the lower path and let the upper path unconstrained. This leads
us to the following definition:

Definition 5.2.2. The lower height of a watermelon is the y-coordinate of the highest lattice point along
the bottommost paths of the watermelon.

Studying the lower height of a 2-watermelon with the same methods as in [38, 33, 34] did not
turn out to be very fruitful. The main reason behind this is that a Lindström–Gessel–Viennot-
approach does not work here. A crucial idea in the proof of the Lindström–Gessel–Viennot
Lemma 3.1.7 was swapping the initial segments of intersecting paths. However, while swapping
initial segments preserves (upper) height (since the upper height restriction also forces the same
height restriction on the lower path), it does not preserve lower height, as can be seen in Figure 24.

For studying the lower height in 2-watermelons, the bijection from Lemma 3.2.3 with weighted
Motzkin paths again turns out to be helpful. The bijection itself does not encode the wall condition.
But the following automation will take care of the lower height as well as the wall condition. Its
states correspond to the altitude of the lower path.

98 the vectorial kernel method and watermelons

Figure 23: A 2-watermelon of (upper) height not exceeding 3 (left) and a 2-watermelon of lower height not
exceeding 3 (height 5, if we use the definition with non-touching paths starting at (0,0) and (0,2) respectively).
In the latter case, the upper path, however, may exceed height 3.

Figure 24: A schematic illustration why the Lindström–Gessel–Viennot Lemma does not work for counting
watermelons not exceeding a certain lower height: the swapping of initial segments used in the proof of the
lemma may violate the lower height condition.

X0

u,D
**
X1

U,d
jj

u,D
**
X2

U,d
jj

u,D
((. . .

u,D ,,

U,d
jj Xh−1

u,D
**

U,d
jj Xh

U,d
ll

Note that the lower height does not correspond to the height of the weighted Motzkin path
obtained via the bijection. Thus, applying the bijection and then the results from [22] does not
work out.

Again, we will first have a look at small cases before discussing how it could be done for
arbitrary h. Note that the latter is not completely proven, however.

2-watermelons with wall with lower height not exceeding height 2

For lower height not exceeding 2, the automaton encoding both the wall condition as well as the
restriction on the lower height is

X0

u,D
**
X1

U,d
jj

u,D
**
X2

U,d
jj

The adjacency matrix of this automaton is given by

A =




0 1 + z−1 0
1 + z 0 1 + z−1

0 1 + z 0


 .

and thus

I − tA =




1 −t− tz−1 0
−t− tz 1 −t− tz−1

0 −t− tz 1


 .

The kernel is given by

K(t, z) = det(I − tA) = −2t2z + 1− 4t2 − 2t2z−1

5.2 the vectorial kernel method and height-related parameters 99

and its roots are

z1/2(t) =
1− 4t2 ±

√
1− 8t2

4t2 .

The root with minus is the small root, thus we have that the number of small roots is e = 1.
Denote Mi(t, z) the generating function of meanders that end in state (i.e. at lower height)

i. We want to compute the generating function of watermelons where both paths end at the
x-axis. The condition that the Motzkin path gives us that both watermelon paths end in the same
point and the condition that the lower path ends in state X0 and thus at lower height zero gives
us additionally that both of the watermelon paths end at height zero. Thus, the object we are
interested in is M0(t, 0).

Via a step-by-step construction we obtain the following functional equation

(M0, M1, M2)(I − tA) = (1, 0, 0)− t{z<0}((M0, M1, M2)A).

Let
F := (F0, F1, F2) := (1, 0, 0)− t{z<0}((M0, M1, M2)A).

We have
{z<0}((M0, M1, M2)A) = (0, z−1m0, z−1m1)

where m0 = [z0]M0(t, z) = M0(t, 0) and m1 = [z0]M1(t, z) = M1(t, 0). Thus

(F0, F1, F2) = (1,−tz−1m0,−tz−1m1).

The autocorrelation vector of this automaton is

~v = adj(I − tA) ·



1
1
1


 =




t2z−2 − t2z + t2z−1 − t2 + tz−1 + t + 1
tz + 2t + 1 + tz−1

t2z2 + t2z− t2z−1 − t2 + tz + t + 1


 .

When plugging in these expressions for F and ~v into

Φ(t, z) = zeF~v = z(1,−tz−1m0,−tz−1m1)~v

we would a priori obtain negative powers in z, namely

{z<0}Φ(t, z) = t2z−1 − t2z−1m0 + t3z−1m1 = t2z−1(1−m0 + tm1). (94)

But because of the reasoning in the proof of Theorem 4.3.7 Φ(t, z) has to be a polynomial in z,
thus these negative powers should not occur. In fact, they actually cancel out because of some
relations between m0 and m1: A meander ending in state X0 is either an empty walk or a meander
ending in state X1 and a step that takes it to state X0, or, phrased differently,

M0(t, z) = 1 + tM1(t, z)(1 + z).

Reading off the coefficient [z0] we obtain

[z0]M0(t, z) = 1 + t[z0]M1(t, z),

which is
m0 = 1 + tm1. (95)

This causes the negative powers in (94) to vanish, thus Φ is actually a polynomial in z. More
precisely, after plugging m0 = 1 + tm1 in the expression for Φ we obtain

Φ(t, z) = −t3m1z2 − 2 t3m1z−m1t3 −m1t2z− t2z2 − 2 m1t2 − 2 t2z− tm1 − t2 + tz + z.

Because
Φ(t, z) = G(t, z)(z− z1)

100 the vectorial kernel method and watermelons

and Φ has degree 2 in z, we know that degz(G) = 1, i.e. G = az + b with a and b unknown.
Reading off coefficients from Φ we obtain the following linear system of equations

−z1b = m1t3 − 2m1t2 −mt− t2

b− z1a = −2m1t3 −m1t2 − 2t2 + t + 1

a = m1t3 − t2

in the three unknowns a, b, and m1. Solving this system we obtain

a = − t2 (2 tz1 + 2 t + z1 + 1)
t2z1

2 + 2 t2z1 + t2 + tz1 + 2 t + 1

b = − 2 t3z1 + 2 t3 + t2z1 − t2 − 3 t− 1
t2z1

2 + 2 t2z1 + t2 + tz1 + 2 t + 1

m1 = − t2z1
2 + 2 t2z1 + t2 − tz1 − z1

t (t2z1
2 + 2 t2z1 + t2 + tz1 + 2 t + 1)

The generating function of 2-watermelons with wall and deviation zero where the lower path
does not exceed height 2 is given by m0 which can be computed via

m0 = 1 + tm1 =
(2 z1 + 2) t + z1 + 1

1 + (z1 + 1)2 t2 + (z1 + 2) t
.

After plugging in the small root z1 and some simplifications we obtain that

m0 =
3−
√

1− 8t2

2(1 + t2)
.

Transistioning to semilength gives us the following theorem:

Theorem 5.2.3. The number of watermelons of lenght 2n not exceeding lower height 2 is given by

E(x) =
3−
√

1− 8x
2(1 + x)

.

Expanding E(x) into a series we obtain that the first few terms are

1, 1, 3, 13, 67, 381, 2307, 14589, 95235, . . .

This series coincides with the generalized Catalan numbers C(2; n) (A064062). Since the number
of watermelons of lower height not exceeding 1 is given by the (ordinary) Catalan numbers
C(n) = C(1; n) (as can easily be seen from the fact that the lower path has to be the zigzag path
and the upper path can be any Dyck path) this might suggest the conjecture that watermelons of
lower height not exceeding h is given by the generalized Catalan numbers C(h; n).

The generalized Catalan numbers are defined as

C(h; n) = [xn]
2h− 1−

√
1− 4hx

2(h− 1 + x)
, (96)

for explicit forms and more information about them see [1].
This conjecture, however, is not true as can be seen in the next subsection.

2-watermelons with wall with lower height not exceeding height 3

For lower height not exceeding 3, the automaton encoding both the wall condition as well as the
restriction on the lower height is

5.2 the vectorial kernel method and height-related parameters 101

X0

u,D
**
X1

U,d
jj

u,D
**
X2

U,d
jj

u,D
**
X3

U,d
jj

Its adjacency matrix is

A =




0 1 + z−1 0 0
1 + z 0 1 + z−1 0

0 1 + z 0 1 + z−1

0 0 1 + z 0




and its kernel is

K(t, z) = det(I − tA) =
t4z4 + 4t4z3 + 6t4z2 + 4t4z− 3t2z3 + t4 − 6t2z2 − 3t2z + z2

z2 .

It has four roots, namely

z1(t) =
−4 t2 +

√
5 + 3

4t2 +

√
−8
√

5t2 + 14− 24 t2 + 6
√

5
4t2

z2(t) =
−4 t2 +

√
5 + 3

4t2 −
√
−8
√

5t2 + 14− 24 t2 + 6
√

5
4t2

z3(t) = −
4 t2 +

√
5− 3

4t2 +

√
4
√

5t2 − 12 t2 − 3
√

5 + 7
√

2
4t2

z4(t) = −
4 t2 +

√
5− 3

4t2 −
√

4
√

5t2 − 12 t2 − 3
√

5 + 7
√

2
4t2

Upon computing their limits for t→ 0, we see that z2 and z4 are the small roots.
Denote Mi(t, z) the generating function of meanders that end in state i (for i = 0, . . . 3). By a

similar reasoning as in the previous example, we are interested only in M0(t, 0).
A step-by-step construction gives us the functional equation

(M0, M1, M2, M3)(I − tA) = (1, 0, 0, 0)− t{z<0}((M0, M1, M2, M3)A).

We have
{z<0} ~M · A = (0, z−1m0, z−1m1, z−1m2),

where mi := [z0]Mi(t, z) = Mi(t, 0). Thus

F = (1, 0, 0, 0)− t{z<0} ~M · A = (1,−tz−1m0,−tz−1m1,−tz−1m2).

We then can compute Φ = z2F~v (where ~v = adj(I − tA) ·~1) and obtain

Φ(t, z) =− z4t4m2 + z3(−2 t2 − t3m1 − t3 − 2 t4m2 − t3m2 + t4m0)

+ z2(−3 t2 + 1 + t− 2 t3 − t2m2 + 3 t4m0 − t2m1 − t2m0 + t4m1 + t3m0 − t3m1)

+ zα1(t)

+ 2 t3 + t4m0 − t2m1 − t2m0 + 3 t4m1 − t3m0 + t3m1 + 2 t3m2 + t4m2 + t2

+
t4m1

z
− t3m0

z
+

t3

z
,

where α1(t) = ((3m0 + 2m2 + 3m1)t4 + (3m2 + m1 + m0)t3 − (m2 + 2m1 + 2m0)t2 + (1− m2 −
m1 −m0)t). Again, it looks as if Φ had negative z-powers (namely {z<0}Φ = t3

z (tm1 + 1−m0)),
but relation (95) holds here, too (for the same reason as in the previous example) and cancels out
these negative powers. Thus, Φ only contains non-negative z-powers, as it has to be.

102 the vectorial kernel method and watermelons

From Φ = G(z)(z− z2)(z− z4) where G = az2 + bz + c (for some unknowns a, b, and c) we
obtain by equating coefficients the following system of equations

m0t4 + 3m1t4 + m2t4 −m0t3 + m1t3 + 2m2t3 −m0t2 −m1t2 + 2t3 + t2 = cz2z4

α1(t) = −cz2 + bz2z4 − cz4,

3m0t4 + m1t4 + m0t3 −m1t3 −m0t2 −m1t2 −m2t2 − 2t3 − 3t2 + t + 1 = −bz2 − bz4 + c + az2z4,

m0t4 − 2m2t4 −m1t3 −m2t3 − t3 − 2t2 = −az2 − az4 + b,

−m2t4 = a,

m0 = 1 + tm1

The last line in the above system is not obtained from equating coefficients, but from relation (95).
It is a linear system of six equations in the six unknowns a, b, c, m0, m1, m2. Solving it for m0 (as
established earlier, we are not really interested in the other unknowns, only in m0 = M0(t, 0)) we
obtain

M(t, 0) =
1

80t6 + 64t4 + 16t2 + 16
×
(
((−2t2 + 1)

√
2(4
√

5t2 − 12t2 − 3
√

5 + 7

+ (8t4 + 4t2 + 1)
√

5− 20t4 − 4t2 − 3)
√
−8
√

5t2 + 14− 24t2 + 6
√

5

−
(
(8t4 + 4t2 + 1)

√
5 + 20t4 + 4t2 + 3

)√
2(4
√

5t2 − 12t2 − 3
√

5 + 7

+72t4 + 24t2 + 20
)

.

By transitioning to semilength we obtain the following theorem:

Theorem 5.2.4. The generating function of watermelons of semilength n and lower height not exceeding 3
is

E(x) =
1

80x3 + 64x2 + 16x + 16
×
(
((−2x + 1)

√
2(4
√

5x− 12x− 3
√

5 + 7

+ (8x2 + 4x + 1)
√

5− 20x2 − 4x− 3)
√
−8
√

5x + 14− 24x + 6
√

5

−
(
(8x2 + 4x + 1)

√
5 + 20x2 + 4x + 3

)√
2(4
√

5x− 12x− 3
√

5 + 7

+72x2 + 24x + 20
)

.

By reading off coefficients, we see that their counting sequence is

1, 1, 3, 14, 83, 567, 4236, 33605, 278169, 2376153, 20793323, 185463380, 1679954956, . . .

This sequence is not yet listed in the OEIS [63]. For comparison’s sake, the generalized Catalan
numbers C(3; n) are listed as A064063 and start with

1, 1, 4, 25, 190, 1606, 14506, 137089, 1338790, 13403950, 136846144, 1419257434, . . .

Thus the earlier mentioned conjecture that 2-watermelons with wall and deviation zero which do
not exceed lower height h are counted by the generalized Catalan numbers C(h; n) does not hold.

Arbitrary lower height

Now we well try to extend this to arbitrary height and describe what difficulties are encountered
here. The automaton describing 2-watermelons with wall not exceeding lower height h is given
by

5.2 the vectorial kernel method and height-related parameters 103

X0

u,D
**
X1

U,d
jj

u,D
**
X2

U,d
jj

u,D
((. . .

u,D ,,

U,d
jj Xh−1

u,D
**

U,d
jj Xh

U,d
ll

Let z be the variable encoding the height of the Motzkin path. Then the adjacency matrix of
the above automaton is given by

Ah+1 =




0 1 + z−1 0 . . . 0

1 + z 0 1 + z−1 ...
.

... 1 + z 0 1 + z−1

0 . . . 0 1 + z 0




(h+1)×(h+1)

,

i.e. a tridiagonal matrix with main diagonal entries zero, entries in the first diagonal above the
main being 1+ z−1 and in the first diagonal below the main 1+ z. All other entries are zero. Thus

Ih+1 − tAh+1 =




1 −t− tz−1 0 . . . 0

−t− tz 1 −t− tz−1 ...
.

... −t− tz 1 −t− tz−1

0 . . . 0 −t− tz 1




(h+1)×(h+1)

.

In order to compute the kernel Kh+1 = Kh+1(t, z) = det(Ih+1 − tAh+1) we compute the Laplace
expansion of the above matrix along the first column and obtain a sum of two matrices, the first
being Ih − tAh the second one having only one nonzero entry in the first row. Computing its
determinant by expanding along the first row, we obtain the following recursion for the kernel

Kh+1 = Kh − t2z−1(1 + z)2Kh−1 (97)

for h ≥ 1 and K1 = K0 = 1. Denote K(x) := ∑h≥0 Khxh the generating function of this series.
Then, after some straightforward manipulations, the recurrence relation translates into

K(x) =
1

1− (x− t2z−1(1 + z)2x2)
.

Expanding this into a binomial series and reading off coefficients we obtain

Kh = [xh]K(x) =
h

∑
k=0

(−1)k t2k(1 + z)2k

zk

(
h− k

k

)
. (98)

Next, we would have to compute the roots of the kernel and have a look at which ones are small
roots. This turns out to be a much more complicated task than in the case of one Dyck path
where the kernel (92) did not depend on the variable of interest at all.

Seeing that (97) is a linear recursion of second order of (Laurent) polynomials in z, this
suggests that a similar approach as Hoggatt and Bicknell [44] used for computing the zeroes of
Fibonacci polynomials given by the linear recursion

Fn+1(z) = zFn(z) + Fn−1 for n ≥ 2, F1(z) = 1, F2(z) = z

might turn out to be fruitful.

We will illustrate the method used to find the zeroes of Fibonacci polynomials (a clever
substitution that enabled the use of some identities between hyperbolic functions) and try to

104 the vectorial kernel method and watermelons

mimic it for the zeroes of the kernel side by side:

Recurrence and initial conditions:

Fibonacci-polynomials
Fn+1(z) = zFn(z) + Fn−1(z)
F1(z) = 1, F2(z) = z

Kernel-polynomials
Kn+1(z) = Kn(z)− t2z−1(1 + z)2Kn−1
K0(z) = 1, K1(z) = 1,
K2(z) = 1− tz−1 − 2t2 − t2z

Note: technically, Kn(z) = Kn(t, z), but since we are interested in its zeroes in z, we omit the
dependency on t.

Auxiliary equation:

Y2 − zY− 1 = 0 Y2 −Y + t2z−1(1 + z)2 = 0

Zeroes of the auxiliary equation:

α = z+
√

z2+4
2

β = z−
√

z2+4
2

α =
1+
√

1−4t2z−1(1+z)2

2

β =
1−
√

1−4t2z−1(1+z)2

2

Expressing Fn (or Kn) as c1αn + c2βn (c1 and c2 can be determined from the initial conditions):

Fn = αn−βn

α−β Kn = αn+1−βn+1

α−β

Using a substitution (specified below) and the identities sinh(c) = ec−e−c

2 , cosh(c) = ec+e−c

2 as
well as cosh2(c)− sinh2(c) = 1 to simplify α and β:

substitution: z =: 2sinh(c)
this implies

√
z2 + 4 = 2cosh(c)

α = z+
√

z2+4
2 = sinh(c) + cosh(c) = ec

β = z−
√

z2+4
2 = sinh(c)− cosh(c) = −e−c

substitution: z =:???
(some options are discussed on the following
pages)

Using this Fn (respectively Kn) becomes:

Fn = ecn−(−1)ne−nc

ec−e−c

This implies:
F2n = sinh(2nc)

cosh(c)

F2n+1 = cosh((2n+1)c)
cosh(c)

Kn = . . .

From this representation we then can find the zeroes of the Fibonacci polynomials. Clearly
the polynomial equals zero when the corresponding hyperbolic functions vanish. For c = a + ib
we have

| sinh(c)|2 = sinh2 a + sin b,

| cosh(c)|2 = sinh2 a + cos2 b.

For real a the function sinh a is zero if and only if a = 0, which implies that the zeroes of sinh c
are those of sinh ib = i sin b and the zeroes of cosh c are those of cosh ib = cos b. From this we
can easily find the c’s necessary and sufficient for Fn(z) = 0. We have to distinguish two cases:

5.2 the vectorial kernel method and height-related parameters 105

1. F2n = 0 implies that sinh(2nc) = 0 and cosh c 6= 0. From c = a + ib and the above reasoning
this implies that sin(2nb) = 0 and cos b 6= 0. Hence b = kπ

2n and c = ib. Thus the zeroes of
the Fibonacci polynomials F2n are z = ±2i sin kπ

2n for k = 0, 1, . . . , n− 1.

2. F2n+1 = 0 implies that cosh(2n + 1)c = 0 and cosh c 6= 0. From c = a + ib and the
above reasoning this implies that cosh((2n + 1)ib) = cos((2n + 1)b) = 0 and cos b 6= 0.
Hence b = (2k+1)π

2(2n+1) and c = ib. Thus the zeroes of the Fibonacci polynomials F2n+1 are

z = ±2i sin (2k+1)π
2(2n+1) for k = 0, 1, . . . , n− 1.

For the kernel polynomials, however, it is unclear what to use as substitution. The straightfor-
ward approach of setting α = ec and β = −e−c and trying to derive a relationship between z and
c works out fine for the Fibonacci polynomials, however, it does not seem to work for the kernel
polynomials. Setting

α =
1 +

√
1− 4t2z−1(1 + z)2

2
= ec

β =
1−

√
1− 4t2z−1(1 + z)2

2
= −e−c

gives us, upon adding these two equations

1 = ec − e−c = 2 sinh(c),

which does not relate z and c.
Another option would be the substitution 1+z√

z =: 1
2t sin c (suggested by Bernhard Gittenberger,

private communication) which gives us

α =
1 +

√
1− sin2 c
2

=
1 + cos c

2
= cos

(c
2

)2

and, by a similar computation,

β = sin
(c

2

)2
.

Thus

Kn =
cos

(c
2
)2n+2 − sin

(c
2
)2n+2

cos c
.

In order to have Kn = 0 we need cos c 6= 0 and cos
(c

2
)2n+2 − sin

(c
2
)2n+2

= 0. The first equation
gives us

c 6= π

2
+ kπ for k ∈ Z.

The second equation is equivalent to

cos
(c

2

)2n+2
= sin

(c
2

)2n+2
. (99)

As long as cos
(c

2
)
6= 0 this is equivalent to

1 =

(
sin
(c

2
)

cos
(c

2
)
)2n+2

= tan
(c

2

)2n+2

or
c = 2 arctan

(
e

2πki
2n+2

)

for k = 0, 1, . . . , 2n + 1.
For k = 0 we have c

2 = arctan(1) = π
4 + 2kπ which would lead to cos c = 0. For k =

n + 1 we have c
2 = arctan(−1) = −3π

4 + 2kπ which also would lead to cos c = 0. For these

106 the vectorial kernel method and watermelons

values denominator and numerator of Kn vanish simultaneously. A computation of the limit
limc→ π

2
Kn(c) via L’Hôpital’s rule gives us

lim
c→ π

2

Kn(c) =
n + 1

2n .

Similarly

lim
c→− 3π

2

Kn(c) =
n + 1

2n .

Thus we have to rule out these values as zeroes of Kn.
For all other values of k we have that cos c 6= 0 by the following reasoning: For cos c = 0

we have c = π
2 + `π thus cos

(c
2
)
= ±

√
2

2 . On the other hand c
2 = arctan

(
e

2πki
2n+2

)
and by

cos(arctan(x)) = 1√
1+x2 , we see that cos(arctan(x)) = ±

√
2

2 only for x = ±1, i.e. k = 0 and n + 1.

For c
2 = arctan

(
e

2πki
2n+2

)
we have that cos

(c
2
)
= 1√

1+
(

e
2πki
2n+2

)2
6= 0, thus we do not lose any

further zeroes.
For z this gives us

z1/2 =
arctan

(
e

2πki
2n+2

)2
− 2t2 ± arctan

(
e

2πki
2n+2

)√
arctan

(
e

2πki
2n+2

)2
− 4t2

2t2 (100)

for k = 1, . . . , n and k = n + 2, . . . , 2n + 1. Some of these solutions, however, coincide since the
solution with + for k and the solution with − for k + n + 1 are the same. Thus, we can consider
only the solutions with +. For different values of k we obtain different roots, thus we have in
total 2n roots for Kn.

This is a lot more than expected. Looking at (98), we see that (−1)k t2k(1+z)2k

zk (n−k
k) only

contributes to Kn if the binomial coefficient is nonzero, i.e. if n− k ≥ k, which is equivalent to
b n

2 c ≥ k. Thus, the sum describing Kn can be rewritten as

Kn =
b n

2 c
∑
k=0

(−1)k t2k(1 + z)2k

zk

(
h− k

k

)
.

From this, we see that only 2 · b n
2 c roots of Kn are to be expected.

But even after finding those zeroes the work is not fully done, because we still need to compute
the entries adjoint of I − tA and the autocorrelation vector in a similar vein as Lemma 5.2.1.

6C O N C L U S I O N

In this thesis several parameters, namely area, contacts, and returns, related to non-crossing pairs
of lattice paths (2-watermelons) were studied. One of the key ingredients for these studies was
a bijection between 2-watermelons and weighted Motzkin-paths. We saw that the area as well
as the number of contacts and returns between two non-crossing paths behaves similarly as the
area or the contacts and returns between one path and the x-axis. This is because the bijection
preserves many parameters.

Furthermore, pattern avoidance in lattice paths was examined. We generalized the vectorial
kernel method developed in [3], a very powerful tool for dealing with pattern avoidance in lattice
paths, in two directions, namely for the avoidance of several patterns at once as well as for walks
with longer steps. Using these methods we gave a full classification of Motzkin-paths avoiding
any set of patterns of length two. It turned out that some of these objects are counted by the same
sequence and we were able to give several explicit bijections between them.

Finally these two topics were combined to study pattern avoidance in watermelons. The
bijection with weighted Motzkin paths allows us to see these objects as just one path, which fits in
the framework of the vectorial kernel method. This chapter also suggests that the vectorial kernel
method turns out to be helpful to study other parameters of 2-watermelons, e.g. lower height.

There are also several possibilities for follow-up research questions, e.g. finding some of the
bijections between Motzkin paths with pattern constraints which are still missing or studying
parameters like area or contacts with the x-axis in lattice paths avoiding patterns.

107

7
A P P E N D I X

notations

N natural numbers. In this thesis we follow the convention 0 ∈N.
Z integers
R real numbers
C complex numbers
n! factorial of a natural number: 0! := 1, n! := n · (n− 1)! = n · (n− 1) · . . . · 2 · 1.

Γ(z) Gamma function: Γ(z) =
∫ ∞

0
tz−1e−tdt (defined for z ∈ C \ {0,−1,−2, . . . }).

For non-negative integers n we have that Γ(n) = (n− 1)!.
ak falling factorial: a0 := 1, ak := a · (a− 1)k−1 = a · (a− 1) · . . . · (a− k + 1)

for a ∈ R and k ∈N

ak rising factorial: a0 := 1, ak := a · (a + 1)k−1 = a · (a + 1) · . . . · (a + k− 1)
for a ∈ R and k ∈N(

a
k

)
binomial coefficient:

(
a
k

)
=

ak

k!
for a ∈ R, k ∈N.

For n ∈N we have
(

n
k

)
=

n!
k!(n− k)!

.

P(X = k) probability that a random variable X has value k
E(X) expected value of a random variable X
V(X) variance of a random variable X
mr(X) r-th moment of a random variable X
sgn(σ) sign of a permutation σ defined by sgn(σ) := (−1)|inv(σ)|

where inv(σ) := {(i, j) : i < j and σ(i) > σ(j)}
det(A) determinant of a matrix A = (aij)

n
i,j=1 defined by det(A) := ∑

σ∈Sn

sgn(σ)
n

∏
i=1

aiσ(i).

adj(A) adjoint of a matrix A. It can be obtained from adj(A) = det(A) · A−1, where A−1

is the inverse matrix of A.
f (z)|z=a function f evaluated at z = a.
Resa(f (z)) residue of the function f at the point z = a.
[zn] coefficient of zn in a formal power series A(z)
R[z] polynomials in z with coefficients in the ring R
R[[z]] formal power series in z with coefficients in the ring R
R[z, z−1] Laurent polynomials in z with coefficients in the ring R
R((z)) formal Laurent series in z with coefficients in the ring R
U,D,H,F shorthand for up-step (1, 1), down-step (1,−1), horizontal step (1, 0) and forward

step (2, 0)

109

B I B L I O G R A P H Y

[1] J. Abate and W. Whitt. Brownian motion and the generalized Catalan numbers, J. Int. Seq. 14, article 11.2.6,
2011

[2] D. André. Solution directe du problème résolu par M. Bertrand. Comptes Rendus de l’Académie des Sciences,
Paris 105, pp.436–437, 1887.

[3] A. Asinowski, A. Bacher, C. Banderier, and B. Gittenberger. Analytic combinatorics of lattice paths with
forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata. Algorithmica,
pp. 1–43, 2019.

[4] A. Asinowski, C. Banderier, and V. Roitner. Generating functions for lattice paths with several forbidden
patterns. Proceedings of the 32nd Conference on Formal Power Series and Algebraic Combinatorics
Article #95, 12 pp., 2020. To appear in the conference proceedings of FPSAC, 2020.

[5] M. Aumüller, M. Dietzfelbinger, C. Heuberger, D. Krenn, and H. Prodinger. Dual-pivot quicksort: Op-
timality, analysis and zeros of associated lattice paths. Combin. Probab. Comput. 28, no. 4, pp. 485–518,
2019.

[6] A. Bacher, A. Bernini, L. Ferrari, B. Gunby, R. Pinzani, and J. West. The Dyck pattern poset. Discrete
Mathematics, vol. 321, pp. 12–23, 2014.

[7] J. Baik Random vicious walks and random matrices. Comm. Pure Appl. Math, 53, no.11:1385–1410, 2000.

[8] C. Banderier and M. Drmota. Formulae and asymptotics for coefficients of algebraic functions. Comb. Probab.
Comput. 24 (1), pp. 1–53, 2015.

[9] C. Banderier and P. Flajolet. Basic analytic combinatorics of directed lattice paths. Theoretical Computer
Science 281:1-2, pp. 37–80, 2002.

[10] C. Banderier and B. Gittenberger. Analytic combinatorics of lattice paths: enumeration and asymptotics for the
area. Disc. Math. Theor. Comp. Sci., AG: pp. 345–355, 2006.

[11] C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner. Explicit
formulas for enumeration of lattice paths: basketball and the kernel method. In: Lattice Path Combinatorics and
Applications. Developments in Mathematics Series (Springer), pp. 78–118, 2019.

[12] C. Banderier, M.-L. Lackner, and M. Wallner. Latticepathology and symmetric functions. Proceedings of the
31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis
of Algorithms (AofA), pp. 21:1-21:15, 2020.

[13] C. Banderier and M. Wallner. Lattice paths of slope 2/5. Proceedings of the Fourteenth Workshop on
Analytic Algorithmics and Combinatorics (ANALCO), pp. 105–113, 2015.

[14] C. Banderier and M. Wallner. The kernel method for lattice paths below a line of rational slope. In: Lattice Path
Combinatorics and Applications. Developments in Mathematics Series (Springer), pp. 119–154, 2019.

[15] J.-L. Baril, S. Kirgizov, and A. Petrossian. Enumeration of Łukasiewicz paths modulo some patterns. Discrete
Math., 342 (4): pp. 997–1005, 2019.

[16] A. Bertoni, C. Choffrut, M. Goldwurm, and V. Lonati. On the number of occurrences of a symbol in words of
regular languages. Theoret. Comput. Sci., 302 (1-3), pp. 431–456, 2003.

[17] J. Bertrand. Solution d’un probleme. Comptes Rendus de l’Académie des Sciences, 105, p. 369, 1887.

[18] O. Bodini and Y. Ponty. Multi-dimensional Boltzmann sampling of languages. Disc. Math. Theor. Comp.
Sci., AM, 2010.

[19] A. Bostan, M. Bousquet-Mélou, M. Kauers, and S. Melczer. On 3-dimensional lattice walks confined to the
positive octant, Annals of Comb. 20(4), pp. 661–704, 2016.

110

BIBLIOGRAPHY 111

[20] A. Bostan, I. Kurkova, and K. Raschel. A human proof of Gessel’s lattice path conjecture. Transactions of the
American Mathematical Society 369 (2), pp. 1365–1393, 2017.

[21] M. Bousquet-Mélou and A. Jehanne. Polynomial equations with one catalytic variable, algebraic series and
map enumeration. J. Combin. Theory Ser. B 96, pp. 623–672, 2006.

[22] M. Bousquet-Mélou. Discrete excursions. Sém. Lothar. Comb. 57, Article B57d, 2008.

[23] M. Bousquet-Mélou and M. Mishna. Walks with small steps in the quarter plane. Contemp. Math. 520, pp.
1–40, 2010.

[24] C. Brennan and S. Mavhungu. Visits to level r by Dyck paths. Fund. Inform., 117 (1-4), pp. 127–145, 2012.

[25] A. Conway, I. Enting, and A. Guttmann. Algebraic techniques for enumerating self-avoiding walks on the
square lattice. J. Phys. A: Math. Gen., 26, pp. 1519–1534, 1993.

[26] E. Deutsch and L. Shapiro. A bijection between ordered trees and 2-Motzkin paths and its many consequences.
Discrete Math., 256(3), pp. 655–670, 2002.

[27] E. Deutsch. Dyck path enumeration. Discrete Mathematics 204, pp. 167–202, Elsevier, 1999.

[28] B. Drake. Limits of areas under lattice paths. Discrete Mathematics 309, p. 3936–3953, Elsevier, 2009.

[29] M. Drmota. Systems of functional equations. Random Structures and Algorithms 10, pp. 103–124, 1997.

[30] J. Essam and A. Guttmann. Vicious walkers and directed polymer networks in general dimensions. Phys. rev.,
E 52: pp. 5849–5862, 1995.

[31] S.-P. Eu, S.-C. Liu, and Y.-N. Yeh. Dyck paths with peaks avoiding or restricted to a given set. Stud. Appl.
Math., 111 (4), pp. 453–465, 2003.

[32] L. Euler. Variae observationes circa series infinitas. Commentarii academiae scientiarum Petropoli-
tanae 9, pp. 160–188, 1744. (A German and an English translation can be found at:
http://eulerarchive.maa.org/pages/E072.html)

[33] T. Feierl. The height of watermelons with wall, J. Phys. A: Math. Theor. 45, 2012.

[34] T. Feierl. The height and range of watermelons without wall, European journal of combinatorics, 34 (1), pp.
138–154, 2013.

[35] M. Fisher. Walks, walls, wetting and melting. J. Stat. Phys. 34, pp. 667–729, 1984.

[36] P. Flajolet and F. Guillemin. The formal theory of birth-and-death processes, lattice paths, and continued
fractions. Advances in Applied Probability 32, pp. 750–778, 2000.

[37] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, 2009.

[38] M. Fulmek. Asymptotics of the average height of 2-watermelons with a wall. The electronic Journal of
Combinatorics 14, 2007.

[39] I. Gessel and X. Viennot. Determinants, paths, and plane partitions. preprint, 1989.

[40] I. Goulden and D. Jackson. An inversion theorem for cluster decompositions of sequences with distinguished
subsequences, J. London Math. Soc.(2)20, pp. 567–576, 1079.

[41] L. Guibas and A. Odlyzko. String overlaps, pattern matching, and nontransitive games. J. Combin. Theory
Ser. A, 30 (2), pp. 183–208, 1981.

[42] A. Guttmann. Self-avoiding walks and polygons – an overview. Asia Pacific Mathematics Newsletter 2 (4),
2012.

[43] A. Guttmann, A. Owczarek, and X. Viennot. Vicious walkers and Young tableaux I: Without walls. J. Phys.
A 31 (40), p. 8123–8135, 1998.

[44] V. E. Hoggatt and M. Bicknell. Roots of Fibonacci polynomials. Fibonacci Quarterly 11, pp. 271–274, 1973.

112 BIBLIOGRAPHY

[45] Y. Jin, J. Qin, and C. Reidys. Combinatorics of RNA structures with pseudoknots. Bull. Math. Biol., 70 (1),
pp. 45–67, 2008.

[46] I. Jensen. Enumeration of self-avoiding walks on the square lattice. J. Phys. A. 37 (21), 2004.

[47] M. Kauers, C. Koutschan, and D. Zeilberger. Proof of Ira Gessel’s lattice path conjecture. Proceedings of the
National Academy of Sciences, 106 (28), pp. 11502–11505, 2009.

[48] D. Knuth. The Art of Computer Programming. Vol 1: Fundamental Algorithms. Addison-Wesley Publishing
Co., 1968.

[49] D. Knuth. The Art of Computer Programming. Vol 3: Sorting and Searching. Addison-Wesley Publishing
Co., Second Edition, 1998.

[50] C. Krattenthaler, A. Guttmann, and X. Viennot. Vicious walkers, friendly walkers and Young tableaux II:
With a wall. J. Phys. A 33 (48), pp. 8835–8866, 2000.

[51] C. Krattenthaler, A. Guttmann, and X. Viennot. Vicious walkers, friendly walkers and Young tableaux III:
between two walls. J. Statist. Phys. 110, pp. 1069–1086, 2003.

[52] C. Krattenthaler. Lattice Path Enumeration. In: Handbook of Enumerative Combinatorics, M. Bóna (ed.),
Discrete Math. and Its Appl., CRC Press, 2015.

[53] C. Krattenthaler. Watermelon configurations with wall interaction: exact and asymptotic results, J. Physics
Conf. Series 42, pp. 179–212, 2006.

[54] M.-L. Lackner and M. Wallner. An invitation to analytic combinatorics and lattice path counting. Lecture
notes of a course at the ALEA in Europe Young Researchers’ Workshop, University of Bath, 2015.

[55] B. Lindström. On the vector representation of induced matroids. Bull. London Math. Soc. 5, pp. 85–90, 1973.

[56] Toufik Mansour and Mark Shattuck. Counting humps and peaks in generalized Motzkin paths. Discrete
Appl. Math., 161 (13-14), pp.2213–2216, 2013.

[57] P. Marchal. Constructing a sequence of random walks strongly converging to Brownian motion. In Discrete
random walks (Paris, 2003), Discrete Math. Theor. Comput. Sci. AC, pp. 181–190, 2003.

[58] D. Marenduzzo, A. Trovato, and A. Maritan. Phase diagram of force-induced DNA unzipping in exactly
solveable models. Physical Review E, 64(3):031901, 2001.

[59] S. G. Mohanty. Lattice path counting and applications. Academic Press, 1979.

[60] T. Mansour and M. Shattuck. Counting humps and peaks in generalized Motzkin paths. Discrete Appl. Math.
161 (13–14), pp. 2213–2216, 2013.

[61] H. Niederhausen, S. Sullivan. Pattern avoiding ballot paths and finite operator calculus. J. Stat. Plan. Inference
140(8), pp. 2312–2320, 2010.

[62] J. Noonan and D. Zeilberger. The Goulden–Jackson cluster method: Extensions, applications and implementa-
tions. J. Difference Equ. Appl., 5(4-5), pp. 355–377, 1999.

[63] OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences. http://oeis.org, 2020.

[64] A.L. Owczarek and A. Rechnitzer. Force signature of the unzipping transition for strip confined two-
dimensional polymers. J. Phys. A: Math. Theor. 50, 484001, 2017.

[65] M. Renault. Lost (and found) in translation: André’s actual method and its application to the generalized ballot
problem. Amer. Math. Monthly 115, no. 4, pp. 358–363, 2008.

[66] C. Richard and A. Guttman. Poland–Scheraga models and the DNA denaturation transition. J. Statist. Phys.
115(3-4), pp. 925-947, 2004.

[67] V. Roitner. Contacts and returns in 2-watermelons without wall. Bulletin of the ICA (89), pp. 75–92, 2020.

[68] V. Roitner. The vectorial kernel method for walks with longer steps. preprint, 2020. ArXiv: 2008.02240

BIBLIOGRAPHY 113

[69] A. Sapounakis, I. Tasoulas, and P. Tsikouras. Counting strings in Dyck paths. Discrete Math. 307, pp. 2909
– 2924, 2007.

[70] M.-P. Schützenberger. On the synchronizing properties of certain prefix codes. Information and Control, 7,
pp. 23–36, 1964.

[71] R. Stanley. Catalan Numbers. Cambridge University Press, 2015.

[72] Y. Sun. The statistic number of udu’s in Dyck paths. Discrete Math. 287(1–3), pp. 177–186, 2004.

[73] R. Tabbara, A. Owczarek, and A. Rechnitzer. An exact solution of three interacting friendly walks in the bulk.
J. Phys. A: Math. Theor., 47, 015202 (34pp), 2014.

[74] M. Wallner. Combinatorics of lattice paths and tree like structures. PhD thesis, TU Wien, 2016.

[75] M. Waterman. Secondary structure of single-stranded nucleic acids. Studies in Foundations and Combina-
torics, Vol. 1, pp. 167–212, 1978.

[76] H. Wilf. generatingfunctionology. Academic Press Inc., Boston, MA, second edition, 1994.

[77] S. H. F. Yan. Schröder paths and pattern avoiding partitions. Int. J. Contemp. Math. Sciences, Vol. 4, no. 20,
pp. 979 – 986, 2009.

[78] D. Zeilberger. A holonomic systems approach to special functions identities. J. Computational and Applied
Mathematics Vol. 32, no. 3, pp. 321–368, 1990.

