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Figure 0.1: Diagram of an evolutionary tree, one of Charles Darwin’s early sketches (source: [15,
p. 36], reproduced from [80]).
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Abstract

In evolutionary biology phylogenetic trees are used to represent evolutionary relationships within

a group of species. Typically treelike branching diagrams are used, Figure 0.1, Figure 1.1 and

Figure 1.2 show early diagrams by Darwin and Haeckel. In graph theoretic terminology a phy-

logenetic tree corresponds to a rooted leaf-labeled tree, i.e. a (Vnite) simple, connected, acyclic

graph, where one vertex is distinguished as root and distinct labels are assigned to the leaves of

the tree. The labels refer to the various species under consideration and the internal nodes of

the tree represent hypothetic ancestral species (see [63, p. 19f.]). The availability of genetic data

in the 1960s made it possible to develop formal models of the evolution of species and to apply

mathematical methods to infer the evolutionary history of a group of species (see [52]). Still,

phylogenetics is an ongoing Veld of research, the existing models and algorithms are improved

and new questions arise.

Chapter 1 gives a rough overview of the Veld of study and mentions some of the topics not

covered in this thesis. In Chapter 2 all fundamental objects will be deVned and basic concepts

used later will be introduced. The well-known maximum parsimony approach is described as

well as the symmetric Nr-model.

In Chapter 3 and Chapter 4 more speciVc problems are discussed. Chapter 3 contains a col-

lection of several enumeration problems concerning phylogenetic trees, which were solved by

diUerent authors in the last decades. The size of several classes of phylogenetic trees will be

determined and two problems concerning random phylogenetic trees will be discussed.

In Chapter 4 maximum parsimony and the symmetric Nr-model will be compared by study-

ing the reconstruction of states of ancestral species. Results by Li et al. [49] and Fischer and

Thatte [24] concerning the accuracy of this reconstruction with the Fitch-Hartigan algorithm

are presented. Finally, initial results (proved within the scope of this thesis) towards generaliz-

ing a theorem by Fischer and Thatte [24] are outlined. In particular, the Mathematica package

Phylgen was developed to examine special cases of this theorem.
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Zusammenfassung

Phylogenetische Bäume werden im Bereich der Evolutionsbiologie verwendet, um evolutionäre

Beziehungen innerhalb einer Gruppe von Arten darzustellen. In Abbildung 0.1, Abbildung 1.1

und Abbildung 1.2 sind frühe Versionen solcher baumähnlichen Verzweigungsdiagramme von

Darwin und Haeckel zu sehen. Ein phylogenetischer Baum entspricht – im Sinne der Graphen-

theorie – einem gewurzelten Baum, dessen Blätter markiert sind. Die Blätter korrespondieren

mit den betrachteten Arten und die internen Knoten des Baums können als ihre hypothetische

Vorfahren gesehen werden (siehe [63, p. 19]). Die Verfügbarkeit von genetischen Daten seit den

1960er-Jahren hat es ermöglicht, formale Modelle für die Evolution der Arten zu entwickeln und

mathematische Methoden anzuwenden, um die evolutionäre Geschichte von Arten zu rekonstru-

ieren (siehe [52]).

In Kapitel 1 wird das Forschungsgebiet grob umrissen, einschließlich einiger Themen, die in

dieser Arbeit nicht näher ausgeführt werden können. In Kapitel 2 werden alle später verwende-

ten BegriUe und Objekte formal deVniert und grundlegende Konzepte werden vorgestellt. Sowohl

der weit verbreitete Maximum-Parsimony-Ansatz („maximale Sparsamkeit“) als auch das sym-

metrische Nr-Modell werden erläutert.

In Kapitel 3 und Kapitel 4 werden speziellere Problemstellungen behandelt. Kapitel 3 umfasst

eine Sammlung verschiedener auf phylogenetische Bäume bezogener Abzählprobleme, die in den

vergangenen Jahrzehnten gelöst wurden. Die Anzahl der Bäume in unterschiedlichen Klassen

phylogenetischer Bäume wird bestimmt. Ferner werden zwei Fragestellungen mit wahrschein-

lichkeitstheoretischem Ansatz diskutiert.

In Kapitel 4 wird Maximum-Parsimony mit dem symmetrischenNr-Modell verglichen, indem

die Rekonstruktion von Merkmalen der Vorfahren untersucht wird. Es werden Resultate von Li

et al. [49] und Fischer und Thatte [24] vorgestellt, die die Zuverlässigkeit dieser Rekonstrukti-

on behandeln. Schließlich werden erste Teilresultate zur Verallgemeinerung eines Theorems von

Fischer und Thatte [24] vorgestellt, die im Rahmen dieser Arbeit erzielt werden konnten. Insbe-

sondere wurde das Mathematika-Paket Phylgen entwickelt, um Spezialfälle dieses Theorems zu

untersuchen.
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Preface

A personal note

There is a plenty of mathematics out there1. Some parts of it can be considered as pure math-

ematics or basic research, while others are targeting applications, either inside mathematics, in

other scientiVc Velds or elsewhere in the real world. And lastly, some problems can be consid-

ered essentially as playful approach to mathematics, e.g. to prove the NP-completeness of the

computer game Tetris (see [18]), or to Vnd a solution of the 100 prisoners puzzle (see [84]). Such a

classiVcation is not meant to justify a priori some areas of mathematics and question the right to

exist for others. But especially because there are so many considerable mathematical problems,

it makes sense to ask why we are interested in some of them particularly. In general, my fascina-

tion for mathematics arises from the mysterious power of formal methods (such as the symbolic

method, which is outlined brieWy in Section 2.4 and will be extensively used in Chapter 3). In my

opinion, this is exciting especially if such methods are applicable in the real world, or if there are

certain pure problems—problems where the question and the answer, once found, can be grasped

immediately, but without formal methods a solution cannot be derived easily. A neat example of

the latter is, how one can compute the number of rotationally distinct ways of drawing one of

the two possible diagonals in each of the faces of a cube2. In addition, a playful touch is another

source of fascination, but it is not at all easy to explain why.

Some Velds of mathematics actually fall in two or even more of these categories. A famous

example is number theory, which for long has been considered as pure mathematics, but is en-

joying a renaissance as application in cryptology. A similar combination of application and basic

research can be found in the topic of this thesis: How to apply methods of discrete mathematics

to the Veld of evolutionary biology?

While not being addressed in the following, I can also think of playful aspects of this sub-

1The question “How much mathematics can there be?” is discussed in [17, p. 24f.].
2It is immediately clear that the answer is a number between 1 and 26 = 64 and it would even possible to draw all
possible cubes, but without the help of Burnside’s lemma one loses easily track of rotationally identical cubes.
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ject. What about examining the notoriously branching out of GNU/Linux distributions or the

tree of doctoral advisors (see [19]) in so-called academic genealogy with methods known from

evolutionary biology? But, let us do the serious work Vrst.
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Chapter 1

Introduction

The basic ideas for the understanding of the development of the diUerent forms of life dates

back to ancient Greek philosophy, but also in Chinese philosophy similar thoughts can be found.

For example, the Encyclopædia Britannica [77] writes about the Greek pre-Socratic philosopher

Empedocles1:

“
[...] the most interesting and most matured part of his views dealt with the

Vrst origin of plants and animals, and with the physiology of man. As the elements

(his deities) entered into combinations, there appeared quaint results—heads with-

out necks, arms without shoulders. Then as these fragmentary structures met, there

were seen horned heads on human bodies, bodies of oxen with men’s heads, and

Vgures of double sex. But most of these products of natural forces disappeared as

suddenly as they arose; only in those rare cases where the several parts were found

adapted to each other, and casual member Vtted into casual member, did the complex

structures thus formed last. Thus from spontaneous aggregations of casual aggre-

gates, which suited each other as if this had been intended, did the organic universe

originally spring. Soon various inWuences reduced the creatures of double sex to a

male and a female, and the world was replenished with organic life. It is impossible

not to see in this theory a crude anticipation of the ‘survival of the Vttest’ theory of

modern evolutionists. ”Nevertheless, many centuries were still to pass before Charles Darwin2 published his book On

the Origin of Species Darwin [14] in 1859. It can be considered to be one of the cornerstones

of modern evolutionary biology. After few decades his theory was widely accepted, in spite of

1Empedocles, ca. 490–430 BC
2Charles Darwin, 12 February 1809–19 April 1882
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Chapter 1 Introduction

Figure 1.1: Treelike diagram to illustrate the branching of species (source: [14, p. 176], reproduced
from [81]).

political and religious contradictions with the prevailing view inWestern society back then. Also,

there were many supporters for Lamarck’s hypothesis. Lamarck assumed that an organism’s

characteristics, acquired during its lifetime, can be inherited. But due to a lack of evidence for

this theory Darwin’s conception of natural selection has prevailed. Darwin proposed that all

forms of life evolved from ancestral species. He actually claimed that there is one common

ancestor for all organisms from which the extant species diverged through random variation and

natural selection:

“
Therefore I should infer from analogy that probably all the organic beings

which have ever lived on this earth have descended from some one primordial form,

into which life was Vrst breathed.3 ”Therefore it makes sense to illustrate the historical evolution of species in a treelike branching

diagram as he did in one of his earlier sketches, shown in Figure 0.1, and in a diagram in [14]
3Darwin [14, p. 484]
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shown in Figure 1.1.

Such branching diagrams are still used today when studying evolution. They correspond to

trees as known from graph theory or computer science. The question of, how to analyze and

construct these evolutionary trees under certain assumptions with mathematical methods, is the

core issues of a wide Veld of ongoing research, combining knowledge and methods from biology,

mathematics and computer science. In this thesis we are going to shed light on certain aspects

of these questions. This will be a quite speciVc selection of topics—it is not possible to give

detailed attention to all of them. Felsenstein [23, p. xix] estimated in 2004 that “there are about

3,000 papers on methods for inferring phylogenies.” These were even too many to be included

in the comprehensive textbook [23] by Felsenstein. In addition to this recommendable book we

refer the interested reader to Phylogenetics by Semple and Steel [63], which provides a profound

overview of the mathematical foundations of phylogenetics, and to the survey by Allman and

Rhodes [3]. Another book concentrating on “the fundamental mathematical concepts” is [36].

In this chapter we only give a rough overview of the Veld of activity by providing some more

historical background and introductory information.

Phylogenetics—inferring phylogenies by algorithmic methods. A phylogeny describes the

evolution of species or speciVc groups of organisms and therefore also the relatedness between

them. The term is derived from the two ancient Greek words φῦλον (tribe, race [50, p. 1698])

and γένεσvις (origin, birth [50, p. 305]) and phylogenetics is the Veld of science which deals with

these topics. The aim is to understand evolution and the diversity of the diUerent forms of

organisms, and also to build a system for their classiVcation and naming (the science of doing

that is called taxonomy4). Carl Linnaeus5, the founder of Linnaean taxonomy, classiVed life

only by studying morphological characteristics of organisms. He compared form, size, shape

and structure of organisms or parts of them, for example the number of stamens of plants. In

contrast the understanding of evolution allows alternative ways of classiVcation. In cladistics,

for example, one uses certain subtrees of a phylogenetic tree to classify species. (There are also

schools of biological systematists which make use of phylogenies for this purpose.) Roughly

speaking instead of characterizing organisms by their external appearance, one can characterize

them by their origin. With respect to this characterization those species which share a common

history are closely related to each other.

4
τάξις = arrangement, order, rank [50, p. 1526]

5Carl Linnaeus, 1707–1778
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Chapter 1 Introduction

Figure 1.2: Paleontological Tree of the Vertebrates by Haeckel [40, Pl. XXI] (reproduced from [82]).

4



The Veld of phylogenetics has its origin in times of Darwin. His Vndings and the work of his

contemporaries lay the basis for the hypothesis of a common ancestor and the treelike branching

of species. The drawings of phylogenetic trees by Darwin and others at that time (see Figure 0.1,

Figure 1.1, Figure 1.2) are very similar to phylogenetic trees used in modern evolutionary biology.

In fact, Darwin’s sketches include already all fundamental characteristics.

Nevertheless, it took another 100 years before a more formal approach was taken. The avail-

ability of the Vrst computers at universities opened up new possibilities for numerical and al-

gorithmic methods. This fact probably was the main reason why a formal way has prevailed.

On the other hand, the progress in the Veld of genetics in the 1950s provided a lot of valuable

information. For instance, Allman and Rhodes [3, p. 21] write

“
The availability of sequence data produced a revolution in several ways. First,

the volume of available data for any given collection of species grew tremendously.

Obtaining data became less of a problem than how to sort through it. Second, since

sequences are so amenable to mathematical description, it became possible to for-

malize the inference process, bringing to bear mathematical tools. ”According to Felsenstein [23, p. 123] the paper by Michener and Sokal [51] (published in 1957)

might be considered as the Vrst publication about numerical inference of phylogenies. Several

articles about numerical clustering methods were published, but only Michener interpreted the

taxonomic classiVcation also as valid phylogeny. Therefore from a historical point of view one

could say that (evolutionary) taxonomy led to algorithmic inference of phylogenies and not the

other way around. In the 1960s several diUerent methods were developed in order to reconstruct

ancestral states or the underlying tree—the basic questions and ideas are outlined in the next

paragraphs. This introduction is not meant to explain details, but rather to point to topics which

are not covered here and to show what awaits the reader in this thesis. Chapter 2 contains a

detailed introduction to the fundamental terminology and properties of the objects mentioned in

the following paragraphs.

An introductory example. A simple example will help us to illustrate the problem of recon-

structing the evolutionary history of a group of species and to explain some basic terms. The

example is taken from [23, chapt. 1], but we will try to stick closer to mathematical conventions

of notations and terminology6. The target of this section is to provide a simple overview of the

6These diUerences are irrelevant to the Vndings, but as fun fact the following might be worth mentioning. One can
observe that biologists tend to draw trees more similar to the woody plant, while in mathematics and computer

5



Chapter 1 Introduction

Species\Characters χ1 χ2 χ3 χ4 χ5 χ6

1 α β β α α β

2 α α β α α α

3 α α β β β β

4 β β α β β β

5 β β α α α β

Table 1.1: Character states for the species in X for the characters χ1, χ2, . . . , χ6.

topic without explaining deVnitions and concepts in detail.

Consider a set of Vve (extant) species X = {1, 2, 3, 4, 5} and six traits χ1, . . . , χ6, in phy-

logenetics usually called characters (see e.g. [63, chapt. 4]). The elements in X are also often

called taxa or OTUs (Operational Taxonomic Units) [12, p. 721] referring to a group of organ-

isms considered as a unit in taxonomy. A character can be any trait which is present or absent

or in any other speciVable state in all individuals of the species under consideration. So for

i = 1, . . . , 6 we have functions χi : X → Ci, where Ci is a set of possible states for character

χi (see DeVnition 2.3 on page 18). Nowadays genetic data might play the biggest role in the

Veld of algorithmic phylogenetics, but in general a character can be “morphological (e.g. wings

versus no-wings), biochemical, physiological, behavioural, embryological, or genetic (e.g. the nu-

cleotide at a particular DNA sequence position or the order of certain genes on a chromosome)”

[63, p. 65]. In the following the source of the data for the characters will not matter for us, but

only the number of diUerent states for each character. With such an abstract approach, the de-

veloped methods can be applied not only to biology, but also to other scientiVc Velds as we will

explain later. In Table 1.1 the states for the characters χ1, χ2, . . . , χ6 are shown. All characters

χi are binary characters that is |Ci| = 2. We denote the states with α and β.

Suppose the phylogenetic tree T in Figure 1.3 is suggested by biologists for the species in

X . This is a rooted binary tree in the sense of graph theory and therefore a direction is given

implicitly—we view the edges as directed away from the root. The leaves are labeled with ele-

ments of X . The internal nodes of the tree are sometimes called HTUs (Hypothetical Taxonomic

Units) in contrast to OTUs [12, p. 721]. They can be viewed either as hypothetical ancestral

science more abstract Vgures of trees are common. To be precise, trees in graph theory or computer science are
usually illustrated upside down with their leaves at the bottom and the root at the top, while phylogenetic trees in
evolutionary biology are drawn in the natural way with their leaves at the top and the root at the bottom. But of
course, this is not due to a diUerent level of abstraction of the diUerent Velds of science, but more likely because
trees in mathematics and computer science often start growing at the root while phylogenetic trees actually are
constructed by use of the leaves. Phylogenetic trees are actually also often drawn with the root at the left side and
the leaves at the right side, because this is very useful for labeling the leaves with longer names.

6



1 2 3 4 5

Figure 1.3: Proposed phylogeny T with the underlying tree T for the species in X =
{1, 2, 3, 4, 5}.

species or as speciation events [63, p. 19f.]. In both cases the tree represents the evolution of

the species in X and their historical relatedness as already mentioned and illustrated with the

historical examples in Figure 0.1, Figure 1.1 and Figure 1.2. So every species is represented by a

vertex of the tree and it evolved from the species represented by its parent vertices. This brings

up several questions: How can we reconstruct the character states for the hypothetical ancestral

species, that is, are there functions χi : V → Ci which extend the characters χi in some nat-

ural way to all nodes of the tree? How can we justify the proposed phylogenetic tree by use of

the information provided by the characters χi? Or is it even possible to reconstruct the correct

phylogenetic tree from a set of given characters?

There is not one simple answer to these questions, but the ideas and concepts of the diUerent

answers will be outlined in the following. Those concepts which are used later will be formalized

and presented in detail in Chapter 2.

Figure 1.4 illustrates two possible extensions of character χ1 to all internal nodes. In both

cases there is one edge (u, v) with χ1(u) 6= χ1(v). This represents the situation that the species

u and v diUer in the trait represented by character χ1. When v evolved from u, the state of

the character changed. This event is called substitution (see e.g. [63, chapt. 8]). A common

assumption (see [23, p. 3], [63, p. 67f.]) is, that every character state arises only once in the tree

or equivalently that there are exactly |χ(C)| − 1 substitutions for a character χ with state set

C (see [63, p. 85, prop. 5.1.3], details are discussed in Section 2.2, particularly in Proposition 2.6

and in Proposition 2.8). Otherwise, if there are more than |C| − 1 substitutions for a character

extension, we speak of homoplasy (see [23, p. 25]). This implies that a character state arises and

then changes back to a previous state (reverse transition) or that a state evolves independently

several times. In the latter case the state occurs in diUerent subtrees of a vertex v, but v is in a

7
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1 2 3 4 5

α

α

α

β

α α α β β

(a)
1 2 3 4 5

β

α

α

β

α α α β β

(b)

Figure 1.4: Possible extensions of character χ1 with one substitution. α and β illustrate the char-
acter states of the according species, while 1–5 denote the species initially given.

1 2 3 4 5

α

α

α

α

α α β β α

(a)
1 2 3 4 5

β

β

α

β

α α β β α

(b)

Figure 1.5: Possible extensions of character χ4 with two substitutions.

diUerent state (convergent transition), see [63, p. 67f.] for details. Both reverse transitions and

convergent transitions occur in nature, but they can be considered as “relatively rare for certain

types of genetic data” [63, p. 68].

In Figure 1.5 the two possible extensions for character χ4 with two substitutions are illus-

trated. For this simple example it is immediately clear, that there is no extension χ4 with less

substitutions. Hence, there is no homoplasy-free character extension for character χ4. But it

is still possible to search for the most parsimonious character extension χ4. That is a charac-

ter extension with the least possible number of substitutions—in the case of χ4 this is one of

the character extensions displayed in Figure 1.5. This approach is called maximum parsimony

sometimes abbreviated MP (see also [63, chapt. 5]). One could count the number of substitutions

8



1 2 3 4 5

Figure 1.6: An alternative phylogenetic tree T ′ with underlying tree T ′ for the species in X =
{1, 2, 3, 4, 5}.

for all |C||V |−|X| possible extensions of a character in order to Vnd the most parsimonious one.

But for large trees or state sets one should rather use a more eXcient method, such as the Fitch-

Hartigan algorithm with a runtime in O(|C| · |X|) (see [26, 43] for the original papers published
in 1971 and 1973 respectively and [63, pp. 89–91], [23, pp. 11-13] for other resources). Basically,

the algorithm traverses the tree starting at the leaves with the given states for the character and

then infers a set of states for their parent vertices by choosing for each parent vertex the states,

which occur most frequently in its children. In our case this procedure for character χ1 results

in {α, β} for the root ρ while all other states correspond to the two extensions presented in Fig-

ure 1.4. Thus, by assuming maximum parsimony the states of all internal nodes except ρ can

be reconstructed unambiguously, while for ρ both states {α, β} lead to a character extension of

χ1 with a minimal number of substitutions. By traversing the tree from the root to the leaves

in a second pass one can construct explicitly a character extension with a minimal number of

substitutions (see Section 2.2, Theorem 2.9 for details).

Considering all possible extensions of the characters χ1, . . . , χ6 for the phylogenetic tree in

Figure 1.3, the total minimal number of substitutions is 9 = 1 + 2 + 1 + 2 + 2 + 1, which

is called parsimony score. The phylogenetic tree T ′ in Figure 1.6 shows that the previously

suggested phylogenetic tree T is not the most parsimonious one. In Figure 1.7 there are character

extensions χi for i = 1, . . . , 6 on T ′ with a total number of 8 = 1+1+1+2+2+1 substitutions.

This is also the minimal number of substitutions which can be achieved by extending the given

characters on any binary phylogenetic tree. One could also expect to Vnd a phylogenetic tree

with a parsimony score of 6 or 7 because we have a set of 6 binary characters, but in this case

there is no such tree.

9
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1 2 3 4 5
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Figure 1.7: Character extensions χi for i = 1, . . . , 6 on T ′ with a total number of 8 substitutions.

Branch lengths. If one takes into account that phylogenetic trees represent the chronological

development of a group of species, it makes sense to impose branch lengths—a length for each

edge of the tree and therefore a distance between each vertex and its parent. This leads to a

weighted tree with positive weights. A distance between two species can then be deVned by the

sum of the weights of the unique path between these two species. This distance can be viewed

as time passed between the speciation events or as a measure of the dissimilarity between the

species and its ancestral species (e.g. the Hamming distance of a set of characters, see [58]).

Sometimes it is assumed that changes of characters occur at a constant rate through time—then

these two views correspond with each other and we speak of a molecular clock or ultrametric

trees (see [24] and [63, sect. 7.2]; some details will be given in Section 2.3 on page 33).

The quantity of dissimilarity between two species can be used as a measure of distance be-

tween them. This deVnes a so-called dissimilarity map on the set X , usually represented by a

matrix (distance matrix) and generalizing the concept of metrics. One can use a dissimilarity map

on X to reconstruct a phylogenetic tree for the species in X . Usually we then speak of distance

matrix methods as opposed to character based methods. A very popular approach using distance

matrices is the Neighbor Joining algorithm (often abbreviated by NJ) by Saitou and Nei [58] (see

also [63, p. 157f.]). The algorithm identiVes two vertices from X to form a cherry7 of the phylo-

7In graph theory two leaves of a tree are said to form a cherry if they are connected to the same vertex in the tree
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genetic tree and replaces them with one new leaf. Then recursively again a cherry is replaced by

a leaf until the tree is fully deVned. The algorithm aims to fulVll the minimum evolution criteria,

that is, to minimize the sum of the weights of all edges of the tree. This assumption dates back to

Edwards in the early 1960ties (see [23, p. 125f.]). It is similar to the maximum parsimony criteria

for phylogenetic trees without distances. Note that not every dissimilarity map on X can be

represented by the sum of weights of the corresponding path in a phylogenetic tree. If there is a

representation by a speciVc phylogenetic tree with positive edge weights for a dissimilarity map

or its corresponding distance matrix, we call it a tree metric or we refer to the distance matrix

as additive (see [63, p. 145f.] and [38, p. 456]). In this case it can be proven that the phyloge-

netic tree and its weights are unique up to isomorphism (see [63, thm. 7.1.8, p. 148]). An even

stronger property of dissimilarity maps is to be ultrametric (see [63, p. 149]). In this thesis we will

not discuss more details of tree reconstruction by use of distance based methods (the interested

reader may take a look at [63, chapt. 7] and [23, chapt. 11] and the references therein), but branch

lengths and ultrametricity will be used in a slightly diUerent way.

To view the edge weights as passed time between the speciation events is—as already mentioned—

not the only useful interpretation. Viewing the edge weights as substitution probability results

in a probability model for the evolution of the characters. For a binary character extension χ

on T , let χ(ρ) = α and let 0 < pe <
1
2 be the weight for each edge e = (u, v). Then pe is

the probability that χ(u) 6= χ(v) and every vertex’ state χ(v) depends only on the state χ(u)

of its parent vertex u. Hence, the character states for each character evolve from ρ to every leaf

of the tree according to a Markov process. The probability that a speciVc χ evolves is given by

multiplication of the according probabilities pe or 1 − pe for all edges e in the tree. Also in a

more general setting one can deVne a tree metric by use of the joint probability that χ(x) = c1

and χ(y) = c2 holds for some character states c1, c2 ∈ C and species x, y ∈ X . Therefore a

unique phylogenetic tree is given by these probabilities (see comment above and [63, p. 192f.]).

With help of such a probability model it is also possible to analyze the correctness of tree recon-

struction by maximum parsimony or distance matrix methods. When we reconstruct the parent

character states of a phylogenetic tree from given character states of the leaves by use of the

previously explained Fitch-Hartigan algorithm, it is interesting how accurate this reconstruction

works. We deVne the reconstruction accuracy for a certain phylogenetic tree as the probability

that the Fitch-Hartigan algorithm reconstructs the character state of the vertex ρ correctly for a

random character under the described probability model. This means that a character extension

(see Semple and Steel [63, p. 8]).
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χ evolves under the given probability model and the Fitch-Hartigan algorithm outputs the state

χ(ρ) or a set containing χ(ρ) and the state χ(ρ) is chosen by a uniform distribution. Surprisingly,

it turns out that for a Vxed phylogenetic tree the reconstruction accuracy may become greater

if the Fitch-Hartigan algorithm operates only on a subtree. So for certain phylogenetic trees the

chance of correct reconstruction of the root state increases if information about the species is left

out.

Probability models will be developed in detail in Section 2.3, the Fitch-Hartigan algorithm and

its reconstruction accuracy are covered in Chapter 4.

Methods of rooting a phylogenetic tree. Often an unrooted phylogenetic tree is recon-

structed Vrst from the given data. But it is also of interest to Vnd the correct position of the

root vertex. This procedure is referred to as rooting the tree or directing (see [28]). One way to

achieve this is the outgroup comparison method (also outgroup criterion, see e.g. [23, p. 6f.] and

[75, p. 1f.]). If it is known that one species x ∈ X (the outgroup) diUers greatly from the others

X \ {x} although the species inX \ {x} are closely related to each other, it can be assumed that

the diUerences are caused by the speciation event at the branching point of x andX \ {x}. Then
the neighbor of x is the root vertex of the tree and the species in X\{x} are located in the other

subtree of the root.

Another method, called midpoint rooting, makes use of the assumption of a molecular clock

as mentioned above (see [23, p. 6f.] and [46]). If it is assumed that the distance between the root

and a leaf is equal for every leaf, the root is located at the middle between two leaves.

Other applications. There are many parallels to other scientiVc Velds, and therefore results

can be applied not only in evolutionary biology but also elsewhere. For example Hartigan [43,

p. 53] writes

“
Evolutionary models are used in the classiVcation of plant and animal life,

languages, motor cars, cultures, religions. ”Buneman [7] mentioned in his important paper from 1971 that “a similar situation occurs when

one has a set of manuscripts all directly or indirectly copied from a common original manuscript.”

Errors occur during the process of copying and therefore one can deVne a distance between

two manuscripts by counting the number of diUerences. Spencer et al. [67] used the copying

history of artiVcially created manuscripts to compare and study the accuracy and appropriateness

of diUerent tree reconstruction algorithms. Methods applied in phylogenetics are used also in

12



Figure 1.8: Genealogical tree of the Indo-Germanic languages by Haeckel [39, p. 360].

“archaeological artifacts, written works such as chain letters and medieval manuscripts” (see

[67]). Already Darwin and Ghiselin [16] mentioned the parallels between the evolution of species

and the development of languages:

“
The formation of diUerent languages and of distinct species, and the proofs

that both have been developed through a gradual process, are curiously parallel.

[...] Languages, like organic beings, can be classed in groups under groups; and

they can be classed either naturally according to descent, or artiVcially by other

characters. ”
Recent studies of parallels between phylogenetics and historical linguistics can be found in [78, 4].
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Chapter 1 Introduction

Perspective. One of the main problems in phylogenetics is how to infer the evolutionary his-

tory of a group of species. The most popular algorithms for solving this problem belong to one

of the three categories maximum parsimony (MP), distance matrix, or probability based methods

such as maximum likelihood or Bayesian methods. Besides the reconstruction of phylogenetic

trees there are also other problems of interest. For example, phylogenetic diversity is a measure

for the heterogeneousness of a group of species. To Vnd a subset of species of a certain size

which maximizes the expected phylogenetic diversity, is called the Noah’s Ark Problem (see [37,

chapt. 6]).

Results in phylogenetics are not only interesting for biological applications, but also from a

mathematical point of view. Székely et al. [75, p. 6] write about a “uniVed technique to solve a

number of tree enumeration problems”:

“
Had not we seen counting of trees with unlabelled branching vertices in

biomathematics, we would hardly have ever come to this point. ”In this thesis we concentrate on combinatorial problems in phylogenetics. DiUerent types of

phylogenetic trees, certain aspects of maximum parsimony, and probability models will be dis-

cussed. Other topics concerning the reconstruction of phylogenetic trees, such as distance matrix

methods, will be treated marginally only. In Chapter 3 several enumeration problems with con-

nections to phylogenetics will be studied, such as counting trees, and in Chapter 4 a speciVc

problem concerning the reconstruction of parent character states will be presented.
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Chapter 2

Preliminaries

In Chapter 1 we gave a short historical overview and mentioned diUerent ways to view phylo-

genetic trees. We outlined brieWy what phylogenetic trees are and how they are used as a tool to

understand evolution. In this chapter we introduce phylogenetic trees as mathematical objects in

order to analyze them with formal methods. This chapter lays the foundation for the following

chapters. We will deVne all fundamental objects and introduce the basic concepts used later. We

assume that the reader is familiar with the basics of graph theory. (See [63, chapt. 1] for a brief

introduction to graphs, speciVcally focusing on phylogenetic trees. A comprehensive treatment

of this matter can be found e.g. in [41].) For phylogenetic trees and phylogenetics we mainly will

use the notation of [63]. For concepts of combinatorics we primarily rely on [27]. Additionally,

we shortly present the main topics in Section 2.4.

2.1 Phylogenetic trees, X-trees and characters

We start with a set X (with |X| = n, n ≥ 2) of distinct species, and typically we are interested

in their evolutionary history, which is represented by a phylogenetic tree. In the following the

species in X will be denoted by 1, 2, 3, . . . , n.

When we speak of a tree, we refer to a tree in the sense of graph theory, that is a (Vnite) simple,

connected, acyclic graph T = (V,E) with vertex set V and edges E ⊆ {{u, v}|u, v ∈ V }.
Sometimes we will denote the vertex set of a graph G by V (G) and the set of edges by E(G).

Trees under consideration will be always unordered, sometimes also referred to as non-plane

trees (see e.g. [6]), i.e. there is no order of the subtrees of a node—in contrary to plane trees

(see e.g. [68, pp. 293–295]). Formally the trees are undirected graphs, but in the case of rooted

trees we usually view the edges as directed away from the root and then alternatively denote

edges by (u, v) ∈ E instead of {u, v} ∈ E to indicate that the vertex u is closer to the root than
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Chapter 2 Preliminaries

v. This direction is given naturally. It is the chronological direction of the evolution of species

in the tree. Often also unrooted trees are of interest, because most algorithms reconstructing

phylogenetic trees do not answer the question which internal node should be marked as root of

the tree [63, p. 20]. As already mentioned (Chapter 1 on page 12), the problem of rooting the

tree can be analyzed separately. With “tree” we mean in the following an unrooted tree, but

occasionally we will use the term “unrooted tree” to emphasize that no vertex is distinguished as

root1.

The following deVnitions are very common, they diUer in publications at most in details—we

follow here [63, chapt. 2].

DeVnition 2.1. Let X be a Vnite set and T = (V,E) a tree without vertices of degree 2 and the

leaves of which are labeled with elements ofX so that there is a 1:1-correspondence between the

set of leaves and X . The latter can be formalized with a bijective map φ : X → L from the set

X to the set L of leaves of T . We then call the pair T = (T, φ) a phylogenetic tree. A rooted

phylogenetic tree is a pair T = (T, φ), where T is a rooted tree with root vertex ρ of degree2 at

least 2, all other vertices are not of degree 2, and φ : X → L is a bijective map from the setX to

the set of leaves of T .

Phylogenetic trees are often called also evolutionary trees (e.g. in [75]). Also the terms clado-

gram (see e.g. [63, p. 20]) and dendrogram (see e.g. [52]) are used as synonyms.

If T = (T, φ) is a phylogenetic tree, we refer to T as the underlying tree of T or the structure

or the tree shape of T . But these terms are probably self-explanatory, when they are used. If the

underlying tree T is a binary tree3, we call T also a binary phylogenetic tree (in biology some-

times called bifurcating tree, e.g. in [23]). In contrast, we sometimes speak of a multifurcating

phylogenetic tree to emphasize the fact that T is not necessarily a binary tree. A phylogenetic

tree which is not binary usually represents the situation where the chronological order of some

speciation events is unclear, or they are too close to each other to be distinguishable. Therefore

these events are represented by one single vertex in the tree. However, in biology it is usually

assumed that a binary phylogenetic tree is a good representation of the evolutionary history of

species (see [67]).

1While this is common terminology in graph theory (see e.g. [41]), computer scientists mostly consider rooted trees
and hence in computer science the term “binary tree” usually refers to a rooted tree (see e.g. [5]).

2Also in the case of rooted trees we deVne the degree of a vertex as the number of its adjacent vertices and not as
the number of its child vertices. The latter is often called outdegree in the case of rooted trees.

3A tree is called binary if every internal vertex has degree 3, or in case of a rooted tree if the root has degree 2 or
degree 0 and every other internal vertex has degree 3.
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2.1 Phylogenetic trees, X-trees and characters

The following deVnition generalizes phylogenetic trees. At the Vrst glance the deVnition might

appear somehow arbitrary, but it turns out that such trees can be characterized by a set of bipar-

titions ofX , calledX-splits, which is a nice tool to prove certain properties. More details can be

found in [63, chapt. 3].

DeVnition 2.2. Let X be a Vnite set, T = (V,E) a tree, and φ : X → V a map with v ∈ φ(X)

for every vertex v ∈ V of degree 1 or 2. The pair T = (T, φ) is calledX-tree. If T is a rooted tree

with root vertex ρ and v ∈ φ(X) for every vertex v ∈ V \{ρ} of degree 1 or 2, then T = (T, φ)

is called rooted X-tree.

To simplify notation we may write V (T ) to denote the set of vertices V of T and E(T ) to

denote the set of edges. Note that also multiple labels can be assigned to one vertex of the tree,

and some vertices may not be labeled at all. This can be interpreted in the following way. If two

or more species in X cannot be distinguished by the given data, they are assigned to the same

vertex of the tree. Vertices without label represent hypothetical ancestral species not known a

priori, which are not in X . A vertex of degree 1 or 2 without label would not give additional

information about the evolutionary history of the species in X . So we can restrict our attention

to trees where all leaves and all vertices of degree 2 are labeled (see [30, p. 187]). However, in

addition to these interpretations also technical reasons justify this deVnition of X-trees where

vertices of degree 2 are allowed if they are labeled. As mentioned above, in this way X-trees

correspond to so-called X-splits. In the following we will not need X-splits and therefore only

refer to [63, capt. 3].

A phylogenetic tree T = (T, φ) is anX-tree with the additional properties that the tree T has

no vertices of degree 2 and φ is a bijective map to the set of leaves. So clearlyX-trees generalize

phylogenetic trees and rootedX-trees generalize rooted phylogenetic trees allowing also vertices

of degree 2 if they are labeled, multiple labels and labels for any vertex in V .

Often a problem can be solved by dividing it into smaller problems, each of them being similar

to the original problem. In the Veld of computer science this is often referred to as the divide and

conquer principle. But in the same way it can be helpful in induction proofs or for enumeration

problems. When dealing with rooted phylogenetic trees, this principle is usually applied by

decomposing the tree into its subtrees rooted at the child nodes of the root, as illustrated in

Figure 2.2. As in [63, p. 21] we want to call this procedure the standard decomposition of T .
We will use the standard decomposition e.g. for the Fitch-Hartigan algorithm (see Theorem 2.9),

Felsenstein’s recurrence relation in Section 3.1.2 (see Theorem 3.7), and in the inductive proof of

Theorem 4.5.
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Figure 2.1: Example for an unrooted and a rooted phylogenetic tree and an unrooted and a rooted
X-tree, where X = {1, 2, . . . , 10} is the label set of the X-trees.

Note that the term subtree can be interpreted ambiguously. If T = (V,E) is a tree, a subtree

T ′ = (V ′, E′) of T clearly should be a tree itself and fulVll V ′ ⊆ V , E′ ⊆ E. But if T is a

rooted tree and we mean the subtree including all vertices being descendant of a vertex v ∈ V ,

we speak of the subtree rooted at v. By the subtrees of T we mean the subtrees of T rooted at

v1, v2, . . . , vk as in Figure 2.2, where v1, v2, . . . , vk are the child nodes of the root.

As already illustrated in Chapter 1, the given data about the species in X is typically repre-

sented by characters (see also [63, p. 65, p. 84]).

DeVnition 2.3. A character is a function χ : X → C , where C is a Vnite set of character states.

For |C| = r we also speak of a r-state character. If T = (T, φ) is an X-tree with T = (V,E), a

character extension of the character χ is a function χ : V → C with χ ◦ φ = χ.

Sometimes instead of character the term leaf-coloration is used (e.g. in [75, p. 3]). Usually

we denote the character states with small letters of the Greek alphabet C = {α, β, γ, . . .}, and
we will always denote character extensions with an overline to make clear that the function is
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Figure 2.2: Illustration of the standard decomposition.

deVned on the nodes of the tree and not on the set X . In the case of phylogenetic trees we can

identify the leaves of the tree with the labels in X . Then a character extension χ of a character

χ is an extension in the sense that χ|L = χ where L is the set of leaves of the tree.

If a character χ is not surjective, we have r′ := |χ(X)| < |C| = r and then sometimes it

makes more sense to speak of a r′-state character than of a r-state character (see [63, p. 66]).

Nevertheless, in the following chapters, we will mostly refer to the number of possible states

|C| rather than to the number of occurring states |χ(X)| and speak of r-state characters when

r = |C|. If statements can be misinterpreted, we will clarify what is meant. As mentioned

before, a vertex with multiple labels is interpreted as aggregation of speciation events which

are indistinguishable with respect to the given data. Therefore it makes sense to consider only

characters with χ(x) = χ(y) if φ(x) = φ(y) for any x, y ∈ X . Hence, every vertex has not

more than one character state, even if multiple labels are assigned (see [63, p. 84]). However, this

is always the case with phylogenetic trees, and in the following characters will be considered

only on phylogenetic trees (except for some basic properties concerning maximum parsimony in

the next section).

2.2 Maximum parsimony

Themaximum parsimony method, sometimes also calledminimummutation problem (e.g. in [38,

pp. 472–474]), was already brieWy illustrated in Chapter 1. It can be considered as the basic model

used to infer phylogenetic trees from a set of characters. In this section the parsimony score of a

set of characters on a phylogenetic tree will be deVned as a measure for the evolutionary change

of the phylogenetic tree and the characters under consideration. The most parsimonious tree in

this sense is then the one involving the least evolutionary change, and it is hypothesized that

it represents the correct reconstruction of the evolution for the given set of species. We will

start with the formal deVnitions, following [63, chapt. 4–5], and then derive some properties and
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present the Fitch-Hartigan algorithm, already mentioned in Chapter 1. At the end of this section

we will shortly discuss the validity of the maximum parsimony approach as a model of evolution.

DeVnition 2.4 (Parsimony score). The parsimony score of a character χ on anX-tree T = (T, φ)

with T = (V,E) is deVned as the minimum number of edges connecting nodes with diUerent

character states for all possible character extensions χ of χ

l(χ, T ) := min
χ
|{{u, v} ∈ E|χ(u) 6= χ(v)}|.

A character extension χ of χ with l(χ, T ) = |{{u, v} ∈ E|χ(u) 6= χ(v)}| is called a mini-

mum character extension. The parsimony score of a set C = {χ1, χ2, . . . , χk} of characters on
an X-tree is deVned as the sum of the parsimony scores of all characters:

l(C, T ) :=
k∑
i=0

l(χi, T ).

Sometimes it will simplify notation to deVne ch(χ) := |{{u, v} ∈ E|χ(u) 6= χ(v)}|. We call

this quantity the changing number of χ (as in [63, p. 84] and [75, p. 3]). If there is more than

one tree under consideration, it will be clear from the domain of χ to which tree the changing

number refers.

Trees T minimizing the quantity l(C, T ) are called maximum parsimony trees. These are the

trees we are looking for if we want to reconstruct a phylogenetic tree from a set of characters

by following the maximum parsimony approach. However, searching the space of phylogenetic

trees for trees fulVlling the presented optimality criterion is not an easy task. There are simply

too many diUerent trees to examine all of them—also for considerably small sets of species as

Section 3.1 will demonstrate thoroughly. Actually, Foulds and Graham [28] showed that Vnding

a maximum parsimony tree for a set of characters C = {χ1, . . . , χk} is NP-complete also if

all characters have only two states, i.e. χi : X → C and |C| = 2 for i = 1, . . . , k. They

used a modiVed version of the general Steiner tree problem, which is known to be NP-complete

(see [35]), to prove the NP-hardness of maximum parsimony. Maximum parsimony trees relate

to minimum Steiner trees4 as we will outline brieWy in the following. If there are x1, x2 ∈ X

with χi(x1) = χi(x2) for all i = 1, . . . , k, there is a maximum parsimony tree, where φ(x1)

and φ(x2) form a cherry and the problem of Vnding a maximum parsimony tree on X for the

4Let G = (V,E), d a metric on V and X ⊆ V a subset of V . A tree T = (V ′, E′) with X ⊆ V ′ ⊆ V and
E′ ⊆ E is a minimum Steiner tree for X in G, if the sum of all edge weights

∑
{u,v}∈E′ d(u, v) is minimal for

all subtrees of G connecting all vertices inX (see [28] and [63, p. 97.f]).
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2.2 Maximum parsimony

characters in C is equivalent to the problem for Vnding a maximum parsimony tree onX \ {x1}
for the characters χ|X\{x1} in C restricted to X \ {x1}. That means w.l.o.g we can assume that

every x ∈ X corresponds to a tuple (α1, . . . , αk) ∈ Ck of character states and this mapping

is injective. Let d
(
~α, ~β

)
:= |{i|1 ≤ i ≤ k, αi 6= βi}| be the Hamming distance on Ck. Then

a minimum Steiner tree for the set {(χ1(x), . . . , χk(x))|x ∈ X} of the complete graph5 with

vertex set Ck is a maximum parsimony tree for C, if vertices of degree 2 are suppressed (see also

[63, p. 97.f]).

Minimizing the number of evolutionary changes between the species is only one way to view

maximum parsimony. As already mentioned in the introduction, biologists often assume charac-

ters to be homoplasy-free, which refers to the case that every character state does not arise more

than once in the tree when the character evolves from the root of the tree (see [23, p. 25]). This

can be formally deVned also for unrooted trees (we follow here [63, p. 65]).

DeVnition 2.5. A character χ : X → C is called convex on an X-tree T = (T, φ) with

T = (V,E) if there is a character extension χ with the property that the subgraph of T induced

by {v ∈ V |χ(v) = α} is connected for each α ∈ C .

The following proposition shows that every character state arises only once in case of a rooted

X-tree and a convex character. The statement was inspired by the informal explanations in [23,

chapt. 1] and proved within the scope of this thesis.

The statement in (ii) corresponds to the case where the state χ(v) arises in vertex v for the

Vrst time and only there. Clearly if the statement in (i) is true, the character χ is convex on T .
Conversely if the character χ is convex, there exists a character extension such that (i) is true.

Proposition 2.6. Let T = (T, φ) be a rooted X-tree with T = (V,E) and χ : X → C a

character on T and χ a character extension. Then the following two statements are equivalent:

(i) The subgraph of T induced by {v ∈ V |χ(v) = α} is connected for each α ∈ C .

(ii) If (u, v) ∈ E is an edge with u being closer to the root ρ than v and χ(u) 6= χ(v), then

χ(ρ) 6= χ(v) and there is no other edge (u′, v′) ∈ E with χ(u′) 6= χ(v′), χ(v) = χ(v′)

and v 6= v′.

Proof. First assume ¬(ii). So we have edges (u, v), (u′, v′) ∈ E with χ(u) 6= χ(v), χ(u′) 6=
χ(v′), χ(v) = χ(v′) =: α and v 6= v′ or (u, v) ∈ E with χ(u) 6= χ(v) and χ(ρ) = χ(v). First,

consider the former case. At least one of the two nodes u, u′ is on the unique path between v

5G = (V,E) is a complete graph, if every two vertices v1, v2 ∈ V, v1 6= v2 are adjacent {v1, v2} ∈ E.
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and v′ (otherwise u and u′ could not be closer to ρ than v and v′). Since χ(u) 6= α, χ(u′) 6= α

both nodes u and u′ are not members of the subgraph of T induced by {v ∈ V |χ(v) = α} and
therefore it is not connected (there are at least two unconnected components, one containing v

and the other v′ and the unique path in T connecting v and v′ is interrupted at u or u′). Now,

if (u, v) ∈ E with χ(u) 6= χ(v) =: α and χ(ρ) = χ(v), again the subgraph of T induced by

{v ∈ V |χ(v) = α} is not connected because the unique path in T from ρ to v is interrupted at

u in the subgraph. Thus, we have ¬(ii)⇒ ¬(i).
For the other direction assume ¬(i). So we have a character state α ∈ C where the subgraph

of T induced by {v ∈ V |χ(v) = α} consists of at least two unconnected components. Choose v

as the vertex closest to ρ in one of these components and v′ closest to ρ in another component. So

clearly v 6= v′. If v 6= ρ, v′ 6= ρ, there are edges (u, v) and (u′, v′) with χ(u) 6= α and χ(u′) 6= α

(otherwise u or u′ would be closer to ρ and member of the component). Now consider w.l.o.g.

the case v = ρ. Then v′ 6= ρ, and there is an edge (u′, v′) with χ(u′) 6= α and χ(ρ) = χ(v).

Hence, we have ¬(i)⇒ ¬(ii).

Convexity of characters can be characterized also directly without relating to a character ex-

tension as shown in the following proposition (both the statement and its proof are taken from

[63, Proposition 4.1.3, p. 66]). Figure 2.3 shows an example.

Proposition 2.7. Let χ : X → C be a character on an X-tree T = (T, φ) with T = (V,E).

Then the following two statements are equivalent:

(i) χ is convex on T .

(ii) The members of {T (α)|α ∈ C} are pairwise vertex disjoint where T (α) denotes the subtree

of T induced by the vertices in φ
(
χ−1({α})

)
.

Proof. First assume (i). So there is a character extension χ with the property that the subgraph

of T induced by {v ∈ V |χ(v) = α} is connected for each α ∈ C and furthermore also acyclic

since T is a tree. Clearly we have φ
(
χ−1(α)

)
⊆ {v ∈ V |χ(v) = α} and therefore T (α) is a

subtree of the subgraph of T induced by {v ∈ V |χ(v) = α}. For α1, α2 ∈ C with α1 6= α2 the

sets {v ∈ V |χ(v) = α1} and {v ∈ V |χ(v) = α2} are disjoint and therefore T (α1) and T (α2)

are vertex disjoint.

Conversely, suppose (ii) is true. We have to construct an appropriate character extension χ.

For any state α ∈ C and all vertices v ∈ T (α) we have to set χ(v) := α. For the remaining

vertices, there are several possible choices of values for χ. Let F be the subgraph of T induced
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T (δ)

T (β)

T (α)
T (γ)

1

23

4

5

6
7

Figure 2.3: χ is a character on T with χ(1) = α, χ(2) = α, χ(3) = β, χ(4) = γ, χ(5) = β,
χ(6) = δ, χ(7) = δ. The subtrees T (α), T (β), T (γ), T (δ) are illustrated with gray
background. The example and the Vgure are from [63, p. 67], it illustrates the setting
in Proposition 2.7.

by {v ∈ V |∀α ∈ C : v /∈ V (T (α))}. Now for each component of F choose any arbitrary vertex

u /∈ V (F ) which is adjacent to a vertex of the component. Then deVne for all nodes v of the

component χ(v) := χ(u) (note that u ∈ T (α) for some α ∈ C). The function χ is now deVned

on all vertices v ∈ V and clearly a character extension of χ. Furthermore for α ∈ C the graph

T (α) is connected by deVnition and other vertices with χ(v) = α are in F and connected to

T (α) by deVnition. Hence, χ is convex.

Now we are going to show the relation between convex characters and the parsimony of

characters. Convex characters are exactly the ones with the least possible amount of evolutionary

change for the given number of occurring character states. In general it is not always possible to

Vnd a phylogenetic tree so that any given set of characters is homoplasy-free, but we can view

the maximum parsimony approach also as strategy to reduce homoplasy as much as possible.

The following proposition and its proof are from [63, p. 85].

Proposition 2.8. Let χ be a character on X with r = |χ(X)| and T = (T, φ) an X-tree. Then,

l(χ, T ) ≥ r − 1,

where l(χ, T ) = r − 1 if and only if χ is convex on T .

Proof. Let χ be a minimum character extension for χ on T and T ′ the tree obtained from T

by contracting all edges in E(T ) \ {{u, v} ∈ E(T )|χ(u) 6= χ(v)}. Since T ′ is a tree, we have
|V (T ′)|− 1 = |E(T ′)| and by deVnition of T ′ also |E(T ′)| = |{{u, v} ∈ E(T )|χ(u) 6= χ(v)}|.
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We chose χ as minimum character extension, thus l(χ, T ) = |{{u, v} ∈ E(T )|χ(u) 6= χ(v)}|.
In total this yields

l(χ, T ) = |{{u, v} ∈ E(T )|χ(u) 6= χ(v)}| =
∣∣E(T ′)∣∣ =

∣∣V (T ′)∣∣− 1.

Now consider the map χ|V (T ′) to derive the claimed equality and inequality. The function

χ|V (T ′) is well deVned, because every node v ∈ V (T ′) corresponds to nodes v1, v2, . . . , vk ∈
V (T ) for some k ≥ 1 and χ(vi) = χ(vj) for all 1 ≤ i, j ≤ k. In addition the cardinality of the

image of χ|V (T ′) equals r, because χ is a minimum character extension and we did not remove

or add any character states in the construction of T ′. Therefore we have |V (T ′)| ≥ r.
Furthermore the map χ|V (T ′) is injective if and only if the subgraph of T induced by the set

{v ∈ V |χ(v) = α} is connected for each α ∈ χ(X). Therefore the equality |V (T ′)| = r holds

if and only if χ is convex on T .

Fitch-Hartigan algorithm. As earlier mentioned, it is not easy to Vnd a phylogenetic tree

which minimizes the parsimony score for a given character. And, if the phylogenetic tree and a

character are given, still, the number of possible character extensions is exponential in the num-

ber of internal nodes of the tree. Nevertheless, this problem of reconstructing parent character

states can be solved eXciently also for large sets of species and without examining every possi-

ble character extension. In the following we are going to present the Fitch-Hartigan algorithm,

which reconstructs a set of possible character states for all parent nodes in a rooted phylogenetic

tree. In a second pass traversing the tree from the root towards the leaves, a minimum character

extension can be obtained. So, the algorithm provides a reconstruction of the ancestral character

states for all tree nodes following the maximum parsimony approach. The algorithm has a run-

time in O(|C| · |X|) (see [63, p. 90]) while |C||V (T )|−|X| is the number of all possible character

extensions for a character χ : X → C on a phylogenetic tree T with a set of species X .

A version for binary phylogenetic trees was Vrst published by Fitch [26] in 1971 while Hartigan

[43] developed independently a generalized version providing also a proof for the correctness of

the algorithm (other resources include [23, pp. 11–13], [38, p. 478f.] and [49, p. 648]). We follow

here the version by Semple and Steel [63, pp. 89–91] to describe the algorithm formally and use

the main ideas by Hartigan [43] for a proof strongly adopted to our setting6.

6Strangely none of the authors except Hartigan [43] explain the correctness of the algorithm in detail. While Semple
and Steel [63, p. 90] and GusVeld [38, p. 478f.] leave the proof as an exercise, Felsenstein [23, pp. 11–13] encourages
to glance at a Vgure, but also admits that “on larger trees the moment’s glance will not work, but the [...] algorithm
will continue to work”. Also at Vrst glance one gets a rough feeling that the algorithm does what it claims to do,
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2.2 Maximum parsimony

Theorem 2.9 (Fitch-Hartigan algorithm). Let T = (T, φ) be a rooted phylogenetic tree with T =

(V,E), root vertex ρ and label setX and χ a character on T . DeVne the maps ψ : V → 2C \{∅}
and l : V → N for all vertices v ∈ V recursively as follows:

(i) If v is a leaf, set ψ(v) :=
{
χ
(
φ−1(v)

)}
and l(v) := 0.

(ii) Denote the child vertices of v by v1, v2, . . . , vk and suppose that ψ(vi) and l(vi) have been

deVned for i = 1, 2, . . . , k. Furthermore, we use the function f : V → N>0 to simplify

notation and deVne

f(v) := max
α∈C
|{vi|1 ≤ i ≤ k, α ∈ ψ(vi)}|.

Now, letψ(v) be the set of character states occurring f(v) times in the setsψ(v1), . . . , ψ(vk)

ψ(v) := {α ∈ C|f(v) = |{vi|1 ≤ i ≤ k, α ∈ ψ(vi)}|}

and

l(v) := k − f(v) +
k∑
i=1

l(vi).

Then the parsimony score of χ is determined by l(χ, T ) = l(ρ) and ψ(ρ) is the set of recon-

structed character states for ρ, i.e.

ψ(ρ) = {α ∈ C|there is a minimum extensionχ ofχ withχ(ρ) = α}. (2.1)

Furthermore an explicit minimum character extension can be constructed by a subsequent

backward pass (see [38, p. 478f.]) deVning the character states χ(v) for all v ∈ V now starting at

ρ traversing towards the leaves as follows.

(iii) If v is the root vertex choose χ(v) arbitrary from ψ(v).

(iv) Denote the child vertices of v by v1, v2, . . . , vk and suppose that χ(v) has been deVned. For

i = 1, 2, . . . , k deVne

χ(vi) :=

χ(v), if χ(v) ∈ ψ(vi),

any arbitrary α ∈ ψ(vi), otherwise.

but it is not that obvious why the obtained character extension is minimal.
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Proof. We are going to use the standard decomposition (see Figure 2.2) to prove the statements

by induction. Clearly all statements are true if |V | = 1. Now let T be a rooted phylogenetic

tree with root ρ and T1, T2, . . . , Tk its k subtrees with roots y1, y2, . . . , yk as in Figure 2.2. As

induction hypothesis we assume for i = 1, 2, . . . , k that ψ(yi) is the set of character states α ∈
C , such that there is a minimum character extension χi on Ti with χi(yi) = α as in (2.1). Let χ be

a minimum character extension on T . Now consider two cases for each i ∈ {1, 2, . . . , k} in order
to determine the changing number of χ restricted to the subtree of T induced by V (Ti) ∪ {ρ}
(that is the subtree Ti together with the edge {ρ, yi}).

Case 1. If χ(ρ) ∈ ψ(yi), there exists a minimum character extension χi of χ|V (Ti) on Ti with
χi(yi) = χ(ρ). This means that χ|V (Ti) is also a minimum character extension on Ti. Otherwise
we would have ch

(
χ|V (Ti)

)
> ch(χi) which is a contradiction to χ being a minimum character

extension on T . Hence, we have ch
(
χ|V (Ti)

)
= l

(
χ|V (Ti), Ti

)
and by use of the induction

hypothesis l
(
χ|V (Ti), Ti

)
= l(yi) and because of χ(yi) = χ(ρ) we get ch

(
χ|V (Ti)∪{ρ}

)
= l(yi).

Case 2. On the other hand, if χ(ρ) /∈ ψ(yi), then either χ|V (Ti) is a minimum character extension

on Ti and χ(yi) 6= χ(ρ) (let this be Case 2a) or χ|V (Ti) is not a minimum character extension on

Ti (let this be Case 2b). In the former case (Case 2a) ch
(
χ|V (Ti)

)
= l
(
χ|V (Ti), Ti

)
= l(yi), as pre-

viously, is the changing number of χ restricted to Ti but also χ(yi) 6= χ(ρ). Thus in Case 2a we

have in total ch
(
χ|V (Ti)∪{ρ}

)
= l(yi) + 1. In Case 2b χ|V (Ti) is not a minimum character exten-

sion on Ti and therefore ch
(
χ|V (Ti)

)
> l(yi). But at the same time ch

(
χ|V (Ti)∪{ρ}

)
≤ l(yi) + 1,

because otherwise this would be a contradiction to χ being a minimum character extension on

T (replacing the values of χ|V (Ti) by the values of some minimum character extension χi on Ti
would lead to a character extension on T with a smaller changing number). Therefore the only

possibility is that χ(ρ) = χ(yi) and ch
(
χ|V (Ti)

)
= l(yi) + 1. Thus, in Case 2b we get also in

total ch
(
χ|V (Ti)∪{ρ}

)
= l(yi) + 1 (the example in Figure 2.4b illustrates Case 2b).

We chose χ as minimum character extension and therefore the parsimony score is given by

l(χ, T ) = ch(χ). But we can count the edges {u, v} with χ(u) 6= χ(v) also separately for each

subtree and get l(χ, T ) =
∑k

i=1 ch
(
χ|V (Ti)∪{ρ}

)
. Clearly χ is a minimum character extension

if and only if the number of i ∈ {1, . . . , k}, such that Case 1 occurs, is maximal for all possible

choices of χ(ρ) ∈ C . This number equals f(ρ) as deVned in Step (ii) of the algorithm and the set

ψ(ρ) contains exactly the character states χ(ρ) for any arbitrary minimum character extension χ

on T . Furthermore Case 1 occurs exactly f(ρ) times and each time we have ch
(
χ|V (Ti)∪{ρ}

)
=

l(yi). Hence, Case 2 occurs k − f(ρ) times with ch
(
χ|V (Ti)∪{ρ}

)
= l(yi) + 1 each time. In total
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α βα β β

ρ

(a)

α βα β β

β β

β

(b)
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Figure 2.4: A rooted phylogenetic tree and a character with the character states α and β (in Fig-
ure 2.4a) and two of its minimum character extensions (in Figure 2.4b and Figure 2.4c).
The character extension in Figure 2.4b is an example for Case 2b in the proof of The-
orem 2.9.

this yields l(ρ) = k − f(ρ) +
∑k

i=1 l(yi). The backward pass chooses any arbitrary α ∈ ψ(ρ)

and then decides for Case 1 or Case 2a. As we have shown, there is always a minimum character

extension χ on T which can be constructed in this way.

Note that the algorithm cannot construct every possible minimum character extension. Harti-

gan [43] describes a slightly enhanced version of the algorithm, where the algorithm remembers

also for each node v the set of states α, such that a character extension χv on the subtree rooted

at v exists where χv(v) = α and ch(χv) = l(v) + 1. In this way also the minimum character

extensions can be constructed, where Case 2b occurs.

If ψ(ρ) = {α}, we say that the state α was reconstructed unambiguously, and otherwise if

|ψ(ρ)| > 1, we say that the state was reconstructed ambiguously (see [24, 49]).

Remark 2.10. Note that Step (ii) in Theorem 2.9 can be described in a simpler way if T is a rooted

binary phylogenetic tree (see [49, p. 648] and [70]). Let v be an internal node and v1, v2 its child

vertices. Then we have either f(v) = 1 or f(v) = 2. The former is the case if every state occurs

at maximum once in the sets ψ(v1) and ψ(v2). Hence, the two sets are disjoint and all states

occurring once are given by the union of the two sets. On the other hand, if f(v) = 2, there is at

least one state α with α ∈ ψ(v1) and α ∈ ψ(v2). Therefore the two sets are not disjoint and all

states occurring in both sets are given by the intersection. Hence, in total the set of reconstructed

character states for v can be deVned by

ψ(v) =

ψ(v1) ∪ ψ(v2), if ψ(v1) ∩ ψ(v2) = ∅
ψ(v1) ∩ ψ(v2), otherwise.
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Validity of maximum parsimony as model of evolution. In 1965 Camin and Sokal [8] pub-

lished a study about phylogenetic tree reconstruction based on an analysis of the evolution of ar-

tiVcial organisms (see [23, p. 129f.]). Joseph Camin let evolve imaginary species (by drawing them

on paper) “according to rules known so far only to him, but which are believed to be consistent

with what is generally known of transspeciVc evolution” [8, p. 311]. A set of resulting characters

was then handed to students and systematists. The most accurate reconstruction of the known

evolutionary history of the imaginary species was achieved by the students who minimized the

number of changes of the character states (see [23, p. 129f.]). A similar study using the copying

history of artiVcially created manuscripts was done by Spencer et al. [67]. The reconstruction

of the (known) copying tree with a maximum parsimony approach was “reasonably accurate”.

Also a reconstruction of “a set of manuscript copies (text tradition) of an Icelandic saga”, where

some sources of the manuscripts are known, matched closely these known relationships (see [67,

p. 503]).

Often the maximum parsimony approach is also justiVed by Ockham’s Razor, i.e. that a more

parsimonious phylogenetic tree is a simpler explanation and therefore should be preferred com-

pared to a more complex one (see [63, p. 84]). However, many authors disagree with this reason-

ing and suggest a statistical approach (see [23, p. 138U.] and [65] for a discussion of the diUerent

points of view in this debate).

Moreover, it is not even guaranteed that the evolution of species is treelike. For example

Nakhleh et al. [53] write:

“
...yet it is widely understood and accepted that trees oversimplify the evolu-

tionary histories of many groups of organisms, most prominently bacteria (because

of horizontal gene transfer) and plants (because of hybrid speciation). ”
Phenomenons such as hybrid speciation and horizontal gene transfer cannot be represented in

phylogenetic trees, but they occur in nature (see [74, 57]). Hybrid speciation refers to the sit-

uation, where a species has two ancestral species, and horizontal gene transfer describes the

situation, where genetic material moves from one species to another one without mating or cell

division. In these cases one can use sets of phylogenetic trees or certain digraphs, such as phyloge-

netic networks, to model the evolutionary history (see also [63, sect. 2.7], [53] and [36, chapt. 7]).
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2.3 Markov models on phylogenetic trees

Besides distance based models, mentioned brieWy in Chapter 1, and the maximum parsimony

approach, presented in the previous section, a third approach are stochastic models, which will

be introduced in this section. The maximum parsimony method makes use of certain properties,

which are assumed for the evolution of the traits under consideration. Now we are going to

model how a trait might evolve if we know the state at the root vertex and assume probabilities

for the events that one character state changes to another one. It might be e.g. more likely that

a speciVc trait arises, if its ancestor exhibits a certain other trait. If we compare the character

states of a species and one of its descendants under the so-calledNr-model, the most likely result

will be that no change happened. As we will explain later in more detail, this is referred to as

conservation and the probability that it happens as conservation probability (see e.g. [24]). A

probability model with certain probabilities for a speciVc tree induces a probability distribution

on the set of all possible characters χ : X → C as we will explain in detail in this section. But

typically a character is given and we are interested in the correct reconstruction of the phyloge-

netic tree. For a given set of characters C, the method of maximum likelihood assumes T to be

the correctly reconstructed tree if the probability that the characters in C evolve on T is maximal

for all phylogenetic trees. However, no general algorithm is known to Vnd these optimal trees

and therefore diUerent heuristics are used (see [63, sect. 8.9] for details).

A probability model can be used to justify and analyze other methods such as maximum

parsimony—but often it shows also their limits. If a character is assumed to evolve according

to a certain probability model, we can determine the probability that an algorithm correctly

reconstructs the original tree from a random set of characters. For example, Felsenstein [22]

showed that even for a set of only four species X = {1, 2, 3, 4} the maximum parsimony might

be “positively misleading”. Considering a set of random binary characters C = {χ1, χ2, . . . , χk}
with certain parameters for the stochastic model, the probability of reconstructing the correct tree

converges to 0 as k → ∞ (see also [63, sect. 8.7, pp. 202–204]). Of course, this is an undesired

property of a reconstruction method, often referred to as the statistical inconsistency of maximum

parsimony. Similarly, we will discuss certain properties of character states reconstructed by the

Fitch-Hartigan algorithm in Chapter 4. Other aspects of links between maximum parsimony and

maximum likelihood are discussed in [25, 71, 76].

This section shall explain only how such a model usually is deVned ([63, chapt. 8] provides

some more details and a good overview).

In the following we will denote by P(ξ = a) the probability that a random variable ξ takes
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the value a. The event that ξ takes a is denoted by {ξ = a}. One can see P(ξ = a) also as

abbreviation for P({ξ = a}). The conditional probability of an event A, given an event B, is

denoted by P(A|B) and deVned as usual by

P(A|B) :=
P(A ∩B)

P(B)
,

where necessarily P(B) > 0.

Throughout the whole section we will consider only rooted phylogenetic trees and C will be a

set of character states. The character state χ(ρ) ∈ C is selected randomly under some probability

distribution on C , or it can be considered as initially given. All other character states χ(v) ∈ C
for v ∈ V (T ) \ {ρ} are random too, but they depend statistically on the character states of their

parent nodes, since the species v evolved from the species represented by the parent node of v.

This is modeled by a Markov process as follows (we follow here the deVnitions and notation of

[63, pp. 185–188], the whole section sums up [63, chapt. 8] unless otherwise stated, however this

approach is widely accepted and can be found similarly in other resources too).

DeVnition 2.11. Let T be a rooted phylogenetic tree with vertex set V and edge set E. Let <

be any strict total order on V , such that v1 < v2 if (v1, v2) ∈ E7. A set of random variables

{ξv|v ∈ V } with values in C is said to be a Markov process on T if

P

(
ξv = α|

⋂
w<v

{ξw = αw}
)

= P(ξv = α|ξu = αu), (2.2)

for any vertices v, u ∈ V with (u, v) ∈ E and any character states α ∈ C and αw ∈ C for all

w ∈ V . Equation (2.2) is called the Markov property.

This means that—if the character states evolve from the root towards the leaves according to

a Markov process—the probability of an event {ξv = α} for a node v ∈ V and α ∈ C typically

depends on the character state of its parent node u, but this event is statistically independent

from its previous development until u.

For an edge e = (u, v) ∈ E the probability P(ξv 6= ξu) is called substitution probability of

e and is denoted by p(e). The probability P(ξv = ξu) is called the conservation probability and

equals 1 − p(e) . As earlier mentioned we speak of a substitution, if χ(u) 6= χ(v) for some

character extension χ. Otherwise, if χ(u) = χ(v) the state of the character was conserved when

7Recall that we might regard rooted trees as directed graphs and therefore write (u, v) ∈ E instead of {u, v} ∈ E,
if the vertex u is closer to the root than v.
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v

u

· · ·

χ(v) = β

χ(u) = α

ρ

P (e)αβ

· · ·

Figure 2.5: The character extension χ evolves from u to v and given that χ(u) = α, the proba-
bility that χ(v) = β is P (e)αβ .

species u evolved to species v. As indicated already in Chapter 1, under certain conditions we

can view the substitution probabilities as edge weights (such edge weights are often referred to

as branch lengths in biology). But Vrst we are going a to present a more general setting where a

transition matrix is assigned to each edge.

For every edge e = (u, v) ∈ E we deVne the transition matrix P (e) as a |C| × |C| matrix

with rows and columns indexed over C and its entry at row α and column β

P (e)αβ := P(ξv = β|ξu = α).

The probability of the evolution of a speciVc character. It is now possible to describe the

probability that a speciVc character evolves by means of the transition matrices. Let χ be a

character extension on T . The probability that a random character extension equals χ is given

by

p(χ) = P

(⋂
v∈V
{ξv = χ(v)}

)
, (2.3)

which is the joint probability of the events {ξv = χ(v)} for each vertex v ∈ V . Now the mul-

tiplication theorem P
(
∩kj=1Aj

)
= P(A1) ·

∏k
i=2 P

(
Ai| ∩i−1j=1 Aj

)
can be applied. In order to

do so, denote the vertices by {ρ = v1, v2, v3, . . . , vk} = V , such that i < j if (vi, vj) ∈ E is an
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edge of the tree. This yields

p(χ) = P(ξρ = χ(ρ)) ·
k∏
i=2

P

ξvi = χ(vi)|
⋂
j<i

{ξj = χ(vj)}

.
By use of the Markov property in (2.2) and by expressing the transition probabilities by means

of the entries of the transition matrix, this simpliVes to

p(χ) = P(ξρ = χ(ρ)) ·
∏

e=(u,v)∈E

P (e)χ(u)χ(v). (2.4)

Furthermore, it is possible to express the probability p(χ) of the event, that a speciVc character

χ evolves—regardless of the character states of the internal nodes of the tree. This event is given

by
⋂
x∈X

{
ξφ(x) = χ(x)

}
for an phylogenetic tree T = (T, φ) with label set X . Clearly it can

be expressed also as the disjoint union

⋃̇
χ◦φ=χ

⋂
v∈V
{ξv = χ(v)}

over all character extensions χ of χ on T . Hence, the probability is a sum of (2.3)

p(χ) =
∑
χ◦φ=χ

p(χ),

where the summation is again over all character extensions χ of χ on T . Using the expression

for p(χ) in (2.4) this Vnally yields

p(χ) =
∑
χ◦φ=χ

P(ξρ = χ(ρ)) ·
∏

e=(u,v)∈E

P (e)χ(u)χ(v).

Note that an exponential number of summands is necessary to compute this sum. To be precise,

there are |C||V |−|X| possible (not necessarily minimum) character extensions χ of χ where |C|
is the number of possible character states, |V | the number of vertices in the tree and |X| the
number of labels and therefore also the number of leaves in the tree.

The Nr-model. A very common special case of a Markov process on a rooted phylogenetic

tree is the Nr-model, introduced by Neyman [54] and also known as the r-state Neyman model,

(see e.g. [24]). In biology theN4-model often is referred to as the Jukes-Cantor model introduced
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by Jukes and Cantor [47] in 1969. Especially the cases r = 4 and r = 20 are of biological interest

because there are four nucleobases in the DNA (adenine, cytosine, guanine and thymine) and

twenty amino acids occurring in nature (see e.g. [28, p. 43f.] and [76, p. 584]).

DeVnition 2.12. Let T be a rooted phylogenetic tree, C a set of character states with |C| = r,

{ξv|v ∈ V } a Markov process on T and P (e) the transition matrix associated with edge e for

every e ∈ E(T ). If ξρ is uniformly distributed on C and if the substitutions on every edge

e = (u, v) ∈ E(T ) from any α ∈ C to any β ∈ C with α 6= β are equally likely, we speak of

the Nr-model. To be precise, this means that the transition matrices are of the form

P (e)αβ =

1− p(e), if α = β,

1
r−1p(e), otherwise,

(2.5)

where p(e) is the substitution probability for the edge e ∈ E(T ). Additionally, the following

constraint may be satisVed for all e ∈ E(T )

0 < p(e) <
r − 1

r
. (2.6)

We refer to the triple T = (T, φ, p) as phylogenetic tree under the Nr-model, where p :

E(T )→ R is a map as described above.

The constraint in (2.6) may not seem unnatural in any case, but in addition it is important for

technical reasons, explained detailed in [63, (8.18), p. 197f.]. With this simpliVcations it makes

sense to view p(e) as edge weight for the edge e. In Chapter 4 we are going to analyze the

accuracy of the Fitch-Hartigan algorithm under the Nr-model.

Ultrametric trees. As already mentioned in Chapter 1, it is often assumed that the rate of

mutations is constant through time. This means that the evolutionary change between a species

and one of its ancestral species is proportional to the time passed. That is why, in this case,

biologists speak of amolecular clock or a clock-like tree (see e.g. [24]). The distance from the root

to the species at the leaves is equal for all leaves of the tree regardless if you view the length of the

edges as passed time or as measure of evolutionary change between the species (the considered

species are present species and then, of course, the time passed during their development from

their common ancestor is equal for all of them). We will not go into details of distance based

methods of inferring phylogenetic trees from distance data between the species. But we want

to mention some interesting aspects at this point (Semple and Steel [63, chapt. 7] give a detailed
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overview). Given positive edge weightswe ∈ R>0 on a phylogenetic tree, one can deVne a metric

on V (T ) by using the unique path between two nodes and deVne their distance as the sum of

the weights along this path. Such a metric is called tree metric. A map δ : X × X → R is

called dissimilarity map if δ(x, x) = 0 and δ(y, x) = δ(x, y) for all x, y ∈ X . A dissimilarity

map is the information we can get from the species in X . Therefore a very nice result is, that

if δ is a dissimilarity map and if there is a phylogenetic tree T and a tree metric d on T such

that δ is identical8 with d on X × X , then T and d are unique up to isomorphism (see [63,

thm. 7.1.8, p. 148]). Furthermore tree metrics can be characterized by the four-point condition

(see [63, thm. 7.2.6, p. 152]), that is: If δ is a dissimilarity map then δ is extendable to a tree metric

d on a suitable phylogenetic tree if and only δ satisVes for w, x, y, z ∈ X

δ(w, x) + δ(y, z) ≤ max{δ(w, y) + δ(x, z), δ(w, z) + δ(x, y)}.

Ultrametrics as deVned in [63] are a special case of tree metrics and therefore are also unique

up to isomorphism as explained. Ultrametrics are used also in other Velds of mathematics, for

instance in p-adic analysis (see e.g. [61]).

Anyhow, for our purpose we want to deVne ultrametricity slightly diUerent. Instead of deVn-

ing a distance between two species by their dissimilarity, we consider a Markov process on a

rooted phylogenetic tree and use the substitution probability as distance.

DeVnition 2.13. Let T be a rooted phylogenetic tree with label set X and {ξv|v ∈ V (T )} a
Markov process on T . T is said to be ultrametric if the substitution probability from the root to

all leaves is equal, that is

P(ξρ 6= ξu) = P(ξρ 6= ξv) =: p

for any two leaves u, v of T . In this case we call p the height of the tree.

The following remark illuminates the way we deVne distances on trees. This is especially

interesting for our deVnition of ultrametric trees, but it is valid for any rooted phylogenetic tree

under the Nr-model.

Remark 2.14. Note that in contrast to tree metrics on phylogenetic trees in our setting the dis-

tances induced by the substitution probabilities are not additive in the following sense. Consider

a rooted phylogenetic tree T under the Nr-model. If we have two edges (v0, v1) ∈ E(T ) and

8Note that this is an imprecise simpliVcation and shall only brieWy illustrate the results. A tree metric is deVned on
V × V and a dissimilarity map on X ×X , but in case of phylogenetic trees the set of leaves as subset of V can
be identiVed withX and in this sense one needs to understand “identical” onX ×X .
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2.3 Markov models on phylogenetic trees

(v1, v2) ∈ E(T ) with substitution probabilities p0,1 := P(ξv0 6= ξv1) and p1,2 := P(ξv1 6= ξv2)

and p0,2 := P(ξv0 6= ξv2) the substitution probability from v0 to v2 (see Figure 2.6), of course,

it cannot be p0,2 = p0,1 + p1,2 as one might suggest in analogy to tree metrics. Instead the

following lemma holds (for r = 2 this fact is also used in [24] but not explicitly mentioned or

proved).

Lemma 2.15. Let T = (T, φ) be a rooted phylogenetic tree under the Nr-model with a set

of random variables {ξv|v ∈ V } and a state set C , where r = |C|. Furthermore, let v0 =

ρ, v1, . . . , vn, vn+1 be a path in T , i.e. (vi, vi+1) ∈ E(T ) for i = 0, 1, . . . , n, and denote the

substitution probabilities from vi to vj by pi,j := P
(
ξvi 6= ξvj

)
for any 0 ≤ i < j ≤ n + 1 (see

Figure 2.6). Then the substitution probability from v0 to vn+1 can be calculated from the edge

weights by the following recursive formula

p0,n+1 = pn,n+1 + p0,n −
r

r − 1
· p0,n · pn,n+1.

If one uses the transformation Pi,j := 1− r
r−1pi,j this yields the following explicit expression

for the substitution probability from v0 to vn

p0,n =
r − 1

r
(1− P0,1 · P1,2 · . . . · Pn−1,n). (2.7)

Neither is ρ = v0 a necessary condition nor that vn+1 is a leaf, but this is the way we are

going to use this lemma later on.

Proof. The probability event
{
ξv0 6= ξvn+1

}
, that v0 is in a diUerent state than vn+1, is the dis-

joint union of the three events
{
ξvn 6= ξvn+1

}
∩{ξv0 = ξvn},

{
ξvn = ξvn+1

}
∩{ξv0 6= ξvn} and{

ξvn 6= ξvn+1

}
∩ {ξv0 6= ξvn} ∩

{
ξv0 6= ξvn+1

}
. These are the events that a change of the state

happens between vn and vn+1 but not between v0 and vn, and the other way around, and that

both between vn and vn+1 and v0 and vn the state changes, but it is diUerent also between v0

and vn+1. The latter may occur only if r > 2. In the Vrst two cases the events are intersections

of two independent events and therefore their probability is given by the multiplication of the

individual events

P
({
ξvn 6= ξvn+1

}
∩ {ξv0 = ξvn}

)
= pn,n+1 · (1− p0,n)
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v0 = ρ

v1

v2

vn · · ·

vn+1

p1,2

p0,n

pn,n+1

p0,n+1

Figure 2.6: Illustration of the substitution probability using the Nr-model.

and

P
({
ξvn = ξvn+1

}
∩ {ξv0 6= ξvn}

)
= (1− pn,n+1) · p0,n.

Given that {ξv0 6= ξvn} occurs, denote α := ξv0 and β := ξvn , and p0,n is the probability of this

event. Now by (2.5) we have P
(
ξvn+1 = γ|ξvn = β

)
= 1

r−1 · pn,n+1 and for γ ∈ C \ {α ∪ β}
these are r − 2 disjoint events, being independent from {ξv0 6= ξvn}. In total this yields

p0,n+1 = pn,n+1 · (1− p0,n) + (1− pn,n+1) · p0,n +
r − 2

r − 1
· p0,n · pn,n+1 =

= pn,n+1 + p0,n −
r

r − 1
· p0,n · pn,n+1.

Now by induction one can prove (2.7). This is straightforward, but quite technical. Therefore

details are omitted here.

2.4 Combinatorial basics

Chapter 3 is entirely devoted to enumeration problems in connection with phylogenetics. In this

section we want to outline some of the history and the basics of combinatorics, especially the

tools we are going to use. However, readers less familiar with the basics of combinatorics are
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C1 = 1 C2 = 2 C3 = 5

· · ·

Figure 2.7: The number of polygons with n+ 2 sides decomposed into triangles.

encouraged to consult the comprehensive introduction to Analytic Combinatorics by Flajolet and

Sedgewick [27] or other material.

Given a speciVc class of objects, in combinatorics typically we want to enumerate all objects

of size n in this class. This number, might be used, for example to determine the probability for

choosing such objects with uniform probability. Of course, a necessary constraint is that the set

of objects of size n is Vnite. If this is the case for all n ∈ N, we speak of a combinatorial class and

the related sequence with values in N is called counting sequence. We follow here the deVnitions

of [27, chapt. 1].

DeVnition 2.16. A combinatorial classA is a Vnite or countably inVnite set of objects, associated

with a size function |.|A : A → N such that all subsetsAn := {a ∈ A||a|A = n} ofA are Vnite.

The counting sequence of A is the sequence (an)n∈N where an ∈ N is the number of objects in

A of size n. This means, an is the size of the preimage of {n} with respect to the size function

|.|A
an = |{a ∈ A||a|A = n}|.

Often considered combinatorial classes include classes of permutations9, classes of graphs and

classes of trees. The latter is the category of problems we will consider in Chapter 3. The origin

of many of these problems dates back to the 18th and 19th century. For example, Euler wrote in

1751 to his friend Goldbach,

“
Ich bin neulich auf eine Betrachtung gefallen, welche mir nicht wenig merk-

würdig vorkam. Dieselbe betriUt, auf wie vielerley Arten ein gegebenes polygonum

durch Diagonallinien in triangula zerschnitten werden könne.10 ”This combinatorial class consists of polygons decomposed into triangles by diagonal lines (see

Figure 2.7). The size function is deVned by the number of sides of the polygon minus 2. The

according counting sequence (Cn)n≥1 is therefore given by the number of decomposed polygons

9A permutation is a bijective function from {1, 2, . . . , n} to {1, 2, . . . , n} for some n ∈ N>0.
10“I have recently encountered a question, which appears to me rather noteworthy. It concerns the number of ways

in which a given [convex] polygon can be decomposed into triangles by diagonal lines.” (The quotation is from
[34, pp. 549–552], the translation to English is from [27, Figure I.2, p. 20].)
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with n+ 2 sides, which can be shown to equal the famous Catalan numbers

Cn =
1

n+ 1

(
2n

n

)
.

At the same time Cn is the number of rooted plane binary trees with exactly n internal nodes

(see [27, p. 738]). Euler further writes,

“
Ueber die Progression der Zahlen 1, 2, 5, 14, 42, 132, etc. habe ich auch diese

Eigenschaft angemerket, dass 1 + 2a + 5a2 + 14a3 + 42a4 + 132a5 + etc. =
1−2a−

√
1−4a

2aa . Also wenn a = 1
4 , so ist 1 + 2

4 + 5
42

+ 14
43

+ 42
44

+ etc. = 4.11 ”Although it is unclear if Euler knew a proof for these statements, he provided an explicit expres-

sion for the counting sequence Cn and for the series
∑

nCnz
n in his letter to Goldbach. It seems

as if he had used properties of the sequence Cn to conclude that the series
∑

nCn
1
4n approaches

4. We will do the opposite—formal power series of the form
∑

n anz
n will provide a useful tool

to determine recurrence relations, explicit formulas and the asymptotic behavior of the sequence

an.

DeVnition 2.17. The formal power series A(z) =
∑

n≥0 anz
n is called ordinary generating

function (OGF) of the sequence (an)n≥0. The formal power series A(z) =
∑

n≥0 an
zn

n! is called

exponential generating function (EGF) of the sequence (an)n≥0.

We will stick to the convention that the combinatorial class and its counting sequence is de-

noted by the same group of letters (e.g. (an)n≥0 denotes the counting sequence, A the combina-

torial class and A(z) the generating function).

On the one hand the formal power series
∑

n anz
n can be considered simply as diUerent no-

tation of the sequence (an)n≥0, on the other hand formal power series reveal powerful methods

for the manipulation of sequences. The sum, product (sometimes also called Cauchy product) and

powers of formal power series are deVned in analogy to polynomials, e.g.

A(z) +B(z) :=
∑
n≥0

(an + bn)zn

and

A(z) ·B(z) :=
∑
n≥0

(
n∑
k=0

akbn−k

)
zn,

11“Regarding the progression of the numbers 1, 2, 5, 14, 42, 132, and so on, I have also observed the following prop-
erty: 1 + 2a + 5a2 + 14a3 + 42a4 + 132a5 + etc. = 1−2a−

√
1−4a

2aa
.” (See [34, pp. 549–552], the translation is

from [27, Figure I.2, p. 20].) Euler then concludes: “So if a = 1
4
, then 1 + 2

4
+ 5

42
+ 14

43
+ 42

44
+ etc. = 4.”
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where A(z) =
∑

n≥0 anz
n and B(z) =

∑
n≥0 bnz

n (see [27, sect. A.5] and [44, chapt. 1] for

details).

The symbolic method. Many combinatorial classes can be constructed by applying certain

operations to some elementary combinatorial classes. Such a construction can be translated

directly into an equation for the generating function.

DeVnition 2.18. The combinatorial class E is called neutral class and contains only one object

of size 0. The combinatorial class Z is called atomic class and contains only one labeled object of

size 1. For disjoint12 combinatorial classes A and B the combinatorial class A+ B is deVned by

A+ B := A∪̇B

and its associated size function by

|x|A+B :=

|x|A, if x ∈ A,

|x|B, if x ∈ B,

where x ∈ A∪̇B.

Other operations for combinatorial classes can be deVned in a similar way. In Chapter 3

the combinatorial classes A × B, A ? B, Set2(A) (see proof of Theorem 3.2), Set≥2(A) (see

Section 3.1.2) and MSet2(A) (see Section 3.3) will be used, formal deVnitions for these can be

found in [27]. A × B and A ? B bot consist of pairs (a, b), where a ∈ A and b ∈ B. Set2(A)

consists of sets {a1, a2} , where a1 ∈ A and a2 ∈ A. Set≥2(A) consists of Vnite sets of at least 2

elements ai ∈ A. MSet2(A) consists of multisets of 2 elements ai ∈ A. Some of these operations

(?, Set2 and Set≥2) are deVned only for classes of labeled structures, such as phylogenetic trees,

others only for classes of unlabeled structures (× and MSet2). Combinatorial classes of unlabeled

structures correspond to OGFs, while combinatorial classes of labeled structures correspond to

EGFs as we will brieWy outline in the following.

Lemma 2.19. Let A, B and C be combinatorial classes of unlabeled objects and A(z), B(z) and

12If A and B are not disjoint, disjoint isomorphic copies of A and B can be used.
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C(z) their corresponding OGFs. Then the following identities hold

A = B + C ⇒ A(z) = B(z) + C(z)

A = B × C ⇒ A(z) = B(z) · C(z)

A = MSet2(B)⇒ A(z) =
1

2
B(z)2 +

1

2
B
(
z2
)
.

Lemma 2.20. Let A, B and C be combinatorial classes of labeled objects and A(z), B(z) and

C(z) their corresponding EGFs. Then the following identities hold

A = B + C ⇒ A(z) = B(z) + C(z)

A = B ? C ⇒ A(z) = B(z) · C(z)

A = Set2(B)⇒ A(z) =
1

2
B(z)2

A = Set≥2(B)⇒ A(z) = eB(z)2 − 1−B(z).

Proofs for the last two lemmata can be found in [27, sect. I.2.2] and [27, sect. II.2.1].

Bivariate generating functions. To examine properties of double sequences, it makes sense

to introduce generating functions in two variables.

DeVnition 2.21. The formal power series Â(x, y) =
∑

n,m≥0 an,m
xn

ωn
ym in two variables is

called bivariate generating function (BGF) of the double sequence (an,m)n,m≥0, where ωn = 1

(ordinary BGF) or ωn = n! (exponential BGF).

The formal derivativeA′(z) of a series
∑

n≥0 anz
n is deVned byA′(z) =

∑
n≥0(n+ 1)an+1z

n.

We will also use the notation ∂nzA(z) for the n-th derivative. This can be used to deter-

mine the mean and variance (and also higher moments) of a parameter of the objects of a

speciVc size in a combinatorial class. For a combinatorial class A, a parameter is a function

η : A → N. Let an,m := |{a ∈ A||a|A = n, η(a) = m}| be a double sequence and A(x, y) =∑
n,m≥0 an,m

xn

ωn
ym its associated BGF (where ωn = 1 if the objects are unlabeled and ωn = n!

if n labels are assigned to every object of size n). In Chapter 3 double sequences an,m will be

used to denote the number of certain trees with n (labeled) leaves and m internal nodes, and

the mean refers to the average number of internal nodes in a tree with n leaves. Considering

a random object a of size n selected uniformly from An, the mean µn and the variance σ2n of

the parameter η can be determined by means of the derivative of A(x, y) with respect to y and
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evaluation at y = 1. In [27, p. 158f.] the following identities are proven in detail

µn =
[xn]Ay(x, 1)

[xn]A(x, 1)
,

σ2n =
[xn]Ayy(x, 1) +Ay(x, 1)

[xn]A(x, 1)
− µ2n,

where Ay(x, y) denotes the Vrst and Ayy(x, y) the second derivative with respect to y.

Asymptotic analysis. Often we are interested in the growth rate of a sequence an and not in

its exact values. Sometimes it is not even possible to establish an exact formula. However, if a

combinatorial class admits an iterative speciVcation in terms of the operators +, ×, MSetk etc.

or +, ?, Setk etc. for labeled structures, then the exponential order K of the counting sequence

is a computable real number, i.e. K := lim supn→∞
n
√
|an| and K can be computed to within

any given precision by a computer program terminating in Vnite time (see [27, sect. IV.4] for a

precise formulation of this statement and a proof).

Although we deVned generating functions as formal power series, they can be considered also

as functions A(z) : Ω → C for a proper subset Ω ⊆ C, such that A(z) converges for all

z ∈ Ω. This approach turns out to be useful, in order to determine the asymptotic behavior of

the coeXcients of A(z).

DeVnition 2.22. The exponential orderK of a sequence (an)n∈N is deVned by

K := lim sup
n→∞

n
√
|an|.

The sequence then—given that K is Vnite–is of the form an = Knθ(n) for an appropriate

function θ(n) which satisVes lim supn→∞
n
√
|θ(n)| = 1 and is called the subexponential factor.

Theorem 2.23. LetA(z) =
∑

n anz
n be a power series andR its radius of convergence. IfR > 0

the exponential orderK of (an)n∈N is then given by

K =
1

R
.

A proof can be found in [27, sect. IV.3.2]. Pringsheim’s Theorem (see [27, sect. IV.3.1]) states

that R ∈ R>0 is a singularity of A(z) if all coeXcients an are nonnegative. Hence, if the

smallest singularity of A(z) along the positive real axis is known, one can immediately compute

the exponential order of (an)n≥0. Also, if there are negative coeXcients an, it can be shown that
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1R

Figure 2.8: Illustration of a ∆-domain.

there is a singularity on the boundary of the disc of convergence. Such singularities are called

dominant singularities:

DeVnition 2.24. Let A(z) be a function analytic at 0 and R > 0 the radius of convergence of its

power series expansion at the origin. Singularities of A(z) with modulus R are called dominant

singularities.

Flajolet and Sedgewick [27, p. 227] therefore declare, “the location of a function’s singularities

dictates the exponential growth of its coeXcients” (First Principle of CoeXcient Asymptotics),

and in addition, “the nature of a function’s singularities determines the associate subexponential

factor” (Second Principle of CoeXcient Asymptotics). Singularity analysis as it is summarized

in [27, sect. IV.4] corresponds to the Second Principle of CoeXcient Asymptotics and reveals

information about the subexponential factor of the coeXcients of certain functions. The main

result is summarized in Theorem 2.26 (see also [27, Corollary VI.1]).

DeVnition 2.25. Let ∆ ⊆ C a domain of the form (see Figure 2.8)

∆ := {z||z| < R, z 6= 1, |arg(z − 1)| > φ},

where R > 1 and 0 < φ < π
2 . The domain ∆ is called ∆-domain and a function f : ∆ → C

analytic in ∆ is called ∆-analytic.

Theorem 2.26. If a function f : ∆→ C is ∆-analytic and for some α ∈ R \ Z

f(z) ∼ (1− z)α,
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as z → 1, z ∈ ∆, then the coeXcients of f satisfy

[zn]f(z) ∼ nα−1

Γ(α)
,

where Γ(α) denotes the Gamma function.
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Chapter 3

Enumeration problems concerning

phylogenetic trees

This chapter is a collection of diUerent enumeration problems dealing with phylogenetic trees as

it was done before also by Székely et al. [75], Murtagh [52], and Foulds and Robinson [29, 30, 31,

32, 33]. Some of these problems have applications in phylogenetics or elsewhere, some others can

be considered rather as applications of combinatorial methods. Such a method is the so-called

symbolic method (as it is called in [27]) for constructing generating functions or for describing

them with equations by use of ready recipes as brieWy outlined in Section 2.4. We also will study

the asymptotic behavior of sequences by using analytic properties of their generating functions.

Although biological motivation is used in this chapter primarily as inspiration, we will mention

some direct applications of the results in phylogenetics.

3.1 Tree counting

Having deVned phylogenetic trees as graph theoretical objects, a natural question arises from

a combinatorial point of view: how many diUerent trees are there? Felsenstein claims in [23,

p. 36] that “one use for the numbers [of phylogenetic trees] was ‘to frighten taxonomists’.” In

taxonomy often one is interested in the correct reconstruction of the phylogenetic tree for a

group of species or equivalently in selecting the correct or best tree deVned by the species. To

solve this problem one might suggest to examine every possible tree of corresponding size and

then, for example by pairwise comparison under certain criteria, to Vnd the one best Vtting the

given data. However, the following results show the limitations for such algorithms. Usually

the space of phylogenetic trees is too huge to examine each single tree—only if a very small

number of species is studied, this would be possible. Of course, to see these diXculties and to
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recognize certain approaches as dead end streets, rough estimates or lower bounds would suXce.

Felsenstein [21, p. 7] actually writes about suggested enumerations of certain phylogenetic trees,

“There seems to me to be little point in following up these possibilities, as the enumeration of

evolutionary trees has somewhat restricted interest.” But from a mathematical perspective these

results are deVnitely worth being mentioned. Even Felsenstein admits that “one may have a

proposed notation system for a particular category of trees. By considering the ratio between

the number of diUerent trees and the number of diUerent conVgurations of the notation system,

one has a measure of the eXciency of the notation system.” Likewise the enumeration results

can be used to calculate miscellaneous probabilities under the uniform model as, for example, the

probability that two random phylogenetic trees are isomorphic (see Section 3.3 and [6]).

But there are also other direct applications of counting trees. Determining the size of particular

classes of trees—namely neighborhoods with respect to some appropriate metric in the space of all

phylogenetic trees—yields theoretical background information for some greedy algorithms, used

to reconstruct phylogenetic trees (see [23, chapt. 4]). As already earlier mentioned, to Vnd the

maximum parsimony trees for a given set of characters is a NP-hard problem (see [28]). Therefore

several heuristics are applied in practice. One way is to use a hill-climbing method: choose a Vrst

tree, examine all trees in a predeVned neighborhood of the tree and continue the search at the

best tree in the neighborhood. Such algorithms are able to Vnd local extrema, but not global

ones. Usually certain tree rearrangement operations are used to deVne these neighborhoods (see

[63, sect. 2.6]). Hill-climbing algorithms are, among other things, the reason why the size of such

neighborhoods is of interest. In some cases the neighborhood of a tree does not depend on its

shape but only on the number of its nodes (see [2, 66]) and can be determined explicitly.

Also theoretical aspects of tree counting played a big role in the history of combinatorics. The

problems considered by Schröder [62] in 1870 and studies by Cayley can be seen as foundation

of combinatorics as mathematical discipline. For instance the generating function of unordered

rooted trees with respect to the number of their vertices was given by Cayley in 1857 (see [27,

sect. I.5.2]). Otter [55] writes “The mathematical theory of trees was Vrst discussed by Cayley”.

Schröder’s results will be used in the following sections.

3.1.1 Rooted binary phylogenetic trees

A problem equivalent to counting rooted binary phylogenetic trees was Vrst studied by Schröder

in 1870 (for the original article refer to [62], other references concerning this problem include [69,

p. 15], [11, p. 223f.], [27, p. 129], [30], [63, p. 17], [6] and [23, chapt. 3]). He considered the question
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t1 t2 tk

· · ·

(a)

(t1 + · · ·+ tk)

(b)

Figure 3.1: Correspondence between rooted plane trees and sums with brackets.

in how many ways a sum of n distinct summands could be denoted. Due to the commutative

law we are allowed to rearrange the order of the objects and it is an immediate result that there

are 1 · 2 · . . . · n = n! such arrangements. Hence, if the sum is considered as n-ary operator, for

summands a1, a2, . . . , an there are n! ways to denote the sum ai1 + ai2 + · · ·+ ain where each

corresponds to an ordered n-tuple (ai1 , . . . , ain). But if the sum is considered as binary operator,

the summands are grouped in brackets. Due to the associative law x + (y + z) = (x + y) + z,

all diUerent ways to parenthesize the summands result in the same sum. Since the number of

arrangements is well-known, Schröder considered the order of the summands to be Vxed and

studied the number of ways to parenthesize a sum of n summands. In his Vrst problem he

studied fully parenthesized sums, i.e. each pair of parentheses contains exactly two summands,

and in his second problem he studied arbitrarily parenthesized sums, i.e. each pair of parentheses

contains k ≥ 2 summands.

Such sums correspond bijectively to rooted plane trees1. Every summand can be perceived as

leaf and a pair of brackets corresponds to an internal node. More precisely, the sum a1 with

only one summand a1 corresponds to the tree consisting of only one leaf. Recursively for terms

t1, . . . , tk and any k ≥ 2 the term (t1 + . . .+ tk) corresponds to the tree with a new internal

node v as root and the k trees corresponding to the terms t1, . . . , tk as subtrees of v (see Figure 3.1

and the example in Figure 3.2). If the sum is considered as binary operator and fully parenthe-

sized, the related trees are binary too. Note that we do not allow double brackets, implying that

the corresponding trees have no vertices of degree 2. Furthermore, also on the outermost level

the sums are always parenthesized and any pair of parentheses contains at least two summands.

Based on these initial questions (Schröder’s Vrst and second problem), he also studied a similar

problem where the considered objects are not ordered. In his third and fourth problem, he imag-

1Recall that phylogenetic trees are by deVnition unordered trees.
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a1 a2 a3 a4 a5

(a)

((a1 + a2) + ((a3 + a4) + a5))

(b)

Figure 3.2: Example of a binary rooted tree and its related sum.

ines the objects to be grouped together in nested cells—again each cell containing either exactly

two or any number of objects (or other cells). These nested cells are related to phylogenetic trees

in the same way as sums to rooted plane leaf-labeled trees as described above. Interestingly, also

Hartigan [43] introduces phylogenetic trees by use of nested sets of the species in X instead of

using purely graph theoretic terminology.

Therefore the trees considered in Theorem 3.2 relate to Schröder’s third problem, but we want

to prove it with more modern terminology following the notation of [27]. Surprisingly, there

is a very nice formula for the sequence, namely the odd factorials also called double factorial

numbers and denoted by n!! (this is sequence A001147 in [64]).

DeVnition 3.1. Let B the combinatorial class of all rooted binary phylogenetic trees and Bn the

subset of rooted binary phylogenetic trees with label set |X| = n. bn := |Bn| denotes the number

of rooted binary phylogenetic trees.

Theorem 3.2. The number bn of rooted binary phylogenetic trees with n leaves satisVes

bn = 1 · 3 · 5 · . . . · (2n− 3) =
(2n− 3)!

2n−2 · (n− 2)!
= (2n− 3)!!.

Proof. Every tree in B is either of size 1 (if the tree has only one node being a leaf), or it can

be constructed by attaching two trees to a root. Because phylogenetic trees are unordered trees,

there is no order between these two trees. Therefore a speciVcation of B is given by

B = Z + Set2(B), (3.1)

where Z is the labeled atomic class which contains only one labeled object of size 1 and Set2(B)

denotes the class of sets of size 2 with labeled elements of B (see Section 2.4).

48



3.1 Tree counting

According to Lemma 2.20 (see also [27, Vg. II.18, p. 148]) the speciVcation in (3.1) translates to

B(z) = z + 1
2 ·B(z)2 where B(z) =

∑
n≥0 bn

zn

n! denotes the EGF for the series bn. Hence, the

EGF is given by

B(z) = 1±
√

1− 2z, (3.2)

where we cannot decide yet for one of the two roots. We could now derive the coeXcients

by means of the general binomial theorem, but we will choose a more direct approach and use

Taylor’s formula:

∂nzB(z) = ∂nz 1±
√

1− 2z =

= ∂n−1z (±1) · (−1) · (1− 2z)−
1
2 =

= ∂n−2z (±1) · (−1) · (1− 2z)−
3
2 =

= ∂n−3z (±1) · (−1) · 3 · (1− 2z)−
5
2 =

...

= (±1) · (−1) · 3 · 5 · . . . · (2n− 3) · (1− 2z)−
2n−1

2 , (3.3)

where (3.3) can be proved by induction. This yields bn = n! · [zn]B(z) = n! · ∂nz B(0)
n! =

(±1) · (−1) · 3 · 5 · . . . · (2n− 3). bn has to be positive, so we can decide on one of the roots in

(3.2) and we have

B(z) = 1−
√

1− 2z. (3.4)

Remark 3.3. Theorem 3.2 can be proved also directly by induction (see [63, prop. 2.1.4, p. 17]).

But to do so we need to know the result in advance, and we do not obtain the EGF in the form

(3.4).

Asymptotic results. Applying Stirling’s formula and using limn→∞
(
1− 1

n

)n
= e−1 yields

the following asymptotic results (see [63, p. 17f.])

bn =
(2n− 2)!

2n−1(n− 1)!
∼ 21−n ·

√
2 · 22n−2 · (n− 1)n−1 · e1−n =

√
2 ·
(

2n− 2

e

)n−1
.
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This further simpliVes to

√
2 ·
(

2n− 2

e

)n−1
∼
√

2 · 2n−1nn−1e−n.

3.1.2 Rooted phylogenetic trees (multifurcating)

In this section we will analyze the number rn of multifurcating rooted phylogenetic trees with

n leaves (such trees are also called labeled hierarchies [27, p. 128]). This sequence was Vrst

studied by Schröder [62] in his fourth problem. As described in the previous section, he imagined

objects grouped together in nested cells which correspond to rooted phylogenetic trees. In this

section also more than two child nodes for each internal node are allowed, so every rooted binary

phylogenetic tree is also a rooted phylogenetic tree and we have rn > bn for n ≥ 3, where bn

denotes the number of rooted binary phylogenetic trees as discussed in the previous section. In

[69, p. 13f.] this sequence is introduced by partitioning a set of size n into at least two blocks and

then doing the same recursively with these blocks until only singletons are left. The result is then

called a total partition of the set and the number of diUerent total partitions is counted. There

are also several connections to other enumeration problems and applications of the following

results. In the following we will provide two diUerent ways to calculate rn recursively—one

due to Schröder [62] and one due to Felsenstein [21]. Furthermore we are going to derive the

generating function and asymptotic results by Flajolet and Sedgewick [27].

Throughout the whole section, we will use the following notation.

DeVnition 3.4. The number of multifurcating rooted phylogenetic trees with n leaves is denoted

by rn. The number of multifurcating rooted phylogenetic trees with n leaves and m internal

nodes is denoted by rm,n.

An implicit formula for the generating function. Recall that phylogenetic trees are un-

ordered trees, labeled at their leaves (with exactly one label per leaf), and every internal node has

outdegree at least 2 if we view the edges directed away from the root. Each rooted phylogenetic

tree can be identiVed either with one labeled leaf or with a set containing at least 2 rooted phylo-

genetic trees. Thus, one can construct the combinatorial class corresponding to the sequence rn

by use of the operator Set≥2 introduced in Section 2.4:

R = Z + Set≥2(R)
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· · ·

· · · · · · · · ·

a1 leaves a2 subtrees with 2 leaves each an subtrees with n leaves each

Figure 3.3: Illustration of Schröder’s recursion for the number of rooted phylogenetic trees.

According to Lemma 2.20 the EGF R(z) =
∑

n≥0
1
n!rnz

n satisVes the implicit equation

R(z) = z + eR(z) − 1−R(z) (3.5)

(see also Flajolet and Sedgewick [27, Vg. II.18, p. 148], [27, p. 472] and [29, p. 171]).

In [69, p. 13f.] R(z) is expressed explicitly by means of the compositional inverse, denoted by

F 〈−1〉(z), that is F 〈−1〉(F (z)) = F
(
F 〈−1〉(z)

)
= z for F (z) =

∑
n≥0 fnz

n with f0 = 0 and

f1 6= 0. From (3.5) we have z = 1 + 2R(z)− eR(z), which leads to

R(z) = (1 + 2z − ez)〈−1〉.

Stanley [69, p. 14] states that “it does not seem possible to obtain a simpler result”.

Recursions. The recurrence relation, established by Schröder [62] in 1870, is probably more of

historical interest. He uses it to derive the equation for the generating function already stated in

(3.5).

Theorem 3.5 (Schröder’s recurrence relation). The number rn of rooted phylogenetic trees satis-

Ves the following recurrence relation

rn+1 =
∑

a1,a2,...,an∈N
a1+2·a2+···+n·an=n+1

(n+ 1)! · ra11 · ra22 · . . . · rann
a1! · . . . · an! · (1!)a1 · . . . · (n!)an

,

where the summation is over all solutions a1, a2, . . . , an ∈ N of the equation a1 + 2 · a2 + · · ·+
n · an = n+ 1.
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m\n 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1

2 3 10 25 56 119 246

3 15 105 490 1 918 6 825

4 105 1 260 9 450 56 980

5 945 17 325 190 575

6 10 395 270 270

7 135 135
∑

m rn,m = rn 1 4 26 236 2 752 39 208 660 032

Table 3.1: Illustration of Felsenstein’s recurrence relation (the table is inspired by the table in [23,
p. 27]). The arrows indicate which values rn,7 are needed to compute the values rn,8.

Proof. Given a rooted phylogenetic tree with n+ 1 leaves, by ai for i = 1, . . . , n we denote the

number of subtrees directly attached to ρwhich contain exactly i leaves (see Figure 3.3). Thus the

total number of leaves is given by 1 ·a1+2 ·a2+ · · ·+n ·an = n+1. There are a1+a2+ · · ·+an
subtrees directly attached to ρ and each of them is a leaf or contains a set of leaves. If we consider

a Vxed set of labels for the leaves in each of the subtrees, then there are ri possibilities for the

ai subtrees with i leaves for every i = 1, . . . , n. Hence, there are ra11 · ra22 · . . . · rann ·N rooted

phylogenetic trees of size n+1 for the given a1, a2, . . . , an and for some factorN which indicates

the possible permutations of the labels. There are (n+1)! possibilities to arrange the n+1 labels.

But for each subtree with i leaves there are i! permutations of the labels within the subtree, so

for every subtree of ρ we counted every arrangement of the other labels i! times instead of only

once—in total for all subtrees this is (1!)a1 · . . . · (n!)an . We also should not distinguish between

permutations where only whole subtrees with equal number of leaves are permuted but no label

goes to another subtree. There are a1! · . . . · an! ways to do so. Hence, all together we have

N = (n+1)!
a1!·...·an!·(1!)a1 ·...·(n!)an . This leads to the claimed recursive formula.

Felsenstein [21, p. 29] describes Schröder’s methods as “somewhat complex” and therefore

states his own recursive formula (see also [23, p. 25U.]). And indeed, in order to compute the

Vrst n0 values of the sequence rn for a suXciently small n0, this might be the most promising

approach (see also Remark 3.14). The following lemma was not explicitly stated by Felsenstein in

this way, but it will prove useful also later.

Lemma 3.6. Let T = (T, φ) be a rooted phylogenetic tree withm internal vertices and n leaves.
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Then the following inequality holds

n− 1 ≥ m,

where n− 1 = m if and only if T is a binary phylogenetic tree.

Proof. We denote the vertex set by V and the set of edges by E, i.e. T = (V,E). Because T is a

tree, the number of edges are given by the number of vertices minus 1, i.e.

|E| = |V | − 1 = m+ n− 1.

For all v ∈ V let denote dv the outdegree of vertex v. If v is a leaf, we have dv = 0. For all

internal nodes v is dv ≥ 2 and therefore
∑

v∈V dv ≥ 2 ·m. In addition equality holds, i.e. dv = 2

and
∑

v∈V dv = 2 ·m, if and only if T is a binary tree. The number of edges in T can be counted

by summation of the outdegree dv for all vertices v, hence |E| =
∑

v∈V dv . In total this yields

m+ n− 1 = |E| =
∑
v∈V

dv ≥= 2m,

which completes the proof.

Theorem 3.7 (Felsenstein’s recurrence relation). The number rm,n of rooted phylogenetic trees

with m (unlabeled) internal vertices and n = |X| (labeled) leaves satisVes rm,n = 0 for m < 1

or m > n − 1, and for n ≥ 2 and 1 ≤ m ≤ n − 1 the number rm,n satisVes the following

recurrence relation

rm,n = m · rm,n−1 + (n+m− 2) · rm−1,n−1. (3.6)

Proof. Form < 1 orm > n− 1, we have rm,n = 0 since there is no such tree (see Lemma 3.6).

Any rooted phylogenetic tree with n ≥ 2 leaves has at least one internal node (namely its root)

and at most n− 1 internal nodes (see Lemma 3.6). There is obviously only one rooted tree with

two leaves and one internal node, so we have r1,2 = 1. Now, for any rooted phylogenetic tree

with n − 1 leaves there are two diUerent ways to add a new n-th leaf. Either as a new child

of an existing internal node or as a child of a new internal node (the new internal node can be

added separating an existing edge or as parent of the former root node). Note that in this way

each such tree with n leaves can be constructed by exactly one such tree with n − 1 leaves—if

this is not clear one can imagine the reverse operation of removing the n-th leaf and the parent

internal node if there is only one other child node. In other words, we have described a bijection
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between two sets of trees. The Vrst set contains the rooted phylogenetic trees with n − 1 leaves

and m internal nodes, where every tree is counted m times because an internal node has to be

chosen, and it contains the trees with n− 1 leaves andm− 1 internal nodes, where every tree is

counted (n− 1) + (m− 1) times, because an edge or the root node has to be selected. Thus the

claimed recursive formula for rm,n is established.

Table 3.1 shows the values rn for n = 1, . . . , 8 and the values for rm,n needed for the compu-

tation.

Explicit formula. In the following we will express the sequence rn explicitly by combining

two results for the associated Stirling numbers of the second kind, listed as sequence A008299

in [64] and usually denoted by S2(n, k). On the one hand there is an explicit formula due to

D. Wasserman (see A059022 in [64]) for S2(n, k) as we will show in Lemma 3.11. On the other

hand there is an identity (see [11, p. 224]) between the numbers rm,n and S2(n, k), see (3.9) in

Theorem 3.12. However, this explicit formula is not helpful to compute values for a large n as we

will explain in Remark 3.14.

The notation S2(n, k) refers to its generalization, the r-associated Stirling numbers of the

second kind (see A059022 in [64]), denoted by Sr(n, k). For r = 1 one gets the (ordinary) Stirling

numbers of the second kind (for details see [11, p. 221f.] and [10]). Furthermore, for each of these

sequences we have a corresponding sequence of the Vrst kind, and for all of them there are several

applications and combinatorial interpretations. None of these are important for our purpose—the

generating function for S2(n, k) and two of its properties, presented in the following lemmata,

will suXce.

DeVnition 3.8 (Associated Stirling numbers of the second kind). The sequence S2(., k) is deVned

by means of its EGF
∑

n≥0
1
n!S2(n, k)zn = 1

k!(e
z − z − 1)k for all k ≥ 0 (see [45, chapt. 3])

Remark 3.9. A BGF for the associated Stirling numbers of the second kind is given by (see [11,

p. 221]) ∑
n,k≥0

S2(n, k)
zn

n!
uk = eu(e

z−z−1).

Lemma 3.10. The associated Stirling numbers S2(n, k) satisfy S2(0, 0) = 1, S2(n, k) = 0 for

n < 2k and S2(n, 0) = 0 for n > 0 and the following recurrence relation for n ≥ 1, k ≥ 1

S2(n+ 1, k) = kS2(n, k) + nS2(n− 1, k − 1). (3.7)
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k \ n 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1

2 3 10 25 56 119 246 501 1012 2035

3 15 105 490 1918 6825 22935 74316

4 105 1260 9450 56980 302995

5 945 17325 190575

6 10395

Table 3.2: Values for the associated Stirling numbers S2(n, k) for 0 ≤ n ≤ 12

Proof. The boundary values follow directly from the EGF for the given k. To prove (3.7) we

make use of the formal integral operator
´
(see e.g. [48, p. 12]). For a generating functionA(z) =∑

n≥0 anz
n formal integration and formal derivation is deVned byA′(z) =

∑
n≥0(n+ 1)an+1z

n

and
´
A(z) =

∑
n≥0

1
(n+1)anz

n+1 (that implies
[
z0
] ´

A(z) = 0). Note that
(´
A(z)

)′
=

A(z), but the converse does not hold—in general
´

(A′(z)) 6= A(z). This is caused by the deriva-

tive’s property that the constant term a0 vanishes. But the other coeXcients are not aUected, so

[zn]
´

(A′(z)) = [zn]A(z) holds for n ≥ 1.

Now consider for a Vxed k ≥ 1

∑
n≥0

S2(n, k)
zn

n!

′ = ( 1

k!
(ez − z − 1)k

)′
=

1

(k − 1)!
(ez − z − 1)k−1(ez − 1)

= k · 1

k!
(ez − z − 1)k + z

1

(k − 1)!
(ez − z − 1)k−1

= k
∑
n≥0

1

n!
S2(n, k)zn + z ·

∑
n≥0

1

n!
S2(n, k − 1)zn

=
∑
n≥0

1

n!
k · S2(n, k)

(
zn+1

n+ 1

)′
+
∑
n≥0

1

n!
S2(n, k − 1)

(
zn+2

n+ 2

)′

=

∑
n≥1

kS2(n− 1, k)
zn

n!
+
∑
n≥2

(n− 1) · S2(n− 2, k − 1)
zn

n!

′

Taking the formal integral at both sides of the equation and comparing the coeXcients of zn
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for n ≥ 2 yields the stated recurrence relation.

Formula (3.8) from the following lemma can be found without proof in the entry for sequence

A008299 in [64] and is due to D. Wasserman.

Lemma 3.11. The associated Stirling numbers can be expressed explicitly by

S2(n, k) =
k∑
i=0

(−1)i ·
(
n

i

) k−i∑
j=0

(−1)j · (k − i− j)n−i
j! · (k − i− j)! (3.8)

Proof. By applying the binomial theorem twice to the EGF of S2(., k) and by use of the expo-

nentials series expansion one gets

S2(n, k) = [zn]
n!

k!
(ez − z − 1)k

=
n!

k!
[zn]

k∑
j=0

(
k

j

)
(−1)j(ez − z)k−j

=
n!

k!
[zn]

k∑
j=0

(
k

j

)
(−1)j

k−j∑
i=0

(
k − j
i

)
(−1)iziez·(k−i−j)

=
k∑
j=0

(−1)j
k−j∑
i=0

(−1)i
(
k − j
i

)
·
(
k

j

)
· n! · (k − i− j)n−i

k! · (n− i)!

=

k∑
j=0

(−1)j
k−j∑
i=0

(−1)i
(
n

i

)
· (k − i− j)n−i
j! · (k − i− j)!

Exchanging the order of summation leads to the desired result.

The identity rn =
∑n−1

m=1 S2(n+m− 1,m) can be found (without proof) in [11, p. 224], but

no statement about an explicit expression is made there. In the following theorem this identity is

proved using Felsenstein’s recurrence relation from Theorem 3.7.

Theorem 3.12. The following identity holds between the associated Stirling numbers S2(n, k)

and the number rm,n of rooted phylogenetic trees with n leaves andm internal nodes

rm,n = S2(n+m− 1,m) for all n ≥ 2,m ≥ 1, (3.9)

and therefore the number rn of rooted phylogenetic trees can be expressed explicitly in the follow-
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ing way:

rn =
n−1∑
m=1

m∑
i=0

(−1)i ·
(
n+m− 1

i

)m−i∑
j=0

(−1)j · (m− i− j)n+m−1−i
j! · (m− i− j)! . (3.10)

Proof. In order to prove (3.9) Vrst verify r1,2 = S2(3− 1, 1) (see Table 3.2) and S2(n+m− 1,m) =

0 form > n− 1 and n ≥ 2 (because of 2m > 2n− 2 ≥ n and Lemma 3.10). Since rm,n = 0 for

m > n − 1 (see Theorem 3.7) we are done in this case. Then again, by use of Lemma 3.10 one

sees that

S2(n+m− 1,m) = mS2(n+m− 2,m) + (n+m− 2)S2(n+m− 3,m− 1),

which equals the recurrence relation (3.6) for rn,m, and therefore (3.9) is established.

The second statement of the theorem then follows immediately from (3.9) and Lemma 3.11 by

summing rm,n over all possible values form.

Remark 3.13. Note that the combinatorial class of rooted binary phylogenetic trees, covered in

Section 3.1.1, is a subclass of the multifurcating rooted phylogenetic trees discussed here. A

rooted phylogenetic tree with n leaves is binary if and only it has n − 1 internal nodes (see

Lemma 3.6). Hence, we have bn = rn−1,n = S2(2n− 2, n− 1) (see also [45, sect. 3]), and we

can immediately establish the recurrence relation bn = (2n− 3)bn−1 by use of Lemma 3.10 and

therefore bn = (2n− 3)!! as already stated in Theorem 3.2.

Remark 3.14. Felsenstein [23, p. 27] states that there is no closed-form formula for rn. Neverthe-

less, his recurrence relation can be used to derive an explicit expression, which does not depend

on the ri for i < n (see Theorem 3.12). Strictly speaking, this expression is not closed-form since

the number of operations depends on n. This is an important detail—one might think that an

explicit formula makes it easier to calculate speciVc values of the sequence because it is not nec-

essary to know also all the previous values of the sequence. This might be true sometimes, but

in this case it is still more eXcient to use Felsenstein’s recurrence given in (3.6) and to calculate

also all ri for i = 2, . . . , n − 1 in order to get rn than to use the explicit formula in (3.10). The

triple sum in (3.10) leads to a total number of n
3

6 + n2

2 + n
3 − 1 = O

(
n3
)
summands, and for

each of them a calculation involving many operations is necessary. On the other hand, in order

to compute rn with (3.6), only n2−n
2 values of the double sequence rm,n are necessary and each

of them is computed by at most two multiplications and two additions. Finally, rn results from

summing n− 1 values, so in total only O
(
n2
)
summations are necessary.
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These considerations can be conVrmed by measuring the run times. We compared both meth-

ods implemented in Mathematica (see Section A.1). Note that both implementations do not use

any parallelization—we want to compare the algorithms and not the most eXcient code. The

computation of r200 takes 36 seconds by use of the code in Section A.1.1 and only 0.04 seconds

by use of the algorithm in Section A.1.2. On the same machine2 the computation takes 0.01716

seconds and 0.00066 seconds respectively for r22. This was the highest value calculated by Felsen-

stein in 1978 using a Fortran program.

Asymptotic results. We can derive asymptotic results for rn directly by use of the implicit

equation in (3.5) even without having an explicit formula for the generating function. In [27,

p. 472f.] this is done by use of a theorem, which the authors call smooth implicit-function schema.

Theorem 3.15 (Smooth implicit-function schema). Let y(z) =
∑

n≥0 ynz
n be a function analytic

at 0 with y0 = 0 and yn ≥ 0. Furthermore let y belong to the smooth implicit-function schema,

meaning that there exists a bivariate function G(z, w) such that

y(z) = G(z, y(z)),

where G(z, w) satisVes:

(i) G(z, w) =
∑

m,n≥0 gm,nz
mwn is analytic in a domain |z| < S1 and |w| < S2, for some

Si > 0, i = 1, 2.

(ii) The coeXcients of G satisfy

g0,0 = 0

g0,1 6= 1

gm,n ≥ 0

gm,n > 0 for somem and for some n ≥ 2

(iii) There exist two numbers s1, s2 such that 0 < si < Si for i = 1, 2, satisfying the system of

2A (currently) average desktop computer with an Intel® Core™2 Duo E8400 processor (6M Cache, 3.00 GHz, 1333
MHz FSB) and Mathematica 8 (for GNU/Linux 64bit) were used.
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equations,

G(s1, s2) = s2

Gw(s1, s2) = 1,

which is called the characteristic system.

Then, y(z) converges at z = s1 where it has a square-root singularity

y(z) =
z→s1

s2 − γ
√

1− z

s1
+O

(
1− z

s1

)
with

γ :=

√
2s1Gz(s1, s2)

Gww(s1, s2)

and the expansion being valid in a ∆-domain. If, in addition, y(z) is aperiodic, then s1 is the

unique dominant singularity of y and the coeXcients satisfy

[zn]y(z) =
n→∞

γ

2
√
πn3

s−n1

(
1 +O

(
n−1

))
.

A proof can be found in [27, p. 472f.] using an analytic version of the Implicit Function Theorem

and singularity analysis (see also Section 2.4).

This theorem is directly applicable to our situation. From (3.5) we getG(z, w) = z+ ew−1−
w = z1 · w0 +

∑
n≥2

z0wn

n! and therefore g0,0 = 0, g0,1 = 0 6= 1, gm,n ≥ 0 and g0,2 = 1
2 > 0.

Furthermore is s2 = ln 2 because of the equation Gw(s1, s2) = es2 − 1 = 1 in the characteristic

system and s1 = 2 ln 2 − 1 because of the equation G(s1, s2) = s1 + 1 − ln 2 = ln 2. Hence,

the conditions for Theorem 3.15 are fulVlled and we have

1

n!
· rn ∼

1

2
√
πn3

(2 ln 2− 1)−n+
1
2 .

3.1.3 Unrooted phylogenetic trees (binary and multifurcating)

In the following, results for the number of unrooted phylogenetic trees will be obtained, both for

all phylogenetic trees and for the subclass of binary phylogenetic trees (this was done also in [63,

prop. 2.2.3, p. 20] and [23, p. 24]). This can be accomplished by using the results for the number

of rooted phylogenetic trees in the previous two sections and by providing a appropriate bijective

map between rooted and unrooted trees.
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ρ

· · ·

· · ·

n+ 1

n leaves

n leaves

Figure 3.4: Mapping a rooted phylogenetic tree with n leaves to an unrooted phylogenetic tree
with n+ 1 leaves by attaching a edge with a new leaf at the root.

For n ≥ 2 an unrooted phylogenetic tree with n + 1 leaves can be obtained from a rooted

phylogenetic tree with n leaves by adding a new leaf labeled with n+1 and an edge between the

former root and the new leaf (see Figure 3.4). If the original rooted tree was a binary phylogenetic

tree, also the resulting tree will be a binary phylogenetic tree. In the same way, if the original

rooted tree was a phylogenetic tree (not necessarily being a binary tree), also the resulting tree

will be a multifurcating phylogenetic tree. Therefore we have described two functions, one from

the set of rooted phylogenetic trees with n leaves to the set of unrooted phylogenetic trees with

n + 1 leaves and another one from the set of rooted binary phylogenetic trees with n leaves to

the set of rooted binary phylogenetic trees with n + 1 leaves. An inverse map for each of these

two functions can be described simply by removing the leaf with the label n+ 1 and its incident

edge and rooting the resulting tree at the internal node which was connected to the leaf with the

label n + 1 before. Hence, the two functions are bijective. In that way the number of trees can

be deduced immediately from the results in Section 3.1.2 and Section 3.1.1, respectively.

Proposition 3.16. For n ≥ 2 there exists a bijective function from the set of rooted phylogenetic

trees with n leaves to the set of unrooted phylogenetic trees with n + 1 leaves. Likewise there

exists a bijective function from the set of rooted binary phylogenetic trees with n leaves to the set

of unrooted binary phylogenetic trees with n+ 1 leaves.

Therefore the number of unrooted phylogenetic trees with n leaves is given by rn−1 for n ≥ 3

and the number of unrooted binary phylogenetic trees with n leaves is given by bn−1 for n ≥ 3.
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This basic result is also described in [63, prop. 2.2.3, p. 20] and [23, p. 24].

3.1.4 X-trees

In this section the number un of X-trees for a set X with |X| = n will be determined as it

was done by Foulds and Robinson [33]. In order to do so, we are going to use the number un,m

of X-trees with |X| = n and m vertices and several other classes of X-trees which are rooted

in a certain way: planted, point-rooted and line-rooted X-trees. While planted trees are used

also elsewhere (see e.g. [79]), point-rooted and line-rooted trees do not seem to be very common

terms, but they turn out to be useful to determine un.

In addition, the number rn of rooted X-trees in the sense of DeVnition 2.2 and the mean

µn and the variance σ2n of the number of vertices of a random X-tree with n = |X| under
uniform distribution will be determined. Recursive formulas, allowing to compute values for

these sequences and implicit equations for the BGFs and the EGFs, will be provided. We will end

this section with asymptotic results, deduced by means of the smooth implicit-function schema

presented in Theorem 3.15 in Section 3.1.2.

Planted X-trees. A planted X-tree T = (T, φ) is similar to a rooted X-tree, but the root

vertex ρ has always degree 1 and no label is assigned to ρ. The tree in Figure 2.1d is an X-tree,

but it can be perceived also as a plantedX-tree. In case of anX-tree φ is a label map φ : X → V .

For the tree in Figure 2.1d φ(X) ⊆ V \ {ρ} holds, and therefore the label map can be considered

to be a function φ : X → V \{ρ}. In this case the tree in Figure 2.1d is a planted X-tree as

becomes clear from the following deVnition.

DeVnition 3.17 (Planted X-tree). Let X be a Vnite set, T = (V,E) a tree, ρ ∈ V a vertex of

degree 1, and φ : X → V \{ρ} a map with v ∈ φ(X) for every vertex v ∈ V \ {ρ} of degree 1

or 2. The pair T = (T, φ) is called planted X-tree.

Figure 3.5 illustrates three types of planted X-trees, which will be used later. Throughout the

whole section we will stick to the following notation. Note that the root vertex ρ is not counted

as vertex in the case of planted X-trees.

DeVnition 3.18. The number of planted X-trees with n = |X| is denoted by pn and by pn,m

the number of planted X-trees with m vertices where we do not count the vertex ρ, i.e. m =

|V \ {ρ}|. The according EGF and BGF are denoted by P (x) =
∑

n≥1 pn
xn

n! and P (x, y) =∑
n≥1

∑
m≥1 pn,m

xnym

n! , respectively.
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Remark 3.19. We consider only X-trees with nonempty label sets X 6= ∅, and therefore p0 = 0

and p0,m = 0 for allm ≥ 0 and also pn,0 = 0 for all n > 0, because if there are no vertices, the

labels cannot be assigned anywhere.

Foulds and Robinson [33] mention the following statement3 without providing a detailed proof.

It allows to write the BGF for planted trees as P (x, y) =
∑

n≥1
∑2n−1

m=1 pn,m
xnym

n! .

Lemma 3.20. Let T = (T, φ) be an X-tree and T ′ a planted X-tree with X 6= ∅. Then the

following inequalities for the number of vertices hold

1 ≤ |V (T )| ≤ 2 · |X| − 2 if |X| ≥ 2,

1 ≤
∣∣V (T ′) \ {ρ}∣∣ ≤ 2 · |X| − 1.

Proof. Clearly 1 ≤ |V (T )| and 1 ≤ |V (T ′)| holds because X 6= ∅ and it remains only to prove

the other two inequalities. First consider only T . Let X̃ be the label set obtained from X by

removing all labels which are attached to vertices with degree more than 2 and by removing

for each vertex with degree 1 or 2 all of its labels but one. The X̃-tree with label map φ|
X̃

obtained from T shall be denoted by T̃ =
(
T, φ|

X̃

)
. If we prove the lemma for T̃ , it clearly

holds also for the original X-tree T , because X̃ ⊆ X and
∣∣∣X̃∣∣∣ ≤ |X| and ∣∣∣V (T̃ )∣∣∣ = |V (T )|

(we did not change the vertex set). The constructed X̃-tree contains only vertices of degree 1 or

2 with exactly one label and unlabeled vertices of higher degree. If one vertex of degree 2 in T̃
is suppressed and its label is removed, we obtain a tree with a vertex set of size

∣∣∣V (T̃ )∣∣∣− 1 and

a label set of size
∣∣∣X̃∣∣∣− 1. Because obviously

∣∣∣V (T̃ )∣∣∣− 1 ≤ 2
∣∣∣X̃∣∣∣− 4⇒

∣∣∣V (T̃ )∣∣∣ ≤ 2
∣∣∣X̃∣∣∣− 2

we can suppress all nodes of degree 2 in T̃ and prove the lemma for the obtained tree. Therefore,

by the previous considerations we can assume w.l.o.g. that T with label set X is a phylogenetic

tree. Now, we add a new vertex ρ dividing an arbitrary edge of T to obtain a rooted phylogenetic

tree with |V (T )|+ 1 vertices and |X| leaves. Lemma 3.6 then implies for this rooted tree |X| −
1 ≥ |V (T )|+1−|X|, which completes the proof forX-trees. To prove the statement for planted

X-trees one can follow the same reasoning and apply Lemma 3.6 to the rooted phylogenetic tree

obtained from T ′ by using the child node of ρ as root vertex and removing the vertex ρ and its

incident edge.

3The condition |X| ≥ 2 is missing in [33]. For anX-tree with |X| = 1, of course, 1 = |V (T )| � 2 · |X| − 2 = 0.
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ρ

1, 2, . . . , n

(a)

ρ

i1, . . . , ik

(b)

ρ

· · ·

(c)

Figure 3.5: Three types of planted X-trees.

Theorem 3.21. The number pn,m of planted X-trees with |X| = n and m vertices has the BGF

P (x, y) =
∑

n≥1
∑

m≥1 pn,m
xnym

n! and the EGF P (x) =
∑

n≥1 pn
xn

n! , for which the following

equations hold

P (x, y) = yex+P (x,y) − yP (x, y)− y (3.11)

P (x) = ex+P (x) − P (x)− 1.

Furthermore p0 = 0, p1 = 1, and for n ≥ 2 the following recurrence relation for pn is satisVed

pn = 2pn−1 +

n−1∑
k=1

(
n

k

)
pkpn−k. (3.12)

Proof. First, we are going to determine implicit expressions for the generating functions P (x)

and P (x, y) in order to derive secondly a recursive formula for the number pn. Each planted

X-tree is of one of the three types illustrated in Figure 3.5. Trees of the Vrst type (Figure 3.5a)

are called trivial plantedX-trees. Besides of the root ρ they consist of only one vertex, hence, we

have m = 1. For every n ≥ 1 there is only one trivial planted X-tree. Thus, the BGF for these

trees is ∑
n≥1

xny

n!
= (ex − 1)y. (3.13)

For every non-trivial planted X-tree the vertex adjacent to ρ has degree 2 or more—if it has
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degree 2 the tree is of the second type (Figure 3.5b) and otherwise of the third type (Figure 3.5c).

The trees of the second type (see Figure 3.5b) correspond to plantedX-trees, where ρ is replaced

by a trivial planted X-tree. The old root is not counted at all, hence we can make use of the

labeled product (see Section (2.4) and [27, thm. III.2, p. 175]) to obtain the BGF

(ex − 1)yP (x, y). (3.14)

In the third case (Figure 3.5c) the vertex adjacent to ρ does not necessarily have to be labeled,

because it has a degree of more than 2. Therefore such trees correspond to a (possible empty)

set of labels, one internal node, and a set of at least two planted X-trees. By use of the labeled

product and the operators Set and Set≥2 this translates to the BGF

exy
∑
k≥2

P (x, y)k

k!
= exy

(
eP (x,y) − 1− P (x, y)

)
. (3.15)

In total by summation of (3.13), (3.14), and (3.15) this yields

P (x, y) =
(
ex+P (x,y) − P (x, y)− 1

)
y. (3.16)

Since P (x, 1) = P (x) we get for the EGF for planted X-trees

P (x) = ex+P (x) − P (x)− 1. (3.17)

Now we will establish (3.12) by extracting the coeXcients of these equations. DiUerentiation

of (3.17) and using the form ex+P (x) = 2P (x) + 1 of (3.17) to eliminate the exponential function

leads to

P ′(x) = 1 + 2P (x) + 2P (x)P ′(x) = 1 + 2P (x) +
(
P (x)2

)′
. (3.18)

Now by comparing coeXcients at both sides we get a recursive formula for pn as follows. For

n ≥ 1 we have on the left side (n− 1)!
[
xn−1

]
P ′(x) = (n− 1)!

[
xn−1

]∑
n≥1 n ·pn · x

n−1

n! = pn
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ρ

1

2, 3

4 5 6, 7, 8 9 10
(a)

ρ

1

2, 3

4 5 6, 7, 8 9 10
(b)

Figure 3.6: Example of a point rooted X-tree and a line-rooted X-tree with X = {1, 2, . . . , 10}.

and on the right side (n− 1)!
[
xn−1

]
2P (x) = 2pn−1 and4

(n− 1)!
[
xn−1

](
P (x)2

)′
= (n− 1)!

[
xn−1

]∑
n≥1

(
n∑
k=0

pk
k!

pn−k
(n− k)!

)
xn

′

=

n∑
k=0

(
n

k

)
pkpn−k.

As mentioned above p0 = 0 and therefore p1 = 1 and for n ≥ 2 the claimed recurrence relation

(3.12) holds.

The formula in (3.12) can be used to calculate values for pn. Values for n = 1, . . . , 20 are

given in Table 3.3 on page 72.

Counting X-trees by using planted X-trees. Planted X-trees can be used to determine the

number of X-trees. But before doing so, we need two further types of trees.

DeVnition 3.22. An X-tree is called point-rooted if a vertex is distinguished as root ρ (without

changing the assignment of the labels in X) and line-rooted if an edge is distinguished as root ρ.

Examples in Figure 3.6 illustrate point-rooted and line-rooted X-trees. In the proof of Theo-

rem 3.25 we will count the number of X-trees by subtracting the number of line-rooted X-trees

from the number of point-rooted X-trees. The following lemma will prove useful.

4Recall that for the product of two generating functions we have
(∑

n≥0 anx
n
)
·
(∑

n≥0 bnx
n
)

=∑
n≥0

∑n
k=0 anbn−kx

n (see [83, p. 36]).
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l = ψ(l)

u

· · ·

·
·
·

v = ψ(u)

Figure 3.7: A function ψ : V → V with ψ(v) = v for all leaves v and ψ(u) = v for some vertices
u, v ∈ V with u 6= v can not be a graph automorphism.

Lemma 3.23. The only graph automorphism5 ψ of an X-tree T = (T, φ) with T = (V,E)

preserving also its labeling, that is φ(x) = v ⇔ φ(x) = ψ(v) for all x ∈ X , is the identity map

ψ(v) = v for all v ∈ V .

Proof. For any vertex with at least one label and therefore in particular for all leaves, we have

ψ(v) = v. Assume there are internal vertices u, v ∈ V with u 6= v and ψ(u) = v (illustrated

in Figure 3.7). Now consider the unique path from u to v denoted by p1 and a path p2 from v to

some leaf l. We can choose p2 to be edge-disjoint with p1, because v is not a leaf and therefore

there exists an edge directed away from u. Following this edge and then any arbitrary path until

a leaf is reached, is a valid construction for p2. We now have two paths of diUerent lengths: p1

concatenated with p2 results in a path between l and u, and p2 is a path between ψ(l) = l and

ψ(u) = v. This is a contradiction to ψ being an isomorphic map between trees because a path

between two vertices in a tree is unique.

DeVnition 3.24. The set of (unrooted) X-trees with n = |X| is denoted by Un and un := |Un|
number of these trees. By un,m we denote the number ofX-trees withm = |V | vertices. The ac-
cording EGF and BGF are denoted byU(x) =

∑
n≥1 un

xn

n! andU(x, y) =
∑

n≥1
∑

m≥1 un,m
xnym

n! ,

respectively.

Theorem 3.25. The number un,m ofX-trees with |X| = n andm vertices has the BGF U(x, y) =∑
n≥1

∑
m≥1 un,m

xnym

n! and the EGF U(x) =
∑

n≥1 un
xn

n! , for which the following equations

hold

U(x, y) = P (x, y)− (1 + y)
P (x, y)2

2
(3.19)

U(x) = P (x)− P (x)2.

5A graph automorphism of a graph G = (V,E) is a bijective map ψ : V → V preserving the graph structure, that
is {v, u} ∈ E ⇔ {ψ(v), ψ(u)} ∈ E for all v, u ∈ V .
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Furthermore u1 = 1 and for n ≥ 2

un = 2pn−1. (3.20)

Proof. Consider an arbitrary (unrooted) X-tree T with m vertices and n = |X|. m point-

rooted X-trees can be obtained from T , because there are m possible vertices in T to place ρ.

Lemma 3.23 implies that these m point-rooted X-trees are pairwise distinct6. In the same way

m−1 line-rootedX-trees can be obtained from T , because there arem−1 edges to place ρ, and

again they are distinct because of Lemma 3.23. This allows us to count the number of unrooted

X-trees by counting the number of point-rooted X-trees and then subtracting the number of

line-rooted X-trees.

Each point-rooted X-tree corresponds to exactly one planted X-tree except the case where

the root of the point-rootedX-tree has degree 2. In this case the root of the point-rooted X-tree

has to be labeled, but the vertex adjacent to the root of the corresponding planted X-tree does

not have to be labeled necessarily. Hence, in order to count the number of point-rooted X-trees,

we have to count planted X-trees and remove the number of planted X-trees, where the vertex

adjacent to the root has no label and has exactly 2 child vertices, which leads to the generating

function

P (x, y)− yP (x, y)2

2
.

Each line-rooted X-tree corresponds to two planted X-trees connected at their roots. Thus, the

number of line-rooted X-trees is given by the generating function

P (x, y)2

2
.

In total this yields

U(x, y) = P (x, y)− (1 + y)
P (x, y)2

2
.

By setting y = 1 we get

U(x) = P (x)− P (x)2, (3.21)

where U(x) =
∑

n≥1 un
xn

n! is the EGF for the number un of X-trees with |X| = n. By diUer-

entiation and use of (3.18) one gets

U ′(x) = 1 + 2P (x).

6Recall that counting trees actually means to determine the number of isomorphism classes of trees of the considered
type. Therefore distinct is used synonymously with not isomorphic.
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Extracting the coeXcient of xn−1

(n−1)! yields u1 = 1 and for n ≥ 2

un = 2 · pn−1.

Together with (3.12) in Theorem 3.21 this enables us to compute values for un (see Table 3.3 on

page 72 for values for n = 1, . . . , 20).

The number of rooted X-trees. Foulds and Robinson [33] focus on counting the number of

unrootedX-trees and introduce planted, point-rooted, and line-rootedX-trees only to use them

as tools. Nevertheless, in the same way we can derive easily the number rn of rooted X-trees in

the sense of DeVnition 2.2. (This case was not covered by Foulds and Robinson [33].)

DeVnition 3.26. The number of rootedX-trees with |X| = n andm vertices is denoted by rn,m,

the BGF by R(x, y) =
∑

n≥0
∑

m≥0 rn,m
xnym

n! and the EGF by R(x) =
∑

n≥0 rn
xn

n! .

Theorem 3.27. The BGF R(x, y) and the EGF R(x) satisfy the following equations

R(x, y) = P (x, y) + yP (x, y),

R(x) = 2 · P (x).

Furthermore for n ≥ 1

rn = 2 · pn = un+1.

Proof. Each rooted X-tree can be constructed either from a planted X-tree by merging ρ and

the vertex adjacent to ρ (assigning also its labels) or from a planted X-tree and an additional

vertex without labels as root of the rooted X-tree. The latter case corresponds to rooted X-trees

where ρ has degree 1 and no labels from X are assigned to it (note that we deVned for rooted

phylogenetic trees that ρ has to have at least degree 2, but in the case of X-trees ρ can have an

arbitrary degree and does not need to be labeled). Figure 3.5 makes this correspondence more

clear. In all three cases a rooted X-tree can be obtained, but in Figure 3.5b the vertex adjacent

to the root of the planted X-tree has to be labeled while the root vertex in the corresponding

X-tree does not need a label necessarily. So we have to add trees of the type illustrated in 3.5b

where the vertex adjacent to the root is not labeled.

68



3.1 Tree counting

The number of planted X-trees has the BGF P (x, y) while a single vertex without labels has

the BGF x0y. Thus, in total we have

R(x, y) = P (x, y) + yP (x, y)

R(x) = 2 · P (x)

and therefore using (3.20) in Theorem 3.25 for n ≥ 1

rn = 2 · pn = un+1.

Remark 3.28. The relation between rooted and unrooted X-trees can be explained also com-

binatorially, following a similar way as in Section 3.1.3. Given any unrooted X ′-tree with

X ′ = {1, 2, . . . , n, n+ 1} a rooted X-tree with X = {1, 2, . . . , n} is constructed by root-

ing the tree at the vertex φ(n+ 1) and removing the label n+1 (note that the root does not need

to be labeled necessarily also if it has degree less than 3). This describes a map from unrooted

X ′-trees with |X ′| = n+ 1 to the rooted X-trees with |X| = n. Clearly, there exists an inverse

map and therefore the map is bijective and we have rn = un+1.

Mean and variance. In the following section for each n ≥ 1 the mean µn and the variance

σ2n for the number of vertices of a random X-tree with a label set of size n will be determined.

Theorem 3.29. The mean µn of the number of vertices in a random X-tree with |X| = n under

uniform distribution on Un is given by µ1 = 1 and for n ≥ 2

µn =
1
2pn + pn−1

un
.

The variance σ2n of the number of vertices in a randomX-tree with |X| = n is given for all n ≥ 1

by

σ2n =
an
un

+ µn − µ2n,

where a0 = 0, a1 = 0 and for n ≥ 2

an = pn − 2pn−1 +

n−1∑
k=1

(
n

k

)
pnan−k.
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Proof. It is a well-known fact that the mean and variance can be found by use of the bivariate

generating function and its derivatives as follows (see also Section 2.4 and [27, p. 158f.])

µn =
[xn]Uy(x, 1)

[xn]U(x, 1)
(3.22)

σ2n =
[xn]Uyy(x, 1) + Uy(x, 1)

[xn]U(x, 1)
− µ2n, (3.23)

where [xn]U(x, 1) = [xn]U(x) = 1
n! · un. In the following we will deduce recursive formulas

from the generating functions U(x, y) and P (x, y) in order to compute these quantities.

DiUerentiation of (3.19) and (3.11) with respect to y and using (3.11) again to eliminate the

exponential yields

Uy(x, y) = Py(x, y)− P (x, y)2

2
− (1 + y)P (x, y) · Py(x, y)

Py(x, y) = ex+P (x,y) − P (x, y)− 1︸ ︷︷ ︸
=
P (x,y)
y

+ y ·
(
ex+P (x,y)Py(x, y)− Py(x, y)

)
︸ ︷︷ ︸

=Py(x,y)·P (x,y)·(y+1)

=
P (x, y)

y
+ (y + 1) · P (x, y) · Py(x, y) (3.24)

and these two equations together simplify to

Uy(x, y) =
P (x, y)

y
− P (x, y)2

2
. (3.25)

Now again, diUerentiating with respect to y and using (3.24) in the form y·Py(x, y) = P (x,y)
1−(y+1)P (x,y)

yields

Uyy(x, y) =
Py(x, y)y − P (x, y)

y2
− P (x, y)Py(x, y)

=
1

y2
·
(

P (x, y)

1− (y + 1)P (x, y)
− P (x, y)− yP (x, y)

1− (y + 1)P (x, y)

)
=

P (x, y)2

y2(1− (y + 1)P (x, y))
. (3.26)

The derivatives of U(x, y) in (3.25) and (3.26) allow us to determine the mean and the variance.

By setting y = 1 in (3.25) and by using (3.12) in the form 1
2

∑n−1
k=1

(
n
k

)
pkpn−k = 1

2pn − pn−1 we
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3.1 Tree counting

Vnally have a formula for the mean µn from (3.22), namely µ1 = 1 and for n ≥ 2

µn =
n! · [xn]P (x)− 1

2P (x)2

un
=
pn − 1

2

∑n−1
k=1

(
n
k

)
pkpn−k

un
=

1
2pn + pn−1

un
. (3.27)

In order to determine a formula for the variance σ2n, set y = 1 in (3.26) and denote the resulting

EGF by A(x) which yields

Uyy(x, 1) =
P (x)2

1− 2 · P (x)
=: A(x).

Further denote its coeXcients by an := n![xn]A(x). Using the formA(x) = P (x)2+2P (x)A(x)

and again (3.12) as previously, yields a0 = 0, a1 = 0 and for n ≥ 2

an = pn − 2pn−1 + 2
n−1∑
k=1

(
n

k

)
pnan−k.

From (3.23) we get for the variance σ2n gives for n ≥ 1

σ2n =
an
un

+ µn − µ2n, (3.28)

where an, un and µn can be computed as previously stated.

Asymptotic analysis. Asymptotic results for the sequences under consideration can be deter-

mined by applying Theorem 3.15 to the equation for the EGF P (x) in (3.17). With the terminol-

ogy of Theorem 3.15 we have

G(z, w) = ez+w − w − 1

= −w +
∑
n≥1

(z + w)n

n!

= −w +
∑
n≥1

1

n!

n∑
k=0

(
n

k

)
zkwn−k.

Hence, g0,0 = 0, g0,1 = 0 6= 1, g0,2 = 1
2 > 0 and gm,n ≥ 0. Furthermore, from Gw(s1, s2) =

es1+s2 − 1 = 1 follows ln 2 = s1 + s2, and therefore with G(s1, s2) = es1+s2 − s2 − 1 = s2

we have s2 = 1
2 and s1 = ln 2 − 1

2 . Thus, the conditions of Theorem 3.15 are fulVlled and the
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n pn un µn σ2n

1 1 1 1. 0.
2 4 2 1.5 0.25
3 32 8 2.5 0.75
4 416 64 3.75 1.1875
5 7552 832 5.03846 1.57544
6 176128 15104 6.33051 1.95856
7 5018624 352256 7.62355 2.34084
8 168968192 10037248 8.91706 2.72267
9 6563282944 337936384 10.2108 3.10424
10 288909131776 13126565888 11.5047 3.48565
11 14212910809088 577818263552 12.7988 3.86697
12 772776684683264 28425821618176 14.0929 4.24822
13 46017323176296448 1545553369366528 15.387 4.62942
14 2978458881388183552 92034646352592896 16.6812 5.01058
15 208198894960190160896 5956917762776367104 17.9754 5.39172
16 15631251601179130462208 416397789920380321792 19.2696 5.77283
17 1254492810303112820555776 31262503202358260924416 20.5639 6.15393
18 107174403941451434687463424 2508985620606225641111552 21.8581 6.53502
19 9711022458989438255300083712 214348807882902869374926848 23.1524 6.91609
20 930186224000428248807155695616 19422044917978876510600167424 24.4467 7.29715

Table 3.3: The number of planted X-trees pn, the number of X-trees un and the mean µn and
the variance σ2n of the number of vertices of an X-tree where n = |X|. The values
were computed with Mathematica by means of the deduced recursive formulas (see
Section A.2). Note that the second column contains also values for rn because rn−1 =
un for n ≥ 2.

following asymptotic expression for the number pn of planted trees holds

pn
n!
∼

√
ln 2− 1

2

2π
· n− 3

2 ·
(

ln 2− 1

2

)−n
.

By use of (3.20) we have

un
n!

=
2

n

pn−1
(n− 1)!

∼ 2 ·

√
ln 2− 1

2

2π
· n− 5

2 ·
(

ln 2− 1

2

)−n+1

and

rn
n!

=
2 · pn
n!
∼ 2 ·

√
ln 2− 1

2

2π
· n− 3

2 ·
(

ln 2− 1

2

)−n
.
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These results coincide with the Vndings in [33, p. 116U.] where Theorem 3.15 was not used.

3.2 Expected parsimony score

In Section 2.2 the parsimony score of a character χ : X → C on a phylogenetic tree with label

set X was introduced as the changing number of a minimum character extension for χ

l(χ, T ) = min
χ

ch(χ).

In this section the expected parsimony score for a random character on a Vxed tree and the

expected parsimony score for a Vxed character on a random tree will be determined as it is done

in [63, chap. 5.6].

Random characters on a Vxed tree. In Section 2.3 Markov models on phylogenetic trees

were presented. This is one natural way to deVne a probability distribution on the set of possible

character extensions for a given rooted phylogenetic tree. At the same time also a probability

distribution on the set of characters is induced, since a character can be considered as a equiv-

alence class of character extensions. In this section a diUerent way will be followed to obtain a

probability distribution for random characters, namely simply a uniform distribution on the set

of all |C||X| characters. We follow here the approach of Semple and Steel [63, chap. 5.6].

DeVnition 3.30. Let T = (T, φ) be a phylogenetic tree with label set X and χ : X → C a

random character on T , where the values χ(x) ∈ C for x ∈ X are independent and uniformly

distributed. The random variable given by the parsimony score of χ is denoted by Lr(T ) for

r = |C|.

Note that Lr(T ) only depends on the number of states |C| = r but not on C itself. For binary

phylogenetic trees and r = 2 a closed form expression forLr(T ) can be established. Surprisingly,

this expression is independent from T and depends only on the number of labels |X| as will be
shown in Theorem 3.33. To prove the theorem another deVnition and a lemma are helpful.

DeVnition 3.31. Let T = (T, φ) be a binary phylogenetic tree with label set X and |X| ≥
3. The trees T ′ and T ′′ are obtained from T in the following way (Figure 3.8 illustrates this

construction). Let x, y ∈ X such that φ(x) and φ(y) form a cherry in T . To obtain the tree T ′

remove the vertex φ(x) from T and its attached edge and suppress all vertices of degree 2. T ′ is

73



Chapter 3 Enumeration problems concerning phylogenetic trees

φ(x)

φ(y)

S2

S1

T

S2S1

T ′′

φ(y)

S2

S1

T ′

Figure 3.8: T ′ and T ′′ are obtained from T as described in DeVnition 3.31. This Vgure illustrates
the case |X| ≥ 4 (the Vgure is inspired by [63, Vg. 5.9,p. 103]).

the phylogenetic tree
(
T ′, φ|X\{x}

)
with label set X \ {x}. T ′′ is obtained from T ′ in the same

way be removing φ(y) and its attached edge and by suppressing all vertices of degree 2.

Note that for any phylogenetic tree T = (T, φ) with label set X and |X| ≥ 3 there exist

x, y ∈ X such that φ(x) and φ(y) form a cherry in T (see [63, prop. 1.2.5, p. 8]).

Lemma 3.32. For a binary phylogenetic tree T with label set X and |X| ≥ 3 and for T ′ and T ′′

as in DeVnition 3.31 the probability distribution of L2(T ) satisVes the recursive formula

P(L2(T ) = k) =
1

2
P
(
L2

(
T ′
)

= k
)

+
1

2
P
(
L2

(
T ′′
)

= k − 1
)
.

Proof. Let x, y ∈ X as in DeVnition 3.31 and let χ be a random character as in DeVnition 3.30

with r = |C| = 2. By applying the law of total probability we get

P(L2(T ) = k) = P(E) · P(L2(T ) = k|E) + P(¬E) · P(L2(T ) = k|¬E),

whereE denotes the probability event {χ(x) = χ(y)}. Since the values of χ are independent and

uniformly distributed, we have P(E) = P(¬E) = 1
2 . Furthermore, given that E occurs, we have

l(χ, T ) = l
(
χ|X\{x}, T ′

)
, and given that ¬E occurs, we have l(χ, T )− 1 = l

(
χ|X\{y,x}, T ′′

)
.

Therefore P(L2(T ) = k|E) = P(L2(T ′) = k) and P(L2(T ) = k|¬E) = P(L2(T ′′) = k − 1),

which completes the proof.

This lemma allows to express the probability distribution of L2(T ) for binary phylogenetic

trees explicitly and to determine the mean and the variance.

Theorem 3.33. Let T be a phylogenetic binary tree with label set X 6= ∅ and n = |X| the
number of labels.
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3.2 Expected parsimony score

(i) The probability distribution of the random variable L2(T ) depends only on n and is given

by

P(L2(T ) = k) =


2n−3k
k

(
n−k−1
k−1

)
2k−n, if 1 ≤ k ≤ n

2 ,

21−n, if k = 0,

0, otherwise.

(ii) The mean µn = E(L2(T )) and the variance σ2n = V(L2(T )) are given by

µn =
1

9

(
3n− 2−

(
−1

2

)n−1)
∼ n

3

and

σ2n =
1

81

(
6n+ 2− (6n+ 1) ·

(
−1

2

)n−1
−
(
−1

2

)2n−2
)
∼ 2n

27
.

Proof. First we want to prove that L2(T ) depends only on n by induction. If n ≤ 2, the random

variable L2(T ) is obviously independent of T since there is only one possible tree T with n

leaves for each n = 1, 2. Now assume L2(T1) = L2(T2) for any two trees with m < n leaves.

Then, by Lemma 3.32 we have also L2(T1) = L2(T2) for two trees with n leaves. Hence, L2(T )

depends only on n and it makes sense to deVne ln,k := P(L2(T ) = k) for all k ≥ 0 and some

arbitrary representative T with n labels. Furthermore denote by

L(x, y) :=
∑
n≥1

∑
k≥0

ln,kx
nyk

the according BGF and by L3(x, y) :=
∑

n≥3
∑

k≥0 ln,kx
nyk the BGF for n ≥ 3. If n = 1

clearly l(χ, T ) = 0 and if n = 2 we have l(χ, T ) = 0 or l(χ, T ) = 1, each with probability 1
2 .

Hence, we have

L(x, y) = x+
1

2
x2 +

1

2
x2y + L3(x, y). (3.29)

From Lemma 3.32 follows

ln,k =
1

2
ln−1,k +

1

2
ln−2,k−1

and therefore

L3(x, y) =
1

2
x(L(x, y)− x) +

1

2
x2yL(x, y).
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Together with (3.29) this yields

L(x, y) = x+
1

2
x2y +

1

2
xL(x, y) +

1

2
x2yL(x, y).

Solving this equation for L(x, y) gives an explicit expression for the BGF of ln,k

L(x, y) =
x+ 1

2x
2y

1− 1
2x− 1

2x
2y
.

To get the coeXcients ln,k =
[
xnyk

]
L(x, y), Vrst determine the coeXcients of the denominator

of L(x, y) with the help of the identity (1−A)−1 =
∑

i≥0A
i and the binomial theorem

[
xnyk

](
1−

(
1

2
x+

1

2
x2y

))−1
=

∑
i≥0

[
xnyk

] 1

2i
xi(1 + xy)i =

=
∑
i≥0

[
xnyk

] 1

2i
xi

i∑
j=0

(
i

j

)
xjyj

=

(
n− k
k

)
· 1

2n−k
. (3.30)

Then one has for n ≥ 2 and k ≥ 1

[
xnyk

]
L(x, y) =

[
xnyk

] x

1− 1
2x(1 + xy)

+
[
xnyk

]1

2

x2y

1− 1
2x(1 + xy)

=
[
xn−1yk

] 1

1− 1
2x(1 + xy)

+
1

2

[
xn−2yk−1

] 1

1− 1
2x(1 + xy)

.

With (3.30) this yields

[
xnyk

]
L(x, y) =

(
n− k − 1

k

)
1

2n−1−k
+

1

2

(
n− k − 1

k − 1

)
1

2n−1−k

=
1

2n−k

(
n− k − 1

k − 1

)(
2(n− 2k)

k
+ 1

)
.

If k = 0, all states of χ are equal and therefore P(L2(T ) = 0) = 2
2n = 21−n, which completes

the proof of (i).
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In oder to determine µn and σ2n we make use of (see Section 2.4 and [27, p. 158f.])

µn = [xn]Ly(x, 1)

σ2n = [xn]Lyy(x, 1) + µn − µ2n.

Note that it is not necessary to divide through L(x, 1), because the coeXcients of L(x, y) are

probabilities and L(x, y) is not a generating function of a counting sequence. The claimed results

for µn and σ2n then can be established in a similar way (e.g. by partial fraction decomposition

and the generalized binomial theorem).

A Vxed character on a random tree. If χ : X → C is a character on X with state set C ,

|C| = r and k ∈ N, in general the enumeration problem, how many trees T with l(χ, T ) = k

exist, is unsolved (see [75]). However, there are results by Carter et al. [9] for two special cases

(see also [75] and [63, p. 105U.]). Results for other special cases are summarized in [75].

DeVnition 3.34. Let C = {α1, . . . , αr} be a set of character states with r ≥ 2, X a set of labels

and χ : X → C a character on X . For i ∈ {1, 2, . . . , r} let denote ai :=
∣∣χ−1(αi)∣∣ the number

of labels with state αi. Then pl(a1, a2, . . . , ar) denotes the probability that l(χ, T ) = l, where

T is a (unrooted) binary phylogenetic tree selected uniformly from all binary phylogenetic trees

with label set X .

In the Vrst solved special case the character is binary, that is r = 2, and in the second case we

have l = r − 1.

Theorem 3.35. Let r = 2 and let χ be a character as in the previous deVnition. The probability

that l(χ, T ) = l is given by

pl(a1, a2) = 2l · (2n− 3l)(2a1 − l − 1)!(2a2 − l − 1)!(n− l)!
(a1 − l)!(a2 − l)(l − 1)!(2n− 2l)!

.

A proof can be found in Carter et al. [9]. A diUerent proof was given by Steel [73] and reVned

by Erdős and Székely [20].

Theorem 3.36. For a1, . . . , ar as in the previous deVnition, the probability that l(χ, T ) = r − 1

is given by

pr−1(a1, . . . , ar) =
1

bn−r+1

r∏
i=1

bai ,

77



Chapter 3 Enumeration problems concerning phylogenetic trees

Figure 3.9: Illustration of the isomorphism classes [Ti]∼= of B and their correspondence to Otter
trees Ti ∈ O, where i = 1, . . . , 5.

where bn is the number of rooted binary phylogenetic trees with n leaves (see Theorem 3.2).

A proof is given in [9] and in [63, p. 104f.].

3.3 Isomorphism between phylogenetic trees

In this section the probability pn, that two random rooted binary phylogenetic trees are isomor-

phic, will be determined as it was done by Bóna and Flajolet [6]. We will deVne isomorphism

between phylogenetic trees by ignoring their labels and comparing only their tree shapes.

DeVnition 3.37. Two phylogenetic trees T1 = (T1, φ1) and T2 = (T2, φ2) are isomorphic, de-

noted by T1 ∼= T2, if they share the same tree shape, i.e. if T1 and T2 are equal7.

Hence, each isomorphism class [T ]∼= of a phylogenetic tree T corresponds to an unlabeled

unordered tree T . If the phylogenetic trees T are rooted and binary, also the corresponding trees

T are rooted and binary, also called Otter trees.

7Recall that we speak of equal or identical graphs if they are isomorphic. Two graphs G1 = (V1, E1) and G2 =
(V2, E2) are isomorphic, if there is a bijective map ψ : V1 → V2, with {u, v} ∈ E1 ⇔ {ψ(u), ψ(v)} ∈ E2 and
in the case of rooted trees ψ(ρ1) = ρ2 for the root ρ1 of G1 and the root ρ2 of G2.
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DeVnition 3.38 (Otter trees). The set of unlabeled and unordered rooted binary trees with n

leaves is denoted by On and O := ∪n≥1On. Furthermore let on := |On| be their counting

sequence and O(z) =
∑

n≥1 onz
n the according OGF8.

The sequence on is also referred to as the Wedderburn-Etherington numbers and listed as

A001190 in [64]. The OGF O(z) can be obtained by the symbolic method in the following way.

Every Otter tree has either only one vertex or can be constructed by connecting two Otter trees

to a new vertex, which is the root vertex of the resulting tree. Since Otter trees are unordered,

each such tree corresponds to a multiset of two of its kind

O = Z + MSet2(O).

The unlabeled MSet2-operator translates in the following way to a OGF (see Section e(2.4) and

[27, Vg. I.18, p. 93])

O(z) = z +
1

2

(
O(z)2 +O

(
z2
))
. (3.31)

A bivariate generating function. The desired probability pn now can be described as the

probability that two rooted binary phylogenetic trees T1, T2 ∈ Bn are both in the same isomor-

phism class. Since we know already bn (see Section 3.1.1), we need to determine the size of each

isomorphism class. To do so, we Vrst introduce the term symmetry vertex (see [63, sect. 2.4]) and

then express the probability pn in terms of the coeXcients of a BGF.

DeVnition 3.39. Let T be an Otter tree. An internal vertex v ∈ V (T ) is called symmetry vertex,

if the two subtrees of T rooted at v are identical. sym(T ) denotes the number of symmetry

vertices v ∈ V (T ).

The next lemma describes the number of labelings of the leaves of an Otter tree.

Lemma 3.40. Let T be an Otter tree with n leaves. The number of diUerent rooted (binary)

phylogenetic trees T = (T, φ) for the Vxed tree T and φ : {1, . . . , n} → V (T ) being a label

map, i.e. the number of leaf labelings for the tree T , is given by

w(T ) =
n!

2sym(T )
. (3.32)

w(T ) equals also the size of the isomorphism class of B corresponding to T (see Figure 3.9).

Furthermore summation over all Otter trees with n leaves, gives the number of rooted binary
8O(z) is the OGF for Otter trees and should not to be confused with the Landau notation O(. ), which will not be
used in this section.
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phylogenetic trees ∑
T∈On

n!

2sym(T )
=
∑
T∈On

w(T ) = bn = (2n− 3)!!. (3.33)

While (3.32) is stated without proof in [6], in [63, sect. 2.4] it is shown with the help of the

Burnside’s Lemma. But for this simple case it might be easier to follow a more direct reasoning.

Proof of Lemma 3.40. Let T be an Otter tree with n leaves. Clearly, for n = 1 the equality in

(3.32) is true. Assuming (3.32) holds for all Otter trees T ′ with less than n leaves, we conclude

that (3.32) holds for T in the following way. T has subtrees T1 and T2 rooted at the root of T ,

because n > 1. If k ≥ 1 is the number leaves in T1, we have

w(T ) =
1

2sρ

(
n

k

)
w(T1)w(T2) =

n!

2sym(T1)+sym(T1)+sρ

and sym(T1) + sym(T2) + sρ = sym(T ), where sρ = 1 if T1 = T2 and sρ = 0 otherwise.

The second equality in (3.33) follows from DeVnition 3.1 and is illustrated in Figure 3.9. The

third equality in (3.33) is Theorem 3.2.

DeVnition 3.41. The BGF of all Otter trees counting their leaves and their symmetry vertices is

denoted by

F (z, u) :=
∑
T∈O

usym(T )z|T |,

where |T | denotes the number of leaves in T .

Lemma 3.42. The BGF F (z, u) is given implicitly by

F (z, u) = z +
1

2
F (z, u)2 +

(
u− 1

2

)
F
(
z2, u2

)
.

Proof. Let T ∈ On. If n = 1, there is only one Otter tree T and sym(T ) = 0, hence

F (z, u) = z + higher terms.

If n ≥ 2, T consists of a root vertex and the subtrees T1 and T2. As already used in the proof of

the previous lemma, the number of symmetry vertices is then given by

sym(T ) =

sym(T1) + sym(T2) + 1, if T1 = T2,

sym(T1) + sym(T2), otherwise.
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T is constructed by its two subtrees T1 and T2. However, the MSet2-operator is not directly

applicable9 as it was possible for the OGF O(z), but a similar result is obtained in the following

way. Consider Vrst the number of ordered pairs (T1, T2), where the two trees T1 and T2 have n

leaves and k symmetry vertices in total, which is given by
[
ukzn

]
F (z, u)2. We Vrst count the

number of Otter trees with diUerent subtrees, so we have to subtract the number of ordered pairs

(T1, T2) with T1 = T2. The number of ordered pairs (T1, T1) with n leaves and k symmetry

vertices in total is given by
[
ukzn

]
F
(
z2, u2

)
. Hence,

1

2

(
F (z, u)2 − F

(
z2, u2

))
(3.34)

is the BGF of Otter trees with two diUerent subtrees T1 6= T2, because the trees are unordered

and therefore we get every tree twice when counting the ordered pairs (T1, T2), where T1 and

T2 are diUerent. It remains to count the Otter trees with identical subtrees. If T has the subtrees

T1 = T2 and Ti has n leaves and k symmetry vertices, where i = 1, 2, then T has 2n leaves and

2k + 1 symmetry vertices, i.e. the BGF to count such trees is given by

uF
(
z2, u2

)
. (3.35)

Summation of (3.34) and (3.35) yields the claimed result.

F (z, 1) equals the OGF O(z) for Otter trees already given in (3.31). If one sets u = 1
2 , one

gets the EGF B(z) as already stated in (3.2) on page 49

F

(
z,

1

2

)
=
∑
T∈O

1

2sym(T )
z|T | =

∑
n≥1

∑
T∈On

1

2sym(T )
zn =

∑
n≥1

bn
n!
zn = B(z),

where (3.33) is used for the last equality. Surprisingly F
(
z, 14
)
can be used to determine the

probability pn.

Theorem 3.43. For n ≥ 2 the probability that two rooted binary phylogenetic trees selected

uniformly from Bn are isomorphic, is given by

pn =
∑
T∈On

w(T )2

b2n
=

(
n!

(2n− 3)!!

)2

· [zn]F

(
z,

1

4

)
.

9The parameter sym(. ) is not inherited in the sense of [27, sect. III.3.2], because in general sym(T ) = sym(T1) +
sym(T2) does not hold as we have seen.
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Proof. There are b2n possibilities to choose a ordered pair (T , T ′) of trees T , T ′ ∈ Bn. In

w(T )2 of these possibilities both trees T and T ′ are of shape T , i.e. T = (T, φ) and T ′ =

(T, φ′), because w(T ) is the size of the isomorphism class corresponding to T (see Figure 3.9

and Lemma 3.40), hence, there are w(T )2 pairs (T , T ′) with T and T ′ being elements of this

isomorphism class. Therefore the probability pn is given by

pn =
∑
T∈On

w(T )2

b2n
=

(
n!

(2n− 3)!!

)2

·
∑
T∈On

1

4sym(T )
,

where Lemma 3.40 is used for the second equality. And Vnally, by DeVnition 3.41 we have∑
T∈On

1
4sym(T ) = [zn]F

(
z, 14
)
, which completes the proof.

Asymptotic results. In Theorem 3.43 the probability pn was expressed in terms of the coeX-

cients of zn in the power series

G(z) := F

(
z,

1

4

)
. (3.36)

Solving the quadratic equation in Lemma 3.42 yields with F (0, 0) = 0

F (z, u) = 1−
√

1− 2z − (2u− 1)F (z2, u2)

and therefore

G(z) = 1−
√

1− 2z − 1

2
F

(
z2,

1

16

)
. (3.37)

We are now going to determine the growth rate of the coeXcients ofG(z) to establish asymp-

totic results for the sequence pn in Theorem 3.47. For this purpose we need to determine the

location, type and number of the dominant singularities (see Section 2.4 and [27, sect. IV.4]).

Lemma 3.44. Let r be the radius of convergence of the power series expansion of G(z) in (3.36)

centered at the origin. r satisVes the following inequalities

0.4 < r < 0.625.

Proof. To prove the lower bound 0.4 < r Vrst note that the OGF of the Otter trees is a majorant

series, i.e.

[zn]G(z) = [zn]F

(
z,

1

4

)
< [zn]F (z, 1) = [zn]O(z) = on.

O(z) is known to be convergent for all |z| < 0.40269 . . . =: ro (according to [6] a proof can be
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3.3 Isomorphism between phylogenetic trees

found in [55]). Hence, also G(z) converges in a disc of radius 0.4 and 0.4 < r.

Now we want to prove the upper bound r < 0.625. From Theorem 3.43 we know, that for all

n ≥ 2

pn =
∑
T∈On

w(T )2

b2n
=

∑
T∈On w(T )2(∑
T∈On w(T )

)2 . (3.38)

Recall that on = |On| and denote the summands of
∑

T∈On w(T ) by a1 + · · · + aon . Now the

Cauchy-Schwarz inequality (see e.g. [1, lem. 6.4.9, p. 246]) can be applied to (a1, . . . , aon) ∈ Ron
and (1, . . . , 1) ∈ Ron , which yields

(1 + · · ·+ 1)︸ ︷︷ ︸
=on

·
(
a21 + · · ·+ a2on

)
> (1 · a1 + · · ·+ 1 · aon)2

and therefore with (3.38)

pn =
a21 + · · ·+ a2on

(1 · a1 + · · ·+ 1 · aon)2
>

1

on
. (3.39)

As mentioned the radius of convergence ro of the power series O(z) =
∑

n onz
n is greater

than 0.4, i.e. ro > 0.4. The radius of convergence r1/o of the power series
∑

n
1
on
zn satisVes

r1/o < 2.5, because

r1/o =
1

lim supn→∞
n

√
1
on

= lim inf
n→∞

n
√
on ≤ lim sup

n→∞
n
√
on =

1

r0
<

1

0.4
= 2.5.

Hence, (3.39) implies that also the radius of convergence rp of the power series
∑

n pnx
n satisVes

rp < 2.5. Furthermore with Theorem 3.43 and with

n!

(2n− 3)!!
=

2n−2 · (n− 2)! · n!

(2n− 3)!
≤ 2n

we have

pn =

(
n!

(2n− 3)!!

)2

· [zn]F

(
z,

1

4

)
≤ 4n[zn]F

(
z,

1

4

)
.

Therefore is r < rp
4 < 2.5

4 = 0.625.

Lemma 3.45. The dominant singularities of G(z) are isolated and of square-root type.

Proof. The radius of convergence r of the power series G(z) satisVes r < 1 as shown in
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Lemma 3.44, and therefore also r <
√
r. This implies that G′(z) := F

(
z2, 1

16

)
converges at

least for all z with |z| < √r because G′(z) is a majorant series of F
(
z, 14
)
, i.e.

[zn]G′(z) < [zn]F

(
z2,

1

4

)
and F

(
z2, 14

)
converges for all |z| < √r since by deVnition the radius of convergence of

F
(
z, 14
)

= G(z) is r. Thus, the function

G′′(z) = 1− 2z +
1

2
G′(z) = 1− 2z +

1

2
F

(
z2,

1

16

)
is analytic in the interior of a disc with radius

√
r, and considering the expression for G(z) in

(3.37) we conclude that all dominant singularities of G(z) are zeros of G′′(z) with modulus r

and therefore of square-root type. These zeros are isolated because G′′(z) is analytic in a disc

with radius
√
r and if there were not isolated zeros of G′′(z), analytic continuation would lead

to G′′(z) ≡ 0 for all z with |z| < √r.

Lemma 3.46. r ∈ R+is a dominant singularity of G(z) and it is the only dominant singularity.

Pringsheim’s Theorem (see e.g. [27, p. 240U.]) implies that r is a dominant singularity ofG(z).

A proof of the fact that r is the only dominant singularity is given in [6]. Singularity analysis

(see [27, chapt. VI]) and in particular the O-transfer (see [27, p. 390]) is used to prove that, as a

power series, G(z) converges for all z with ρ = |z|. Then using the triangle inequality one can

conclude that there cannot be a second dominant singularity.

Now by the previous lemmata the conditions for singularity analysis (as summarized in [27,

chapt. VI.4] and Section 2.4) are satisVed, and the following results can be established.

Theorem 3.47. The probability pn that two rooted binary phylogenetic trees with label setX and

n = |X| are isomorphic is asymptotically equivalent to

pn ∼ a · (4r)−n · n
3
2

(
1 +

∑
k

ck
nk

)
,

where a = 3.17508 . . ., 4r = 2.35967 . . . and the ck are computable constants.
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3.4 Other enumeration problems

In Section 3.1 we discussed the enumeration of X-trees, phylogenetic trees, and binary phy-

logenetic trees—all of them either rooted or unrooted. These are the types of trees commonly

used (e.g. in the book Phylogenetics by Semple and Steel [63]). Nevertheless, there are several

additional classes of trees which are related to phylogenetics.

In Vve articles Foulds and Robinson [29, 30, 31, 32, 33] published a complete list of results for

the size of certain classes of phylogenetic trees. They considered twelve diUerent types of trees,

which are obtained by restricting vertex degree, labeling and number of labels per leaf. Each

class either contains only trees with vertices of degree 3 or 1 (binary trees), or, of degree 1 or

greater than 2 (e. g. phylogenetic trees), or, the degree is unrestricted (X-trees). Furthermore,

either only leaves are labeled, or, internal nodes are labeled too. And last, either multiple labels

per vertex are allowed, or, labeling is restricted to at most one label per vertex. In Section 3.1.4

the enumeration of X-trees was discussed following the way presented in [33]. The results for

the other classes of trees, discussed by Foulds and Robinson [29, 30, 31, 32, 33], are obtained using

similar methods. The enumeration of binary phylogenetic trees was discussed in Section 3.1.1

and can be found also in [30], the enumeration of phylogenetic trees (Section 3.1.2) is discussed

also in [29], but we followed a slightly diUerent approach in these two sections.

In [63, sect. 2.4] the number of so-called tree shapes is discussed, that is the number of unla-

beled trees T . A tree shape is obtained by ignoring the labels of a phylogenetic tree. The number

of tree shapes can be interesting for problems concerning isomorphisms of phylogenetic trees as

studied in Section 3.3. As already mentioned, in the case of rooted binary phylogenetic trees this

is the class of unlabeled and unordered rooted binary trees, called Otter trees. The number of

such trees was Vrst studied by Otter [55]; Harding [42] discussed this class of trees particularly

with regard to phylogenetics. The number of tree shapes of rooted multifurcating phylogenetic

trees, i.e. the number of rooted unlabeled and unordered trees without vertices of degree two, is

determined in [27, p. 479, VII.23]. Trees of this type are called unlabeled hierarchies. Tree shapes

of X-trees are the rooted unordered and unlabeled trees. The number of these trees is discussed

in [27, sect. I.5.2].

Rooted phylogenetic trees deVne implicitly a chronological order of the speciation events rep-

resented by the internal vertices. If a vertex u is on the path from v to the root, the speciation

event represented by v happened after the speciation event represented by u. But this is only a

partial order since two internal nodes u, v are unrelated with respect to this order if u and v are

in diUerent subtrees of some vertex. Therefore it makes sense to extend the concept of phyloge-
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netic trees and to deVne a linear order on the set of internal vertices, which respects the given

partial order. Felsenstein [21, p. 32] wrote in 1978

“
Of particular interest would be the number of diUerent rooted trees (bifur-

cating or multifurcating) which are consistent with a set of fossil species ordered in

time, plus a certain number of contemporary species. ”Such trees are called ranked phylogenetic tree in [63, sect. 2.3] or labeled histories in [23, p. 35f.].

In [63, sect. 2.3] and [23, p. 35f.] the number of diUerent ranked phylogenetic trees for a Vxed

label set X with n = |X| is given as
n!(n− 1)!

2n−1
.

Similar to the Vrst problem considered in Section 3.2, there are also other enumeration prob-

lems on a Vxed phylogenetic tree. For example the number of convex characters χ : X → C on

a Vxed binary phylogenetic tree T with label set X is given by

c!

(c− r)!

(
2n− r − 1

r − 1

)
,

where r = |χ(X)|, c = |C| and n = |X| (see [63, p. 68]). Surprisingly, this number does not

depend on the shape of T .
As already mentioned, neighborhoods play a role for hill-climbing algorithms. The number of

trees in such neighborhoods are studied in [2, 66].

These are only a few examples—there are manymore enumeration problems concerning biomath-

ematics. Apart from that, phylogenetics is an ongoing Veld of research, and new concepts are

developed. For instance, Sanderson et al. [60] introduce so-called terraces as certain subsets of

the tree space, which leads to new enumeration problems.
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Maximum parsimony on subtrees

In this Chapter we want to illuminate a question related much closer to biology than the problems

considered in the previous chapter. Anyhow, the used mathematical methods are quite similar

and based on the same models as introduced in Chapter 2. The selection of topics in this chapter

can be considered as example how discrete mathematics is applied in the Veld of evolutionary

biology.

According to Fischer and Thatte [24] simulations by Salisbury and Kim [59] and Zhang and

Nei [85] suggest that the reconstruction accuracy of parent character states is increased when

more species are considered. But Li et al. [49] and Fischer and Thatte [24] presented counter

examples of the following form. The probability that the Fitch-Hartigan algorithm correctly

reconstructs the character state of the root of a certain phylogenetic tree for a random character

under the Nr-model is higher if the algorithm is applied only on a subset Y ⊆ X of the label

set and its induced subtree. We will discuss these examples in detail in Section 4.2. In Section 4.3

a positive result for the reconstruction accuracy of the Fitch-Hartigan algorithm under much

stronger constraints will be presented: for ultrametric binary trees the reconstruction accuracy is

at least better than guessing the character state of the root as the character state of some of the

leaves of the tree.

In section 4.4 we present some considerations and initial results concerning the generalization

of the statement from Section 4.2 for characters with more than two states. We tried to solve

this question as part of the research work for this thesis, but it turned out to be more complicated

than expected. Nevertheless, we can present some partial results, derived with help of a computer

algebra system and sketch some ideas for future work.
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4.1 Reconstruction accuracy of MP for a given tree

Li et al. [49, p. 648] introduced the reconstruction accuracy for a random character under the

Nr-model with two states. We will generalize this deVnition for characters with r = |C| ≥ 2

states.

We start with some naming conventions and other deVnitions to simplify the notation, which

we will use throughout the whole chapter. C = {α, β, γ, . . .} will always denote a set of r

distinct character states and the state αwill play a special role for the deVnition of reconstruction

accuracy. Nevertheless, we will consider characters always under the Nr-model in this chapter,

and due to the symmetry of theNr-model we could have chosen any other element of C for this

special role.

DeVnition 4.1. Let T = (T, φ) be a rooted phylogenetic tree with aMarkov process {ξv|v ∈ V (T )}
and with label set X and Y ⊆ X a subset of labels. Furthermore, denote by y the root of the

subtree TY of T induced by the leaves with labels in Y (see Figure 4.1) and χ a random character

on (TY , φ|Y ) induced by the Markov process, i.e. χ(x) = ξφ(x) for all x ∈ Y . Then MP(Y ; T )

denotes the set of character states reconstructed by the Fitch-Hartigan algorithm for the vertex y

from the character χ on (TY , φ|Y ). With the notation of Theorem 2.9 this is

ψ(y) =: MP(Y ; T ).

MP(Y ; T ) is a random variable, which depends on the random variables of the Markov pro-

cess. We are mostly interested in the probability event {MP(Y ; T ) = A} for some nonempty

set A ⊆ C of character states.

For MP(Y ; T ) we write shorter MP(Y ) if it cannot be mistaken. Furthermore, we deVne for

the Vxed state α ∈ C
P TA (Y ) := P(MP(Y ; T ) = A|ξy = α)

and

RTA(Y ) := P(MP(Y ; T ) = A|ξρ = α)

and write occasionally shorter PA(Y ) instead of P TA (Y ) and RA(Y ) instead of RTA(Y ). For

states α, β, . . ., we will write Pαβ···(Y ) instead of P{α,β,...}(Y ). Note that y depends on Y ⊆ X
and P TA (Y ) depends only on the structure of TY and the substitution probabilities of edges

e ∈ E(TY ). In addition, P TA (X) = RTA(X), because ρ is the root of TX = T and therefore

y = ρ.
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ρ

· · ·

b

TY

y

leaves labeled with elements in Y

Figure 4.1: The subtree TY induced by a subset Y ⊆ X as in DeVnition 4.1.

Throughout the whole chapter we will consider only binary phylogenetic trees (although the

deVnitions make sense also for not binary phylogenetic trees). Therefore the simpliVcation for

the Fitch-Hartigan algorithm explained in Remark 2.10 on page 27 can be applied.

DeVnition 4.2. The reconstruction accuracy for a rooted phylogenetic tree T = (T, φ) under the

Nr-model with label set X and Y ⊆ X is deVned by

RA(Y ; T ) :=
∑

A⊆C,A3α

1

|A| · P(MP(Y ; T )) = A|ξρ = α)

=
∑

A⊆C,A3α

1

|A| ·R
T
A(Y ),

where the summation is over all subsets of character states A with α ∈ A and A ⊆ C .

Note that RA(Y ; T ) is independent of the selection of the state α ∈ C due to the symmetry

of the Nr-model. Moreover, by the law of total probability it becomes clear that RA(Y ; T ) is

the probability of the event {ξρ ∈ MP(Y ; T )} ∩ B, where B is the event that the correct state
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ξρ is selected from the set MP(Y ; T ) with uniform distribution. In detail this yields

1

|MP(Y ; T )| · P(ξρ ∈ MP(Y ; T )) =

=
∑
c∈C

P(ξρ = c)︸ ︷︷ ︸
= 1
r

·
∑

A⊆C,A3c

1

|A| · P(MP(Y ; T ) = A|ξρ = c) =

∑
A⊆C,A3α

1

|A| ·R
T
A(Y ) = RA(Y ; T ).

(We write “A ⊆ C,A 3 c” to indicate a summation over all sets A with c ∈ A and A ⊆ C for a

Vxed c and “c ∈ C” to indicate a summation over all states c.)

4.2 Misleading information

Li et al. [49] quote Crisp and Cook [13, p. 127] to emphasize that intuitively one would expect

reconstruction to be easier if there are more species and therefore also more character data avail-

able:

“
If ancestral features are to be inferred from a phylogeny, a method that opti-

mizes character states over the whole tree should be used. ”However, it is possible to construct trees where this is not true as we will show in this section.

At Vrst glance it might be counterintuitive that leaving out information improves the results of

reconstruction. On the other hand, it is not surprising that it may help if a misleading species

z ∈ X is excluded, e.g. if z is very far away from ρ compared with the species in X \ {z}. This
means that the substitution probability from ρ to z is very high and therefore it is very unlikely

that one can guess the state of ρ correctly by choosing the state of z. We will prove that such a

misleading species z ∈ X can be even arbitrarily close to ρ, that is P(ξρ 6= ξz) can be arbitrarily

small. Also Li et al. [49] gave an example where RA(Y ) > RA(X) with Y ⊆ X , but without

the property that all species in X \ Y are close to the root. The following theorem and its proof

is due to Fischer and Thatte [24].

Theorem 4.3. Let X be a set of labels. For any pz with 0 < pz <
1
2 there exists a rooted binary

phylogenetic tree T under the Nr-model with character state set C = {α, β} and label set X ,

z a leaf of T and P(ξρ 6= ξz) = pz , such that z is closer to the root ρ than any other leaf (see

Figure 4.2), i.e.

pz < P(ξρ 6= ξv) (4.1)
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ρ

TY

y

z

pz

py

leaves labeled with labels in Y

Figure 4.2: Illustration of a tree with RA
(
X \

{
φ−1{z}

})
> RA(X) as in Theorem 4.3.

for any leaf v ∈ V (T ) with v 6= z and

RA
(
X \

{
φ−1(z)

})
> RA(X). (4.2)

In order to prove the theorem Fischer and Thatte [24] use the following lemma (further dis-

cussion of the convergence of these probabilities can be found in [70], a proof for the lemma was

given by Steel [72]).

Lemma 4.4. Let q ∈ R with 0 < q < 1
8 . For all n ≥ 2 let Tn be a balanced1 rooted binary tree

under the Nr-model with character state set C = {α, β} and label set Xn, where Tn is of depth

n and the substitution probability is q for each edge e ∈ E(Tn). Then P Tnα (Xn) approaches

1

2

(
1− 2q

1− 2q
+

√
(1− 8q)(1− 4q)

(1− 2q)2

)

from above as n→∞. Moreover, the above limiting value approaches 1 as q → 0.

Proof sketch of Theorem 4.3. We choose T to be the rooted phylogenetic binary tree with a sin-

gle vertex z as Vrst subtree of ρ and the tree TY as second subtree as illustrated in Figure 4.2.

Furthermore, we choose TY to be a balanced tree of height n for some n ≥ 2 as in Lemma 4.4, i.e.

(TY , φ|Y ) := Tn and therefore Y := Xn and substitution probability q for all edges e ∈ E(TY ).

By py := P(ξρ 6= ξy) we denote the substitution probability from ρ to y.

Now RA(X; T ) and RA(Y ; T ) can be expressed in terms of pz , py , P Tα (Y ), P Tβ (Y ) and

P Tαβ(Y ) (a similar task will be done detailed in the proof of Theorem 4.5 and in Remark 4.9). With

1A balanced tree of depth n is a rooted tree with exactly n edges on the path from the root to each leaf (see [24,
p. 291]).
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the resulting expressions, we can express the condition in (4.2), i.e. RA(Y ; T ) > RA(X; T ), as

(pz − py)P Tα (Y ) > (1− 2pz)P
T
αβ(Y ) + (1− pz − py)P Tβ (Y ). (4.3)

With Lemma 4.4 we can conclude that the left side of the inequality approaches pz − py and the

right side 0 as n→∞ and q → 0. Therefore, if we choose py to satisfy py < pz , then there exist

a 1
8 > q > 0 and a N ∈ N such that (4.3) is fulVlled for all n ≥ N . Furthermore (4.1) can be

expressed with help of Lemma 2.15 (details omitted)

(1− 2q)n <
1− 2pz
1− 2py

. (4.4)

The left side and the right side of (4.4) are both between 0 and 1. Now choose n suXciently large

such that (4.4) holds and additionally n ≥ N . Then all claimed properties of T are fulVlled.

4.3 A lower bound for the reconstruction accuracy

Despite the undesired and surprising results of the previous section, under much stronger con-

ditions we can prove some positive results. As already conjectured by Li et al. [49], with some

additional conditions the reconstruction accuracy is at least better than the conservation prob-

ability from the root to any leaf. This corresponds to the case where the subset Y ⊆ X in

DeVnition 4.2 consists only of a single leaf Y = {x}. This result shows also that the height of

the tree provides a lower bound for the reconstruction accuracy of the tree. The conjecture was

formally proven in [24] for characters with two states. In this section we present this proof, in the

next section the generalized statement for characters with two or more states will be discussed.

Theorem 4.5. Let T be an ultrametric rooted binary phylogenetic tree under the Nr-model with

label set X and {ξv|v ∈ V (T )} the according Markov process on T with state set C = {α, β}
and p the height of T . Then the reconstruction accuracy is not less than the conservation proba-

bility 1− p = P(ξρ = ξv) from the root to any leaf v

RA(X; T ) ≥ 1− p.

Proof. Let T = (T, φ) be a rooted binary phylogenetic tree as in the conditions of the theorem.

In addition, denote the two child nodes of ρ by y1 and y2 respectively, the subtrees of T rooted at
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ρ

p2p1

y2y1

T2T1

Y1 Y2

Figure 4.3: A rooted binary ultrametric phylogenetic tree illustrates the notation used in the proof
of Theorem 4.5.

yi by Ti and their label sets by Yi ⊆ X for i = 1, 2 (see Figure 4.3). The substitution probability

from ρ to yi shall be denoted by pi for i = 1, 2.

We will express RA(X; T ) recursively by means of p1 and p2 and probabilities of the random

variables of the nodes in T1 and T2 and then prove the claimed statement by induction. First

note that

RA(X; T ) = Pα(X) +
1

2
Pαβ(X).

We will express both Pα(X) and Pαβ(X) separately by means of Pα(Yi), Pβ(Yi), Pαβ(Yi) and

pi for i = 1, 2. Inspecting Step (ii) in the Fitch-Hartigan algorithm presented in Theorem 2.9 (see

also Remark 2.10) makes clear, that we have MP(X; T ) = {α} if and only if one of the following
three cases occurs:

MP(Y1; T ) = {α} and MP(Y2; T ) = {α}

or

MP(Y1; T ) = {α, β} and MP(Y2; T ) = {α}

or

MP(Y1; T ) = {α} and MP(Y2; T ) = {α, β}.

Therefore the event {MP(X; T ) = {α}} can be expressed by a disjoint union of intersections

of events of the form {MP(Yi; T ) = {α}} and {MP(Yi; T ) = {α, β}} and its probability by a
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sum of a product of the corresponding probabilities. These considerations lead to

Pα(X) = Rα(Y1) ·Rα(Y2)

+ Rαβ(Y1) ·Rα(Y2)

+ Rα(Y1) ·Rαβ(Y2).

By the law of total probability Rα(Yi) can be expressed as sum

Rα(Yi) = P(ξρ = ξyi)P(MP(Yi; T ) = {α}|ξρ = α, ξρ = ξyi)

+ P(ξρ 6= ξyi)P(MP(Yi; T ) = {α}|ξρ = α, ξρ 6= ξyi)

= (1− pi) · Pα(Yi) + pi · Pβ(Yi).

For the second summand we used the symmetry of the Nr-model to derive the equality

P(MP(Yi; T ) = {α}|ξyi = β) = P(MP(Yi; T ) = {β}|ξyi = α) = Pβ(Yi).

In an analogous way we Vnd the expressions Rβ(Yi) = (1− pi) · Pβ(Yi) + pi · Pα(Yi) and

Rαβ(Yi) = Pαβ(Yi). In total this yields

Pα(X) = ((1− p1) · Pα(Y1) + p1 · Pβ(Y1)) · ((1− p2) · Pα(Y2) + p2 · Pβ(Y2))

+ Pαβ(Y1) · ((1− p2) · Pα(Y2) + p2 · Pβ(Y2))

+ ((1− p1) · Pα(Y1) + p1 · Pβ(Y1)) · Pαβ(Y2).

An analogous expression for Pαβ(X) can be determined in the same way. Now the state sets

reconstructed for y1 and y2 equal either both {α, β} or one is {α} and the other one {β}. In
total we get

Pαβ(X) = Pαβ(Y1) · Pαβ(Y2)

+ ((1− p1) · Pα(Y1) + p1 · Pβ(Y1)) · ((1− p2) · Pβ(Y2) + p2 · Pα(Y2))

+ ((1− p1) · Pβ(Y1) + p1 · Pα(Y1)) · ((1− p2) · Pα(Y2) + p2 · Pβ(Y2)).

In order to simplify the expression RA(X; T ) = Pα(X) + 1
2Pαβ(X) a computer algebra system

is helpful. We deVne as abbreviation D(Y ) := RA(Y ; TY ) − P(ξv 6= ξy), where TY is the

subtree of T induced by Y ⊆ X , y is its root, and v a leaf of TY . Furthermore, we apply the
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4.4 Characters with more than two states

transformation Pi := 1 − 2pi and P := 1 − 2p, which simpliVes the expressions (we used the

same transformation previously in Lemma 2.15). It remains to show D(X) ≥ 0.

With two further equations for each i = 1, 2 it is possible to simplify the expression D(X).

Clearly Pα(Yi), Pβ(Yi) and Pαβ(Yi) sum up to 1 because the probability events form a partition

of the set of all possible outcomes, hence we have Pβ(Yi) = 1 − Pα(Yi) − Pαβ(Yi) and it is

possible to eliminate the unknown Pβ(Yi). On the other hand, with Lemma 2.15 the substitution

probability from yi to a leaf v ∈ V (Ti) can be obtained

P(ξyi 6= ξv) =
1

2

(
1− P

Pi

)
.

Therefore the conservation probability in D(Yi) can be expressed explicitly and the unknown

Pα(Yi) can be eliminated using the equation

Pα(Yi) = D(Yi)−
1

2
Pαβ(Yi) +

1

2

(
1− P

Pi

)
.

The Mathematica notebook in Section A.3 consists of the considerations made so far and a Vnal

FullSimplify command yields

4D(X) = 2 ·D(Y2)P2(1 + Pαβ(Y1)) + 2 ·D(Y1)P1(1 + Pαβ(Y2)) (4.5)

+ P · Pαβ(Y1) + P · Pαβ(Y2).

If T consists only of one single vertex ρ, clearly Pα(X) = 1, Pαβ(X) = 0 and P(ξv 6= ξρ) = 0

for a leaf v ∈ V (T ) and therefore D(X) ≥ 0 in this case. Now assume by induction that

D(Yi) ≥ 0 for i = 1, 2. Since all summands in (4.5) are nonnegative, we conclude D(X) ≥
0.

4.4 Characters with more than two states

Especially the cases with character state sets C , where r = |C| = 4 or r = |C| = 20, are

applicable in evolutionary biology because there are four nucleobases in the DNA and twenty

amino acids occur in nature (see e.g. [28, p. 43f.]). In view of this fact it would be very interesting

to generalize Theorem 4.5 to have an analogous statement also for characters allowing more than

two states. This is formulated in the following conjecture (originally due to Li et al. [49], and

partially proven by Fischer and Thatte [24] as described in the previous section).
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Chapter 4 Maximum parsimony on subtrees

Conjecture 4.6. Let T be an ultrametric rooted binary phylogenetic tree under the Nr-model

with label set X and {ξv|v ∈ V (T )} the according Markov process on T with state set C and p

the height of T . Also if |C| = r > 2, the reconstruction accuracy is not less than the conservation

probability 1− p = P(ξρ = ξv) from the root to a leaf v

RA(X; T ) ≥ 1− p.

In this section we show that a mere transfer of the proof idea of Theorem 4.5 to the case r > 2

fails to do its job. Furthermore we will present alternative approaches, which might help solving

the problem.

In the following paragraphs we will analyze the proof of Theorem 4.5 and use its notation to

denote the occurring expressions.

A possible dead end street? It suggests itself, to generalize the proof of Theorem 4.5 directly

for some Vxed r > 2. This would not solve the question for all r ≥ 2, but still could solve the

problem for interesting special cases, such as r = 4 or r = 20, by using the same arguments as in

the proof of the binary case. Unfortunately, this does not work out as expected. In the following

we describe how to generalize the proof idea of Theorem 4.5 and why we do not consider this

approach as a promising one.

The short answer is, already in the case r = 3 and r = 4 not all summands in the recursion

formula for D(X) are nonnegative. So we cannot easily conclude D(X) ≥ 0. Moreover, we

have actually found values for the unknowns such that D(X) is negative. But neither does this

disprove the conjecture nor gives it hope that a counter example can be constructed easily.

DeVnition 4.7. Let C 6= ∅ be an arbitrary Vnite set. We say that the arbitrarily chosen real

numbers PA(Yi), P and Pi for all nonempty A ⊆ C and i = 1, 2, occur as probabilities (or

shortly occur), if there exists a rooted binary ultrametric phylogenetic tree T under theNr-model,

such that PA(Yi), P and Pi are the probabilities of T as deVned in the proof of Theorem 4.5.

Example 4.8. Let C = {α, β}, Pα(Y1) := 42 and all other values arbitrarily PA(Yi) ∈ R,
P ∈ R, Pi ∈ R. Also without knowledge of the other values, obviously the probabilities PA(Yi),

P and Pi do not occur, because Pα(Y1) = 42 cannot be a probability.

Note that P , P1 and P2 are actually not probabilities, because the transformation P := 1 −
r
r−1p and Pi := 1− r

r−1pi was applied (see Lemma 2.15), but still 0 < P,Pi < 1. This example

is a simple illustration, but in general it is not easy to say, if some values occur as probabilities
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4.4 Characters with more than two states

or not. In the following we will demonstrate, why this is important for us. With r = 2 it was

possible to prove

PA(Yi) ≥ 0 ∀A,P ≥ 0, Pi ≥ 0⇒ D(X) ≥ 0. (4.6)

But if r = 3 or r = 4 it turns out that

1 ≥ PA(Yi) ≥ 0 ∀A,P ≥ 0, Pi ≥ 0 ; D(X) ≥ 0. (4.7)

We found values for PA(Yi), P and Pi, such that D(X) < 0. But this does not mean, that these

values occur as probabilities. If the implication in (4.6) does not hold for values which occur, we

can conclude that Conjecture 4.6 is false. Otherwise if it holds for all values which occur, the

conjecture is true.

In the following we will explain in detail, why the implication in (4.6) does not hold for the

case r = 3 and r = 4. We start with a general description how D(X) can be expressed for an

arbitrary r ≥ 2 in terms of the probabilities PA(Yi) of the subtrees of ρ and the probabilities

pi for i = 1, 2, following the same way as in the proof of Theorem 4.5. We will determine

D(X) for r = 3 and r = 4 and then explain (4.7) in detail. However, for r = 3 and r = 4

it would be a challenging task to compute D(X) by hand—after a FullSimplify command in

Mathematica and some further simpliVcations,D(X) is a sumwith 107 summands for r = 3 (see

Figure 4.4) and 143 summands for r = 4. Therefore, the procedure in Remark 4.9 is implemented

in Mathematica in order to compute D(X) automatically for any given r ≥ 2 (the source code

can be found in Section A.4).

Remark 4.9 (A cooking recipe for the expression D(X) for r ≥ 2). Let T , Y1, Y2, y1, y2, p1, p2
as in the proof of Theorem 4.5 (see Figure 4.3), but the number of character states r ≥ 2. First,

note that for any set of character states ∅ 6= A ⊆ C by Remark 2.10 we have the equivalence

MP(X) = A⇔

MP(Y1) ∩MP(Y2) = A, if MP(Y1) ∩MP(Y2) 6= ∅

MP(Y1)∪̇MP(Y2) = A, otherwise.

Recall that this equivalence is only valid for a binary phylogenetic tree, but for any number of

character states r ≥ 2. So, we can express the probability event {MP(X) = A} by the disjoint

union of events {MP(Y1) = A1} ∩ {MP(Y2) = A2} for all A1, A2 ⊆ C with A1 ∩ A2 = A

or A1∪̇A2 = A. Because of the Markov property {MP(Y1) = A1} and {MP(Y2) = A2} are
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independent2. Therefore in total we get

P TA (X) =
∑

A1∩A2=A

P(MP(Y1) = A1|ξρ = α) · P(MP(Y2) = A2|ξρ = α)

+
∑

A1∪̇A2=A

P(MP(Y1) = A1|ξρ = α)︸ ︷︷ ︸
=RTA1

(Y1)

·P(MP(Y2) = A2|ξρ = α)︸ ︷︷ ︸
=RTA2

(Y2)

.

We proceed with the decomposition of the summands. For i = 1, 2 by the law of total probability

one gets

RTAi(Yi) = P(MP(Yi) = Ai|ξρ = α) =

=
∑
c∈C

P(ξyi = c|ξρ = α) · P(MP(Yi) = Ai|ξρ = α, ξyi = c)

= P(ξyi = α|ξρ = α)︸ ︷︷ ︸
=1−pi

·P(MP(Yi) = Ai|ξρ = α, ξyi = α)︸ ︷︷ ︸
=PTAi

(Yi)

+
∑

c∈C\{α}

P(ξyi = c|ξρ = α)︸ ︷︷ ︸
=

pi
r−1

·P(MP(Yi) = Ai|ξρ = α, ξyi = c).

Using the symmetry of the Nr-model, for c ∈ C\{α} the probability

P(MP(Yi) = Ai|ξρ = α, ξyi = c)

can be expressed my means of P TA′(Yi) for an appropriate set A′ ⊆ C . We distinguish between

four cases:

Case 1. If α ∈ Ai and c ∈ Ai, we can simply exchange the roles of α and c using the symmetry

of the Nr-model, which yields

P(MP(Yi) = Ai|ξyi = c) = P(MP(Yi) = Ai|ξyi = α) = PAi(Yi).

Case 2. If α /∈ Ai and c /∈ Ai, again as previously the roles of α and c can be exchanged

P(MP(Yi) = Ai|ξyi = c) = P(MP(Yi) = Ai|ξyi = α) = PAi(Yi).

2To be precise, we need independence with respect to the probability measure Pξρ=α(B) := P(B|ξρ = α).
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81P1P2D(X) = −8P 2P1 + 2PP 2
1 − 12D(Y1)PP 2

1 − 8P 2P2 + 22PP1P2 − 12D(Y1)PP1P2 − 12D(Y2)PP1P2 + 28P 2P1P2 − 5P 2
1P2

+ 57D(Y1)P
2
1P2 + 3D(Y2)P

2
1P2 − 18D(Y1)D(Y2)P

2
1P2 − 16PP 2

1P2 + 42D(Y1)PP 2
1P2 + 2PP 2

2 − 12D(Y2)PP 2
2

− 5P1P
2
2 + 3D(Y1)P1P

2
2 + 57D(Y2)P1P

2
2 − 18D(Y1)D(Y2)P1P

2
2 − 16PP1P

2
2 + 42D(Y2)PP1P

2
2 + 4P 2

1P
2
2

− 24D(Y1)P
2
1P

2
2 − 24D(Y2)P

2
1P

2
2 + 63D(Y1)D(Y2)P

2
1P

2
2 − 6PP 2

1Pαβ(Y1) + 12PP1P2Pαβ(Y1) + 15P 2
1P2Pαβ(Y1)

− 9D(Y2)P
2
1P2Pαβ(Y1) + 48PP 2

1P2Pαβ(Y1)− 3P1P
2
2Pαβ(Y1) + 18D(Y2)P1P

2
2Pαβ(Y1)− 12P 2

1P
2
2Pαβ(Y1)

+ 72D(Y2)P
2
1P

2
2Pαβ(Y1)− 2PP 2

1Pαβγ(Y1) + 16PP1P2Pαβγ(Y1) + 5P 2
1P2Pαβγ(Y1)− 3D(Y2)P

2
1P2Pαβγ(Y1)

+ 16PP 2
1P2Pαβγ(Y1) + 5P1P

2
2Pαβγ(Y1) + 24D(Y2)P1P

2
2Pαβγ(Y1)− 4P 2

1P
2
2Pαβγ(Y1) + 24D(Y2)P

2
1P

2
2Pαβγ(Y1)

+ 12PP1P2Pαβ(Y2)− 3P 2
1P2Pαβ(Y2) + 18D(Y1)P

2
1P2Pαβ(Y2)− 6PP 2

2Pαβ(Y2) + 15P1P
2
2Pαβ(Y2)− 9D(Y1)P1P

2
2Pαβ(Y2)

+ 48PP1P
2
2Pαβ(Y2)− 12P 2

1P
2
2Pαβ(Y2) + 72D(Y1)P

2
1P

2
2Pαβ(Y2) + 9P 2

1P2Pαβ(Y1)Pαβ(Y2) + 9P1P
2
2Pαβ(Y1)Pαβ(Y2)

+ 36P 2
1P

2
2Pαβ(Y1)Pαβ(Y2) + 3P 2

1P2Pαβγ(Y1)Pαβ(Y2)− 15P1P
2
2Pαβγ(Y1)Pαβ(Y2) + 12P 2

1P
2
2Pαβγ(Y1)Pαβ(Y2)

+ 16PP1P2Pαβγ(Y2) + 5P 2
1P2Pαβγ(Y2) + 24D(Y1)P

2
1P2Pαβγ(Y2)− 2PP 2

2Pαβγ(Y2) + 5P1P
2
2Pαβγ(Y2)

− 3D(Y1)P1P
2
2Pαβγ(Y2) + 16PP1P

2
2Pαβγ(Y2)− 4P 2

1P
2
2Pαβγ(Y2) + 24D(Y1)P

2
1P

2
2Pαβγ(Y2)− 15P 2

1P2Pαβ(Y1)Pαβγ(Y2)

+ 3P1P
2
2Pαβ(Y1)Pαβγ(Y2) + 12P 2

1P
2
2Pαβ(Y1)Pαβγ(Y2)− 5P 2

1P2Pαβγ(Y1)Pαβγ(Y2)− 5P1P
2
2Pαβγ(Y1)Pαβγ(Y2)

+ 4P 2
1P

2
2Pαβγ(Y1)Pαβγ(Y2)− 6PP 2

1Pβ(Y1)− 24PP1P2Pβ(Y1) + 15P 2
1P2Pβ(Y1)− 9D(Y2)P

2
1P2Pβ(Y1) + 48PP 2

1P2Pβ(Y1)

+ 6P1P
2
2Pβ(Y1)− 36D(Y2)P1P

2
2Pβ(Y1)− 12P 2

1P
2
2Pβ(Y1) + 72D(Y2)P

2
1P

2
2Pβ(Y1) + 9P 2

1P2Pαβ(Y2)Pβ(Y1)

− 18P1P
2
2Pαβ(Y2)Pβ(Y1) + 36P 2

1P
2
2Pαβ(Y2)Pβ(Y1)− 15P 2

1P2Pαβγ(Y2)Pβ(Y1)− 6P1P
2
2Pαβγ(Y2)Pβ(Y1)

+ 12P 2
1P

2
2Pαβγ(Y2)Pβ(Y1)− 24PP1P2Pβ(Y2) + 6P 2

1P2Pβ(Y2)− 36D(Y1)P
2
1P2Pβ(Y2)− 6PP 2

2Pβ(Y2) + 15P1P
2
2Pβ(Y2)

− 9D(Y1)P1P
2
2Pβ(Y2) + 48PP1P

2
2Pβ(Y2)− 12P 2

1P
2
2Pβ(Y2) + 72D(Y1)P

2
1P

2
2Pβ(Y2)− 18P 2

1P2Pαβ(Y1)Pβ(Y2)

+ 9P1P
2
2Pαβ(Y1)Pβ(Y2) + 36P 2

1P
2
2Pαβ(Y1)Pβ(Y2)− 6P 2

1P2Pαβγ(Y1)Pβ(Y2)− 15P1P
2
2Pαβγ(Y1)Pβ(Y2)

+ 12P 2
1P

2
2Pαβγ(Y1)Pβ(Y2)− 18P 2

1P2Pβ(Y1)Pβ(Y2)− 18P1P
2
2Pβ(Y1)Pβ(Y2) + 36P 2

1P
2
2Pβ(Y1)Pβ(Y2)

Figure 4.4: An expression forD(X) in the case r = 3 analogous to equation (4.5), computed with
the Mathematica notebook in Section A.4.

Case 3. If α /∈ Ai and c ∈ Ai, we can use the set A′ = (Ai\{c})∪{α} to express the probability

P(MP(Yi) = Ai|ξyi = c) = P(MP(Yi) = (Ai\{c}) ∪ {α}|ξyi = α)

= P(Ai\{c})∪{α}(Yi).

Case 4. If α ∈ Ai and c /∈ Ai, we can use the set A′ = (Ai\{α})∪{c} to express the probability

P(MP(Yi) = Ai|ξyi = c) = P(MP(Yi) = (Ai \ {α}) ∪ {c}|ξyi = α)

= P(Ai\{α})∪{c}(Yi).

This allows RTAi(Yi) to be expressed as sum of probabilities PA′(Yi) for appropriate sets A′ ⊆ C
multiplied with 1 − pi or pi

r−1 . In total PA(X) can be expressed as sum of products of P TA′(Yi),

1− pi or pi
r−1 for i = 1 or i = 2. This completes the cooking recipe for the expression D(X).

The Mathematica notebook in Section A.4 computes D(X) as explained in the previous re-

mark. The resulting expression for r = 3 is displayed in Figure 4.4. In the binary case we then

concluded, that D(X) ≥ 0 because all summands are nonnegative. However, if r = 3 or r = 4

there are negative summands (see Figure 4.4 for the case r = 3) and in addition Table 4.1 gives

values for r = 3, where D(X) < 0. But we do not know if there is a phylogenetic tree with

such probabilities, i.e. if these values do occur in the sense of DeVnition 4.7, and if they do how
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to construct such a phylogenetic tree. The following lemma lists further properties of occurring

probabilities as we did already in Example 4.8 for the obvious property, that for all occurring

probabilities 0 ≤ Pα(Yi) ≤ 1 holds.

Lemma 4.10. Let T be a rooted binary phylogenetic tree as in Conjecture 4.6 and PA(Yi), P , Pi

for ∅ 6= A ⊆ C and i = 1, 2 probabilities as in Conjecture 4.6. If the values occur in the sense of

DeVnition 4.7, the following properties are satisVed:

(i) P < P1 and P < P2.

(ii) For i = 1, 2 ∑
A⊆C,A6=∅
A 6={α}

PA(Yi) < 1.

(iii) For i ∈ {1, 2} is either pi = p and Pα(Yi) = 1, or

PA(Yi) > 0 ∀∅ 6= A ⊆ C, |A| ≤ 2.

Proof. (i) follows directly from Lemma 2.15, because 0 < Pi < 1. Furthermore, we have

Pα(Yi) > 0, because the conservation probability P(ξyi = ξv) from yi to any leaf v ∈ V (T1)

satisVes P(ξyi = ξv) > 0 and therefore the probability that every leaf is in state α is positive.

The sum ∑
A⊆C,A6=∅

PA(Yi) ≤ 1

is a sum of probabilities of disjoint events and therefore less or equal than 1. Pα(Yi) > 0

implies (ii). (iii) describes that either Ti consists only of one vertex and in this case pi = p and

Pα(Yi) = 1, or T1 consists of at least three vertices and because pe > 0 every combination of

states is possible for the leaves in T1 and this implies PA(Yi) > 0 for |A| ≤ 2.

The values listed in Table 4.1 fulVll this three properties. Since it is unclear, if this list of condi-

tions can be continued or completed, we tried other approaches which might be more promising

to prove or disprove Conjecture 4.6.

Proofs for some simple cases with a computer algebra system. In order to examine the

conjecture for some speciVc trees, we developed the Mathematica package Phylgen (the source

code is completely listed in Section A.5). With its help it is possible to deVne a tree structure
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D(Y1) D(Y2) P P1 P2 Pαβ(Y1) = Pαγ(Y1) Pαβγ(Y1)

0.01 0.01 0.01 0.1 0.99 0.1 0.7

Pαβ(Y2) = Pαγ(Y2) Pαβγ(Y1) Pβ(Y1) = Pγ(Y1) Pβ(Y2) = Pγ(Y2)

0.01 0.01 0.01 0.01

Table 4.1: Values where D(X) < 0 for r = 3

ρ

(a)

ρ

(b)

Figure 4.5: Some simple rooted binary trees, where Conjecture 4.6 holds for r = 4 and r = 3.

and associated edge weights and to calculate its adjacency matrix, the substitution probability

for a certain path in the tree, and the reconstruction accuracy for the tree. For the purpose of

deVning the tree a syntax similar to the Newick format (see e.g. [56, p. 10]) is used although it is

strongly adopted to the syntax of Mathematica. Note that there might be more eXcient methods

to compute the reconstruction accuracy, but for our purpose it suXces to follow the approach

presented in Remark 4.9.

We used the package Phylgen to deVne the trees in Figure 4.5 in a Mathematica notebook, see

Section A.6. As edge weights unassigned variables are used, hence, the function ReconstructionAccuracy

from the package Phylgen returns the reconstruction accuracy RA(X) for the trees T in Fig-

ure 4.5 as function of the substitution probabilities pe for e ∈ E(T ). Some of these unknowns

pe can be substituted because the tree has to be ultrametric and therefore all substitution prob-

abilities from the root to the leaves must be equal. Having done that, the Mathematica function

Reduce outputs true for the implication

∀e ∈ E(T ) : 0 < pe <
r − 1

r
⇒ RA(X; T ) ≥ 1− p,

where the condition for the substitution probabilities follows from (2.6) on page 33 and T =
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(T, φ) being one of the trees in Figure 4.5.

This proves Conjecture 4.6 for the trees in Figure 4.5 as expressed in the following remark.

Remark 4.11. Let T be one of the trees displayed in Figure 4.5 and T = (T, φ) a rooted binary

phylogenetic tree as in Conjecture 4.6 with r = 3 or r = 4. Then the inequality

RA(X; T ) ≥ 1− p

holds. In addition this inequality holds if T is a tree with 2 or 3 leaves as can be shown by hand

or with help of Mathematica.

Unfortunately it is not easy possible to examine this statement in the same way for trees with

more than 4 leaves. To compute the reconstruction accuracy using the package Phylgen, takes

several hours, even for a tree with only 5 leaves and unknown edge weights. It might be possible

to improve the eXciency of the algorithm, which would allow to extend the statement to trees

with more leaves.

Of course, we cannot draw any conclusions from this remark to a statement for all trees. It

is only possible to exclude the examined trees as possible counter examples. However, the proof

sketch of Theorem 4.3 showed that such a counter example could be a tree with a huge number

of vertices.

Further ideas. Finally, we want to present an idea, which could lead to a proof of Conjec-

ture 4.6 with an approach, which is diUerent from the one Fischer and Thatte [24] used for the

binary case.

Consider a sequence of phylogenetic trees under the Nr-model, converging to a cherry as

illustrated in Figure 4.6 and enunciated formally in the Conjecture 4.12. The length of the two

edges attached to the root converges to the height of the tree while the length of all other edges

converges from above to 0. We conjecture that there is something like monotony and continuity

for the reconstruction accuracy RA(Tn;X) for an appropriate sequence (Tn)n≥0 of phylogenetic

trees, namely

RA(Tn;X) ≥ RA(Tn+1;X)

and

RA(Tn;X)→ RA(T∞;X) as n→∞,

where T∞ denotes the cherry with height p, i.e. the rooted phylogenetic tree with two leaves and
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ρ ρ

T = T0 T1

ρ

T2

· · ·

ρ

T∞

Figure 4.6: A sequence of rooted phylogenetic trees converging to a cherry.

height p. That would be an even stronger statement than Conjecture 4.6 because for any r ≥ 2

RA(T∞;X) = (1− p)2 +
1

2
p(1− p) +

1

2
(1− p)p = 1− p.

Conjecture 4.12. Let T = (T, φ, p) be a binary rooted ultrametric phylogenetic tree under the

Nr-model of height p, i.e. p = P(ξρ 6= ξv) for any leaf v ∈ V (T ). Then there exists a sequence

(Tn)n∈N with Tn = (T, φ, pn) of binary rooted ultrametric phylogenetic trees under theNr-model

of equal height with the following properties:

(i) T = T0, i.e. p(e) = p0(e) for all edges e ∈ E(T ).

(ii) For e = (ρ, v) the edge weight pn(e) converges to p from below, that is

pn(e)→ p as n→∞

and

pn+1(e) ≤ pn(e) ∀n ≥ 0.

(iii) RA(X; Tn) converges to RA(X; T∞) from above, that is

RA(X; Tn)→ RA(X; T∞) as n→∞

and

RA(X; Tn) ≥ RA(X; Tn+1) ∀n ≥ 0.

If the height of the subtrees T1 and T2 is very small, it is very unlikely that χ(u) 6= χ(v) for

an edge (u, v) ∈ V (Ti). Therefore with high probability we have χ(yi) = χ(v) where v is a

leaf v ∈ V (Ti) and yi the root of Ti as illustrated in Figure 4.3. In addition, the substitution

probability between ρ and yi equals approximately p. Hence, the reconstruction probability
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equals approximately the reconstruction accuracy of the tree T∞ with two leaves. If it is assumed

that Conjecture 4.6 is true, these informal considerations suggest that there might be a sequence

(Tn)n≥0 of rooted phylogenetic trees with the desired properties. In addition, Conjecture 4.12 is

supported by experiments with some speciVc trees—we could not Vnd any tree, where it does not

hold. But it is unclear if an appropriate sequence of rooted phylogenetic trees can be constructed

easily in general.

It might be possible to use Remark 4.9 and its implementation in Mathematica in Section A.4

to prove the monotony, if one uses P Tnα (Yi) ≈ 1 and P TnA (Yi) ≈ 0 for A 6= {α}, i = 1, 2 and a

large n.
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Source code

A.1 Compute the number of rooted phylogenetic trees

A.1.1 Explicit formula

Mathematica code to calculate the number rn of rooted phylogenetic trees by use of (3.10) in

Theorem 3.12. The Vrst part computes the associated Stirling numbers of the second kind us-

ing Mathematica code by Jean-François Alcover and a formula by D. Wasserman (see sequence

A008299 in [64]).

( * Compute a s s o c i a t e d S t i r l i n g number . . . * )

( * From Jean−F r a n ç o i s A l c o v e r , Oct 13 2 0 1 1 , a f t e r David

Wasserman * )

s 2 [ n_ , k_ ] : = Sum [

(−1) ^ i * Binomial [ n , i ] *

Sum [

(−1) ^ j * ( k − i − j ) ^ ( n − i ) / ( j ! * ( k − i − j ) ! ) ,

{ j , 0 , k − i }

] ,

{ i , 0 , k }

] ;

( * Compute number o f r o o t e d p h y l o g e n e t i c t r e e s . . . * )

(

n = 2 0 0 ;

Sum [
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s 2 [ n + k , k + 1 ] ,

{ k , 0 , n − 2 }

]

) / / Timing

A.1.2 Recursive formula

The following Mathematica code implements Felsenstein’s recurrence relation (see (3.6) in Theo-

rem 3.7) to calculate the number rn of rooted phylogenetic trees.

( * Compute number o f r o o t e d p h y l o g e n e t i c t r e e s

u s i n g F e l s e n s t e i n ’ s r e c u r r e n c e r e l a t i o n . . . * )

(

n = 2 0 0 ;

column = Cons t an tAr r ay [ 0 , n − 1 ] ;

column [ [ 1 ] ] = 1 ;

For [ j = 3 , j <= n , j ++ ,

column =

column *

F l a t t e n [ { Range [ j − 2 ] , Con s t an tAr r ay [ 0 , n − j +

1 ] } ]

+

Drop [ Prepend [ column , 0 ] , −1] *

F l a t t e n [ { Range [ j − 1 , 2 * j − 3 ] , Con s t an tAr r ay [ 0 , n

− j ] } ] ;

] ;

Sum [ column [ [ i ] ] , { i , n − 1 } ]

) / / Timing

A.2 Compute the number of X-trees

The following Mathematica code was used in order to compute the values in Table 3.3 on page 72.

l e n g t h = 5 0 ;
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( * p [ [ n ] ] = number o f p l a n t e d X− t r e e s w i th | X | = n * )

p = Cons t an tAr r ay [ 0 , l e n g t h ] ;

p [ [ 1 ] ] = 1 ;

For [ n = 2 , n <= l eng t h , n++ ,

p [ [ n ] ] = 2 * p [ [ n − 1 ] ]

+ Sum [ Binomial [ n , k ] * p [ [ k ] ] * p [ [ n − k ] ] , { k , 1 , n − 1 } ]

]

p / / MatrixForm

( * u [ [ n ] ] = number o f un r o o t e d X− t r e e s w i th | X | = n * )

u = Drop [ Prepend [ 2 * p , 1 ] , −1] ;

u / / MatrixForm

( * mu [ [ n ] ] = mean o f v e r t i c e s i n an X−t r e e w i th | X | = n * )

mu = Prepend [

( ( 1 / 2 ) * Drop [ p , 1 ] + Drop [ p , −1]) /Drop [ u , 1 ] ,

1 ] ;

N[mu] / / MatrixForm

( * s i g [ [ n ] ] = mean o f v e r t i c e s i n an X−t r e e w i th | X | = n * )

a = Cons t an tAr r ay [ 0 , l e n g t h ] ;

a [ [ 1 ] ] = 0 ;

For [ n = 2 , n <= l eng t h , n++ ,

a [ [ n ] ] = p [ [ n ] ] − 2 * p [ [ n − 1 ] ] +

2 *Sum [ Binomial [ n , k ] * p [ [ n − k ] ] * a [ [ k ] ] , { k , 1 , n − 1 } ] ;

]

s i g = a /Drop [ u , −1] + mu − mu^ 2 ;

N[ s i g ] / / MatrixForm

A.3 Simplifying an expression for the proof of Theorem 4.5

The following Mathematica code completes the proof of Theorem 4.5.
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( * App ly ing law o f t o t a l p r o b a b i l i t y * )

RaY [ i _ ] : = ( 1 − p [ i ] ) * PaY [ i ] + p [ i ] * PbY [ i ] ;

RbY [ i _ ] : = ( 1 − p [ i ] ) * PbY [ i ] + p [ i ] * PaY [ i ] ;

RabY [ i _ ] : = PabY [ i ] ;

PaX = RaY [ 1 ] * RaY [ 2 ] + RabY [ 1 ] * RaY [ 2 ] + RaY [ 1 ] * RabY [ 2 ]

PabX = RabY [ 1 ] * RabY [ 2 ] + RaY [ 1 ] * RbY [ 2 ] + RbY [ 1 ] * RaY [ 2 ]

( * T r an s f o rma t i o n t o s i m p l i f y e x p r e s s i o n s * )

p [ i _ ] : = ( 1 − P [ i ] ) / 2 ;

( * The p r o b a b i l i t i e s sum up t o 1 * )

PbY [ i _ ] : = 1 − PaY [ i ] − PabY [ i ] ;

( * The c o n s e r v a t i o n p r o b a b i l i t y i n T_ i a f t e r t h e t r a n s f o rm a t i o n

e q u a l s ( 1 + ( P / P [ i ] ) ) / 2 * )

PaY [ i _ ] : = DY[ i ] − ( ( PabY [ i ] ) / 2 ) + ( 1 + ( P / P [ i ] ) ) / 2

Fu l l S imp l i f y [ 4 *DX]

A.4 Automatically computing D(X)

The following Mathematica notebook computes an expression for D(X) as described in Sec-

tion 4.4. In the Mathematica notebook the variables are named in the following way:
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setC set C of states

setA subset A ⊆ C
probPY[i, states] P(MP(Yi) = Ai|yi = α)

probR[i, states] P(MP(Yi) = Ai|ρ = α)

simplifiedDX simpliVed expression for D(X), i.e. D(X) = RA(X)− (1− p)
p0 substitution probability from ρ to any leaf in T
p[i] substitution probability from ρ to yi

probP0 P := 1− r
r−1p

probP[i] Pi := 1− r
r−1pi

q[i] substitution probability form yi to leaf

( *

F o r s t a t e s { a , a1 , a2 , . . . , an } = s e tC t h i s n o t e b o ok c a l c u l a t e s an

e x p r e s s i o n f o r D(X ) .

Note t h a t one s t a t e i n s e tC has t o be c a l l e d a !

We w i l l u s e l i s t s as s e t s . We have t o a s s u r e t h a t l i s t s a r e

a lways s o r t e d and do no t c o n t a i n any d u p l i c a t e s . The

f u n c t i o n Union [ l i s t ] i s a u s e f u l t o o l f o r t h i s t a s k .

* )

( * Load t h e package f o r c om b i n a t o r i c s * )

<< Comb ina to r i c a ‘

( * * * * * * Con s t an t s * * * * * * )

s e tC = Union [ { a , b , c } ] ; ( * no d u p l i c a t e s a l l ow e d ! ’ a ’ n e ed s t o

be i n t h e l i s t ! * )

( * s e tC = Union [ { a , b , c , d } ] ; * ) ( * uncomment t h i s f o r c a s e r =4 * )

r = Length [ s e tC ] ;

( * * * * * * R e c o n s t r u c t i o n Accuracy RA (X ) * * * * * * )
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( * The r e c o n s t r u c t i o n a c c u r a c y RA (X ) i s g i v e n by t h e sum ov e r

a l l s u b s e t s o f s e tA \ { a } . Ev e ry summand i s g i v e n by t h e

p r o b a b i l i t y t h a t MP e q u a l s t h e un ion o f t h e g i v e n s u b s e t and

s t a t e a and t h a t t h e s t a t e a i s s e l e c t e d un i f o rm l y .

* )

RAX = Sum [

( 1 / ( Length [ s t a t e s ] + 1 ) ) * ( probPX [Union [ s t a t e s , { a } ] ] ) ,

{ s t a t e s , Subse t s [Complement [ se tC , { a } ] ] }

] ;

( * * * * * * R e c u r s i v e e x p r e s s i o n o f P_A (X ) * * * * * * )

( * E x p r e s s i n g t h e p r o b a b i l i t y probR [ i , s e t A i ] t h r ough probPY [ i ,

s e t A i ] .

( T h i s i s done by t h e law o f t o t a l p r o b a b i l i t y and u s i ng t h e

symmetry o f t h e N_r−model . )

* )

probR [ i_ , s e tA i _ ] : = (

( 1 − p [ i ] ) * probPY [ i , s e t A i ] + ( p [ i ] / ( r − 1 ) ) *

Sum [

I f [MemberQ [ s e tA i , a ] == MemberQ [ s e tA i , s t a t e ] ,

probPY [ i , s e t A i ] ,

I f [MemberQ [ s e tA i , a ] ,

probPY [ i , Union [ s e t A i / . a −> s t a t e ] ] ,

probPY [ i , Union [ s e t A i / . s t a t e −> a ] ]

]

] ,

{ s t a t e , Complement [ se tC , { a } ] }

]

)

( *

F o r s t a t e s a , a [ 1 ] , a [ 2 ] , . . . , a [ n ]= s e tA t h e f u n c t i o n probPX [ ]

r e t u r n s an e x p r e s s i o n f o r t h e p r o b a b i l i t y P_se tA (X ) = Pr (MP
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( X ) = s e tA | rho = a ) . s e tA has t o be s u b s e t o f s e tC !

* )

probPX [ se tA_ ] : = (

( * pa rame t e r s e tA has t o be a s u b s e t o f s e tC w i t h ou t

d u p l i c a t e s ! * )

( * S t e p 1 * )

( * sum1 i s t h e sum ov e r a l l s u b s e t s s e tA1 and s e tA2 o f s e tC

so t h a t t h e i n t e r s e c t i o n o f s e tA1 and s e tA2 e q u a l s s e tA

* )

tmp = F l a t t e n [

Table [

Table [

{ Union [ tmp1 , s e tA ] , Union [ tmp2 , s e tA ] } ,

{ tmp2 , Subse t s [Complement [ se tC , setA , tmp1 ] ] }

] ,

{ tmp1 , Subse t s [Complement [ se tC , s e tA ] ] }

] ,

1

] ;

sum1 = Sum [

probR [ 1 , s e t t u p e l [ [ 1 ] ] ] * probR [ 2 , s e t t u p e l [ [ 2 ] ] ] ,

{ s e t t u p e l , tmp }

] ;

( * S t e p 2 * )

( * sum2 i s t h e sum ov e r a l l s u b s e t s s e tA1 and s e tA2 o f s e tC

so t h a t t h e un ion o f s e tA1 and s e tA2 e q u a l s s e tA * )

tmp = K S e t P a r t i t i o n s [ setA , 2 ] ;

sum2 = Sum [

probR [ 1 , p a r t i t i o n s e t [ [ 1 ] ] ] * probR [ 2 , p a r t i t i o n s e t

[ [ 2 ] ] ] ,
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{ p a r t i t i o n s e t , tmp }

] + Sum [

probR [ 1 , p a r t i t i o n s e t [ [ 2 ] ] ] * probR [ 2 , p a r t i t i o n s e t

[ [ 1 ] ] ] ,

{ p a r t i t i o n s e t , tmp }

] ;

( * R e s u l t o f s t e p 1 and s t e p 2 * )

( * P_se tA (X ) e q u a l s t h e sum o f t h e two p a r t i a l r e s u l t s * )

sum1 + sum2

)

( * * * * * * S u b s t i t u t i o n p r o b a b i l i t y f o r s u b t r e e s * * * * * * )

( * q [ i ] i s t h e h e i g h t o f t h e s u b t r e e T_ i * )

q [ 1 ] = ( p0 − p [ 1 ] ) / ( 1 + p [ 1 ] * ( ( ( r − 2 ) / ( r − 1 ) ) − 2 ) ) ;

q [ 2 ] = ( p0 − p [ 2 ] ) / ( 1 + p [ 2 ] * ( ( ( r − 2 ) / ( r − 1 ) ) − 2 ) ) ;

( * * * * * * Assumpt i ons and v a r i a b l e e l i m i n a t i o n * * * * * * )

( * Due t o symmetry many probPY [ i , s t a t e s ] a r e e qua l . E . g .

probPY [ i , { b } ] = = probPY [ i , { c } ] . Two such v a r i a b l e s probPY [ i ,

s t a t e s 1 ] and probpY [ i , s t a t e s 2 ] a r e e qua l i f a i s i n s t a t e s 1

and s t a t e s 2 o r n e i t h e r i n bo th o f them and i f t h e s i z e o f

s t a t e s 1 and s t a t e s 2 e q u a l s . T h e r e f o r e we can r e p l a c e probPY [

i , s t a t e s ] by a new v a r i a b l e which c o un t s on l y t h e number o f

s t a t e s and i f a i s i n c l u d e d o r no t i n t h e s e t o f s t a t e s . * )

Do [

(

probPY [ 1 , s u b s e t ] = I f [MemberQ [ s u b s e t , a ] ,

p robPYcountWi tha [ 1 , Length [ s u b s e t ] ] ,

p robPYcoun tWi thou ta [ 1 , Length [ s u b s e t ] ]

] ;

probPY [ 2 , s u b s e t ] = I f [MemberQ [ s u b s e t , a ] ,
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probPYcountWi tha [ 2 , Length [ s u b s e t ] ] ,

p robPYcoun tWi thou ta [ 2 , Length [ s u b s e t ] ]

] ;

) ,

{ s u b s e t , Subse t s [ s e tC ] }

]

( * D1 and D1 a r e d e f i n e d by RA ( Y i ) − (1−q [ i ] ) . Note t h a t probPY

[ i , { a } ] == probPYcoun tWi tha [ i , 1 ] . We e l i m i n a t e t h e v a r i a b l e

p robPYcoun tWi tha [ i , 1 ] . * )

probPYcountWi tha [ 1 , 1 ] = D1 − Sum [

( 1 / ( Length [ s t a t e s ] + 1 ) ) * ( probPY [ 1 , Union [ s t a t e s , { a } ] ] ) ,

{ s t a t e s , Complement [ Subse t s [Complement [ se tC , { a } ] ] , { { } } ] }

] + ( 1 − q [ 1 ] ) ;

p robPYcountWi tha [ 2 , 1 ] = D2 − Sum [

( 1 / ( Length [ s t a t e s ] + 1 ) ) * ( probPY [ 2 , Union [ s t a t e s , { a } ] ] ) ,

{ s t a t e s , Complement [ Subse t s [Complement [ se tC , { a } ] ] , { { } } ] }

] + ( 1 − q [ 2 ] ) ;

( * The sum o f a l l p r o b a b i l i t i e s e q u a l s 1 . On r i g h t s i d e we sum

ov e r a l l s u b s e t s o f s e tC e x c e p t { } and e x c e p t s e tC \ { a } . On

t h e l e f t s i d e we e x p r e s s probPY [ i , s e tC \ { a } ] by p r obPYcoun t

[ 1 , w i thou ta , Leng th [ s e tC ] −1 ] . * )

probPYcoun tWi thou ta [ 1 , Length [ s e tC ] − 1 ] = 1 − Sum [

probPY [ 1 , s t a t e s ] ,

{ s t a t e s , Complement [ Subse t s [ s e tC ] , { Complement [ se tC , {

a } ] } , { { } } ] }

] ;

p robPYcoun tWi thou ta [ 2 , Length [ s e tC ] − 1 ] = 1 − Sum [

probPY [ 2 , s t a t e s ] ,

{ s t a t e s , Complement [ Subse t s [ s e tC ] , { Complement [ se tC , { a

} ] } , { { } } ] }

] ;
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( * * * * * * T r an s f o rma t i o n t o [ 0 , 1 ] * * * * * * )

( * A s imp l e t r a n s f o rm a t i o n makes some e x p r e s s i o n s much s imp l e r .

Whi l e p [ i ] and p0 a r e p r o b a b i l i t i e s be tween 0 and ( r−1) / r ,
p robP [ i ] and probP0 a r e be tween 0 and 1 . * )

p [ 1 ] = ( 1 − probP [ 1 ] ) / ( r / ( r − 1 ) ) ;

p [ 2 ] = ( 1 − probP [ 2 ] ) / ( r / ( r − 1 ) ) ;

p0 = ( 1 − probP0 ) / ( r / ( r − 1 ) ) ;

( * * * * * * The e q u a t i o n D(X ) * * * * * * )

( * Th i s i s t h e f i n a l e x p r e s s i o n f o r D(X ) * )

s imp l i f i e dDX = Fu l l S imp l i f y [ ( RAX − ( 1 − p0 ) ) ] ;

A.5 Mathematica package Phylgen

( * : : Package : : * )

BeginPackage [ " Phylgen ‘ " , " G r a p hU t i l i t i e s ‘ " , " Comb ina to r i c a ‘ " ] ;

( * : : I n p u t : : * )

( * Run " ? Func t i oname " t o g e t t h i s h e l p t e x t s * )

P l o t P h y l T r e e : : u s age = " P l o t P h y l T r e e [ ma t r i x ] P l o t a p h y l o g e n e t i c

t r e e , ma t r i x i s t t h e a d j a c e n c y ma t r i x " ;

g e tAd j a c en cyMa t r i x : : u s age = " g e tAd j a c e n cyMa t r i x [ newickTree ]

c o n v e r t a t r e e i n Newick format , f o r example { a , 0 . 3 , { b ,

0 . 2 , c , 0 . 2 } , 0 . 3 } , t o an ad j a c e n c y ma t r i x " ;

R e c o n s t r u c t i o nA c c u r a c y : : u s age = " R e c o n s t r u c t i o nA c c u r a c y [

newickTree , numberSa t e s ] " ;

g e t P a t hL eng t h : : u s age = " g e t P a t hL eng t h [ { prob1 , prob2 , . . . } , r ] " ;

Begin [ " ‘ P r i v a t e ‘ " ] ;

114



A.5 Mathematica package Phylgen

( * getXY [ matr ix , { x , y } ] r e t u r n s t h e e n t r y x , y o f t h e Mat r i x

* )

getXY [ mat r ix_ , xy_ ] : = ma t r i x [ [ xy [ [ 1 ] ] ] ] [ [ xy [ [ 2 ] ] ] ] ;

( * P l o t t r e e , s e e usage o f f u n c t i o n * )

P l o t P h y l T r e e [ t r e e _ ] : = T r e e P l o t [

t r e e , Top , 1 ,

D i r e c t e dEdg e s −>True ,

EdgeLabe l i ng −> True ,

V e r t e x L a b e l i n g −>Fa l se ,

E dg eRende r i n gFun c t i on −> ( {

Black ,

Arrow [ # 1 , 0 ] ,

Text [ getXY [ t r e e , # 2 ] , L i n e S c a l e dC o o r d i n a t e

[ # 1 , . 5 ] , Background−>White ]

}& )

]

( * C on v e r t s a t r e e i n pseudo Newick f o rma t t o an a d j a c e n c y

ma t r i x . . . * )

g e tAd j a c en cyMa t r i x [ t r e eNew i ck_ ] : = (

Module [ { ma t r i x1 , ma t r i x2 , news ize , t r e e } , (

I f [ Lis tQ [ t r e eNew i ck [ [ 1 ] ] ] ,

ma t r i x 1 = g e tAd j a c e n cyMa t r i x [ t r e eNew i ck [ [ 1 ] ]

] ; ,

ma t r i x 1 = { { 0 } } ;

] ;

I f [ Lis tQ [ t r e eNew i ck [ [ 3 ] ] ] ,

ma t r i x 2 = g e tAd j a c e n cyMa t r i x [ t r e eNew i ck [ [ 3 ] ]

] ; ,
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ma t r i x 2 = { { 0 } } ;

] ;

n ews i z e = ( Length [ ma t r i x 1 ] + Length [ ma t r i x 2 ] ) ;

t r e e = A r r a y F l a t t e n [ { {

Con s t an tAr r ay [ 0 , { n ews i z e + 1 , 1 } ] ,

A r r a y F l a t t e n [ {

{ Con s t an tAr r ay [ 0 , { 1 , n ews i z e } ] } ,

{ A r r a y F l a t t e n [

{ { ma t r i x1 , 0 } ,

{ 0 , ma t r i x 2 } }

] }

} ]

} } ] ;

t r e e [ [ 1 ] ] [ [ 2 ] ] = t r e eNew i ck [ [ 2 ] ] ;

t r e e [ [ 1 ] ] [ [ Length [ ma t r i x 1 ]+2 ] ] = t r e eNew i ck [ [ 4 ] ] ;

( * Re tu rn t h e a d j a c e n c y ma t r i x . . . * )

t r e e

) ]

)

( * C a l c u l a t e s t h e r e c o n s t r u c t i o n a c c u r a c y f o r a g i v e n t r e e

and a s p e c i f i c number o f s t a t e s . . . * )

R e c o n s t r u c t i o nA c c u r a c y [ t r eeNewick_ , numbe r S t a t e s _ ] : = (

( * The s t a t e s a r e d en o t e d by a [ 1 ] , a [ 2 ] , . . . , a [

numbe r S t a t e s ] * )

s e tC = Map [ a , Range [ numbe r S t a t e s ] ] ; r =Length [ s e tC ] ;

Sum [
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( 1 / ( Length [ s t a t e s ] + 1 ) ) * ( probP [ t r e eNewick , Union [

s t a t e s , { a [ 1 ] } ] ] ) ,

{ s t a t e s , Subse t s [Complement [ se tC , { a [ 1 ] } ] ] }

]

)

( * r e t u r n s t h e p r o b a b i l i t y t h a t t h e F i t c h a l g o r i t hm w i l l

r e c o n s t r u c t t h e s t a t e s e t s e tA on t h e t r e e t r e eN ew i c k . . .

* )

probP [ t r eeNewick_ , s e tA_ ] : = (

Module [ { sum1 , sum2 , tmp } , (

( * pa rame t e r s e tA has t o be a s u b s e t o f s e tC

w i t h ou t d u p l i c a t e s ! * )

( * S t e p 1 * )

( * sum1 i s t h e sum ov e r a l l s u b s e t s s e tA1 and s e tA2

o f s e tC so t h a t t h e i n t e r s e c t i o n o f s e tA1 and

s e tA2 e q u a l s s e tA * )

tmp = F l a t t e n [

Table [

Table [

{ Union [ tmp1 , s e tA ] , Union [ tmp2 , s e tA ] } ,

{ tmp2 , Subse t s [Complement [ se tC , setA ,

tmp1 ] ] }

] ,

{ tmp1 , Subse t s [Complement [ se tC , s e tA ] ] }

] ,

1

] ;

sum1 = Sum [

probR [ 1 , t r e eNewick , s e t t u p e l [ [ 1 ] ] ] * probR

[ 2 , t r e eNewick , s e t t u p e l [ [ 2 ] ] ] ,
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{ s e t t u p e l , tmp }

] ;

( * S t e p 2 * )

( * sum2 i s t h e sum ov e r a l l s u b s e t s s e tA1 and s e tA2

o f s e tC such t h a t t h e un ion o f s e tA1 and s e tA2

e q u a l s s e tA * )

tmp= K S e t P a r t i t i o n s [ setA , 2 ] ;

sum2 = Sum [ probR [ 1 , t r e eNewick , p a r t i t i o n s e t [ [ 1 ] ] ] *

probR [ 2 , t r e eNewick , p a r t i t i o n s e t [ [ 2 ] ] ] , {

p a r t i t i o n s e t , tmp } ] +

Sum [ probR [ 1 , t r e eNewick , p a r t i t i o n s e t [ [ 2 ] ] ] * probR

[ 2 , t r e eNewick , p a r t i t i o n s e t [ [ 1 ] ] ] , { p a r t i t i o n s e t ,

tmp } ] ;

( * R e s u l t o f s t e p 1 and s t e p 2 * )

( * P_se tA (X ) e q u a l s t h e sum o f t h e two p a r t i a l

r e s u l t s * )

sum1 + sum2

) ]

)

( * E x p r e s s i n g t h e p r o b a b i l i t y probR [ i , s e t A i ] = Prob (MP( Y_ i )

= s e t A i | rho =a ) t h r ough probPY [ i , s e t A i ] = Prob (MP( Y_ i ) =

s e t A i | y i =a ) .

( T h i s i s done by t h e law o f t o t a l p r o b a b i l i t y and u s i n g t h e

symmetry o f t h e N_r−model . ) * )

probR [ i_ , t r e eNewick_ , s e tA i _ ] : = (

( * t r e eN ew i c k [ [ 2 * i ] ] e q u a t e s t o p [ i ] * )

(1− t r e eNew i ck [ [ 2 * i ] ] ) * probPY [ i , s e tA i , t r e eNew i ck ] + (

t r e eNew i ck [ [ 2 * i ] ] / ( r −1) ) *
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Sum [

I f [MemberQ [ s e tA i , a [ 1 ] ] == MemberQ [ s e tA i , s t a t e ] ,

probPY [ i , s e tA i , t r e eNew i ck ] ,

I f [MemberQ [ s e tA i , a [ 1 ] ] ,

probPY [ i , Union [ s e t A i / . a [ 1 ] −> s t a t e

] , t r e eNew i ck ] ,

probPY [ i , Union [ s e t A i / . s t a t e −> a [ 1 ] ] ,

t r e eNew i ck ]

]

] ,

{ s t a t e , Complement [ se tC , { a [ 1 ] } ] }

]

)

( * R e t u r n s t h e p r o b a b i l i t y t h a t t h e F i t c h a l g o r i t hm

r e c o n s t r u c t s t h e s t a t e s e t s e t A i i n t h e i−t h s u b t r e e o f

t r e eN ew i c k f o r t h e r o o t o f t h i s s u b t r e e under c o n d i t i o n

r o o t o f t h i s s u b t r e e i s a [ 1 ] * )

probPY [ i_ , s e tA i _ , t r e eNew i ck_ ] : = (

( * Note : t r e eN ew i c k [ [ 2 * i −1]] i s t h e f i r s t s u b t r e e , i f i

==1 o r t h e 2nd s u b t r e e i f i ==2 * )

I f [ Lis tQ [ t r e eNew i ck [ [ 2 * i −1]] ] ,

probP [ t r e eNew i ck [ [ 2 * i −1 ] ] , s e t A i ] ,

I f [ s e t A i ==={ a [ 1 ] } ,

1 ,

0

]

]

)
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( * C a l c u l a t e s t h e pa th l e n g t h f o r a l i s t o f s u b s t i t u t i o n

p r o b a b i l i t i e s * )

g e t P a t hL eng t h [ p r o b a b i l i t i e s _ , r_ : r ] : = ( ( r −1) / r ) *

(1− Product [ ( 1 − ( r / ( r −1) ) * p rob ) , { prob , p r o b a b i l i t i e s } ] )

End [ ] ;

EndPackage [ ]

A.6 A Mathematica proof of Conjecture 4.6 for some speciVc trees

A.6.1 Proof for the tree in Figure 4.5a

( * Load t h e Phy l g en package * )

<< Phylgen ‘

( * D e f i n e t h e t r e e i n a Newick− l i k e f o rma t . . . * )

t r e e = { { a , p3 , b , p3 } , p1 , { c , p4 , d , p4 } , p2 } ;

( * P l o t t h e t r e e . . . * )

P l o t P h y l T r e e [ g e tAd j a c en cyMa t r i x [ t r e e ] ]

( * D e f i n e t h e number o f c h a r a c t e r s t a t e s . . . * )

r = 4 ;

p a t h l e n g t h = Fu l l S imp l i f y [ g e t P a t hL eng t h [ { p1 , p3 } , r ] ] ;

( * The f o l l o w i n g e q u a t i o n ne ed s t o be f u l f i l l e d too ,

b e c au s e o f t h e u l t r a m e t r i c i t y o f t h e t r e e . . . * )

s o l 1 = So lve [ p a t h l e n g t h == g e t P a t hL eng t h [ { p2 , p4 } , r ] , p4 ] ;

p4 = p4 / . s o l 1 [ [ 1 ] ] ;

p4 = Fu l l S imp l i f y [ p4 ] ;

( * T r e e i s u l t r a m e t r i c * )

Reduce [ p a t h l e n g t h == g e t P a t hL eng t h [ { p1 , p3 } , r ] ]

Reduce [ p a t h l e n g t h == g e t P a t hL eng t h [ { p2 , p4 } , r ] ]
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( * F ind a p o s s i b l e c o u n t e r example . . . * )

F ind In s t ance [

(

0 < p1 < ( r − 1 ) / r &&

0 < p2 < ( r − 1 ) / r &&

0 < p3 < ( r − 1 ) / r &&

0 < p4 < ( r − 1 ) / r &&

( 1 − p a t h l e n g t h ) > r e con

) ,

{ p1 , p2 , p3 } ,

Rea l s

]

Reduce [

Imp l i e s [

(

0 < p1 < ( r − 1 ) / r &&

0 < p2 < ( r − 1 ) / r &&

0 < p3 < ( r − 1 ) / r &&

0 < p4 < ( r − 1 ) / r

) ,

( 1 − p a t h l e n g t h ) <= r e con

] ,

Rea l s

]

A.6.2 Proof for the tree in Figure 4.5b

( * Load t h e Phy l g en package * )

<< Phylgen ‘

( * D e f i n e t h e t r e e i n a Newick− l i k e f o rma t . . . * )

t r e e = { { { a , q3 , b , q3 } , q2 , c , p2 } , q1 , d , p1 } ;
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( * P l o t t h e t r e e . . . * )

P l o t P h y l T r e e [ g e tAd j a c en cyMa t r i x [ t r e e ] ]

( * D e f i n e t h e number o f c h a r a c t e r s t a t e s . . . * )

r = 4 ;

p a t h l e n g t h = p1 ;

( * The f o l l o w i n g e q u a t i o n ne ed s t o be f u l f i l l e d too ,

b e c au s e o f t h e u l t r a m e t r i c i t y o f t h e t r e e . . . * )

s o l 1 = So lve [ p a t h l e n g t h == g e t P a t hL eng t h [ { q1 , p2 } , r ] , p2 ] ;

p2 = p2 / . s o l 1 [ [ 1 ] ] ;

p2 = Fu l l S imp l i f y [ p2 ] ;

s o l 2 = So lve [ p a t h l e n g t h == g e t P a t hL eng t h [ { q1 , q2 , q3 } , r ] , q3 ] ;

q3 = q3 / . s o l 2 [ [ 1 ] ] ;

q3 = Fu l l S imp l i f y [ q3 ] ;

( * T r e e i s u l t r a m e t r i c * )

Reduce [ p a t h l e n g t h == g e t P a t hL eng t h [ { p1 } , r ] ]

Reduce [ p a t h l e n g t h == g e t P a t hL eng t h [ { q1 , p2 } , r ] ]

Reduce [ p a t h l e n g t h == g e t P a t hL eng t h [ { q1 , q2 , q3 } , r ] ]

r e c on = Fu l l S imp l i f y [ R e c o n s t r u c t i o nA c c u r a c y [ t r e e , r ] ] ;

( * F ind a p o s s i b l e c o u n t e r example . . . * )

F ind In s t ance [

(

0 <= p1 < ( r − 1 ) / r &&

0 <= p2 < ( r − 1 ) / r &&

0 <= q1 < ( r − 1 ) / r &&

0 <= q2 < ( r − 1 ) / r &&

0 <= q3 < ( r − 1 ) / r &&
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( 1 − p a t h l e n g t h ) > r e con

) ,

{ p1 , q1 , q2 } ,

Rea l s

]

Reduce [

Imp l i e s [

(

0 <= p1 < ( r − 1 ) / r &&

0 <= p2 < ( r − 1 ) / r &&

0 <= p3 < ( r − 1 ) / r &&

0 <= q1 < ( r − 1 ) / r &&

0 <= q2 < ( r − 1 ) / r &&

0 <= q3 < ( r − 1 ) / r &&

0 <= q4 < ( r − 1 ) / r

) ,

( 1 − p a t h l e n g t h ) <= r e con

] ,

Rea l s

]
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Commonly used symbols

an ∼ bn asymptotic equivalence of sequences an and bn, i.e. an ∼ bn :⇔
limn→∞

an
bn

= 1

[zn]A(z) the coeXcient an of zn in A(z) =
∑

n anz
n

2A power set of the set A

[a0]∼ if ∼ is a equivalence relation, the equivalence classes with respect to ∼
are denoted by [a0]~ := {a ∈ A|a ∼ a0}

|A| cardinality of the set A

|.|A size function of the combinatorial class A

A∪̇B disjoint union of sets, i.e. the unionA∪B for setsA,B withA∩B = ∅

f |A′ restriction of a map f : A→ B to a subset A′ ⊆ A, i.e. f |A′ : A′ → B

f−1(A) preimage of the set A under the function f

F 〈−1〉(z) compositional inverse, i.e. F 〈−1〉(F (z)) = F
(
F 〈−1〉(z)

)
= z for

F (z) =
∑

n≥0 fnz
n with f0 = 0 and f1 6= 0

A+ B disjoint union of combinatorial classes A and B, see Section 2.4

A ? B labeled product of combinatorial classes A and B, see Section 2.4

A× B cartesian product of combinatorial classes A and B, see Section 2.4

B combinatorial class of rooted binary phylogenetic trees

Bn set of rooted binary phylogenetic trees with n labels

bn number of rooted binary phylogenetic trees with n labels
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Commonly used symbols

C set of character states, usually C = {α, β, γ, . . .}

ch(χ) changing number of a character extension

χ character

χ character extension

E(G) set of edges of the graph G

E(T ) edge set E(T ) of T = (T, φ)

E(ξ) mean of the random variable ξ

φ label map of a phylogenetic tree, see DeVnition 2.1 on page 16

f(A) image of the set A under the function f

L set of leaves of a tree

l(C, T ) parsimony score of a set of characters

l(χ, T ) parsimony score of a character

µn mean E(ξn) = µn of some random variable ξn

N set of natural numbers {0, 1, 2, . . .} including 0

N>0 set of natural numbers {1, 2, . . .} excluding 0

P(A) probability of the probability event A

P(A|B) conditional probability of A given B deVned by P(A|B) := P(A∩B)
P(B) ,

where P(B) > 0

P (e) transition matrix of the edge e ∈ E(T )

p(e) substitution probability of the edge e ∈ E(T )

pn number of planted X-trees with |X| = n

pn,m number of planted X-trees with |X| = n and m vertices excluding ρ,

i.e. m = |V \ {ρ}|
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Commonly used symbols

r number of character states

R(x, y) BGF for rooted X-trees

R+ positive real numbers R+ = {x ∈ R|x > 0}

rn,m number of rooted X-trees with |X| = n andm vertices

rn number of rooted X-trees with |X| = n

RA(Y ; T ) reconstruction accuracy

ρ root of a tree

S2(n, k) associated Stirling numbers of second kind

MSet2(A) multisets with 2 elements in a combinatorial class A of unlabeled ob-

jects, see Section 2.4

Set2(A) sets of size 2 with elements in a combinatorial classA of labeled objects,

see Section 2.4

Set≥2(A) sets with at least 2 elements in a combinatorial class A of labeled ob-

jects, see Section 2.4

σ2n variance V(ξn) = σ2n of some random variable ξn

sym(T ) number of vertices with isomorphic subtrees, see DeVnition 3.39 on

page 79

T phylogenetic tree or X-tree, see DeVnition 2.1 and DeVnition 2.2 on

pages 16–17

T = (T, φ, p) phylognetic tree under the Nr-model, see DeVntion 2.12 on page 33

U(x) EGF of the (unrooted) X-trees

U(x, y) BGF of the (unrooted) X-trees

Un set of (unrooted) X-trees with n = |X|

un,m number of unrooted X-trees with |X| = n andm vertices
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Commonly used symbols

un number of X-trees with |X| = n

V (G) vertex set of the graph G

V (T ) vertex set V (T ) of T = (T, φ)

V(ξ) variance of the random variable ξ

X set of species or label set, usually X = {1, 2, 3, . . . , n}, see DeVnition
2.1 and DeVnition 2.2 on pages 16–17
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Index

ambiguous reconstruction, 27

associated, see Stirling numbers

atomic class, 39

balanced tree, 91, see tree

Bayesian methods, 13

BGF, see bivariate generating function

binary tree, see phylogenetic tree

bivariate generating function, 40

branch length, 9

Catalan number, 38

Cauchy product, 38

changing number, 20

character, 6, 18

binary, 6

character extension, 18

minimum, 20

characteristic system, 58

cherry, 10

cladogram, 16

clock-like tree, 33

combinatorial class, 37

conservation probability, 29, 30

convergent transition, 8

convex, 21

counting sequence, 37

∆-analytic, 42, see Delta-analytic

∆-domain, 42

∆-domain, see Delta-domain

dendrogram, 16

derivative, see formal derivative

directing, 12

dissimilarity map, 10, 34

distance based methods, 33

distance matrix, 10, 13

dominant singularity, 42

double factorial numbers, 48

EGF, see exponential generating function

evolutionary tree, 16

exponential generating function, 38

exponential order, 41

Fitch-Hartigan algorithm, 8, 11, 24

formal derivative, 40

formal power series, 38–39

four-point condition, 34

generating function, 38

graph automorphism, 65

Hamming distance, 21

height, 34

homoplasy, 8, 21

horizontal gene transfer, 28
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Index

HTU, see Hypothetical Taxonomic Unit

hybrid speciation, 28

Hypothetical Taxonomic Unit, 6

isomorphic, 77

Jukes-Cantor model, 32

labeled hierarchies, 50

labeled histories, 85

leaf-coloration, 18

line-rooted, 65

Markov process, 30

Markov property, 30

maximum likelihood, 13, 29

maximum parsimony, 8, 13, 19

maximum parsimony tree, 20

mean, 40

midpoint rooting, 12

minimum character extension, see character

e.

minimum evolution, 10

minimum mutation problem, 19

minimum Steiner tree, 20

molecular clock, see ultrametric, 12, 33

MP, see maximum parsimony

multifurcating, see phylogenetic tree

Neighbour Joining, 10

neutral class, 39

Newick format, 100

Neyman model, 32

Noah’s Ark Problem, 14

non-plane tree, see tree

NP-complete, 20

Nr-model, 32

occur as probabilities, 96

OGF, see ordinary generating function

Operational Taxonomic Unit, 6

ordinary generating function, 38

Otter trees, see tree, 85

OTU, see Operational Taxonomic Unit

outdegree, 16

outgroup comparison, 12

parsimony, see maximum parsimony

parsimony score, 9, 20, 73

phylogenetic diversity, 13

phylogenetic networks, 28

phylogenetic tree, 16

binary, 16, 46

multifurcating, 16, 50

ranked, 85

under the Nr-model, 33

Phylogeny, 3

plane tree, see tree

planted X-tree, 61

point-rooted, 65

r-associated, see Stirling numbers

r-state character, see character

r-state Neyman model, see Neyman model

ranked phylogenetic tree, see phylogenetic

tree

reconstruction accuracy, 11, 89

reverse transition, 8

rooting the tree, 12

singularity analysis, 42
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Index

smoth implicit-function schema, 58

standard decomposition, 17

statistical inconsistency, 29

Steiner tree problem, 20

Stirling numbers

r-associated, 54

associated, 54

of the second kind, 54

substitution, 8, 30

substitution probability, 11, 30

subtree, 18

symmetry vertex, 79

taxon, 6

terraces, 86

total partition of a set, 50

transition matrix, 31

tree, 15

non-plane, 15

Otter, 78

plane, 15

unordered, 15

unrooted, 16

tree metric, 34

tree shape, 16, 85

trivial planted X-tree, 63

ultrametric, 10, 11, 34

unambiguous reconstruction, 27

underlying tree, 16

unlabeled hierarchies, 85

unordered tree, see tree

unrooted tree, see tree

variance, 40

Wedderburn-Etherington numbers, 78

X-splits, 17

X-tree, 17
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