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Abstract

This thesis is devoted to asymptotic parameter studies of different combinatorial
classes. Thereby the key tools are the concept of generating functions, the symbolic
method and singularity analysis. The thesis is devided into three parts.

In the first part we briefly introduce the methods that are used within this thesis,
give the basic definitions of the combinatorial classes that are investigated and outline
their enumeration problems.

The second part is dedicated to the analysis of three tree parameters: First, we
derive the asymptotic mean and variance of the protection number of a random tree
as well as of a random vertex in simply generated trees, Pólya trees and non-plane
binary trees. Then, we compute the average number of non-isomorphic subtree-shapes
for two selected classes of increasingly labeled trees. Last, we investigate the average
number of embeddings of a given rooted tree into different classes of trees, namely
plane and non-plane binary trees and planted plane trees.

The third and last part of this thesis treats the analysis of shape parameters of
special subclasses of lambda terms that are restricted by a bounded length of each
binding, or a bounded number of nested abstractions, respectively. In particular, we
are able to explain the unusual behavior of the counting sequence of the latter class
by providing their asymptotic unary profile.
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Zusammenfassung

Die vorliegende Dissertation beschäftigt sich mit asymptotischen Parameterstudien
verschiedener kombinatorischer Klassen. Als wichtigste Werkzeuge dabei dienen
erzeugende Funktionen, die symbolische Methode, sowie die Singularitätenanalyse,
welche alle im ersten Teil der Arbeit eingeführt werden. Alle Resultate, die dieser
Dissertation entspringen, sind asymptotischer Natur und die Arbeit kann daher klar
dem Gebiet der analytischen Kombinatorik zugeordnet werden. Die Dissertation ist
in drei Teile aufgeteilt.

Im ersten Teil werden die verwendeten Methoden kurz erklärt, alle benötigten
Definitionen der kombinatorischen Klassen, die im weiteren untersucht werden,
eingeführt, sowie deren Abzählprobleme in Kürze skizziert.

Der zweite Teil ist der Analyse von drei verschiedenen Parametern von Bäumen
gewidmet. Als erstes bestimmen wir asymptotische Werte für den Mittelwert und
die Varianz der sogenannten “protection number” (Länge des kürzesten Zweiges)
eines zufällig gewählten Baumes bzw. Knotens eines Baumes der Klasse der einfach
erzeugten Bäume, der Pólya Bäume, sowie der nicht-planaren Binärbäume.

Des weiteren ermitteln wir asymptotische Schranken für die Anzahl der
nicht-isomorphen Teilbaum-Formen in zwei ausgewählten Klassen von aufsteigend
markierten Bäumen.

Das letzte Kapitel dieses Teils behandelt die asymptotische Analyse eines
Parameters der in verschiedenen so-genannten “optimal stopping”-Problemen eine
wichtige Rolle spielt, nämlich die mittlere Anzahl an Einbettungen eines gegebenen
gewurzelten Baumes in verschiedene Klassen von gewurzelten Bäumen. Dabei
betrachten wir Einbettungen in die Klasse der ebenen und nicht-ebenen Binärbäume,
sowie der ebenen Wurzelbäume.

Der dritte und letzte Teil der vorliegenden Dissertation beschäftigt sich mit der
Untersuchung einiger Strukturparameter spezieller Klassen von Lambda-Termen. Die
zwei Klassen von Lambda-Termen, die wir betrachten sind beschränkt durch eine
maximale Länge der einzelnen Abstraktionen (d.h. gebundene Variablen dürfen nicht
beliebig weit von dem sie bindenden Quantor entfernt sein), bzw. durch eine maximale
Anzahl von ineinander geschachtelten Abstraktionen. Diese Einschränkungen er-
möglichen die Anwendung der klassichen Methoden der analytischen Kombinatorik,
und sind auch aus praktischer Sicht sinnvoll, da Lambda-Terme, die in der
funktionalen Programmierung Anwendung finden, beide der Eigenschaften aufweisen.

Die in diesem Teil analysierten Strukturparameter betreffen die insgesamte Anzahl
der Variablen in beiden Klassen von Lambda-Termen, sowie die Verteilung der
Variablen über die einzelnen Abstraktionslevels der Terme. Insbesondere ermöglichen
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uns die im letzten Kapitel dieses Teils erhaltenen Resultate eine Erklärung für das
ungewöhnliche Verhalten der Zählfolge der betreffenden Lambda-Terme zu geben,
indem wir das unäre Profil der Terme detailliert aufzeigen.

Einige Ergebnisse dieser Dissertation sind bereits in verschiedenen Arbeiten der
Autorin publiziert oder zur Veröffentlichung eingereicht worden. Sämtliche Arbeiten
wurden von dem FWF Projekt SFB F50-03 finanziert.
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Chapter 1

Introduction

Trees and tree-like structures are widely known and commonly studied objects that
find applications in various fields and disciplines starting from computer science up to
biological and sociological research. Thereby combinatorial parameters of the inves-
tigated structures often comprise interesting information on their behavior and thus
lead to an increased understanding of the underlying problem.

This thesis is concerned with parameter studies of several different classes of trees,
and special plane directed acyclic graphs (PDAGs), called lambda terms. We are
exclusively performing asymptotic analyses and the thereby used key tools are the
concept of generating functions, the symbolic method and singularity analysis, which
are all introduced in Chapter 2. In Chapter 3 we provide the basic definitions of the
objects that will be studied within this thesis and briefly outline their enumeration
problems.

The second part of the thesis treats the analysis of three interesting parameters
for different classes of trees. In Chapter 4 we study the average length of the shortest
path from the root to a leaf in a tree, called the protection number of a tree, as well as
the protection number of a random vertex, which is defined as the protection number
of the fringe (maximal) subtree having this node as a root. The results given in this
chapter are based on the paper [55], which has recently been submitted to a journal.
So far, there were several results on the number of 2-protected vertices [24, 39, 81,
82, 83], while the asymptotic average protection number of a tree was solely known
for planted plane trees [65]. We generalized these results to a larger class of rooted
trees, by studying both the average protection number of a tree as well as a random
vertex protection number for the family of simply generated trees (introduced by Meir
and Moon [85]) and their nonplane counterparts: unlabeled nonplane rooted trees,
also called Pólya trees due to their first extensive treatment by Pólya [93], examined
further by Otter [89] including numerical results and the binary case. Thus, our work
broadens the results from [65], but maintaining the emphasis on as concrete formulas
as possible.

Chapter 5 is devoted to the asymptotic investigation of the average number of non-
isomorphic subtree-shapes in selected classes of increasing trees, based on the not yet
submitted manuscript [14]. This parameter is often studied in the context of so-called
compacted trees [49, 50] that can be constructed from any given tree by means of a
post-order traversal where repeatedly occurring subtrees are replaced by directed edges
pointing at the already traversed appearance of the respective subtree. In this way,
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the size of the compacted tree belonging to a given tree T corresponds to the number
of non-isomorphic subtrees of the tree T . So far, it was known that for a random
simply generated tree of size n the average size of a compacted tree (i.e., the average
number of non-isomorphic subtrees) is asymptotically of size Θ

(
n√

logn

)
. We extended

the definition of a compacted tree to special classes of increasingly labeled trees and
proved that for these classes the average size of a compacted tree, corresponding to
the average number of non-isomorphic subtree-shapes, is asymptotically Ω(

√
n) and

O
(

n
logn

)
.

The last tree parameter, which is studied in Chapter 6 of this thesis, is the number
of embeddings of a given rooted tree in the family of (plane and non-plane) binary
trees, as well as planted plane trees. Here, the notion of embedding is wider than just
a copy. We assume the investigated structures to be some kind of Hasse diagrams of
partially ordered sets (in short: posets) and by saying that there exists an embedding
of S in T we understand that a poset S is a subposet of T . In particular, we call
an embedding of S in T to be a good embedding if it contains the root of T . Based
on the not yet submitted article [54] we present a follow-up and generalization of the
results obtained by Kubicki, Lehel and Morayne in [72, 73] and Georgiou in [51], where
they derived the number of (good and all) embeddings of a given plane tree S in a
complete balanced binary tree. We give the asymptotic mean of the number of good
embeddings and the number of all embeddings of a rooted tree S in the family of plane
and non-plane binary trees, as well as planted plane trees, on n vertices. We prove
that the ratio of the number of good embeddings to the number of all embeddings
is asymptotically equivalent to c/

√
n in all cases and provide the exact constant c.

Furthermore, we show monotonicity properties for this ratio and briefly discuss the
case of embedding a disconnected structure S, i.e., a forest.

In Chaper 7 we briefly discuss the results obtained in Part II of this thesis that
is devoted to the investigation of tree parameters and provide an outlook to some
related open problems that might be interesting for future studies.

The third part of this thesis is dedicated to the study of two special restricted
classes of lambda terms, where we perform an asymptotic analysis of their shape by
determining the so-called unary profile. Lambda terms are objects stemming from
lambda calculus and can be seen as combinatorial objects with a simple description.
Nevertheless, the enumeration of lambda terms is not well understood. Combina-
torially, they can be seen as words (sequences of symbols) or graphs and thus the
combinatorially most natural way to define an enumeration problem is to ask for the
number of terms with a given number of symbols or vertices, respectively. This prob-
lem appears to be very intriguing, as the standard techniques of analytic combinatorics
fail. Considering subclasses by imposing certain restrictions can turn the enumera-
tion problem into an accessible one, but for one particular model the enumeration
formulas exhibit a very peculiar behavior. Our motivation to perform the present
investigation is to shed light on this oddity and to give a combinatorial explanation
for this phenomenon.

By considering lambda terms as formulas which contain a quantifier that binds
variables (see Section 3.2 for the precise definition), the first subclass of lambda terms,
which is studied in Chapter 8, is restricted by a maximal length of its bindings,
i.e., a maximal number of symbols between each quantifier and the thereby bounded
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variables. We extend the results presented in [11], where the enumeration problem
of this class of lambda terms was studied thoroughly, and perform an analysis of
the asymptotic shape of a random term belonging to this class. First, we show that
the total number of variables is asymptotically normally distributed and give explicit
formulas for the mean and the variance, based on the already published paper [57].
Then, we investigate the structure of these terms and provide their unary profile,
which has been processed in the already submitted paper [62].

Chapter 9 treats the analysis of a second subclass of lambda terms that is restricted
by a maximum number of nested bindings and is based on the paper [57]. In [11] it
was shown that the enumeration sequence of this combinatorial class admits a very
unusual behavior (which is outlined in Chapter 3). With the aim to understand the
reason for the occurring phenomenon, we perform asymptotic analyses concerning the
average number of variables and the unary profile of such terms.

Finally, in Chapter 10 we discuss the results that have been in obtained in Part III
of this thesis and give a short outlook on some remaining open problems.
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Chapter 2

Concepts of analytic combinatorics

In this chapter we introduce some important tools and methods that will be used
within this thesis. Our goal is to gain information on various shape parameters of
different combinatorial objects, namely several classes of trees and lambda terms. In
order to do so the concepts of generating functions and singularity analysis, which are
introduced in Sections 2.1 and 2.2, are essential. Furthermore, in Section 2.3 we intro-
duce combinatorial parameters, bivariate generating functions and probabilistic limit
theorems that enable us to obtain distributional results concerning random variables
related to shape parameters of combinatorial classes.

The results presented in this chapter are strongly based on the book ’Analytic
Combinatorics’ of Flajolet and Sedgewick [45], to which we also refer the interested
reader for gaining further information.

2.1 The symbolic method and generating functions
The symbolic method provides a very simple and efficient systemic treatment of com-
binatorial constructions. Yet before we can give an accurate explanation, we need to
introduce some basic definitions, as they can be found in [45].

Definition 2.1 (combinatorial class, [45, Definition I.1]). A combinatorial class A
is a finite or denumerable set, on which a size function | · | is defined, satisfying the
following conditions:

(i) The size |a| of an element a ∈ A is a non-negative integer.

(ii) The number of elements of any given size is finite.

We denote by An the class of elements of A having size n, i.e., An = {a ∈ A : |a| =
n}. Moreover, An denotes the number of objects in the class An, i.e., An = card(An).
Two combinatorial classes A and B are called (combinatorially) isomorphic, if the
sequences (An)n≥0 and (Bn)n≥0 are identical, i.e. An = Bn, ∀n ∈ N0.

Definition 2.2 (generating function, [45, Definitions I.4 and II.2]). The ordinary
generating function (OGF) of a combinatorial class A, or the sequence (An)n≥0 re-
spectively, is the formal power series

A(z) =
∞∑

n=0

Anz
n. (2.1)
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Similarly, the exponential generating function (EGF) of A (or (An)n≥0) is given by

A(z) =
∞∑

n=0

An
zn

n!
. (2.2)

The choice of using ordinary generating functions or exponential generating func-
tions depends on the kind of problem. One usually uses OGFs for unlabeled structures
and EGFs for labeled structures.

Remark 2.3. Equivalently to (2.1) and (2.2), the generating function of the class A
admits the representation A(z) =

∑
α∈A z

|α|, or A(z) =
∑

α∈A
z|α|
|α|! , respectively.

By [zn] we denote the operation of coefficient extraction, i.e.,

[zn]A(z) = [zn]

(∑

n≥0

Anz
n

)
= An,

which returns the number of objects of the corresponding combinatorial class A of
size n. For some combinatorial problems we can derive an explicit formula for An.
Unfortunately, in many cases this does not seem to be possible. However, with meth-
ods from analytic combinatorics we are able to determine the order of magnitude of
An asymptotically as n tends to infinity. A first step for the investigation of combina-
torial counting problems is to set up equations that specify the respective generating
functions. In order to do so, the symbolic method has turned out to be a very simple
and efficient tool. Within the symbolic method combinatorial classes are built directly
in terms of simpler classes by means of a collection of combinatorial constructions,
which can easily be translated into generating functions. Table 2.1 summarizes the
most important constructions together with their counterpart in relation to generating
functions.

Combinatorial Construction OGF / EGF
Neutral set E = {ε} E(z) = 1
Atomic set Z = {a} Z(z) = z
Disjoint union C = A ∪ B C(z) = A(z) +B(z)
Cartesian/partition product C = A× B C(z) = A(z) ·B(z)
Sequence C = Seq(A) C(z) = 1

1−A(z)

Set C = Set(A) C(z) = eA(z)− 1
2
A(z2)+ 1

3
A(z3)∓... / eA(z)

Multiset C =M(A) C(z) = eA(z)+ 1
2
A(z2)+ 1

3
A(z3)+...

Substitution C = A(B) C(z) = A(B(z))
Pointing C = ΘA C(z) = zA′(z)
Boxed product C = A� × B not applicable / C ′(z) = A′(z) ·B(z)

Table 2.1: A summary of the most important constructions, and their translations
into generating functions. The neutral set E consists of one element of size 0, while the
atomic set Z contains just one element of size 1. In most cases the translations into
OGFs and EGFs work analogously, with the exception of the set construction. The
boxed product is solely defined for exponential generating functions, since C = A�×B
corresponds to the subset of the product A × B consisting of labeled elements such
that the smallest label belongs to an element from A.
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We will now exemplify the symbolic method by means of the very simple and
well-known combinatorial class of binary trees.

Example 2.4 (Binary trees). A binary tree, is a rooted tree (i.e., a graph without
cycles that contains one distinguished node called the root), where all nodes have either
two children, or no children at all (then it is called as leaf). Let us denote by B the
class of binary trees and let us define the size of a binary tree to be the number of
its internal nodes (i.e., leaves do not count to the size). Then B can be recursively
specified by

B = E ∪ (Z × B × B) .

Using the translation rules summarized in Table 2.1 we get the equation

B(z) = 1 + zB(z)2,

which defines the generating function B(z) of the class of binary trees. In this case
we can solve the equation explicitly and directly get

B(z) =
1−
√

1− 4z

2z
.

In the next section we will turn to the analysis of the coefficients of generating
functions in order to gain asymptotic information on the number of structures of a
certain size.

2.2 Singularity analysis
Singularity analysis relies on the simple principle that some special points of a generat-
ing function, called singularities, are reflected in the function’s coefficients. Therefore
we gain information on the order of magnitude of An by determining the singularities
of the OGF A(z) =

∑
n≥0Anz

n. These results can be obtained by no longer con-
sidering generating functions as formal power series, but as functions in the complex
plane that are analytic around 0. We refer the reader who is not familiar with basic
concepts of complex analysis to [45], since we will use some of these concepts in the
sequel.

Definition 2.5 (singularity, [45, Def. IV.4]). Given a function f defined in the region
interior to the simple closed curve γ, a point z0 on the boundary (γ) of the region is
a singularity, if f is not analytically continuable to z0.

In short, singularities are points where a function ceases to be analytic. The
singularities which are closest to the origin, are called the dominant singularities, and
will turn out to be particularly important. Their distance to the origin equals the
radius of convergence. The general form of the coefficients of a generating function
looks like [zn]A(z) = anθ(n), where a denotes the exponential growth factor and θ(n)

a subexponential factor, i.e., lim sup |θ(n)| 1n = 1. In [45] Flajolet and Sedgewick
introduced the following two principles:

• First Principle of Coefficient Asymptotics:

The location of a function’s singularities dictates the exponential growth of its
coefficients, i.e., an.

9



• Second Principle of Coefficient Asymptotics:

The nature of a function’s singularities determines the associate subexponential
factor θ(n).

The first principle is specified by the following theorem:

Theorem 2.6 (Exponential growth formula, [45, Thm. IV.7]). If A(z) is analytic at 0
and R is the radius of convergence, i.e. R := sup{r ≥ 0| A(z) is analytic in |z| < r},
then the coefficient An = [zn]A(z) satisfies

An ∼
(

1

R

)n
.

For functions with non-negative coefficients, including all combinatorial generating
functions, one can also adopt

R := sup{r ≥ 0| A(z) is analytic at all points of 0 ≤ z < r}.

Thus, the exponential factor can easily be determined by computing the radius
of convergence. In order to derive the subexponential factor, we have to distinguish
between certain kinds of functions according to the type of their singularities: For
meromorphic functions, which have only polar singularities, the subexponential factor
θ(n) is of polynomial growth.

Theorem 2.7 (Expansion of meromorphic functions, [45, Thm. IV.10]). Let A(z) be
a function meromorphic at all points of the closed disc |z| ≤ R, with poles at points
α1, α2, . . . , αm. Assume that A(z) is analytic at all points of |z| = R and at z = 0.
Then there exist m polynomials {∏j(x)}mj=1 such that

An ≡ [zn]f(z) =
m∑

j=1

∏

j

(n)α−nj +O(R−n).

Furthermore the degree of
∏

j is equal to the order of the pole of f at αj minus one.

Now we consider functions whose singularities are of richer nature than poles. Our
goal is to translate an expansion of a generating function A(z) near its singularity,
called the Puiseux expansion, into an asymptotic approximation of its coefficients. The
basic property that allows for such an asymptotic transfer is the so-called Transfer
Theorem [44], which requires that A(z) is analytic in a so-called Delta-domain ∆ that
is depicted in Figure 2.1.

Theorem 2.8 (Transfer Theorems, [34, Lemma 2.12]). Let A(z) =
∑

n≥0Anz
n be

analytic in a Delta-domain

∆ = ∆(ρ, η, φ) = {z : |z| < ρ+ η,
∣∣∣ arg

(
z

ρ
− 1

) ∣∣∣ > φ},

in which ρ and η are positive real numbers and 0 < φ < π/2. Furthermore, suppose
that there exists a real number α such that

A(z) = O
(
(1− z/ρ)−α

)
,

10



for z ∈ ∆. Then

An = O
(
ρ−nnα−1

)
.

Similarly, if there exists a real number α such that

A(z) = o
(
(1− z/ρ)−α

)
,

for z ∈ ∆, we have

An = o
(
ρ−nnα−1

)
.

Remark 2.9. We will call the number −α the type of the singularity. Sometimes a
singularity of type 1

2
is interchangeably called a square root singularity.

∆

ρ

η

φ

Figure 2.1: Delta-domain ∆ = ∆(ρ, η, φ).

Furthermore, for functions of the so-called standard scale, i.e., functions of the
form (1− z)−α for α ∈ C \ Z≤0, we have the following result.

Theorem 2.10 ([45, Thm. VI.1]). Let α ∈ C \ Z≤0. Then

[zn](1− z)−α ∼ nα−1

Γ(α)

(
1 +

∞∑

k=1

ek
nk

)
,

where ek is a polynomial in α of degree 2k.

Theorems 2.8 and 2.10 directly yield the following corollary.

Corollary 2.11 ([34, Corollary 2.15]). Suppose that a function is analytic in a Delta-
domain and that it has an Puiseux expansion of the form

A(z) = C

(
1− z

ρ

)−α
+O

((
1− z

ρ

)−β)
,

for z ∈ ∆, where β < Re(α). Then we have

An = [zn]A(z) = C
nα−1

Γ(α)
ρ−n +O

(
ρ−nnmax{Re(α)−2,β−1}) .
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Example 2.12 (Binary trees, continuation). Let us remember that in Example 2.4
we got

B(z) =
1−
√

1− 4z

2z
.

In this case we are actually able to obtain an explicit formula for the coefficients
Bn of B(z). However, since we want to exemplify the singularity analysis approach,
we will not use the explicit solution for Bn. As a first step, we have to calculate the
dominant singularity of B(z), which is given by ρ = 1

4
. Since we have a unique isolated

singularity, the important requirement of Delta-analyticity is fulfilled. For z → 1
4
the

generating function B(z) admits the Puiseux expansion

B(z) = 2− 2

√
1− z

ρ
+O

((
1− z

ρ

)3/2
)
,

which yields according to the transfer theorems

Bn = [zn]B(z) = −2
n−1/2

Γ(−1/2)

(
1

4

)−n
+O

((
1

4

)−n
n−5/2

)

=
1√
π
n−3/24−n

(
1 +O

(
n−1
))
,

where the last equality follows by the use of Γ(−1/2) = −2
√
π.

2.3 Combinatorial parameters and limit laws

Now we will introduce the concept of combinatorial parameters and explain how
studying these parameters by means of bivariate generating functions leads to an
understanding of the distribution of the parameter’s values. For more thorough infor-
mation the reader is referred to [45, Chapter III and IX]. Let us start with the formal
definition of a combinatorial parameter and bivariate generating functions.

Definition 2.13 (combinatorial parameter, bivariate genrating function, [45, Defini-
tion III.2]). Given a combinatorial class A, a (scalar) parameter is a function from
A to Z≥0 that associates to any object a ∈ A an integer value χ(a). The sequence

An,k = card ({a ∈ A : |a| = n, χ(a) = k}) ,

is called the counting sequence of the pair (A, χ). The bivariate generating function
(BGF) of (A, χ) is then defined as

A(z, u) :=
∑

n≥0

∑

k≥0

An,k
zn

ωn
uk,

and is ordinary if ωn ≡ 1 and exponential if ωn ≡ n!. One says that the variable z
marks the size and the variable u marks the parameter χ.

Remark 2.14. Obviously, A(z, 1) reduces to the usual univariate generating function
A(z) associated with A.

12



At this point we have to distinguish between certain kinds of parameters, namely
so-called inherited parameters, recursive parameters and extremal parameters. We
omit the formal definitions of these types of parameters and instead try to shortly
explain the differences of the three types and how to deal with them.

An inherited parameter fulfils axioms that are in fact a natural extension of the
axioms the size itself has to satisfy (see [45, Definition III.5]). Thus, by extending
the basic combinatorial constructions to include bivariate generating functions whose
second variable carries information about the parameter, the symbolic method is able
to directly take such parameters into account. An example for an inherited parameter
is for instance the root degree of a plane tree (for the precise definitions see Chapter 3).

Recursive parameters are - as the name indicates - parameters that are defined
by recursive rules over structures that are themselves recursively specified. These
parameters are typical for trees and tree-like structures and will occur at several points
within this thesis (e.g. the number of leaves of a plane tree). The bivariate generating
function is set up by means of a marking process where it suffices to distinguish the
elements of interest and mark them by the auxiliary variable, see Example 2.15.

Thus, for both cases of inherited and recursive parameters, the symbolic method
can be extended to bivariate generating functions, and thus it serves not just as a tool
to count combinatorial objects but also to quantify their properties.

Example 2.15 (Binary trees, continuation). Let us recall the specification for binary
trees given in Example 2.4 by

B = E ∪ (Z × B × B) .

Now, we want to set up the bivariate generating function B(z, u), where z marks the
size (i.e., the number of internal nodes) and u marks the number of leaves. So, the
parameter we are interested in is now the total number of leaves. Then we get via the
marking process and the symbolic method

B(z, u) = u+ zB(z, u)2.

Every leaf is now marked with a u, while the internal nodes are solely marked by a z.

The last type of parameters are the so-called extremal parameters, which are de-
fined by a maximum rule. A typical extremal parameter is for example the height of a
tree. In this case, the non-linearity of the maximum function prevents a suitable use
of bivariate generating functions. The standard technique is to introduce a collection
of univariate generating functions defined by imposing a bound on the parameter of
interest. For setting up the generating functions of these restricted combinatorial
classes, we use again the symbolic method in its univariate version.

Now, that we have an idea how to set up a bivariate generating function A(z, u),
where z marks the size and u marks the parameter of interest, we introduce some
important approaches that uses A(z, u) in order to get some information on the dis-
tribution of the parameter.

In general, given a combinatorial class A, we will always assume an uniform prob-
ability distribution over An, i.e. we assume that all a ∈ An appear with the equal

13



likelihood of 1
An

. Every parameter χ determines a discrete random variable χn de-
fined over the discrete probability space An via

χn = PAn(χ = k) =
An,k
An

=
An,k∑
k An,k

.

The probability generating function of χ over An is then given by

p(u) =
∑

k

PAn(χ = k) =
[zn]A(z, u)

[zn]A(z, 1)
,

where A(z, u) is the bivariate generating function of (A, χ). Important information
about a random variable can be obtained by calculating its moments. Given a discrete
random variable X, the moments are defined via

E(Xr) :=
∑

k

P(X = k)kr.

Then the expectation (or average, mean) ofX, its variance, and its standard deviation,
respectively, are expressed as

E(X), V(X) = E(X2)− (EX)2, σ(X) =
√
V(X).

Proposition 2.16. The expected value of a parameter χ is determined from the BGF
A(z, u) via

E(χ) =
[zn]∂uA(z, u)|u=1

[zn]A(z, 1)
.

In order to get some information on the distribution of a parameter, one typically
investigates the so-called characteristic function, which can be obtained from the
probability generating function p(u) = E(uX) by setting u = eit.

Theorem 2.17 (Levy’s continuity theorem, [45, Theorem IX.4]). Let Y and Yn be
random variables with characteristic functions φ(t), φn(t), and assume that y has a
continuous distribution function. A necessary and sufficient condition for the conver-
gence in distribution, Yn ⇒ Y , is that, pointwise, for each real t,

lim
n→∞

φn(t) = φ(t).

In particular, the characteristic function of some prominent probability distribu-
tions are given in Table 2.2.

Distribution Characteristic function φ(t)

Normal(µ,σ2) eitµ−
1
2
σ2t2

Poisson(λ) eλ(eit−1)

Exponential(λ) (1− itλ−1)−1

Table 2.2: Characteristic functions of some well-known probability distributions.

Another very powerful theorem, that we use within this thesis in order to prove hat
a sequence of random variables is asymptotically normally distributed, is the so-called
Quasi-Powers Theorem. The idea is that if the characteristic function of a sequence of
random variables Xn behaves almost like powers of a function, then the distribution
of Xn should be approximated by a corresponding sum of i.i.d. random variables and,
thus, one can expect a central limit theorem, [34].
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Theorem 2.18 (Quasi-Powers Theorem, [67]). Let Xn be a sequence of random vari-
ables with the property that

E(uXn) = A(u)B(u)λn
(

1 +O
(

1

φn

))

holds uniformly in a complex neighbourhood of u = 1, where λn → ∞ and φn → ∞,
and A(u) and B(u) are analytic functions in a neighbourhood of u = 1 with A(1) =
B(1) = 1. Set µ = B′(1) and σ2 = B′′(1) +B′(1)−B′(1)2. If σ2 6= 0, then

Xn − E(Xn)√
V(Xn)

→ N (0, 1),

with E(Xn) = µλn +A′(1) +O(1/φn)) and V(Xn) = σ2λn +A′′(1) +A′(1)−A′(1)2 +
O(1/φn)).

Now, as we have introduced the most important methods that are used within this
thesis, we turn to the definition of the basic structures that we are going to investigate,
namely trees and lambda terms and outline their enumeration problems.
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Chapter 3

Enumeration of trees and lambda
terms

This chapter is split into two parts. In the first part, the basic concepts related to trees,
as well as some important tree classes are introduced together with their generating
functions. Furthermore, asymptotic results concerning their counting sequences are
presented. The second part is devoted to the definition and the counting problems of
special classes of lambda terms.

3.1 Trees

In this section we introduce some fundamentals about combinatorial trees, basic defi-
nitions and important results concerning the enumeration problem of selected classes
of trees. For more detailed information see [34].

3.1.1 Basic definitions

In general, trees are connected graphs that do not contain any cycles. In particu-
lar we distinguish between rooted and unrooted, plane and non-plane, and labeled
and unlabeled trees. Within this thesis we will exclusively deal with rooted trees,
i.e., trees that include one distinguished node, called the root of the tree. In analogy
to biological trees all nodes with degree 1 are called leaves (except for the root, which
is solely called a leaf when it has degree 0) and the path connecting the root and a leaf
is called a branch. The size |T | of a tree T is defined as its total number of vertices.
The height h(v) of a node v is defined as the length of the path connecting the root
with v, while the height h(T ) of a tree T is the length of the longest path from the
root to a leaf, i.e., the length of the longest branch. When visualizing a tree we will
always use the convention that the root is drawn as the topmost node. In this way we
can speak about levels in trees in an intuitive way, thus the level in which a certain
node is located coincides with its respective height, see Figure 3.1. Furthermore, for
every fixed vertex v we call all nodes that are connected to v and that are located in
the next level (i.e., their height is h(v) + 1), the child-nodes or children of v, while v
is called their parent-node.
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(a) (b)

Figure 3.1: Unrooted tree (a), and a rooted tree along with its levels encircled (b).

Rooted trees are planar graphs in the sense that we can embed them into the
plane without crossings. However, when we speak of plane trees, we mean that we
distinguish between all possible different embeddings into the plane. Thus, the trees
in Figure 3.2 are assumed to be different plane trees, whereas they represent the same
non-plane tree. Obviously, this is an important issue when it comes to the problem
of counting trees.

Figure 3.2: Different embeddings that represent the same non-plane tree.

Furthermore, we distinguish between labeled trees, where the nodes are labeled
with different numbers from 1 to the total number of nodes, and unlabeled trees that
do not contain any labels. Again, this is particularly important for the counting prob-
lem, since there are always more labeled than unlabeled trees with a given number of
nodes (except for trees with only 1 node). There are different ways to label a tree.
One model that will be used within this thesis is to choose the labels in an increasing
manner, i.e., the label of the parent-node has to be always smaller than the label of its
child-nodes, see Figure 3.3. This concept leads to the class of increasing trees, which
will be introduced more thoroughly in the remainder of this subsection.

Now we introduce some important classes of trees that will be considered there-
inafter in this thesis and we outline their enumeration problems.
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Figure 3.3: Two different labelings of a rooted tree, where the right one is in particular
an increasing labeling.

3.1.2 Counting trees

A particularly important class of trees is the class of simply generated trees, which
comprises many famous representatives, such as binary trees or planted plane trees.

Simply generated trees. Simply generated trees are unlabeled and weighted rooted
trees that were introduced by Meir and Moon [85]. Their generating function S(z) is
implicitly defined via

S(z) = zΦ(S(z)), (3.1)

where Φ(z) = φ0 + φ1z + φ2z
2 + . . . =

∑
j≥0 φjz

j and (φj)j≥0 is called the weight
sequence. Usually one assumes φ0 > 0 and φj > 0 for some j ≥ 2. The weight w(T )
of a tree T is then defined as

w(T ) =
∏

v∈V (T )

φd+(v),

with V (T ) denoting the vertex set of T and d+(v) denoting the out-degree of the
vertex v, i.e., the number of children of v.
The number Sn = [zn]S(z) of simply generated trees of size n is then given by

Sn =
∑

|T |=n
w(T ).

For some subclasses of simply generated trees an explicit formula for the coefficients Sn
can be obtained (mostly by the use of the Lagrange inversion formula), while in most
cases it is not possible to get a closed formula for the precise numbers. However, there
is a general asymptotic result which relies on the fact that (under certain conditions)
the generating function S(z) has a dominant singularity ρ of square root type at a finite
radius of convergence and is given in the following theorem, see [34, Theorem 3.6].

Theorem 3.1 ([34, Theorem 3.6]). Let Sn = [zn]S(z) be the number of simply gen-
erated trees of size n, and let R denote the radius of convergence of Φ(z), with S(z)
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and Φ(z) as in (3.1). Suppose that there exists τ with 0 < τ < R that satisfies
τΦ′(τ) = Φ(τ). Set d = gcd{j > 0 : φj > 0}. Then

Sn =

{
d
√

Φ(τ)
2πΦ′′(τ)

Φ′(τ)n

n3/2 (1 +O(n−1)) if n ≡ 1 mod d

0 if n 6≡ 1 mod d
,

for n→∞.

Remark 3.2. The quantity d in Theorem 3.1 is a measure for the periodicity of the
function Φ(z), which is directly related to the number of dominant singularities. Thus,
for d = 1 we are in the non-periodic case, where there exist trees of arbitrary sizes and
where we have a single dominant singularity. For d > 1 there are solely trees of size
1 mod d and Φ(z) has d dominant singularities that all contribute to the asymptotics
of the coefficients Sn.

In the subsequent examples, we introduce some special subclasses of simply gen-
erated trees that are particularly important.

Example 3.3 (Planted plane trees). Planted plane trees (or Catalan trees) are rooted
plane trees, where each node has an arbitrary number of children, see Figure 3.4.
Their generating function C(z) is obtained by setting φj = 1 for all j ≥ 0. Then
all trees T have weight w(T ) = 1 and Φ(z) = 1

1−z . Thus, C(z) satisfies the relation
C(z) = z 1

1−C(z)
(see [34]). The number Cn of planted plane trees of size n is known

to be explicitly given by

Cn =
1

n

(
2n− 2

n− 1

)
.

The asymptotic behavior of the coefficients Cn can be derived by means of Theorem 3.1
(or directly by use of Stirling’s formula) and it reads as

Cn =
1

4
√
π

4n

n3/2

(
1 +O(n−1)

)
for n→∞.

= + + + + ...

Figure 3.4: Recursive structure of planted plane trees.

Notation 3.4. As the numbers Cn are just the shifted Catalan numbers, planted plane
trees are often called Catalan trees. Within this thesis we will always denote the n-th
Catalan number by Cn. Thus, Cn = Cn−1.

Example 3.5 (Binary trees). Binary trees are rooted plane trees, where each node
has either two children (one to the left, one to the right), or no children at all (then
it is a leaf), see Figure 3.5. Their generating function B(z) is obtained by setting
φ0 = 1, φ2 = 1 and φj = 0 for j = 1 and for all j ≥ 3. Then we get Φ(z) = 1 + z2
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and thus B(z) = z(1 + B(z)2). Now we are in a periodic case, since d = gcd{j > 0 :
φj > 0} = 2. This is reflected by the fact that there are no binary trees of even size
(when the size is defined as the total number of nodes). By Theorem 3.1 we have for
n→∞

Bn = [zn]B(z) =

{√
2
π

2n

n3/2 (1 +O(n−1)) if n is odd

0 if n is even
.

This result can also be obtained by means of Stirling’s formula, since we know that
the exact number of binary trees of size n is given by the n−1

2
-th Catalan number, i.e.,

Bn = [zn]B(z) =

{
2

n+1

(
n−1
n−1
2

)
if n is odd

0 if n is even
.

= +

Figure 3.5: Recursive structure of binary trees.

In order to avoid that the counting sequence (Bn)n≥0 is zero for every even num-
ber n, the size of a binary tree is often rather defined as the number of its internal
nodes, instead of its total number of nodes. In this case the generating function B̃(z)
of binary trees is defined via B̃(z) = 1+zB̃(z) and the number B̃n = [zn]B̃(z) is given
by the n-th Catalan number, B̃n = 1

n+1

(
2n
n

)
.

In a strict sense, the combinatorial class B̃ of binary trees that are counted with
respect to their internal nodes does not belong to the class of simply generated trees.
However, the functional equation is of the form B̃(z)−1 = zΦ(B̃(z)−1), with Φ(z) =
(1 + z)2 and thus, when considering the shifted generating function this class falls
into the framework of simply generated trees as well. Furthermore, the two generating
functions B(z) and B̃(z) are connected via the identity B(z) = zB̃(z2), which can
easily be verified when observing the explicit solutions for B(z) and B̃(z), i.e.,

B(z) =
1−
√

1− 4z2

2z
and B̃(z) =

1−
√

1− 4z

2z
.

By either applying Stirling’s formula to the explicit expression for B̃n, i.e., the n-th
Catalan number, or by applying a tranfer theorem to the Puiseux expansion of B̃(z),
or by use of Theorem 3.1 (with Φ(z) = (1 + z)2) the asymptotics for the coefficients
B̃n can be obtained very easily, reading as

B̃n =
1√
π

4nn−3/2
(
1 +O(n−1)

)
for n→∞.

The same asymptotics will also appear in the subsequent example of incomplete binary
trees (counted with respect to their total number of vertices), which are in bijection to
the number of binary trees counted with respect to their internal nodes.
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Example 3.6 (Incomplete binary trees). Incomplete binary trees are rooted plane
trees, where each node has either two children (one to the left, one to the right), or
just one child (either to left or to the right), or no children at all (then it is a leaf),
see Figure 3.6. Their generating function I(z) is obtained by setting φ0 = 1, φ1 = 2,
φ2 = 1 and φj = 0 for all j ≥ 3. Then Φ(z) = (1+z)2, which yields I(z) = z(1+I(z))2.
According to Theorem 3.1 their number behaves asymptotically as

In =
1√
π

4n

n3/2
(1 +O(n−1)) for n→∞.

As mentioned earlier, incomplete binary trees are in bijection to ordinary binary trees
when the size of the latter ones is defined as the number of internal nodes, i.e., leaves
are disregarded. This is reflected by the fact that for both generating functions B̃(z)
and I(z) the function Φ(z) is defined as Φ(z) = (1 + z)2.

= + ++

Figure 3.6: Recursive structure of incomplete binary trees.

Example 3.7 (Motzkin trees). Motzkin trees are rooted plane trees, where each node
has either two children (one to the left and one to the right), or one child (centered)
or no child at all (then it is a leaf), see Figure 3.7. Their generating function M(z) is
obtained by setting φ0 = φ1 = φ2 = 1 and φj = 0 for j ≥ 3. Thus, Φ(z) = 1 + z + z2,
and M(z) = z(1 + M(z) + M(z)2). According to Theorem 3.1 their number behaves
asymptotically as

Mn =

√
3

4π

3n

n3/2
(1 +O(n−1)) for n→∞.

= + +

Figure 3.7: Recursive structure of Motzkin trees.

Example 3.8 (Cayley-trees). Cayley trees are labeled non-plane rooted trees. Their
exponential generating function is described through L(z) = zeL(z), thus Φ(z) = ez.
In a strict sense, Cayley trees do not belong to the class of simply generated trees (cf.
the discussions in [56] and [69]), since the defining equation (3.1) is just valid for the
exponential generating function. However, usually they are listed as an example for
that class due to their close relation, see [91] for a thorough analysis and [56] for an
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analysis of the differences. By Lagrange inversion the number Ln of Cayley trees can
be determined explicitly, which reads as

Ln = n![zn]L(z) = nn−1.

Of course we can interpret L(z) also as the ordinary generating function of simply
generated trees defined via L(z) = zΦ(L(z)) with Φ(z) = ez. This has the advantage
that this class is easy to investigate (as a special class of simply generated trees) and
gives direct access to structural properties of the class of Cayley trees, which is more
interesting as it is a very prominent class of trees that occurs in various applications.
In order emphasize the difference between these two classes we will subsequently call
the respective class of simply generated trees “Cayley-like trees”.

The following table summarizes the explicit generating functions of the tree classes
that we just introduced in the previous examples together with their dominant singu-
larities.

Tree class Generating function Dominant singularity

Planted plane trees C(z) = 1−√1−4z
2

ρ = 1
4

Binary trees B(z) = 1−
√

1−4z2

2z
ρ1 = 1

2
, ρ2 = −1

2

Binary trees (w.r.t. internal nodes) B̃(z) = 1−√1−4z
2z

ρ = 1
4

Incomplete binary tres I(z) = 1−2z−√1−4z
2z

ρ = 1
4

Motzkin trees M(z) = 1−z−
√

1−2z−3z2

2z
ρ = 1

3

Cayley-like trees L(z) = −W (−z) ρ = 1
e

Table 3.1: Summary of the explicit closed formulas for the generating functions of
selected tree classes falling into the framework of simply generated trees. In a strict
sense, for the generating function of Cayley-like trees there is no closed formula known.
However, it is possible to express it by means of a special function, namely the Lambert
W function (see [27]).

Now, we introduce the unlabeled version of Cayley trees, or the non-plane version
of planted plane trees respectively, namely the class of so-called Pólya trees.

Pólya trees Pólya trees are unlabeled non-plane rooted trees. By considering them
as being constructed of a root to which we attach a multiset of Pólya trees (see ref
for the multiset construction), their generating function P (z) satisfies the relation

P (z) = zeP (z) exp

(∑

i≥2

P (zi)

i

)
.

From the classical results of Pólya [93] we know that P (z) has a unique dominant
singularity ρ of type 1/2 and admits the Puiseux series expansion for z → ρ

P (z) ∼ 1− b
√

1− z

ρ
+
b2

3

(
1− z

ρ

)
+ d

(
1− z

ρ

)3/2

+ · · · , (3.2)
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which yields

Pn ∼
b

2
√
π
n−3/2ρ−n for n→∞.

Numerical approximations for the constants were first computed by Otter [89]. This
was also topic in Finch [42, Section 5.6] and [45, p. 477] where we find approximations
up to 25 digits:

ρ ≈ 0.3383218568992076951961126 and b ≈ 1.55949002037464088554226.

Another class of non-plane trees that is investigated within this thesis is the class
of non-plane binary trees.

Non-plane binary trees Like in the plane case, there do not exist any non-plane
binary trees of even size. Thus, in order to avoid periodicities in the generating
function, the size of a non-plane binary tree is often defined as the number of its
internal vertices. Within this thesis, we will use both size models and thus, we will
shortly introduce the two cases: Let N(z) denote the generating function of non-plane
binary trees where the size is defined as the number of its internal vertices, and let
V (z) denote the respective generating function, when the size is defined as the total
number of nodes. In analogy to the specification for the generating function of Pólya
trees, the generating function N(z) satisfies

N(z) = 1 + z

(
1

2
N(z)2 +

1

2
N(z2)

)
. (3.3)

In the binary case this equation can easily be interpreted: The term N(z)2 represents
the left and the right subtree. It has to be divided by 2, since we do not distinguish
between their left-and-right order. However, in case both subtrees are isomorphic
(which corresponds to N(z2)), we have to add the term 1

2
N(z2) in order to compensate

for the (in this case unnecessary) division by 2. The asymptotic expansion of N(z) is
given by

N(z) ∼ 1

σ
− a
√

1− z

σ
. (3.4)

In [45, p. 477] we find the numerical values of the constants σ and a. (Caveat : The
scaling is different, so [45, p. 477] in fact lists a · σ, not a.) We have

σ ≈ 0.4026975036714412909690453 and a ≈ 2.8061602222420538943722824.

The asymptotics of V (z) can easily be obtained from (3.4), by considering that V (z) =
zN(z2). First of all, we immediately know that there are two dominant singularities
of V (z) = zN(z2) at z = ±√σ and we get

V (z) = zN(z2) ∼ ±√σ
(

1

σ
− a
√

2

√
1∓ z√

σ

)
, for z → ±√σ.

Finally, by setting ρ =
√
σ ≈ 0.6346 and b = a

√
2σ ≈ 2.5184 we have

V (z) ∼ 1

ρ
− b
√

1∓ z

ρ
for z → ±ρ.
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Thus, by means of singularity analysis (see Corollary 2.11) the asymptotics of the
coeffcients Vn of V (z) read as

Vn = [zn]V (z) ∼ b√
π
ρ−nn−3/2.

Finally, we introduce two important classes of increasing trees, namely recursive
trees and increasing binary trees.

Recursive trees Recursive trees are increasingly labeled non-plane rooted trees.
They can be considered as being the result of a growth process, in which one succes-
sively picks nodes labeled with growing numbers starting from 1 and attaches them
to the thereby growing tree. In this way, the root will always receive the label 1 and
for the i-th node (i > 1) there are i− 1 possibilities as to how one can attach it to the
tree, see Figure 3.8. Considering that every recursive tree of size n is obtained by a
unique growth process, it follows immediately that there are exactly (n− 1)! possible
trees of size n. Recursive trees can be specified by

R = {◦}� × Set(R). (3.5)

Since they are labeled, we investigate their asymptotic number by means of an expo-
nential generating function R(z). Translating Equation (3.5) into exponential gener-
ating functions yields

R′(z) = eR(z), (3.6)

which shows again

R(z) =
∑

n≥0

(n− 1)!
zn

n!
= ln

1

1− z . (3.7)

The natural probability distribution on recursive trees of a given size n is to assume
that each of the (n− 1)! trees occurs with equal possibility. However, by introducing
weights of the trees in a similar manner as is has been done for simply generated
trees, the class of recursive trees can be generalized to the class of so-called increasing
trees. They were first introduced by Bergeron, Flajolet, and Salvy [9] and further
information can also be found in [34]. Within this thesis we will solely consider two
classes of increasing trees, namely the above mentioned recursive trees and the class
of plane binary increasing trees, which is defined as follows.

Plane binary increasing trees Plane binary increasing trees can be specified by

A = {◦}� × (1 +A)2 ,

which translates as

A′(z) = (1 + A(z))2 (3.8)
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into an equation for the exponential generating function A(z). Solving Equation (3.8)
and using the initial condition A(0) = 0, the exponential generating function A(z) is
given by

A(z) =
z

1− z .

Thus, we get

An = n![zn]A(z) = n!,

where it is to be emphasized that this result is valid just for odd sizes n, since there
are no binary trees of even size, unless one considers incomplete binary trees. In such
a case n! is the number of plane increasing incomplete binary trees for arbitrary n.
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Figure 3.8: Left: Possibilities to add the 5-th node into a given recursive tree of size 4.
Right: A (plane) binary increasing tree.

3.2 Lambda terms
This section introduces basic definitions and notations concerning lambda terms in
general, as well as two particular subclasses of lambda terms that are studied in
Part III. Moreover, the difficulties that arise when trying to solve the enumeration
problem of general lambda terms are outlined and the counting problem of the afore-
mentioned subclasses of lambda terms is sketched briefly.

However, before giving all these definitions we shortly want to provide some back-
ground information on the lambda calculus and give a brief overview on previous work
concerning combinatorics of lambda terms, as it has been done in [57].

3.2.1 Background and previous work

The lambda-calculus was invented by Church and Kleene in the 1930ies as a tool
for the investigation of decision problems. Today it still plays an important role in
computability theory and for automatic proof systems. Furthermore, it represents
the basis for some programming languages, such as LISP or Haskell. In fact, the
generation of random lambda terms served for optimising the Glasgow Haskell Com-
piler [90] and for finding bug in a C-compiler [99] As mentioned at the beginning,
recently, rising interest in the number and structural properties of lambda terms can
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be observed. This is triggered on the one hand by the fact that random lambda terms
have practical application and the understanding of structural properties enables their
tuning when generating random terms, see [4], on the other hand, they turned out
to be a source of interesting, albeit in part very intricate, combinatorial enumeration
problems. Finally, we mention that there is a direct relationship between these ran-
dom structures acting as computer programs and mathematical proofs (see [28]), but
this relationship essentially concerns only typed lambda terms and not general ones.

For a thorough introduction to lambda calculus we refer to [3]. This paper does not
require any preliminary knowledge of lambda calculus in order to follow the proofs.
Instead we will study the basic objects of lambda calculus, namely lambda terms,
by considering them as combinatorial objects, or more precisely as a special class of
plane directed acyclic graphs (PDAGs).

To our knowledge, the first appearance of enumeration problems in the sense of
enumerative combinatorics which are linked to lambda-calculus is found in [64], where
certain models of lambda-calculus are analyzed which have representations as formal
power series. More recently, we observe rising interest in the quantitative properties
of large random lambda terms. The first work in this direction seems to be [87]. Later
David, Grygiel, Kozik, Raffalli, Theyssier,and Zaionc [29] investigated the proportion
of normalising terms, which was also the topic of [7] in a different context. Other
papers dealing with certain structural properties of lambda terms are for instance [19,
60, 94].

Since studying quantitative aspects of lambda terms using combinatorial methods
relies heavily on their enumeration, many papers are devoted to their enumeration,
which itself very much depends on the particular class of terms and the definition of
the term size. The enumeration may be done by constructing bijections to certain
classes of maps, see e.g. [13, 100, 101] or the use of the methodology from analytic
combinatorics [45], see e.g. [5, 10, 11, 12, 17, 63, 78].

Another approach to gain structural insight is by random generation. Solving the
enumeration problems is the basis for an efficient algorithm for this purpose, namely
Boltzmann sampling [40, 43]. The method is extendible to a multivariate setting
allowing for a fine tuning according to specified structural properties of the sampled
objects, as was demonstrated in [4, 18]. The generation of lambda terms was treated
in [6, 13, 63, 90, 96, 98].

3.2.2 Basic definitions

Let us start with the definition of lambda terms.

Definition 3.9 (Lambda terms, [61, Def. 3]). Let V be a countable set of variables.
The set Λ of lambda terms is defined by the following grammar:

1. Every variable in V is a lambda term.

2. If T and S are lambda terms then TS is a lambda term.

3. If T is a lambda term and x is a variable then λx.T is a lambda term.

We call TS an application and λx.T an abstraction.
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The name application arises since a lambda term of the form TS can be regarded
as a function T (S), where the function T is applied to S, which in turn is a function
itself. An abstraction can be considered as a quantifier that binds the respective
variable in the sub-lambda term within its scope. Both application and repeated
abstraction are not commutative, i.e., in general the lambda terms TS and ST , as
well as λx.λy.M and λy.λx.M , are different (with the exceptions of T = S and none
of the variables x or y occurring in M).

Definition 3.10 (Bound/free variables, [3, Def. 2.1.6], open/closed lambda term). A
variable x occurs free in a lambda term if it is not in the scope of a λx. Otherwise
we call it a bound variable. A lambda term is closed if it contains no free variables;
otherwise it is called open.

Each lambda binds exactly one variable (which may occur several times in the
term or even not at all), and each variable can be bound by at most one abstraction.
Since we will exclusively deal with closed lambda terms within this thesis, each vari-
able occurrence will always be bound by exactly one lambda.
Throughout this thesis the following notational conventions are used (cf. [3, Not. 2.1.3]):

(i) x, y, z, . . . denote arbitrary variables.

(ii) S, T, . . . denote arbitrary lambda terms.

(iii) The lambda term λx1. . . . λxn.S is read as λx1.(λx2.(. . . (λxn.S)) . . .), whereas
ST1 . . . Tn is an abbreviation for (. . . ((ST1)T2) . . . Tn).

(iv) The symbol ≡ denotes syntactic equality.

Furthermore, we consider lambda terms modulo α-equivalence (cf. [3, Def. 2.1.12]),
i.e., we identify terms that are equal up to a renaming of their bound variables (by
fresh variables that do not occur in the term at all). For example λx.xz ≡ λy.yz 6≡
λz.zz.

In 1972 De Bruijn [23] introduced a representation for lambda terms that com-
pletely avoids the use of variables by substituting them by natural numbers that
indicate the number of abstractions between the variable and its binding lambda (the
binding lambda is counted as well), i.e., λx.(λy.(xy)) = λ(λ21).

Definition 3.11 (De Bruijn index, De Bruijn level). The natural numbers that rep-
resent the variables in the De Bruijn representation of a lambda term are called
De Bruijn indices. The number of nested lambdas starting from the outermost one
specifies the De Bruijn level in which a variable (or De Bruijn index, respectively) is
located.

For example in the lambda term λx.x(λy.(xy)) = λ1(λ21) the first occurrence
of the variable x (i.e., the leftmost 1 in the De Bruijn representation) is in the first
De Bruijn level, while the other variables are in the second De Bruijn level. In gen-
eral, free variables are indicated by De Bruijn indices that exceed the De Bruijn level
the variable is located in. However, as stated before, we will solely deal with closed
lambda terms, and thus we do not have to cope with the modality of free variables.
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There is also a combinatorial interpretation of lambda terms that considers them
as plane directed acyclic graphs (PDAGs) and thereby naturally identifies two α-
equivalent terms to be equal. Combinatorially, lambda terms can be seen as rooted
unary-binary trees containing additional directed edges. Note that in general the
resulting structures are not trees in the sense of graph theory, but due to their close
relation to trees (see Definition 3.12) some authors call them lambda trees or enriched
trees. We will call them lambda-PDAGs in order to emphasise that these structures
are in fact PDAGs, if we consider the undirected edges of the underlying tree to be
directed away from its root.

Definition 3.12 (Lambda-PDAG, [61, Def. 5]). For every lambda term T , the corre-
sponding lambda-PDAG G(T ) can be constructed in the following way:

• If x is a variable then G(x) is a single node labeled with x. Note that x is free.

• G(PQ) is a lambda-PDAG with a binary node as the root, having the two lambda-
PDAGs G(P ) (to the left) and G(Q) (to the right) as subgraphs.

• The PDAG G(λx.P ) is obtained from G(P ) in four steps:

1. Add a unary node as the new root.

2. Connect the new root by an undirected edge with the root of G(P).

3. Connect all leaves of G(P ) labeled with x by directed edges with the new
root.

4. Remove all labels x from G(P ).

Obviously, applications correspond to binary nodes and abstractions correspond to
unary nodes of the underlying Motzkin tree that is obtained by removing all directed
edges. Of course, in the lambda-PDAG some of the vertices that were former unary
nodes might have gained out-going edges, so they are no unary nodes in the lambda-
PDAG anymore. However, when we speak of unary nodes, we mean the unary nodes
of the underlying unary-binary tree that forms the skeleton of the lambda-PDAG.
Since the skeleton of a lambda-PDAG is a tree, we sometimes call the variables leaves
(i.e., the nodes with out-degree zero), and the path connecting the root with a leaf
(consisting of undirected edges) is called a branch.

In the lambda-PDAG, the De Bruijn indices and levels can be easily depicted: The
De Bruijn index of a variable v is the number of unary nodes we find on the path from
v to its binding lambda in the skeleton of the lambda-PDAG, where the last unary
node on the path has to be counted as well. The De Bruijn level of v is the number
of unary nodes on the path from v to the root. Figure 3.9 shows two representations
of the lambda-PDAG corresponding to the term (λx.(λy.xy)x)(λz.z). The left one
presents the PDAG obtained by the algorithm given in Definition 3.12, while the right
one is in fact a tree, since the pointers are omitted and instead the leaves are labeled
with their respective De Bruijn indices. The latter representation is less common, but
will turn out to be very useful for our purposes in Part III of the thesis. Moreover,
Figure 3.9 shows the different De Bruijn levels of the lambda-PDAG, extending their
definition for leaves to all types of nodes (unary and binary nodes).
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De Bruijn level 0

De Bruijn level 1

De Bruijn level 2

Figure 3.9: Two representations of the lambda-PDAG corresponding to the lambda
term (λx.(λy.xy)x)(λz.z). Left: Lambda-PDAG according to Definition 3.12. Right:
Lambda-PDAG without pointers (i.e., lambda tree) in which the leaves are labeled
with the respective De Brujin indices and with encircled De Bruijn levels.

There are different approaches as to how one can define the size |t| of a lambda
term t (see [11, 29, 78]), but within this thesis the size will be defined as the number
of nodes in the corresponding lambda-PDAG, i.e.,

|x| = 1,

|MN | = 1 + |M |+ |N |,
|λx.M | = 1 + |M |.

This is combinatorially the most natural definition, and it is equivalent to Baren-
dregt’s definition [3].

Now that we introduced all the necessary definitions, we provide a short overview
of problems related to counting lambda terms.

3.2.3 Counting lambda terms

At first sight lambda terms appear to be very simple structures, in the sense that
their construction can easily be described, but no one has yet accomplished to derive
their asymptotic number. However, the asymptotic equivalent of the logarithm of this
number can be determined up to the second-order term (see [12]).

One of the difficulties of counting closed lambda terms arises due to the fact that
their number increases superexponentially with increasing size, while their specifica-
tion (as unlabeled objects) requires the use of ordinary generating functions. This
rapid growth is caused by the various possibilities of connecting the unary nodes with
certain leaves. If we cancel all those pointers, we get ordinary unary-binary trees,
which are counted by the large Schröder numbers (OEIS A006318 [95]). These are
asymptotically equivalent to

(
3 + 2

√
2
)n 1√

πn3/2 [29].
However, due to the many degrees of freedom to choose the bindings (see Fig-

ure 3.10) a translation of the counting problem into generating functions yields a
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generating function that has a radius of convergence equal to zero, which makes the
common methods of analytic combinatorics inapplicable.

Consequently, lately some simpler subclasses of lambda terms, which reduce these
multiple binding possibilities, have been studied, for example lambda terms with
prescribed number of unary nodes [11], or lambda terms in which every lambda binds
a prescribed [13, 12, 61] or a bounded [13, 16, 61] number of leaves.

Figure 3.10: All possible variable bindings in order to obtain a closed lambda term
from the given unary-binary tree of size 8.

The classes of lambda terms that are the objects of interest within this thesis were
introduced in [10] and [11]. The first of these papers studies lambda terms with a
bounded number of abstractions between each leaf and its binding lambda, which
corresponds to a restriction on the value of De Bruijn indices, while the second one
investigates lambda terms with a bounded number of nested levels of abstractions,
i.e., lambda terms with a bounded number of De Bruijn levels. From a practical point
of view these restrictions appear to be very natural, since the number of abstractions
in lambda terms which are used for computer programming is in general assumed to
be very small compared to their size (cf. [99]).

In what follows we will give an introduction to the counting problems of the two
aforementioned classes of lambda terms, since these results will be needed in the
remainder of this thesis.

Lambda terms with bounded De Bruijn indices

Now we present the results on the enumeration of lambda terms with bounded
De Bruijn indices that have been studied in [11]. Let Gk denote the class of closed
lambda terms where all De Bruijn indices are less than or equal to k.

By the use of the symbolic method one can set up an equation specifying Gk.
Therefore we introduce further combinatorial classes as it has been done in [11]: Let
Z denote the class of atoms, A the class of application nodes (i.e., binary nodes),
U the class of abstraction nodes (i.e., unary nodes), and P̂(i,k) the class of unary-
binary trees such that every leaf e can be labeled in min{`(e) + i, k} ways, where
`(e) denotes the De Bruijn level of e. The objects in P̂(i,k) may be seen as lambda-
PDAGs where the binding of each variable x may come from a unary node at most k
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De Bruijn levels above x, even if this means up to i De Bruijn levels above the root
(which would indicate that the variable x is free). Thus, the class we are interested
in is P̂(0,k), which is isomorphic to the class Gk. In general, the classes P̂(i,k) can be
recursively specified via

P̂(k,k) = kZ + (A× P̂(k,k) × P̂(k,k)) + (U × P̂(k,k)), (3.9)

and

P̂(i,k) = iZ + (A× P̂(i,k) × P̂(i,k)) + (U × P̂(i+1,k)) for i < k. (3.10)

P̂(i+1,k)P̂(i,k)P̂(i,k)

P̂(i,k)

= + +

Figure 3.11: Scheme for the specification of the combinatorial classes P̂(i,k) for the
case i < k. The sketch is also true for the case i = k when considering that P̂(k+1,k) =
P̂(k,k).

Translating Equations (3.9) and (3.10) into generating functions and solving for
P̂ (k,k)(z) and P̂ (i,k)(z), we obtain

P̂ (k,k)(z) =
1− z −

√
(1− z)2 − 4kz2

2z
, (3.11)

and

P̂ (i,k)(z) =
1−

√
1− 4iz2 − 4z2P̂ (i+1,k)(z)

2z
for i < k. (3.12)

This can be written in the form

P̂ (i,k)(z) =
1

2z

(
1− 1[i=k]z −

√
R̂k−i+1,k(z)

)
,

where 1[i=k] denotes the indicator function

1[i=k] =

{
1 i = k

0 i 6= k
,

and

R̂1,k(z) = (1− z)2 − 4kz2,

R̂2,k(z) = 1− 4(k − 1)z2 − 2z + 2z2 + 2z

√
R̂1,k(z),

R̂i,k(z) = 1− 4(k − i+ 1)z2 − 2z + 2z

√
R̂i−1,k(z), for 3 ≤ i ≤ k + 1.
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Due to the aforementioned isomorphism between the two classes P̂(0,k) and Gk we have

Gk(z) = P̂ (0,k)(z) =
1−

√
R̂k+1,k(z)

2z
. (3.13)

Note that the generating function Gk(z) consists of k+1 nested radicals, which in fact
have a very descriptive combinatorial interpretation that can be seen when setting up
the generating function Gk(z) in a different way [62]: Instead of interpreting a lambda
term belonging to Gk as a structure that involves iterated unary-binary trees, we can
consider it to be built of leaf-labeled binary trees that are glued together via unary
nodes (cf. Figure 3.9). Thereby, the labels of the leaves correspond to the respective
De Bruijn indices. Obviously, this implies that within the whole tree each of the
labels belongs to the set {1, . . . , k}. However, in the first k − 1 De Bruijn levels
(excluding the 0-th level, which contains no variables) we have a stronger restriction:
Since we consider only closed terms, no label (i.e., no De Bruijn index) can exceed
the De Bruijn level the respective leaf is located in.

Thus, withB(z, w) denoting the bivariate generating function of binary trees where
z marks the size (i.e., the total number of nodes) and w marks the number of leaves,
and with Mk(z) denoting the generating function of Motzkin trees where each leaf
can be labeled in k ways (k-colored Motzkin trees in short), we get

Gk(z) = B
(
z, B

(
z, 1 +B

(
z, 2 + . . .+B

(
z, k − 1 +Mk(z)

)
. . .
)))

, (3.14)

where

B(z, w) =
1−
√

1− 4wz2

2z
and Mk(z) =

1− z −
√

(1− z)2 − 4kz2

2z
. (3.15)

Equation (3.14) can be interpreted as follows: Each tree representing a lambda term
belonging to Gk starts with a binary tree, in which all the leaves are replaced by
unary nodes to which we add further binary trees, i.e. B(z,B(. . .)). This is necessary
for a lambda term to be closed. These newly added binary trees represent the first
De Bruijn level. Next, there are two possibilities for each leaf in this level: Either it
receives the label 1, or alternatively, it is replaced with a unary node with a new binary
tree attached, which belongs to the next De Bruijn level, i.e. B(z,B(z, 1 + B(. . .))).
In this level the leaves can already be labeled with two different labels (namely 1 or 2),
or they can be replaced with unary nodes having new binary trees attached. Starting
from the k-th De Bruijn level, the number of possible labelings for the leaves does not
increase anymore. Thus, we finally get . . . + B(z, k + B(z, k + B(z, k + . . .))), which
is exactly the generating function Mk(z) of k-colored Motzkin trees given in (3.15).

Thus, the k outermost radicands, R̂k+1,k(z), . . . , R̂2,k(z), represent the first k
De Bruijn levels of the lambda term, i.e., level 0 to k − 1, while the innermost radi-
cand, R̂1,k(z), accounts for all the upper De Bruijn levels, starting with level k.

In [11] the authors showed that the dominant singularity of the generating function
Gk(z) comes from the innermost radicand for arbitrary fixed k.

Lemma 3.13 ([11, Lemma 5.4]). Let ρ̂k be the dominant singularity of the function
Gk(z), defined by (3.13), or equivalently by (3.14). Then ρ̂k = 1

1+2
√
k
comes from the

innermost radicand and is of type 1
2
.
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Furthermore, they provide an asymptotic estimate of the n-th coefficient of Gk(z).
For convenience, we will first introduce the auxiliary sequence (ci)i≥1, defined via

c1 = 1 and ci = 4i− 5 + 2
√
ci−1 for i ≥ 2. (3.16)

which appear both in the announced estimate, as well as in the remainder of this
thesis.

Theorem 3.14 ([11, Theorem 5.6]). For any fixed k ≥ 1, let Gk(z) be the generating
function of the class of lambda terms where all De Bruijn indices are at most k, which
has its dominant singularity at z = ρ̂k. Then

[zn]Gk(z) ∼

√√√√ 2k +
√
k

4π
∏k+1

j=2 cj
n−3/2ρ̂−nk , as n→∞,

where ci is defined as in (3.16).

Lambda terms with bounded number of De Bruijn levels

Now, we present the counting problem of lambda terms with a bounded number of
De Bruijn levels. Let us denote by Hk the class of closed lambda terms with at most k
De Brujin levels. A specification for this class can be set up as in [11] using the classes
P(i,k) of unary-binary trees that contain at most k− i De Bruijn levels and each leaf e
can be colored with one out of i+ `(e) colors, where `(e) denotes the De Bruijn level
in which the respective leaf is located. By denoting again Z the class of atoms, A the
class of applications/binary nodes and U the class of abstractions/unary nodes, the
classes P(i,k) can be recursively specified by

P(k,k) = kZ + (A×P(k,k) × P(k,k)), (3.17)

and

P(i,k) = iZ + (A×P(i,k) × P(i,k)) + (U × P(i+1,k)) for i < k. (3.18)

Remark 3.15. One can see that there is a great similarity in the specification for the
classes P̂(i,k) and P(i,k). While the recursions (3.10) and (3.18) for i > k are identical,
the only difference lies in the definitions of P(k,k) and P̂(k,k). Since the classes P(i,k)

have to fulfill the additional condition to contain at most k− i De Bruijn levels, there
cannot be any unary nodes in the class P(k,k), cf. (3.17). However, the class P̂(k,k)

is not restricted by this condition, and can therefore contain arbitrarily many unary
nodes, as long as all the De Bruijn indices are small enough, cf. (3.9).

By translating (3.17) and (3.18) into generating functions we get

P (k,k)(z) = kz + zP (k,k)(z)2,

and

P (i,k)(z) = iz + zP (i,k)(z)2 + zP (i+1,k)(z) for i < k.
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Solving yields

P (k,k)(z) =
1−
√

1− 4kz2

2z
,

and

P (i,k)(z) =
1−
√

1− 4iz2 − 4z2P (i+1,k)

2z
for i < k.

Analogously to the previous section, we are interested in the class P(0,k), since it is
isomorphic to the class Hk. Thus, the corresponding generating function Hk(z) reads
as

Hk(z) = P (0,k)(z) =
1−

√
Rk+1,k(z)

2z
,

where the radicands Ri,k(z) are defined as

R1,k(z) = 1− 4kz2, (3.19)

and

Ri,k(z) = 1− 4(k − i+ 1)z2 − 2z + 2z
√
Ri−1,k(z), for 2 ≤ i ≤ k + 1. (3.20)

Again, this generating function consists of k + 1 nested radicands, which can be
interpreted in a similar way as the R̂i,k(z) in the previous section. Thereby each
radicand indicates one further De Bruijn level of the lambda term and the generating
function Hk(z) can be written as

Hk(z) = B(z,B(1 +B(z, 2 + . . .+B(z, k − 1 +B(z, k)) . . .))), (3.21)

where B(z, w) denotes again the bivariate generating function of binary trees given in
(3.15), with z marking the size and w marking the number of leaves. This generating
function can once more be explained by considering a lambda term belonging to Hk as
a structure consisting of nested binary trees, matching the k+1 De Bruijn levels, that
are attached to each other via unary nodes. The essential difference in the construction
of the generating functions Gk(z) and Hk(z) lies in the choice of the trees that are
attached to the (k − 1)-th De Bruijn level, i.e., the last structure that we attach,
which makes up the innermost radicand. In the case of lambda terms with bounded
De Bruijn indices, i.e., Gk, we attached leaf-labeled Motzkin trees, since those terms
can have arbitrarily many De Bruijn levels, and starting from De Bruijn level k all
leaves can take labels from {1, . . . , k}. However, for lambda terms with at most k
De Bruijn levels, i.e., Hk, we have to attach leaf-labeled binary trees, since in the last
(i.e., the k-th) De Bruijn level no more unary nodes are allowed.

Remark 3.16. Note that the class Hk is a proper subclass of Gk, since the restriction
for all De Bruijn indices to be at most k, has to be fulfilled by terms belonging to both
classes.

In [11] the authors showed a very interesting phenomenon concerning the generat-
ing function Hk(z). The asymptotic behavior of its coefficients differs depending on
whether the imposed bound k is an element of a certain sequence (Ni)i≥0, which will
be given in Definition 3.17, or not. The remainder of this subsection is devoted to
presenting the precise results obtained in [11].
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Definition 3.17 (Auxiliary sequences (ui)i≥0 and (Ni)i≥0, [11, Def. 6.1]). Let (ui)i≥0

be the integer sequence defined by

u0 = 0, ui+1 = u2
i + i+ 1 for i ≥ 0,

and (Ni)i≥0 by
Ni = u2

i − ui + i, for all i ≥ 0.

j 1 2 3 4 5 6
Nj 1 8 135 21760 479982377 23040411505837408
uj 1 3 12 148 21909 480004287

Table 3.2: The first values of the sequences (Nj)j≥0 and (uj)j≥0 for j = 1, . . . , 6.

As indicated before, the generating function Hk(z) shows a very unusual behavior.
The type of its dominant singularity changes when the imposed bound equals Nj.
Thus, the subexponential term in the asymptotics of the counting sequence changes.

Theorem 3.18 ([11, Theorem 6.4]). Let (Ni)i≥0 be the sequence defined in Defini-
tion 3.17 and let k be an integer. Define j as the integer such that k ∈ [Nj, Nj+1). If
k 6= Nj, then the dominant radicand of Hk(z) is the (j+ 1)-th radicand (counted from
the innermost one outwards), and the dominant singularity ρk is of type 1

2
. Otherwise,

the j-th and the (j+ 1)-th radicand vanish simultaneously at the dominant singularity
of Hk(z), which is equal to 1/(2uj) and of type 1

4
.

The next theorem contains the asymptotic behavior of the number of lambda terms
with at most k De Bruijn levels.

Theorem 3.19 ([11, Theorem 6.23]). Let (ui)i≥0 and (Ni)i≥0 be the integer sequences
defined in Definition 3.17 and let Hk(z) be the generating function of the class of closed
lambda terms with at most k De Bruijn levels, which has its dominant singularity at
z = ρk. Then the following asymptotic relations hold:

(i) If there exists j ≥ 0 such that Nj < k < Nj+1, then there exists a constant hk
such that

[zn]Hk(z) ∼ hkn
−3/2ρ−nk , as n→∞.

(ii) If there exists j ≥ 0 such that k = Nj, then there exists a constant hNj such that

[zn]Hk(z) ∼ hNjn
−5/4ρ−nk = hNjn

−5/4(2uj)
n, as n→∞.

The constants in Theorem 3.19 can be expressed by means of the sequences
(ai)i≥j+2, (bi)i≥j+2 and (di)i≥j+2 given by

aj+2 = 1− 4(k − j − 1)ρ2
k − 2ρ2

k,

ai+1 = 1− 4(k − i+ 1)ρ2
k − 2ρ2

k + 2ρk
√
ai for i ≥ j + 1,

(3.22)

bj+2 = 2ρk
√

2ρk 4
√
γj,

bi+1 =
ρk√
ai
bi for i ≥ j + 1,

(3.23)

dj+2 = 2ρk
√
γj+1,

di+1 =
ρk√
ai
di for i ≥ j + 1,

(3.24)
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where γi is defined as γi := − d
dz
Ri,k(ρk).

The constants hk and hNj then read as

hk = − dk+1
√
ρk

4ρkΓ(−1/2)
√
ak+1

,

and

hNj = − bk+1
4
√
ρk

4ρkΓ(−1/4)
√
ak+1

.

In the case k = Nj one can easily show that 1− 4(k − j)ρ2
k − 2ρ2

k = 0. This equation
arises immediately by evaluating Rj+1,k(z) at z = ρk by means of the recursive defi-
nition (3.20) and by considering the fact that Rj+1,k and Rj,k both vanish at ρk. By
the use of this identity, the sequence (ai)i≥j+2 simplifies to

aj+l = 4ρ2
kλl−1,

with λ0 = 0 and λi+1 = i+ 1 +
√
λi. The advantage of this representation is that the

asymptotic behavior of the sequence (λi)i≥0 is very simple to derive by bootstrapping
and given by

λi = i+
√
i+

1

2
− 3

8
√
i
− 1

4i
+O

(
1

i
√
i

)
, for i→∞, (3.25)

see [11, Lemma 6.32]. This simplified formula for aj+l will be used at some point in
Part III and is thus given here for the sake of completeness. However, it is emphasized
that the simplification is only true in the case when the bound k is an element of the
sequence (Nj)j≥0.
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Part II

Parameters of trees
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Chapter 4

Protection number

This chapter is based on joint work with Bernhard Gittenberger, Zbigniew Gołę-
biewski and Małgorzata Sulkowska, which lead to the article Protection numbers in
simply generated trees and Pólya trees that has already been submitted to a jour-
nal, [55].

The protection number of a tree is the length of the shortest path from the root to
a leaf, i.e., the length of the shortest branch of a tree. It is interchangeably called the
protection number of a root. We define the protection number of a vertex v in a tree
T as the protection number of the fringe (i.e., maximal) subtree of T having v as a
root. We say that a vertex is k-protected if k does not exceed its protection number,
cf. Figure 4.1.

The protection number of a root is closely related to parameters called minimal
fill-up level and saturation level. These were studied previously by, among others,
Devroye [31] and Drmota [34, 35].

1

0

0

0

0

0 0

0 0

1

1 1

1

1

2 2

Figure 4.1: Tree with vertices holding their protection numbers. The protection
number of the tree is 1, i.e., the tree is 1-protected, as well as 0-protected.

Cheon and Shapiro [24] were the first ones to investigate the number of 2-protected
nodes in trees. They stated the results for unlabeled ordered trees and Motzkin trees.
Later on Mansour [83] complemented their work by solving k-ary tree case. Over
the next several years these results were followed by a series of papers examining
the number of k-protected nodes (usually for small values of k) in various models of
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random trees. To mention just a few, Du and Prodinger [39] analysed the average
number of 2-protected nodes in random digital search trees, Mahmoud and Ward [81]
presented a central limit theorem as well as exact moments of all orders for the number
of 2-protected nodes in binary search trees and three years later they found the number
of 2-protected nodes in recursive trees (consult [82]). The family of binary search trees
was investigated also by Bóna and Pittel [20] who showed that the number of its k-
protected nodes decays exponentially in k. In 2015 Holmgren and Janson [66] went
for more general results. Using probabilistic methods, they derived a normal limit law
for the number of k-protected nodes in a binary search tree and a random recursive
tree.

Soon after, two particular parameters attracted attention of the algorithmic com-
munity. These were the protection number of a root and the protection number of a
random vertex.

In 2017 Copenhaver [26] found that in a random unlabeled plane tree the ex-
pected value of the protection number of the root and the expected value of the
protection number of a random vertex approach 1.62297 and 0.727649, respectively,
as the size of the tree tends to infinity. These results were extended by Heuberger and
Prodinger [65]. They showed the exact formulas for the first terms of the expectation,
the variance and the probability of the respective protection numbers.

The aim of this work is to generalize the protection number results to a larger
class of rooted trees, namely simply generated trees (see page 19) and their nonplane
counterparts, Pólya trees (see page 23).

For simply generated trees, a general theory of asymptotics of certain functional
was developed recently in [30], but this theory does not cover local functionals as the
number of protected nodes. Devroye and Janson [32] presented a unified approach
to obtaining the number of k-protected nodes in various classes or random trees by
putting them in the general context of fringe subtrees introduced by Aldous in [2]. We
have obtained analogous results for simply generated trees, but employing a different
methodology. This allows an efficient numerical treatment and may serve as a basis
for random generation in the framework of Boltzmann sampling [40]. Parts of our
investigations fall into the general framework of additive functionals treated in [97],
but our focus on concrete expressions allows an easy access to numerical evaluation
of the considered parameters.

In Section 4.1 we calculate the asymptotic mean and variance of the protection
number of the root and the protection number of a random vertex for a random simply
generated tree. In Section 4.2 these parameters are studied for the class of Pólya trees
and in Section 4.3 we extend the results to non-plane binary trees. The results for the
asymptotic expected values are summarized in Table 4.1. Note that all the obtained
values are constants, i.e. they do not depend on the size of the respective trees.

4.1 Protection number of simply generated trees

4.1.1 Protection number of the root

Let T (z) denote the generating function of the class of simply generated trees, where
z marks the total number of nodes, i.e., T (z) = zφ(T (z)), cf. (3.1), which has a
unique dominant singularity of square root type at z = ρ. Then we denote by Tk(z)
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Tree model lim
n→∞

E(Xn) lim
n→∞

E(Yn)

Simply generated trees
Plane trees 1.62297 0.72765
Motzkin trees 2.54638 1.30760
Incomplete binary trees 3.53647 1.99182
Cayley trees 2.28620 1.18652
Complete binary trees 1.56298 1.26568

Non-plane trees
Pólya trees 2.15489 0.99532
Non-plane binary trees 1.70760 1.31241

Table 4.1: Summary of the obtained mean values for the protection number of the
root (Xn) and the protection number of a random vertex (Yn).

the generating function of the class of simply generated trees that have protection
number at least k. Furthermore, we assume φ(T ) to be non-periodic. Then, Tk(z)
can be defined by

Tk(z) = z (φ(Tk−1(z))− φ0) . (4.1)

Note that T0(z) = T (z).

Lemma 4.1. All generating functions Tk(z) have the same dominant singularity as
T (z), and it is a square root singularity.

Proof. First let us consider that the generating function Tk(z) reads as

Tk(z) = Ωk(T (z))

where Ω(t) = zφ(t) − zφ0 and Ωk(·) denotes the k-fold composition. Since Ω(t) is
analytic at T (ρ), inserting a function admitting a Puiseux expansion t(z) = α0 +

α1

√
1− z

ρ
+ . . . results in

Ω(t(z)) = Ω(α0) + Ω′(α0)α1

√
1− z

ρ
+ . . . ,

again being a Puiseux expansion at z = ρ. It is well known that T (z) admits a Puiseux
expansion τ0 + τ1

√
1− z

ρ
+ . . . with nonzero numbers τ0 and τ1 (cf. Section 3.1.2).

Moreover, we always insert one of the functions Tk(z), thus α0 attains the positive
values Tk(ρ), k = 0, 1, 2, . . . , implying that Ω′(α0) is always positive, as Ω(t) is a power
series with only non-negative coefficients. By induction it is guaranteed that α1 is
always negative and thus all the functions Tk(z) have a unique dominant singularity
of square root type at z = ρ.

In order to derive the expected value of the protection number Xn of a random
simply generated tree of size n (i.e., with n nodes) asymptotically, we use the well
known formula

E(Xn) =
∑

k≥1

P(Xn ≥ k). (4.2)
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Thus, we need to calculate the probability P(Xn ≥ k), which is given by

P(Xn ≥ k) =
[zn]Tk(z)

[zn]T (z)
.

Theorem 4.2. Let Xn be the protection number of a random simply generated tree
of size n. Then the expected value E(Xn) and the variance V(Xn) satisfy

lim
n→∞

E(Xn) =
∑

k≥1

ρk−1

k−1∏

i=1

φ′(Ti(ρ)),

and

lim
n→∞

V(Xn) =
∑

k≥1

(2k − 1)ρk−1

k−1∏

i=1

φ′(Ti(ρ))−
(

lim
n→∞

E(Xn)
)2

.

with ρ denoting the dominant singularity of the generating function T (z) = zφ(T (z))
of the class of simply generated trees.

Proof. Using the singularity analysis approach introduced in Chapter 2, we can trans-
late the Puiseux expansion T (z) = τ0 + τ1

√
1− z

ρ
+ τ2

(
1− z

ρ

)
+ . . ., of the generating

function T (z) into asymptotics for its coeffcients, resulting in

[zn]T (z) ∼ −τ1
n−3/2

Γ(−1/2)
ρ−n, as n→∞. (4.3)

In order to derive the asymptotic behavior of the n-th coefficient of Tk(z), let us recall
that from Lemma 4.1 we know that all generating functions Ti(z) have the same
dominant singularity ρ of type 1

2
. Setting η =

√
1− z

ρ
, the Puiseux expansions of

Tk(z) and Tk−1(z) read as

Tk(z) = τ0,k + τ1,kη + τ2,kη
2 + . . . ,

and

Tk−1(z) = τ0,k−1 + τ1,k−1η + τ2,k−1η
2 + . . . .

Plugging these expansions into (4.1) and using z = ρ(1− η2) we get

τ0,k + τ1,kη + τ2,kη
2 + . . . = ρ(1− η2)

(∑

j≥0

φj
(
τ0,k−1 + τ1,k−1η + τ2,k−1η

2 + . . .
)j − φ0

)
.

Expanding and comparing coefficients of η0 and η1 yields

[η0] : τ0,k = ρφ(τ0.k−1)− ρφ0,

[η1] : τ1,k = ρ
∑

j≥0

φjjτ1,k−1τ
j−1
0,k−1.

Obviously, the τ0,i = Ti(ρ), ∀i ≥ 0, as the τ0,i’s are the constant terms in the Puiseux
expansions of the functions Ti(z), with 0 ≤ i ≤ k. Thus, the equation for τ1,k can be
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rewritten as τ1,k = ρτ1,k−1φ
′(Tk−1(ρ)).

As τ1,0 = τ1, we get

τ1,k = τ1ρ
k−1

k−1∏

i=1

φ′(Ti(ρ)).

Applying a transfer lemma (see Theorems 2.8 and 2.10) directly gives the asymptotics
of the coefficients of Tk(z) and plugging them in conjunction with (4.3) into Equation
(4.2) yields the asymptotic value for the mean. In order to derive the formula for the
asymptotic variance we use the equations

V(Xn) = E(X2
n)− (EXn)2 and E(X2

n) =
∑

k≥1

(2k − 1)P(Yn ≥ k)

and immediately get the asserted result.

It is easy to see that the sequence (Ti(ρ))i≥0 is monotonically decreasing, since
the number of trees with protection number at least i is always greater than the
number of trees that have an (i + 1)-protected root, i.e., protection number at least
i+ 1. Since φ′ is monotonically increasing on the positive real axis, this implies that
ρφ′(Ti(ρ)) ≤ ρφ′(T1(ρ)) < ρφ′(T (ρ)) = 1. Thus, we can estimate the sum for the
expected value by

lim
n→∞

E(Xn) =
∑

k≥1

k−1∏

i=1

(ρφ′(Ti(ρ))) <
∑

k≥1

(ρφ′(T1(ρ)))k−1,

which converges, since ρφ′(T1(ρ)) < 1. As the last sum is a convergent geometric series
and the inequality even holds term-wise, we can calculate efficiently the asymptotic
mean and variance for all classes of simply generated trees with arbitrary accuracy.
We will now exemplify this by calculating the limits of mean and variance of the
protection number of some prominent classes of simply generated trees that have
been introduced in Section 3.1.2.

Example 4.3 (Planted plane trees). In Chapter 3 we derived that the dominant
singularity of the class of planted plane trees is ρ = 1

4
, and thus C(ρ) = 1

2
(see

Table 3.1). Therefore the recursion for the Ti(ρ)’s reads as

T1(ρ) =
1

4
, Ti(ρ) =

1

4− 4Ti−1(ρ)
− 1

4
.

This recursion can be solved explicitly, leading to

Ti(ρ) =
3

2(4i + 2)
.

The limits of expected value and variance are therefore given by

lim
n→∞

E(Xn) =
∑

k≥1

1

4k−1

k−1∏

i=1

1
(

1− 3
2(4i+2)

)2 ≈ 1.622971384715353,
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and

lim
n→∞

V(Xn) =
∑

k≥1

2k − 1

4k−1

k−1∏

i=1

1
(

1− 3
2(4i+2)

)2 −
(

lim
n→∞

E(Xn)
)2

≈ 0.7156950717833327,

which has already been calculated by Heuberger and Prodinger in [65].

Example 4.4 (Motzkin trees). According to Table 3.1 the dominant singulaity of
Motzkin trees is ρ = 1

3
and thus M(ρ) = 1. The recursion for the Ti(ρ)’s reads as

T1(ρ) =
2

3
, Ti(ρ) =

1

3

(
Ti−1(ρ)2 + Ti−1(ρ)

)

This recursion can be transformed into another one for the numerators of the rational
numbers Ti(ρ): Indeed, if we write Ti(ρ) = Ai · 3−2i+1, then A1 = 2 and Ai = A2

i−1 +

32i−1−1 · Ai−1, for i ≥ 2. The recurrence for the Ai’s does not fall into the scheme
of Aho and Sloane [1] and we are not aware of any method to solve it explicitly.
But as stated before, the sequence (Ti(ρ))i≥1 is exponentially decreasing and estimates
are easily obtained. Thus we can calculate the limits of mean and variance for the
protection number numerically with arbitrary accuracy:

lim
n→∞

E(Xn) ≈ 2.546378248338912, and lim
n→∞

V(Xn) ≈ 1.679348871220563.

Example 4.5 (Incomplete binary trees). The dominant singularity of incomplete
binary trees is given by ρ = 1

4
and thus I(ρ) = 1 (cf. Table 3.1). Therefore the

recursion for the Ti(ρ)’s reads as

T1(ρ) =
3

4
, Ti(ρ) =

1

4
(Ti−1(ρ)2 + 2Ti−1(ρ)).

As in the previous example we are not aware of a method to explicitly solve this
recursion, but the numerical values can be easily computed: They are

lim
n→∞

E(Xn) ≈ 3.536472483525321, and lim
n→∞

V(Xn) ≈ 3.763883442795153.

Example 4.6 (Cayley trees). The exponential generating function L(z) of Cayley
trees has its dominant singularity at ρ = 1

e
(cf. Table 3.1). Moreover, we have

L(ρ) = 1, and the recursion for the Ti(ρ)’s reads as

T1(ρ) = 1− 1

e
, Ti(ρ) =

1

e
(eTi−1(ρ) − 1).

As in the two previous examples we are not able to solve the recursion for the Ti(ρ)’s
explicitly, but the numerical values are

lim
n→∞

E(Xn) ≈ 2.286198316708012, and lim
n→∞

V(Xn) ≈ 1.598472890455086.

This example actually covers two classes of trees, namely the class of simply generated
trees whose ordinary generating function is specified via L(z) = zeL(z), as well as the
class of Cayley trees (labeled plane trees) that - in a strict sense - does not belong to
the class of simply generated trees, as we already discussed in Example 3.8.
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Example 4.7 (Binary trees counted with respect to the number of internal nodes).
The dominant singularity B̃(z) of the generating function of binary trees counted with
respect to the number of internal nodes is given by ρ = 1

4
(see Table (3.1)). Although

this class does not strictly fall into the simply generated framework, the methodology
presented above works here as well, due to their close relation to simply generates trees
(cf. Example 3.5). We get T0(z) = B̃(z) and Tk(z) = zTk−1(z)2. Since ρ = 1/4 we
have Tk(ρ) = 22−2k , for all k ≥ 0, and then finally P(Xn ≥ k) → 2k+1−2k , as n tends
to infinity. Thus we obtain

lim
n→∞

E(Xn) ≈ 1.562988296151161, and lim
n→∞

V(Xn) ≈ 0.372985688954940.

4.1.2 Protection number of a random vertex

In the first part of this section we studied the average protection number of a simply
generated tree, that is the protection number of the root of the simply generated tree.
Now we are interested in the average protection number of a randomly chosen vertex
in a simply generated tree of size n. We denote this sequence of random variables by
Yn.

As in the previous section we calculate the mean via E(Yn) =
∑

k≥1 P(Yn ≥ k). In
order to do so we proceed analogously to Heuberger and Prodinger in [65] and define
Sk(z) to be the generating function of the sequence (sn,k)n≥0 of k-protected vertices
summed over all trees of size n. As in [65] this generating function can be calculated
by

Sk(z) = z−1Tk(z)
∂

∂u
T (z, 1), (4.4)

by means of the bivariate generating function T (z, u) of simply generated trees, where
z marks the size and u the number of leaves, and the generating function Tk(z) of
simply generated trees with protection number at least k. The formula for Sk(z) arises
from considering a k-protected vertex in the following way: First point at a leaf in a
simply generated tree (which yields the factor ∂

∂u
T (z, 1)), then remove this leaf (which

explains the z−1) and finally attach a tree with protection number at least k (giving
the factor Tk(z)).

Remark 4.8. The procedure works also for (complete) binary trees, where only in-
ternal vertices contribute to the tree size. The only difference is that for these binary
trees the factor z−1 in (4.4) must be removed, because removing a leaf does not change
the size.

Using the generating function Sk(z) we can express the probability P(Yn ≥ k) by

P(Yn ≥ k) =
[zn]Sk(z)

n[zn]T (z)
, (4.5)

since n[zn]T (z) is the total number of vertices summed over all trees of size n.

Theorem 4.9. Let Yn be the protection number of a randomly chosen vertex in a
random simply generated tree of size n. Then,

lim
n→∞

E(Yn) =
φ0

T (ρ)

∑

k≥1

Tk(ρ),
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and

lim
n→∞

V(Yn) =
φ0

T (ρ)

∑

k≥1

(2k − 1)Tk(ρ)−
(

lim
n→∞

E(Yn)
)2

.

Proof. First we need to determine the n-th coefficient of Sk(z). We have

∂

∂u
T (z, 1) =

zφ0

1− zφ′(T (z))
. (4.6)

Using T ′(z) = zφ′(T (z))T ′(z) + φ(T (z)) and φ(T (z)) = T (z)
z

we get

zφ′(T (z)) =
T ′(z)− T (z)

z

T ′(z)
.

Therefore (4.6) transforms to

∂

∂u
T (z, 1) =

T ′(z)z2φ0

T (z)
.

Thus, altogether we have

[zn]Sk(z) = [zn]z−1Tk(z)
T ′(z)z2φ0

T (z)
,

which gives

[zn]Sk(z) ∼ −τ0,kτ1φ0

2τ0

n−1/2

Γ(1/2)
ρ−n.

Finally, we get

E(Yn) =
∑

k≥1

P(Yn ≥ k) =
∑

k≥1

[zn]Sk(z)

n[zn]T (z)

n→∞→
∑

k≥1

Tk(ρ)φ0

T (ρ)
.

For the variance we use again the formula V(Yn) =
∑

k≥1(2k − 1)P(Yn ≥ k)− E(Yn)2

and (4.5).

Table 4.2 summarizes the values of the asymptotic mean and variance of the pro-
tection number of a random vertex for selected classes of simply generated trees.

lim
n→∞

E(Yn) lim
n→∞

V(Yn)

Plane trees 0.7276492769137261 0.8168993794836289
Motzkin trees 1.307604625963334 1.730614214799486
Incomplete binary trees 1.991819588602741 3.638259051495130
Cayley trees 1.186522661652180 1.632206223956926
Binary trees (w.r.t. internal nodes) 1.265686036087572 0.226591112528581

Table 4.2: The approximate values for the limits of mean and variance of the protec-
tion number of a random vertex in different classes of simply generated trees.
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4.2 Protection number of Pólya trees

4.2.1 Protection number of the root

Let T (z) be the generating function of Pólya trees (cf. page 23), which reads as

T (z) = zeT (z) exp

(∑

i≥2

T (zi)

i

)
,

and in correspondence to the previous section let us denote by Tk(z) the generating
function of the class of Pólya trees that have protection number at least k. This
generating function can be specified by

Tk(z) = zeTk−1(z) exp

(∑

i≥2

Tk−1(zi)

i

)
− z, (4.7)

with T0(z) = T (z).

Lemma 4.10. All the generating functions Tk(z) have their (unique) dominant sin-
gularity at ρ, and the singularity is a square root singularity.

Proof. First let us recall that T0(z) = T (z). Thus, for k = 0 the lemma is trivial,
when considering (3.2). For k ≥ 1 we proceed by induction. Therefore let us assume
that Tk−1(z) has the dominant singularity ρ which is of type 1

2
. Then the dominant

singularity of Tk(z), satisfying the recurrence relation (4.7), comes from eTk−1(z), since
exp

(∑
i≥2

Tk−1(zi)

i

)
is analytic in |z| < ρ + ε with ε > 0 sufficiently small. Applying

the exponential function to a function having an algebraic singularity does neither
change the location nor the type of the singularity, which proves the assertion.

The goal of this section is to derive an asymptotic value for the average protection
number of Pólya trees. We use again the formula E(Xn) =

∑
k≥1 P(Xn ≥ k), but

rewrite this equation as

E(Xn) =
∑

k≥1

k∏

i=1

P(Xn ≥ i|Xn ≥ i− 1),

where the conditional probabilities can be obtained by

P(Xn ≥ k|Xn ≥ k − 1) =
[zn]Tk(z)

[zn]Tk−1(z)
. (4.8)

Lemma 4.11. The asymptotic expansions of the n-th coefficients of Tk(z) and Tk−1(z)
read as

[zn]Tk−1(z) =
γkρ

−nn−
3
2

Γ(−1/2)

(
1 +O

(
1

n

))
,

[zn]Tk(z) =
(Tk(ρ) + ρ)γkρ

−nn−
3
2

Γ(−1/2)

(
1 +O

(
1

n

))
,

as n→∞, with a constant γk > 0.

49



Proof. Let the Puiseux expansion of Tk−1(z) be given by

Tk−1(z) = Tk−1(ρ)− γk
√

1− z

ρ
+ . . . .

Then Tk(z) behaves asymptotically as

Tk(z) ∼ ρeTk−1(ρ)Qk−1(ρ)e
−γk
√

1− z
ρ ,

where Qk−1(ρ) = exp
(∑

i≥2
Tk−1(ρi)

i

)
. Applying the asymptotic relation e−γk

√
1− z

ρ ∼
1 − γk

√
1− z

ρ
and using the equation ρeTk−1(ρ)Qk−1(ρ) = Tk(ρ) + ρ completes the

proof.

Plugging the expansions obtained in Lemma 4.11 into Equation (4.8) gives

P(Xn ≥ k|Xn ≥ k − 1) = Tk(ρ) + ρ,

which directly yields the following theorem.

Theorem 4.12. Let Xn be the protection number of a random Pólya tree of size n.
Then

lim
n→∞

E(Xn) =
∑

k≥1

k∏

i=1

(Ti(ρ) + ρ) ≈ 2.154889671973873, (4.9)

and

lim
n→∞

V(Xn) ≈ 1.369993017502652. (4.10)

Proof. The proof for the asymptotic mean follows directly by Lemma 4.11. In order
to determine the variance we use the representation limn→∞V(Xn) =

∑
k≥1(2k −

1)
∏k

i=1(Tk(ρ) + ρ)− E(Xn)2.

Remark 4.13. Note that in order to get accurate numerical values, we do not compute
Tk(ρ) by insertion into a (truncated) series expansion for Tk(z). The reason is that
ρ lies on the circle of convergence and thus the convergence is very slow at z = ρ.
Instead, Tk(ρ) can be directly computed using the recurrence relation (4.7). The values
Tk(ρ

i) for i ≥ 2, which appear in that recurrence relation, can be computed with the
help of the series expansion of Tk(z), because ρi then lies in the interior of the region
of convergence where the series converges at an exponential rate.

Remark 4.14. We could also have used the same approach as for simply generated
trees in order to get the asymptotic mean. Then the resulting formula looks like

lim
n→∞

E(Xn) =
∑

k≥1

ρk−1

k−1∏

i=1

Cie
Ti(ρ), (4.11)

where Cj = exp
(∑

i≥2
Tj(ρ

i)

i

)
. One can show that Ci tends to 1 and and Ti(ρ) tends

to 0 exponentially fast and get the constant given in Theorem 4.12. However, since
this approach requires more technical calculations, we decided to switch to the more
direct strategy using the conditional probabilities. Moreover note that the equivalence
of (4.9) and (4.11) is immediate from (4.7).
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4.2.2 Protection number of a random vertex

The method of marking a leaf and replacing it by a tree with protection number k
does not work here. Due to possible symmetries in non-plane trees, this would result
in a wrong counting: Indeed, if there are k-protected vertices x1, . . . , x` which can
be mapped to each other by some automorphisms of the tree (i.e., they lie in the
same vertex class), then only one of them is counted. Though this is counterbalanced
by trees having ` leaves in the same vertex class one of which is replaced by a tree
with protection number k (the root of this tree is then counted ` times), there are
further overcounts: As all leaves are marked, trees having several leaves in the same
vertex class are counted several times, and so are their k-protected vertices. Thus, to
overcome this problem, we appeal to the proof of [97, Theorem 3.1] here: For a tree
T let

f(T ) =

{
1 if T has protection number at least k,
0 otherwise.

Moreover, we define F (T ) to be the number of k-protected nodes in T . Then the
generating function Rk(z, u) =

∑
T z
|T |uF (T ) satisfies (cf. [97, Equation (3.1)])

z exp

(∑

i≥1

Rk(z
i, ui)

i

)
=
∑

n≥1

zn
∑

T :|T |=n
uF (T )−f(T ). (4.12)

As in Section 4.1.2 we utilize the formula E(Yn) =
∑

k≥1 P(Yn ≥ k) and express the
occurring probabilities as P(Yn ≥ k) = [zn]Sk(z)/(n[zn]T (z)) with Sk(z) being the
generating function whose n-th coefficient is the cumulative number of k-protected
nodes in all trees of size n. Obviously, ((∂/∂u)Rk)(z, 1) = Sk(z) and thus by differ-
entiating (4.12) with respect to u and inserting u = 1 we obtain

T (z)
∑

i≥1

Sk(z
i) = Sk(z)− Tk(z). (4.13)

This implies

Sk(z) =
T (z)

∑
i≥2 Sk(z

i) + Tk(z)

1− T (z)
∼
∑

i≥2 Sk(ρ
i) + Tk(ρ)

b
√

1− z
ρ

(4.14)

where b is the constant appearing in (3.2). Standard transfer theorems (see Theo-
rems 2.8 and 2.10)) applied to (3.2) give

[zn]T (z) ∼ −bn
−3/2ρ−n

Γ(−1/2)
=
bn−3/2ρ−n

2
√
π

,

and from (4.14) we get

[zn]Sk(z) ∼
(∑

i≥2 Sk(ρ
i) + Tk(ρ)

)
n−1/2ρ−n

b
√
π

and thus

P(Yn ≥ k) ∼ 2

b2

(∑

i≥2

Sk(ρ
i) + Tk(ρ)

)
. (4.15)
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Since Tk(ρ) decreases exponentially (cf. remark after Theorem 4.12), and so does∑
i≥2 Sk(ρ

i), these probabilities decrease exponentially and thus the series for E(Yn),
namely

E(Yn) =
∑

k≥1

P(Yn ≥ k),

converges rapidly. But (4.15) still bears a secret, because we do not have an explicit
expression for Sk(z) and we cannot solve the functional equation (4.13).

For numerical purposes, however, it is not necessary to have an explicit expression
for Sk(z). If we write Sk(z) = Ψ(Sk(z)) with Ψ being the operator on the ring of
formal power series defined by

Ψ(f(z)) =
T (z)

∑
i≥2 f(zi) + Tk(z)

1− T (z)
,

then Ψ is a contraction on the metric space R[[z]] equipped with the formal topology
(cf. [45, Appendix A.5]). Indeed, if f(z) and g(z) coincide up to their `-th coefficient,
then the first 2`+ 2 coefficients of Ψ(f(z)) andΨ(g(z)) coincide.

As there is exactly one tree with k+1 vertices which possesses k-protected vertices
at all (namely the path of length k has a k-protected root) whereas all smaller trees do
not possess any k-protected vertices, we know that the (one-term) series zk+1 coincides
with Sk(z) = zk+1 + · · · in its first k+ 2 coefficients. Applying Ψ to zk+1 a few times,
with each application more than doubling the number of known coefficients of Sk(z),
gives quickly a fairly accurate expression for Sk(z). We obtain the following theorem:

Theorem 4.15. Let Yn be the protection number of a random vertex in a random
Pólya tree of size n. Then

lim
n→∞

E(Yn) =
∑

k≥1

2

b2

(∑

i≥2

Sk(ρ
i) + Tk(ρ)

)
≈ 0.9953254987,

and

lim
n→∞

V(Yn) ≈ 1.3818769746.

4.3 Protection number of non-plane binary trees

4.3.1 Protection number of the root

We denote by T (z) the generating function of non-plane binary trees (cf. page 24),
where z marks the number of internal nodes. Then T (z) satisfies

T (z) = 1 + z

(
1

2
T (z)2 +

1

2
T (z2)

)
.

The generating function Tk(z) of non-plane binary trees with protection number
at least k fulfills

Tk(z) = z

(
1

2
Tk−1(z)2 +

1

2
Tk−1(z2)

)
,

and T0(z) = T (z).
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In order to obtain the asymptotic mean and variance for the protection number of
a random non-plane binary tree of size n we proceed analogously as in the previous
section for Pólya trees. Thus, we use

E(Xn) =
∑

k≥1

k∏

i=1

P(Xn ≥ i|Xn ≥ i− 1) =
∑

k≥1

k∏

i=1

[zn]Ti(z)

[zn]Ti−1(z)
.

Theorem 4.16. Let Xn be the protection number of a random non-plane binary tree
of size n. Then

lim
n→∞

E(Xn) =
∑

k≥1

k−1∏

i=1

(ρTi(ρ)) ≈ 1.707603060723366,

and

lim
n→∞

V(Xn) ≈ 0.431102549825064.

Proof. The Puiseux expansions of Tk(z) and Tk+1(z) read as

Tk−1(z) = Tk−1(ρ)− γk
√

1− z

ρ
+O

(
1− z

ρ

)
,

and

Tk(z) = ρ

(
1

2
Tk−1(ρ)2 +

1

2
Tk−1(ρ2)

)
+ ρTk−1(ρ)γk

√
1− z

ρ
+O

(
1− z

ρ

)

Using singularity analysis (see Section 2.2) yields the desired result for the mean.
For the variance we use again the formula V(Xn) =

∑
k≥1(2k − 1)P(Xn ≥ k) −

E(Xn)2.

4.3.2 Protection number of a random internal vertex

The asymptotic mean and variance for the protection number of a randomly chosen
internal vertex in a random non-plane binary tree can be obtained in the same way
as in the previous section for Pólya trees. Thus, we again set up an equation for the
generating function Rk(z, u) where the coefficients [znu`]Rk(z, u) count the number of
non-plane binary trees of size n with ` k-protected vertices, reading as

z

2

(
Rk(z, u)2 +Rk(z

2, u2)
)

=
∑

n≥1

zn
∑

T :|T |=n
uF (T )−f(T ).

Differentiating this equation with respect to u and setting u = 1 yields

zT (z)Sk(z) + zSk(z
2) = Sk(z)− Tk(z).

Using the asymptotic expansion of the generating function T (z) of non-plane binary
trees given in (3.4) we get

P(Yn ≥ k) =
[zn]Sk(z)

n[zn]T (z)
∼ 2

a2ρ

(
ρSk(ρ

2) + Tk(ρ)
)
.

By denoting Ψ(f(z)) = zf(z2)+Tk(z)
1−zT (z)

we can use the same arguments as in the Pólya
case to efficiently obtain numerical values for the probabilities P(Yn ≥ k). Finally, we
are able to calculate the asymptotic mean and variance for the protection number of
a random node in non-plane binary trees.
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Theorem 4.17. Let Yn be the protection number of a random internal vertex in a
random non-plane binary tree of size n. Then

lim
n→∞

E(Yn) =
2

a2ρ

∑

k≥1

(
ρSk(ρ

2) + Tk(ρ)
)
≈ 1.3124128299,

and

lim
n→∞

V(Yn) ≈ 0.2676338724.
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Chapter 5

Non-isomorphic subtree-shapes

This chapter is based on the not yet submitted manuscript [14], which was joint work
with Olivier Bodini, Antoine Genitrini, Bernhard Gittenberger and Mehdi Naima.
We prove asymptotic results on the average number of non-isomorphic fringe subtree-
shapes for two special classes of trees. This parameter is often studied in the context of
so-called compacted trees [21, 49, 50], which in fact are no trees, but directed acyclic
graphs that can be constructed from every tree in a unique way via a post-order
traversal, such that repeatedly occurring subtrees in the original tree are represented
by pointers to already existing nodes representing the root of the respective subtree. In
this way every node represents a distinct subtree and hence the size of the compacted
tree, i.e., the number of its nodes, corresponds to the number of non-isomorphic fringe
subtrees of the original tree, see Figure 5.1.

(a)

(b)

Figure 5.1: A plane tree and its corresponding compacted tree (a), and all 5 of its
non-isomorphic fringe subtrees (b).

The two classes of trees that are studied in this chapter are recursive trees (cf.
page 25) and plane increasing binary trees (cf. page 25), which are both comprised of
increasingly labeled trees. Thus, we have to extend the definition of a compacted tree
to classes of labeled trees. For our purposes, the compactification of a labeled tree T
is defined as the compacted tree belonging to the tree T after removing its labels.
Thus, several different labeled trees can have the same compacted tree. In this way,
the size of the compacted tree belonging to a labeled tree T gives exactly the number
of non-isomorphic fringe subtree-shapes.
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Tree-shape data structures are omnipresent in computer science, for example as
syntax structures of programs, symbolic expressions in computer algebra systems
or XML data structures. However, in order to reduce redundancy in the storage,
usually an algorithmic step called the common subexpression recognition is run to
identify identical fringe subtrees so that only one occurrence is stored and all other
are replaced by pointers to the first one. In the context of tree compaction several
studies attempt to quantitatively analyse the process of compaction. The first one,
in the context of analytic combinatorics, is presented by Flajolet and his coauthors
in [46]. In this paper the authors study the compaction ratio of binary trees and prove
that the compacted tree belonging to a large binary tree of size n is on average of size
c n√

logn
with a computable constant c. Moreover, the authors state that their analysis

is fully adaptable to all families of simply generated trees. In [21] Bousquet-Mélou,
Lohrey, Maneth and Noeth present the complete proof for the compaction quantitative
analysis of simply generated trees and apply it experimentally on XML-trees.

Within this thesis we extend these results to other classes of trees that do not
fall into the framework of simply generated trees. The first family that we study in
Section 5.1 is the class of recursive trees, while in Section 5.2 we analyse the class of
plane increasing binary trees. Both these families have been extensively studied in
the last two decades in both probability studies [22, 33, 37, 80] and combinatorics [9,
71, 92]. In the two subsequent sections we will obtain asymptotic lower and upper
bounds for the expected values of the size of the compaction of these two classes of
increasingly labeled trees, thereby showing that they can be compacted in a more
efficient way than simply generated trees. In [14] a new data structure is introduced,
which is based on the compaction of plane increasing binary trees and thus allows for
an efficient storage of the involved information.

In Figure 5.2 we have depicted an increasing binary tree of size 500 (after removing
its labels), where we highlighted its corresponding compacted tree in red, consisting
of 172 remaining nodes.

Figure 5.2: A uniformly sampled increasing binary tree structure with 500 inter-
nal nodes. After compaction the black fringe subtrees are removed, which yields a
compacted structure of size 172.
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5.1 Number of non-isomorphic subtree-shapes in re-
cursive trees

Let Tn be the class of recursive trees (cf. page 25) of size n. The size of a tree τ is
defined as its total number of vertices and denoted by |τ |. Let Xn be the size of the
compacted tree corresponding to a random recursive tree τ of size n. In other words,
Xn is the number of distinct fringe subtree-shapes in τ . We define P as the class of
Pólya trees, which corresponds to the set of all possible shapes of recursive trees, once
the labels have been removed. For every Pólya tree t, we write t ∈ τ if t occurs as a
fringe subtree-shape of τ . Otherwise we write t 6∈ τ . Then we have

E(Xn) =
∑

t∈P≤n
P(t ∈ τ) =

∑

t∈P≤n
(1− P(t 6∈ τ)) , (5.1)

where P≤n is the set of all Pólya trees with size at most n.

Remark 5.1. Recall that the tree t represents a tree-shape, thus it is unlabeled, while
τ is a recursive tree and therefore increasingly labeled.

Let us recall that the exponential generating function T (z) of the class of recursive
trees, which was introduced in Chapter 3 (see page 25), reads as

T (z) = ln
1

1− z ,

and has its unique dominant singularity at ρ = 1.

Now, for a given Pólya tree t ∈ P let us consider a perturbed combinatorial class
St, that contains all recursive trees except for those that contain a t-shape as a (fringe)
subtree-shape. The corresponding exponential generating function St(z) satisfies

S ′t(z) = eSt(z) − P ′t(z), (5.2)

where Pt(z) = z|t|
|t|! `(t), with `(t) denoting the number of ways to increasingly label

the tree-shape t. The expression (5.1) for the expected value of the number of non-
isomorphic subtree-shapes can now be rewritten in terms of the generating functions
T (z) and St(z), reading as

E (Xn) =
∑

t∈P≤n
(1− P(t 6∈ τ)) =

∑

t∈P≤n

(
1− [zn]St(z)

[zn]T (z)

)
. (5.3)

So, the problem is now essentially reduced to the analysis of the asymptotic behavior
of [zn]St(z).

Solving Equation (5.2) we obtain the exponential generating function

St(z) = ln

(
1

1−
∫ z

0
e−Pt(v) dv

)
− Pt(z). (5.4)

Thus, for the dominant singularity ρ̃ of St(z) the following equation must hold:
∫ ρ̃

0

e−Pt(v) dv = 1. (5.5)

As e−Pt(v) < 1 for positive v, the dominant singularity ρ̃ must be greater than 1.
Therefore we write ρ̃ = ρ(1 + ε) with suitable ε > 0.
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Remark 5.2. Note that the identity ρ̃ = ρ(1+ε) can also be explained combinatorially:
Since the class St is a proper subset of the class T it follows that [zn]St(z) ≤ [zn]T (z)
for all n. Thus, the exponential part of the asymptotics of the coefficients of St(z) has
to be smaller than that of the coefficients of T (z), which implies that ρ̃ has to be a
little bit larger than ρ.

Subsequently, we will use the following notation.

Notation 5.3. For the size and the weight of a Pólya tree t we use

k := |t| and w(t) :=
`(t)

|t| ,

respectively. Moreover, let

G(z) :=

∫ z

0

e−Pt(v) dv =

∫ z

0

e−w(t)vk dv,

if z ≥ 0 and its complex continuation if z is not a nonnegative real number. With this
notation (5.5) reads as G(1 + ε) = 1. By expanding the integrand, we obtain

G(z) =
∑

`≥0

(−w(t))`
z`k+1

(`k + 1) · `! ,

which shows that G(z) is an entire function.

We will show the following result concerning the asymptotic mean of the number
of non-isomorphic fringe subtree-shapes of a random recursive tree.

Theorem 5.4. Let Xn be the number of non-isomorphic subtree-shapes of a random
recursive tree of size n. Then there exist constants C1 and C2 such that

C1

√
n ≤ E(Xn) ≤ C2

n

log n
, for n→∞.

The remainder of this section is devoted to the proof of Theorem 5.4, where we
proceed as follows: First, in Lemma 5.5, we compute an upper bound for the dominant
sigularity ρ̃ of St(z), which directly yields the asymptotic behavior of ρ̃, as k →∞ (see
Corollary 5.6). Then, in Lemma 5.8, we provide asymptotics for the n-th coefficient
of the generating function St(z) when n tends to infinity, thereby showing that the
error term is uniform in the size k of the “forbidden” tree t. The average size of a
compacted tree corresponding to a random recursive tree is expressed as a sum over
the forbidden trees (see Equation (5.3)). Thereby the two cases, whether the size
k of the forbidden tree t is smaller or larger than log 1

σ
n are treated differently in

Proposition 5.10 (small trees) and Proposition 5.11 (large trees) in order to obtain an
upper bound for the size of the compacted tree. Finally, in Proposition 5.12 a (crude)
lower bound for the size of the compacted tree is given.

Lemma 5.5. Let St(z) be the generating function of the perturbed combinatorial class
of recursive trees that do not contain the shape t as a subtree (cf. Equation (5.2)).
The dominant singularity ρ̃ of St(z) is bounded by

ρ̃ = 1 + ε < 1 +
2w(t)

k
,

where w(t) = `(t)
k!

and `(t) denotes the number of possible increasing labelings of the
Pólya tree t of size k.
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Proof. First observe that the number of increasing labelings of the Pólya tree t is
bounded by (k − 1)!, which gives the very crude bound w(t) ≤ 1/k.

Next, as ρ̃ satisfies G(1 + ε) = 1, it suffices to show the inequality G
(

1 + 2w(t)
k

)
>

G(1+ε). We show the the equivalent inequality G
(

1 + 2w(t)
k

)
−G(1) > G(1+ε)−G(1).

Then we have

G(1 + ε)−G(1) = 1−
∫ 1

0

e−w(t)vk dv ≤ 1−
∫ 1

0

(1− w(t)vk) dv =
w(t)

k + 1
.

On the other hand, if k ≥ 3, then we have the lower bound

G

(
1 +

2w(t)

k

)
−G(1) ≥ 2w(t)

k
exp

(
−w(t)

(
1 +

2w(t)

k

)k)

≥ 2w(t)

k
exp

(
−w(t)

(
1 +

2

k2

)k)
>

2w(t)

k
e−2w(t)

=
w(t)

k
· 2e−2w(t) >

w(t)

k + 1

which implies the assertion. In the course of this chain of inequalities we used w(t) <

1/k and then
(
1 + 2

k2

)k
< 2 (for k ≥ 3) in the second line, then again w(t) < 1/k,

and finally k ≥ 3 and 2e−2/3 > 1.
If k = 2, then t is a path of length one and therefore w(t) = 1/2. This gives

explicitely
∫ 3/2

1
e−v

2/2 dv > 1/6 which is easily verified.

Corollary 5.6. With the notations of Lemma 5.5 we have the following asymptotic
relation:

ρ̃ = 1 + ε ∼ 1 +
w(t)

k
, as k →∞.

Proof. Let us write G(z) as G(z) = z +R(z) with

R(z) =
∑

`≥1

(−w(t))`
z`k+1

(`k + 1) · `! (5.6)

As ρ̃ = 1 + ε is the smallest positive solution of G(z) = 1, it is the smallest positive
zero of z − 1 + R(z). From Lemma 5.5 we know that ε = O (1/k2) and thus ρ̃k ∼ 1,
as k tends to infinity, and R(ρ̃) = w(t)ρ̃k+1/(k + 1) +O (1/k3). This implies

ε ∼ w(t)

k + 1
ρ̃k+1 ∼ w(t)

k
, (5.7)

as desired.

Remark 5.7. Using more terms of the expansion of G(z), it is possible to derive a
more accurate asymptotic expression for ε (in principle up to arbitrary order). As an
example, we state

ρ̃ = 1 +
w(t)

k + 1
+

w(t)2(3k + 1)

(k + 1)(4k + 2)
+
w(t)3(29k3 + 32k2 + 10k + 1)

6(k + 1)2(2k + 1)(3k + 1)
+O

(
w(t)4

k

)
.
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Now we are able to derive a uniform asymptotic expression for the coefficients of
St(t).

Lemma 5.8. Let St(z) be the generating function of the perturbed class of recursive
trees defined in (5.4). Then for sufficiently small δ > 0 we have

[zn]St(z) =
ρ̃−n

n
(1 +O

(
n−δ
)
), as n→∞,

which holds uniformly for D ≤ k ≤ n, where D > 0 is independent of n and sufficiently
large.

Proof. Recall that by (5.4) we have

St(z) = ln

(
1

1−G(z)

)
− Pt(z). (5.8)

Since G(z) is an entire function, the singularities of St are exactly the zeros of G(z)−1.
Therefore, consider z0 such that G(z0) = 1 and write G(z) = z + R(z) with R(z) as
in (5.6). Then

|R(z0)| ≤ 1

k + 1

∑

`≥1

|w(t)|`|z0|k`+1

`!

<
1

k
(e|w(t)||z0|k − 1) (5.9)

Assume first that |z0| ≤ 1 + e−1
k
. As the dominant singularity of St(z) is ρ̃ and

ρ̃ > 1, we must have |z0| > 1. Thus, the upper bound on |z0| and (5.9) imply

1− z0 = R(z0) = O
(
1/k2

)
. (5.10)

On the other hand, R(z) ∼ −w(t)
k
zk0 and 1 − z0 ∼ −w(t)/k because of Corollary 5.6.

Thus z0 is asymptotically equal to a k-th root of unity. But then z0 = ρ̃, because
the distnce between the other k-th roots of unity and 1 is greater than 1/k, which
contradicts (5.10).

Now assume that |z0| = 1 + η with 1/k < η < (e− 1) ln(k)/k. Then w(t)|z0|k ≤ 1
and so by (5.9) we have then |R(z0)| ≤ (e−1)/k. But we assumed |z0−1| > (e−1)/k.
Summarizing what we have so far, we obtain that either z : 0 = ρ̃ or |z0| > 1 + ln k

k
.

Notice that the asymptotic relation R(z) ∼ w(t)
k
zk0 from the first case discussed

above (namely |z0| − 1| ≤ 1/k) implies also that ρ̃ is a simple zero of G(z)− 1. Thus
G(z)− 1 = (z − ρ̃)G̃(z) where G̃(z) is analytic in the domain |z| ≤ 1 + ln k

k
and does

not have any zeros there. Thus,

St(z) = ln

(
1

1−G(z)

)
− Pt(z)

= − ln

(
1− z

ρ̃

)
− ln(ρ̃G̃(z))− Pt(z),

where, apart from the first summand, there are no singularities in |z| ≤ 1 + ln k
k
.

Applying singularity analysis (cf. Corollary 2.11) gives

[zn]St(z) =
ρ̃−n

n

(
1 +O

(
n

(
γ

ρ̃

)−n))
(5.11)
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with γ = 1 + (1+2δ) ln k
k

for sufficiently small δ > 0. Finally, notice that

γ

ρ̃
∼ 1 +

(1 + 2δ) ln k

k
≥ 1 +

(1 + 2δ) lnn

n
,

as k tends to infinity staying not larger than n. Therefore, for sufficiently large k the
inequality

γ

ρ̃
≥ 1 +

(1 + δ) lnn

n

holds. Plugging this estimate into (5.11) yields the desired result after all.

Remark 5.9. Within this section many logarithms that occur are to the base 1
σ
, where

σ ≈ 0.338 . . . denotes the dominant singularity of Pólya trees. To ensure a simpler
reading we omit this base subsequently and instead just write log n. For differentiation
purposes the natural logarithm will always be denoted by lnn.

Now we decompose the sum (5.3) into

E (Xn) =
∑

t∈P≤n
k<logn

(
1− [zn]St(z)

[zn]T (z)

)
+
∑

t∈P≤n
k≥logn

(
1− [zn]St(z)

[zn]T (z)

)
, (5.12)

and investigate the two sums individually, starting with the leftmost one, whose sum-
mands can be estimated by 1.

Proposition 5.10. Let T (z) be the generating function of recursive trees, St(z) the
generating function of the perturbed class of recursive trees that do not contain the
tree-shape t as a fringe subtree-shape, and let P≤n denote the class of Pólya trees with
size at most n. Then

∑

t∈P≤n
k<logn

(
1− [zn]St(z)

[zn]T (z)

)
= O

(
n√

(log n)3

)
, for n→∞,

where the logarithm log n is to the base 1
σ
with σ denoting the dominant singularity of

the generating function of Pólya trees.

Proof. Remember that we denote k := |t|. Furthermore, we denote by P (z) be the
generating function of Pólya trees and by σ its dominant singularity. Then

∑

t∈P≤n
k<logn

(
1− [zn]St(z)

[zn]T (z)

)
≤
∑

t∈P≤n
k<logn

1 =
∑

k<logn

[zk]P (z)

∼ 1

1− σ [zblognc]P (z) = O
(

σ−blognc
√

(log n)3

)
.

Since log n has the base 1
σ
, we estimate σ−blognc ≤ n, which completes the proof.

Now we are able to estimate the asymptotic behavior of the second sum in (5.12).
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Proposition 5.11. Let T (z) be the generating function of recursive trees, St(z) the
generating function of the perturbed class of recursive trees that do not contain the
tree-shape t as a fringe subtree-shape, and let P≤n denote the class of Pólya trees with
size at most n. Then

∑

t∈P≤n
k≥logn

(
1− [zn]St(z)

[zn]T (z)

)
= O

(
n

log n

)
, for n→∞,

where the logarithm log n is to the base 1
σ
with σ denoting the dominant singularity of

the generating function of Pólya trees.

Proof. Using Lemma 5.8 we get

[zn]St(z)

[zn]T (z)
∼ ρ̃−n = (1 + ε)−n, for →∞,

uniformly in |t| = k. Thus,

∑

t∈P≤n
k≥logn

(
1− [zn]St(z)

[zn]T (z)

)
∼
∑

t∈P≤n
k≥logn

(
1− (1 + ε)−n

)
.

By means of the Bernoulli inequality we get
∑

t∈P≤n
k≥logn

1− (1 + ε)−n ≤
∑

t∈P≤n
k≥logn

n · ε,

which by use of (5.5) can be further simplified to

∑

t∈P≤n
k≥logn

n · ε ∼
n∑

k=logn

∑

t∈P≤n
|t|=k

n · w(t)

k
=

n∑

k=logn

n

k

∑

t∈P≤n
|t|=k

w(t).

Using the fact that

∑

t∈P≤n
|t|=k

w(t) = [zk]T (z) =
1

k
,

we further get

n∑

k=logn

n

k

∑

t∈P≤n
|t|=k

w(t) =
n∑

k=logn

n

k2
= Θ

(
n

∫ ∞

logn

1

x2
dx

)
= Θ

(
n

log n

)
.

Thus, the statement is proved.

Finally, we now prove a lower bound for the average size of the compacted tree
based on a random recursive tree of size n and thereby finish the proof of Theorem 5.4.
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Proposition 5.12. Let T (z) be the generating function of recursive trees, St(z) the
generating function of the perturbed class of recursive trees that do not contain the
tree-shape t as a fringe subtree-shape, and let P≤n denote the class of Pólya trees with
size at most n. Then

∑

t∈P≤n
k≥logn

(
1− [zn]St(z)

[zn]T (z)

)
= Ω

(√
n
)
, for n→∞,

where the logarithm log n is to the base 1
σ
with σ denoting the dominant singularity of

the generating function of Pólya trees.

Proof. First, we use the inequality

(1 + ε)−n ≤ e−nε+
nε2

2

in order to estimate
∑

t∈P≤n
k≥logn

(
1− [zn]St(z)

[zn]T (z)

)
=
∑

t∈P≤n
k≥logn

(
1− (1 + ε)−n

)
≥
∑

k≥logn

∑

t∈P≤n
|t|=k

(1− e−nε+nε2

2 ). (5.13)

For the sake of simplicity we will use the abbreviation
∑

t

:=
∑

t∈B≤n
|t|=k

in the remainder of this proof. Since x 7→ 1 − exp
(
−nx+ nx2

2

)
, x ≥ 0, is a concave

nonnegative function with a zero in the origin and w(t) > 0 for all t, we can estimate
the inner sum in (5.13), which yields

∑

k≥logn

∑

t

(1− e−nε+nε2

2 ) ≥
∑

k≥logn

(1− e−n
∑
t ε+

n
2

(
∑
t ε)

2

).

Note that ε depends on t, and that
∑

t

ε ∼
∑

t

w(t)

k
=

1

k

∑

t

w(t) =
1

k2
as n→∞.

Thus, we get
∑

t∈P≤n
k≥logn

(
1− [zn]St(z)

[zn]T (z)

)
≥
∑

k≥logn

(1− e− n
k2

+ n
2k4 ) ∼

∫ ∞

logn

(1− e− n
x2

+ n
2x4 ) dx

=
√
n

∫ ∞
√
n logn

(1− e−
1
y2

+ 1
2ny4 ) dy.

Since the integral is convergent this gives a lower bound that is Θ(
√
n).

On the left hand side, Figure 5.3 shows a recursive tree structure containing 5000
nodes, which has been uniformly sampled among all trees of the same size. The
original root of the tree is depicted by a small circle ◦. The right hand side shows
the structure that is left after the compaction of the latter tree, which remains only
of 663 nodes.
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Figure 5.3: A uniformly sampled plane recursive tree of size 5000 before (left) and
after (right) compaction. The black fringe subtrees are removed by the compaction;
the resulting compacted tree is of size 663.

5.2 Number of non-isomorphic subtree-shapes in in-
creasing binary trees

The exponential generating function T (z) of plane increasing binary trees (cf. page 25)
is given by

T (z) =
z

1− z ,

and has its unique dominant singularity at ρ = 1.

The exponential generating function St(z) of the perturbed class of plane increasing
binary trees that do not contain the tree-shape t (where t is now a non-labeled binary
tree) as a fringe subtree-shape, satisfies the equation

S ′t(z) = (1 + St(z))2 − P ′t(z), with St(0) = 0, (5.14)

where Pt(z) = `(t)
|t|! z

|t| and `(t) denotes the number of ways to increasingly label a plane
binary tree t. Since we are in the plane setting now `(t) can be calculated by means
of the hook-length formula (see for example [70, p.67] or [15]).

We start by establishing an improved upper bound for the weights w(t).

Lemma 5.13. Let t be a binary tree of size k. By defining the weight of the tree t as
w(t) := `(t)

k!
, where `(t) denotes the number of ways to increasingly label the tree t, we

have
w(t) ≤ 1

2k−2
.
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Proof. Recall that the hook length equals |t|! devided by the product of the sizes of
all fringe subtrees s of t. If we write s ≤ t to say that s is a fringe subtree of t, then
this means that w(t) = 1/

∏
s : s≤t |s|. Consider now a tree t. If k = 1, then t is a

single node and hence w(t) = 1. Otherwise, the root of t has children being roots of
fringe subtrees. If s ≤ t, the neither s = t and so |s| = k or s is one of the fringe
subtrees of one of the subtrees rooted at a child of the root of t. Therefore

w(t) =

{
1
k
w(t′) if the root of t has one child t′

1
k
w(t`)w(tr) if the root of t has the two children t` and tr.

Now we proceed by induction: Set wn := maxt : |t|=nw(t). Then we have obviously
that wn = max{w` · wn−1−` | ` = 0..n− 1}/n with w0 = 1. For the first seven values
a direct computation shows

(w1, w2, . . . , w7) =

(
1,

1

2
,
1

3
,
1

8
,

1

15
,

1

36
, and

1

63

)
.

As the first seven values of the sequence 1/2k−2 are

2, 1,
1

2
,
1

4
,
1

8
,

1

16
, and

1

32
,

we assume thta the result is correct until k − 1.
Let t be a binary tree of size k. If the root of t has only one child t′ of size k − 1,

then by induction we obtain

w(t) =
w(t′)

k
≤ 1

k 2k−3
≤ 1

2k−2
.

Otherwise, the root of t has two children. Let us denote the corresponding fringe
subtrees by t` of size ` and tr of size k − ` − 1, (with ` < k). By the induction
hypothesis, we have w(t`) ≤ 1/2`−2 and w(tr) ≤ 1/2k−`−3 and thus

w(t) =
1

k
w(t`)w(tr) ≤

1

k

1

2k−5
=

8

k

1

2k−2
,

which is smaller than 1/2k−2 for k ≥ 8.

By the same combinatorial argument as in the previous section we know that St(z)
has a unique dominant singularity ρ̃, which is greater than the dominant singularity
ρ = 1 of T (z). Thus, we set again ρ̃ = ρ(1 + ε) = 1 + ε with ε > 0.

Since (5.14) is a Riccati-differential equation (cf. [68] for a background on Riccati
equations), we use the ansatz St(z) = −u′(z)

u(z)
to get the transformed equation

u′′(z)− 2u′(z) + (1− w(t)kzk−1)u(z) = 0, (5.15)

where we use the same abbreviations as in the previous section, namely k := |t| and
w(t) := `(t)

k!
. Note that the condition St(0) = 0 implies u′(0) = 0 and u(0) 6= 0. The

singularities of a function u(z) solving a linear differential equation (with polynomial
coefficients) are given by the singularities of the coefficient of the highest derivative,
i.e., in our case the coefficient of u′′(z), which is 1. We refer the reader to Miller [86]

65



for more details. Thus, we can conclude that u(z) is an entire function. As a direct
consequence we know that the singularities of St(z) are given by the zeros of u(z)
(that are no zeros of u′(z)) and are therefore poles. More precisely, the dominant
singularity ρ̃ has to be a simple pole for St(z), since for u(z) = (ρ̃− z)`v(z) (such that
ρ is not a zero of v(z)), it follows that u′(z) = −(ρ̃− z)`−1v(z) + (ρ̃− z)`v′(z), which
implies

St(z) =
`

ρ̃− z −
v′(z)

v(z)
. (5.16)

Thus,

St(z) ∼ C

1− z
ρ̃

, for z → ρ̃.

Taking the derivative, we get S ′t(z) ∼ 1
ρ̃

C

(1− z
ρ̃)

2 . Plugging the asymptotic expressions

for St and S ′t into (5.14) gives

1

ρ̃

C
(

1− z
ρ̃

)2 ∼
(

1 +
C

1− z
ρ̃

)2

, for z → ρ̃,

since the monomial Pt is analytic in ρ̃ (and thus does not contribute to the asymp-
totics). Comparing the main coefficients yields C = 1

ρ̃
, and thus

St(z) ∼ 1

ρ̃− z , for z → ρ̃. (5.17)

Remark 5.14. Note that this directly implies that ρ̃ is a unique zero of the function
u(z), when comparing equations (5.16) and (5.17).

WithXn denoting the number of non-isomorphic subtree-shapes of a random plane
increasing binary tree of size n, and B≤n denoting the class of binary trees with size
at most n, we can use again the expression

E(Xn) =
∑

t∈B≤n
(1− E(t 6∈ τ)) =

∑

t∈B≤n

(
1− [zn]St(z)

[zn]T (z)

)
. (5.18)

in order to show the following result concerning the asymptotic mean of Xn.

Theorem 5.15. Let Xn be the number of non-isomorphic subtree-shapes of a random
plane increasing tree of size n. Then there exist constants C1 and C2 such that

C1

√
n ≤ E(Xn) ≤ C2

n

log n
, for n→∞.

In order to prove this theorem, we proceed similarly to the recursive tree case:
Lemma 5.17 gives an asymptotic expression of the dominant singularity ρ̃ of the
generating function St(z) that quantifies its dependence on t, when the size k of the
“forbidden” tree tends to infinity. As a next step, Lemma 5.18 shows that St(z)
has a unique dominant singularity ρ̃ on the circle of convergence, which is used in
Lemma 5.19 to obtain the asymptotic behavior of the coefficients of the generating
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function St(z). Again, the average size of a compacted tree can be represented as
a sum over the forbidden trees (see (5.18)), where we distinguish between the two
cases whether the size of the trees is smaller or larger than log4 n in order to get an
upper bound (see Proposition 5.10 and Proposition 5.22). Finally, a (crude) lower
bound for the size of the compacted tree is given in Proposition 5.24, which uses a
better estimate for the weights w(t) (see Lemma 5.13) in order to provide suitable
expansions for the summands (see Lemma 5.23).

Starting from equation u′′(z)−2 u′(z)+(1−w(t)kzk−1) u(z) = 0, which was derived
in (5.15), with the initial conditions u(0) = γ, and u′(0) = 0, we can choose u(0) to
attain any non-zero number, since for u(0) = γ we have St(z) = γu′(z)/(γu(z)), and
thus, the γ cancels. For simplification reasons we choose u(0) = −1.

Lemma 5.16. The function u(z) defined by the differential equation (5.15) with the
initial conditions u(0) = −1, and u′(0) = 0 satisfies

u(z) = zez
∑

m≥0

(
w(t)k

(k + 1)2

)m
1

m! (m+ α)m
z(k+1)m

− ez
∑

m≥0

(
w(t)k

(k + 1)2

)m
1

m! (m− α)m
z(k+1)m,

where (x)m denotes the falling factorials (x)m = x(x − 1) . . . (x − m + 1) and α =
1/(k + 1).

Proof. Solving equation (5.15) gives

u(z) = ez
√
z
(
C̃1J 1

k+1
(β) + C̃2Y 1

1+k
(β)
)
,

for constants C̃1, C̃2 > 0, where β =
2
√
−w(t)kz

k+1
2

k+1
, and Jα(x) and Yα(x) denote the

Bessel functions that are defined via

Jα(x) =
∞∑

m=0

(−1)m

m!Γ(m+ α + 1)

(x
2

)2m+α

,

and

Yα(x) =
Jα(x) cos(απ)− J−α(x)

sin(απ)
.

Thus, we can write u(z) as

u(z) = C1f(z) + C2h(z), (5.19)

where C1 and C2 are constants that depend on k, and f(z) and h(z) are given by

f(z) =
√
zezJα

(
2Xz

1
2α

)
,

and

h(z) =
√
zezJ−α

(
2Xz

1
2α

)
,
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with X :=

√
−w(t)k

k+1
and α := 1

k+1
. Note that f and h are analytic functions that can

be expanded around 0 as

f(z) = Xα 1

Γ(1 + α)
z + . . . ,

and

h(z) = X−α
1

Γ(1− α)
+X−α

1

Γ(1− α)
z + . . . .

Hence, we get

u(0) = −1 = C2h(0) = C2X
−α 1

Γ(1− α)
, (5.20)

and

u′(0) = 0 =
C1X

α

Γ(1 + α)
+

C2X
−α

Γ(1− α)
, (5.21)

which gives

C1 = X−αΓ(1 + α),

and

C2 = −XαΓ(1− α).

Plugging the expressions for C1 and C2 into (5.19) and using Γ(1+α)
Γ(m+1+α)

= 1
(m+α)m

,
where (x)m denotes the falling factorials (x)m = x(x− 1) . . . (x−m+ 1), gives

u(z) = zez
∑

m≥0

(
w(t)k

(k + 1)2

)m
1

m!(m+ α)m
z(k+1)m

− ez
∑

m≥0

(
w(t)k

(k + 1)2

)m
1

m!(m− α)m
z(k+1)m.

We are now ready to analyze the dominant singularity of St(z).

Lemma 5.17. Let St(z) be the generating function of the perturbed combinatorial
class of plane increasing binary trees that do not contain the shape t as a subtree.
With ρ̃ denoting the dominant singularity of St(z), we get

ρ̃ = 1 + ε ∼ 1 +
2w(t)

k2
, for k →∞,

where w(t) = `(t)
k!

and `(t) denotes the number of ways to increasingly label the tree-
shape t.
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Proof. For combinatorial reasons we deduced that the equation u(z) = 0 must have
a solution ρ̃ > 1 and no smaller positive solution. When k tends to infinity we expect
that ρ̃ = 1 + ε tends to 1, i.e. ε tends to 0.

First observe that u(0) = −1 and

u

(
1 +

1

k2

)
=

1

k2
+O

(
w(t)

k

)
> 0,

as w(t) decays exponentially due to Lemma 5.13. Thus ε = O (1/k2) and plugging
z = 1 + ε into u(z) = 0 gives then

ε+ (1 + ε)k+1 w(t)k

(k + 1)2

(
1 + ε

1 + α
− 1

1− α

)
= O

(
w(t)2

k2

)
.

This implies ε− 2w(t)
k2

= O
(
w(t)2

k2

)
and hence ε ∼ 2w(t)

k2
, which finishes the proof.

So, Lemma 5.17 guarantees that for |t| = k → ∞ the generating function St(z)

has a dominant singularity at ρ̃ ∼ 1 + 2w(t)
k2

. Now we show that in a circle with radius
smaller than 1 + 2 log k

k
there is no other singularity of St(z).

Lemma 5.18. Let ρ̃ be the dominant singularity of St(z). Then for ρ̃ < |z| <
1 + (2−δ) log k

k
the generating function St(z) does not have any singularities.

Proof. First let us remember that the singularities of St(z) are given by the zeros of the
function u(z) that is defined in Lemma 5.16. Now let us write ũ(z) := u(z) exp(−z)
and note that u(z) and ũ(z) have the same zeros. Thus, in the remainder of this proof
we investigate ũ(z), which can be written as ũ(z) = zF (z)−G(z) with

F (z) =
∑

m≥0

(
w(t)k

(k + 1)2

)m
1

m!

1

(m+ α)m
z(k+1)m,

and

G(z) =
∑

m≥0

(
w(t)k

(k + 1)2

)m
1

m!

1

(m− α)m
z(k+1)m,

still with α := 1/(k + 1). Therefore we get

|F (z)−G(z)| =
∣∣∣∣∣
∑

m≥0

(
w(t)k

(k + 1)2

)m
1

m!

(
1

(m− α)m
− 1

(m+ α)m

)
z(k+1)m

∣∣∣∣∣

= O
(
w(t)

k
α |z|k+1

)
= O

(
w(t)

k2

)
|z|k+1.

Now, let us rewrite ũ(z) as

ũ(z) = (z − 1)F (z) + F (z)−G(z), (5.22)

set |z| = 1 + η and perform a distinction of two cases:
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• η = O
(

1
k

)
: This implies |z|k+1 = Θ(1) for k tending to infinity. Thus F (z) ∼ 1,

G(z) ∼ 1, and then F (z)−G(z) tends to 0 when k tends to infinity. Furthermore,
equation (5.22) implies u(z) ∼ z − 1. The equation ũ(z) = 0 therefore yields
z − 1 ∼ F (z) − G(z), which is O

(
w(t)
k2

)
. Since we know that ρ̃ ∼ 1 + 2w(t)

k2
we

get |z − 1| = Θ(ρ̃− 1).

But for zeros z0 of ũ(z) with |z0| = 1 + o
(

1
k

)
we know z0 − 1 ∼ 2w(t)

k2
zk0 ∼ 2w(t)

k2
,

which is equivalent to zk0 ∼ 1. Hence z0 ∼ k
√

1 = cos
(

2π
k

)
+ i sin

(
2π
k

)
and

ρ̃
k
√

1 ∼
(

1 +
2w(t)

k2

)(
1− 2π2

k2
+ i

2π

k

)
∼ 1 + i

2π

k
,

which is a contradiction to z0 − 1 ∼ 2w(t)
k2

. Thus, the function ũ(z) has no zeros
for ρ̃ < |z| ≤ 1 +O

(
1
k

)
.

• η = Ck
k
, with Ck ≤ (2 − δ) ln k, and Ck tends to infinity with k: In this case

we have |z|k+1 ∼ eCk = o(k2), and thus |F (z) − G(z)| = o(w(t)) and F ∼
1 + o (w(t)k) ∼ 1 when k tends to infinity. Using again equation (5.22) yields
ũ(z) = z−1+o(w(t)) ∼ z−1. Since |z| = 1+η we have |z−1| ≥ ck

k
and because

of o(w(t)) = o
(

1
k

)
we know that ũ(z) cannot be zero in ρ̃ < |z| < 1 + (2−δ) ln k

k
.

Now we are interested in the ratio [zn]St(z)/[zn]T (z), which corresponds to the
probability that a random plane increasing binary tree of size n does not contain the
binary tree shape t as a fringe subtree-shape.

Lemma 5.19. Let T (z) be the generating function of plane increasing trees and St(z)
the generating function of the perturbed class that has the dominant singularity ρ̃.
Then, for any η > 0 we have

[zn]St(z)

[zn]T (z)
=

n→∞
ρ̃−n−1

(
1 +O

(
lnn

n1−η

))
,

uniformly for D ≤ k ≤ n, if D is sufficiently large (but independent of n).

Proof. First, let us remember that ρ̃ is a unique zero of the function u(z). Thus, we
can write

u(z) =

(
1− z

ρ̃

)
v(z), (5.23)

with v(ρ̃) 6= 0 and by Lemma 5.18 we additionally know that v(z) 6= 0 in ρ̃ < |z| <
1 + (2−δ) ln k

k
, provided that k is sufficiently large. Furthermore, we have

u′(z) =

(
1− z

ρ̃

)
v′(z)− 1

ρ̃
v(z),

which yields

St(z) =
1

ρ̃− z −
v′(z)

v(z)
.

Thus,

[zn]St(z) = ρ̃−n−1 − [zn]
v′(z)

v(z)
= ρ̃−n−1 − (n+ 1)[zn+1] ln v(z). (5.24)
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Now, we estimate the second summand in (5.24). First we use a Cauchy coefficient
integral to write

n[zn] ln v(z) =
n

2πi

∫

C

ln v(t)

tn+1
dt, (5.25)

where the curve C is described by |t| = 1 + (2−δ) ln k
k

with some δ > 0. The ab-
solute value of the logarithm of v(z) is given by | ln v(z)| =

∣∣ln
(
|v(z)|ei arg v(z)

)∣∣ =
|ln |v(z)|+ i arg(v(z))|. Furthermore, by (5.23) we have |v(z)| = |u(z)|/ |1− z/ρ̃|,
which can be estimated along C via

|v(z)| ≤ |u(z)|k
(2− δ) ln k

.

Now, we have to estimate |u(z)|. By Lemma 5.16 we get

|u(z)| ≤
∑

m≥0

(
w(t)

k

)m
1

m!

∣∣∣∣
z

(m+ α)m
− 1

(m− α)m

∣∣∣∣ |z|(k+1)m.

Along C we have |z|(k+1)m ≤ (k2−δ)m and the absolute value
∣∣∣ z

(m+α)m
− 1

(m−α)m

∣∣∣ can
be estimated by

∣∣∣ z
(m+α)m

− 1
(m−α)m

∣∣∣ ≤ 2+µ
(m−α)m

, for some µ > 0 which results in

|u(z)| ≤
∑

m≥0

(w(t)k1−δ)m
2 + µ

m!(m− α)m
≤ K,

for a constant K independent of k.
Putting all together, we can estimate the integral (5.25) by

n[zn] ln v(z) =
n

2πi

∫

C

ln v(t)

tn+1
dt ≤ n(ln k + lnK − ln((2− δ) ln k)

(
1 +

(2− δ) ln k

k

)−n−1

≤ n lnn

(
1 +

(2− δ) ln k

k

)−n

which implies the following asymptotic relation:

[zn]St(z) = ρ̃−n−1

(
1 +O

(
n lnn

(
1 +

(2− δ) ln k

k

)−n
ρ̃n

))

Finally, note that for sufficiently large k we have the estimate

ρ̃

(
1 +

(2− δ) ln k

k

)−1

≤
(

1 +
(2− 2δ) ln k

k

)−1

≤
(

1 +
(2− 2δ) lnn

n

)−1

and, as (
1 +

(2− 2δ) lnn

n

)−n
= O

(
n−2+2δ

)
,

we obtain the assertion by setting η = 2δ.
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Now, we separate the sum of interest (5.18) analogously as we did in the previous
section for recursive trees.

Remark 5.20. Since now our underlying class of tree-shapes is the class of plane
binary trees instead of Pólya trees, we subsequently use log n as an abbreviation for
the logarithm with the base 1

1/4
= 4.

E (Xn) =
∑

t∈B≤n
k<logn

(
1− [zn]St(z)

[zn]T (z)

)
+
∑

t∈B≤n
k≥logn

(
1− [zn]St(z)

[zn]T (z)

)
(5.26)

In order to estimate the first sum, we proceed analogously to Lemma 5.10.

Proposition 5.21. Let B≤n be the class of plane binary trees of size at most n, and
let T (z) be the generating function of plane in creasing binary trees, and St(t) the
generating function of the perturbed class of plane increasing binary trees that do not
contain the unlabeled binary tree t as a fringe subtree-shape. Then we have

∑

t∈B≤n
k<logn

(
1− [zn]St(z)

[zn]T (z)

)
= O

(
n√

(log n)3

)
, as n→∞,

where the logarithm log n is to the base 4.

Proof. First let us recall that the dominant singularity of the generating function B(z)
of plane binary trees is 1

4
. With the notation k := |t|, we get

∑

t∈B≤n
k<logn

(
1− [zn]St(z)

[zn]T (z)

)
≤
∑

t∈B≤n
k<logn

1 =
∑

k<logn

[zk]B(z)

∼ 1

1− 1
4

[zblognc]B(z) = O
((

1
4

)−blognc
√

(log n)3

)
.

Since log n has the base 4, we estimate
(

1
4

)−blognc ≤ n, which completes the proof.

Estimating the second sum in (5.26) works analogously to the proof of Theo-
rem 5.11 in the previous section.

Proposition 5.22. Let B≤n be the class of plane binary trees of size at most n, and
let T (z) be the generating function of plane in creasing binary trees, and St(t) the
generating function of the perturbed class of plane increasing binary trees that do not
contain the unlabeled binary tree t as a fringe subtree-shape. Then we have

∑

t∈B≤n
k≥logn

(
1− [zn]St(z)

[zn]T (z)

)
= O

(
n

log n

)
,

where the logarithm log n is to the base 4.
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Proof. Using Lemma 5.19 we get that for n→∞
[zn]St(z)

[zn]T (z)
∼ ρ̃−n−1 = (1 + ε)−n−1.

Thus,
∑

t∈B≤n
k≥logn

(
1− [zn]St(z)

[zn]T (z)

)
∼
∑

t∈B≤n
k≥logn

(
1− (1 + ε)−n−1

)
for n→∞.

Using the Bernoulli inequality gives
∑

t∈B≤n
k≥logn

1− (1 + ε)−n−1 ≤
∑

t∈B≤n
k≥logn

(n+ 1) · ε,

which by the use of Lemma 5.17 further simplifies to
∑

t∈B≤n
k≥logn

(n+ 1) · ε ∼
n∑

k=logn

∑

t∈B≤n
|t|=k

(n+ 1) · 2w(t)

k2
=

n∑

k=logn

2n

k2

∑

t∈B≤n
|t|=k

w(t).

But since
∑

t∈B≤n
|t|=k

w(t) = 1,

we finally get
∑

t∈B≤n
k≥logn

(n+ 1) · ε =
n∑

k=logn

2n

k2
= Θ

(
n

∫ ∞

logn

1

x2
dx

)
= Θ

(
n

log n

)
.

Finally, we provide a crude lower bound for the number of non-isomorphic subtree-
shapes in a random increasing binary tree. Using the improved upper bound for w(t)
that we obtained in Lemma 5.13, we prove the following lemma.

Lemma 5.23. Let ε be defined as in Lemma 5.17, i.e., ε ∼ 2w(t)
k2

. Then

(1 + ε)−n ∼ e−nε

holds for n→∞ and for k ≥ n.

Proof. First of all, let us consider the expansion

(1 + ε)−n = exp(−n log(1 + ε)) = e−nε+n
ε2

2
∓.... (5.27)

By Lemma 5.17 we know that ε ∼ 2w(t)
k2

. Using Lemma 5.13 we have ε2 ≤ 1
k44k−1 .

Furthermore, k ≥ log n = log4 n implies 4k ≥ n, which gives

1

k44k−1
≤ 4

k4n
= o

(
1

n

)

for k ≥ log n and n→∞. Finally, it follows that

nε2

2
= o(1),

which completes the proof when considering Equation (5.27).
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Proposition 5.24. Let B≤n be the class of plane binary trees of size at most n, and
let T (z) be the generating function of plane in creasing binary trees, and St(t) the
generating function of the perturbed class of plane increasing binary trees that do not
contain the unlabeled binary tree t as a fringe subtree-shape. Then we have

∑

t∈B≤n
k≥logn

(
1− [zn]St(z)

[zn]T (z)

)
= Ω

(√
n
)
,

where the logarithm log n is to the base 4.

Proof. First we use Lemma 5.23 to get

∑

t∈B≤n
k≥logn

(
1− [zn]St(z)

[zn]T (z)

)
=
∑

t∈B≤n
k≥logn

(
1− (1 + ε)−n

)

∼
∑

t∈B≤n
k≥logn

(
1− e−nε

)
=

n∑

k=logn

∑

t∈B≤n
|t|=k

(
1− e−nε

) (5.28)

For the sake of simplified reading we will use again the abbreviation
∑

t

:=
∑

t∈B≤n
|t|=k

in the remainder of this proof. Since 1 − e−x is a concave and nonnegative function
for x ≥ 0 and zero for x = 0, we can estimate the inner sum in (5.28), which yields

∑

t

(
1− e−nε

)
≥ 1− e−n

∑
t ε ∼ 1− e−n

∑
t
2w(t)

k2 ,

where the asymptotic equivalence holds due to Lemma 5.17. By means of further
simplifications and the identity

∑
tw(t) = 1, we get

1− e−n
∑
t
2w(t)

k2 = 1− e−2n

k2

∑
t w(t) = 1− e−2n

k2 .

Finally, we get

∑

t∈B≤n
k≥logn

(
1− [zn]St(z)

[zn]T (z)

)
≥

n∑

k=logn

(
1− e−2n

k2

)

∼
∫ ∞

logn

(
1− e− 2n

x2

)
dx =

√
2n

∫ ∞
logn√

2n

(
1− e− 1

v2

)
dv.

Since the integral is convergent this gives a lower bound that is Θ(
√
n).

Remark 5.25. In order to prove Theorem 5.24 one could proceed analogously to the
proof of Theorem 5.12 in the previous section. However, we decided to give the proof
that uses the better estimate for w(t), since this result will be needed in order to obtain
improved bounds.
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On the left hand side, in Figure 5.4 we have depicted a plane increasing binary tree
structure containing 5000 nodes, which has been uniformly sampled among all trees
of the same size. The original root of the tree is represented using a small circle ◦.
The right hand side of Figure 5.4 shows the structure that is left after the compaction
of the latter tree, consisting of only 1361 nodes.

Figure 5.4: A uniformly sampled plane increasing binary tree of size 5000 before
(left) and after (right) compaction. The black fringe subtrees are removed by the
compaction, so that the resulting compacted tree is of size 1361.
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Chapter 6

Tree embeddings

This chapter is based on the not yet submitted manuscript [54], which was joint work
with Bernhard Gittenberger, Zbigniew Gołębiewski and Małgorzata Sulkowska, [55].
It is concerned with the enumeration of so-called tree embeddings of a given rooted
tree into three selected classes of trees, namely plane and non-plane binary trees, and
planted plane trees. An embedding of a rooted tree S into another rooted tree T can
be seen as a kind of generalized pattern occurrence of S in T , defined as follows, where
we distinguish between the plane and the non-plane case.

Definition 6.1 (non-plane embedding). Let S and T be two non-plane rooted trees.
When interpreting T as the cover graph of a partially ordered set (poset), rooted at
the root of T , i.e., at the 1-element of the poset, then an embedding of S in T can be
defined as any subposet of T isomorphic to S.

Remark 6.2. Note that there exists a non-plane embedding of S in T if and only if
S is a minor of T .

Definition 6.3 (plane embedding). Let S and T be two plane rooted trees. If we
interpret T to be a Hasse diagram of a poset, then an embedding of S in T can be
defined as any “subposet” of T isomorphic to S in which the order of the children of
each node is preserved (thus, a plane version of a subposet).

Remark 6.4. So, in the plane case S and T can be interpreted as Hasse diagrams
of posets, and whenever S can be embedded in T it follows that S is a subposet of T .
However, note that the respective posets can eventually be represented as different
Hasse diagrams such that no embedding of the corresponding trees is possible.

We say that an embedding of S in T is good if it contains the root of T , which is
subsequently denoted by 1T . Otherwise we call it a bad embedding. If there exists at
least one embedding of S in T , we write S ⊆ T . All embeddings of a cherry (i.e., a
tree composed only of a root and its two children) in a given binary tree of size 5 are
given in Figure 6.1. Four of them are good and the last one is bad.

Subsequently the size of the tree S will always be denoted by m, while the size
of T is consistently denoted by n. Thus, for the asymptotic analysis of the number of
embeddings of a tree S into a class of trees of size n, the quantity m is considered to
be a constant, while n tends to infinity.
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S:

Figure 6.1: All five embeddings of a cherry S in a given plane binary tree of size 5. Or
all four embeddings of a cherry S in the a given non-plane binary tree of size 5, since
in the non-plane case the two rightmost pictures in the upper row represent the same
embedding (they can easily be mapped onto each other via a simple automorphism
that changes the order of the two leftmost leaves).

For S, the structure that we embed, we define its degree distribution sequence as
dS = (d0, d1, . . . , dm−1), where di is the number of vertices in S with out-degree equal
to i (i.e., the number of vertices in S with i children). Note that d0 is simply the
number of leaves, which will be, interchangeably, denoted by l (i.e., l = d0). Similarly,
d1 is the number of unary nodes, which will be, interchangeably, denoted by u (i.e.,
u = d1). The number of all embeddings of a structure S in T will be denoted by
aT (S) and the number of its good embeddings in T by gT (S). Moreover, the number
of all embeddings of a structure S in a family Fn = {F1, . . . , FN} will be denoted by
aFn(S) and understood as aFn(S) =

∑N
i=1 aFi(S). Analogously, we define the number

of good embeddings of S in Fn by gFn(S) =
∑N

i=1 gFi(S).
For S being a cherry and B5 = {T1, T2} being the set of plane binary trees of

size 5 (see Figure 6.2), we obtain aT1(S) = aT2(S) = 5, gT1(S) = gT2(S) = 4, and thus
aBn(S) = 10 and gBn(S) = 8 (compare Figure 6.1).

T1 T2

Figure 6.2: The family B5 = {T1, T2} of plane binary trees of size 5, |B5| = C2 = 2.

We study the number of embeddings of a given rooted tree in the family of (plane
and non-plane) binary trees, as well as planted plane trees. The number of good and
bad embeddings of a rooted structure in a complete binary tree was first investigated
by Morayne in [88]. His research was motivated by optimal stopping problems. The
ratio of the number of good embeddings to the number of all embeddings and its
monotonicity properties were used in estimates of conditional probabilities needed
to obtain an optimal policy for the best choice problem considered on a complete
(balanced) binary tree. This and similar results first served just as tools but soon
became interesting questions about the structural features of posets on their own and
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resulted in a series of self-standing papers [51, 72, 73]. Counting chains and antichains
in trees took a special place in this pool [74, 75, 76].

We present a follow-up and generalization of the results obtained by Kubicki, Lehel
and Morayne [72, 73] and Georgiou [51]. We give the asymptotic mean of the number
of good and all embeddings of a rooted tree S in the family of plane and non-plane
binary trees, as well as planted plane trees, on n vertices. We prove that the ratio
of good embeddings to all asymptotically equivalent to c/

√
n in all cases and provide

the exact constant c. Furthermore, we show that this ratio is non-decreasing in S
in the plane binary case and asymptotically non-decreasing in the non-plane binary
case. We comment also on the case where S is disconnected, i.e., a forest.

Before investigating the number of embeddings of a given tree into the different
classes of trees, we want to give some examples of stopping problems in which either
the values aFn(S) or gFn(S)/aFn(S) play a crucial role for estimating the conditional
probabilities needed to obtain the optimal policy.

6.1 Applications in optimal stopping problems

The most prominent problem in optimal stopping is maybe the so-called “secretary
problem” [25, 41, 47], where one assumes a linear order on the applicants for a secretary
position concerning their qualifications. The applicants are interviewed in a random
order and the decision whether to hire an applicant has to be made immediately after
the interview - a rejected applicant cannot be hired at a later point. Thus, if we
interview all the candidates, we have to hire the last applicant. The goal is to find the
optimal stopping strategy to find the best applicant. Thus, we want to stop at the
time with the highest probability that the present applicant is the best one overall,
i.e., the maximum element in the linear order. It has been proved (see for example
[52]) that for a large number of applicants it is optimal to wait until approximately
37% (more precisely 100

e
%) of the applicants have been interviewed and then to select

the next relatively best one. This problem has been extended and generalized in many
different directions.

In the remainder of this section we give examples of stopping problems in which
either the value aVn(S) or the ratio gVn(S)/aVn(S) (both investigated in this paper)
plays a crucial role in estimating the conditional probabilities needed to obtain the
optimal policy. One can consider analogous examples for the families Bn or Tn as well.

Let us think about elements of Vn as of Hasse diagrams of partially ordered sets
(in short, posets). Consider the following process. Elements (i.e., nodes) of some T
from Vn appear one by one in a random order (all permutations of elements of T are
equiprobable). At time t, i.e., when t elements have already appeared, the selector
can see a poset induced on those elements. He knows that the underlying structure
is drawn uniformly at random from Vn.

Example 6.5 (Best choice problem for the family of binary trees). The selector’s
task is to stop the process maximizing the probability that the element that has just
appeared is the root of the underlying structure. He wins only if the chosen element is
indeed the root of T . Note that it neither pays off to stop the process when the induced
structure is disconnected nor when the currently observed element is not the maximal
one in the induced poset. The selector wonders whether to stop only if the emerged
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element at time t is the unique maximal element in the induced structure. In order
to decide whether to stop at time t, he needs to know the probability of winning if he
stops now. Let Wt denote the event of winning when stopping at time t, St the event
that at time t he observes a certain structure S with degree distribution sequence dS
and Ri denote the event that Ti has been drawn as the underlying structure. Then the
probability of winning if he stops at time t is given by

P[Wt|St] =
M∑

i=1

P[Wt|St ∩Ri]P[Ri|St] =
M∑

i=1

gTi(S)

aTi(S)

P[St|Ri]P[Ri]

P[St]
.

Since P[Ri] = 1/N , P[St|Ri] = aTi(S)/
(
n
t

)
and

P[St] =
M∑

i=1

P[St|Ri]P[Ri] =
M∑

i=1

aTi(S)(
n
t

) 1

N
=
aTn(S)

N
(
n
t

) ,

we get

P[Wt|St] =
M∑

i=1

gTi(S)

aTi(S)

aTi(S)(
n
t

) 1

N

N
(
n
t

)

aTn(S)
=
gTn(S)

aTn(S)
.

Example 6.6 (Identifying complete balanced binary trees). The selector has to iden-
tify whether the underlying structure is a complete balanced binary tree or not. The
payoff of the game, if he stops the process at time t, is n − t if he guesses correctly
and 0 otherwise. He has to maximize the expected payoff. At moment t he observes
a structure S, which is not necessarily connected. Again, in order to make a decision
whether to stop, he needs to know what is the probability that the currently observed
structure is a subposet of a complete balanced binary tree. For a rooted tree S this
probability is given by

aTb(S)

aVn(S)
,

where Tb ∈ Vn denotes the complete balanced binary tree of size n. If S is a forest,
i.e. not connected, than we have to add a factor 1

k
where k is the number of trees in S.

6.2 Embeddings in plane binary trees
Let Bn denote the set of plane binary trees of size n. The goal of this section is
to derive the expected value for the number of both good and all embeddings of a
given rooted plane tree S in a random tree from the class Bn. Furthermore, we study
the ratio gBn (S)

aBn (S)
of the number of good to the number of all embeddings and briefly

discuss the case when the embedded structure S is disconnected. We start by setting
up generating functions for the sequences aBn(S) and gBn(S).

Theorem 6.7. Consider a rooted tree S with a degree distribution sequence dS =
(l, u, d2, . . . , dm−1). The generating function AS(z) of the sequence aBn(S) (counting
the number of all embeddings of S into all trees of the family Bn) is given by

AS(z) =

(
1

1− 2zB(z)

)3l+u−2

zu+l−1 B(z)l+u 2u
m−1∏

i=3

(Ci−1)di ,
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where B(z) is the generating function of the class of plane binary trees with z marking
the total number of nodes (see Example 3.5).

Remark 6.8. Note that AS(z) depends only on the degree distribution sequence dS,
not the particular shape of S. As long as dS1 and dS2 are the same, AS1(z) and AS2(z)
coincide even if S1 and S2 are not isomorphic. However, we use the subscript S to
provide a transparent notation. Moreover, note that AS(z) does also depend on the
tree class Bn in which we embed the tree S. In order to avoid a large number of
indices we will omit to indicate this dependence and just emphasize at this point that
the generating function AS(z) is different in each of the Sections 6.2, 6.3 and 6.4 due
to the different underlying tree classes.

Proof. We start with the case where S is a Motzkin tree (cf. 3.7), and thereby dis-
tinguish between the three cases whether S is a single node, or it starts with a unary
node, or a binary node, respectively. The generating function AS(z) of the number of
embeddings of S in the family Bn can then be recursively defined by

AS(z) =





zB′(z) if S = {•}
2zB(z)

1−2zB(z)
AS̃ if S = {•} × S̃

z
(1−2zB(z))2

ASL(z)ASR(z) if S = {•} × SL × SR
. (6.1)

The first case, which yields a factor zB′(z), corresponds to marking a node in the
underlying tree T (i.e., pointing at a node, cf. Table 2.1), because obviously a single
vertex can be embedded in every node. Note that instead of counting the number of
possible ways to mark a single vertex, we can also interpret it as counting the number
of pairs (T,E) where E is an embedding of S in T .

Now we show how an embedding of S in T can be constructed in a recursive way
- see Figure 6.3 for a visualization of the used approach: We start with the case that
the root of S is a unary node. This root has to be embedded at some point in the
tree T . The part of T that is above the embedded root node of S can be expressed as
a path of left-or-right trees, which contributes a factor 1

1−2zB(z)
. The embedded root

vertex of S itself yields a factor z, since the generating function of an object of size
one is given by z. To the embedded root vertex we have to attach an additional tree T
in order to create a binary structure, yielding a factor B(z), as well as the remaining
tree that contains the embedding of S̃. The factor 2 that appears in the coefficient
in the second case of (6.1) indicates that we work with plane trees - the unary vertex
may either become the left or the right child of its parent node.

The third case of (6.1), where S starts with a binary node, is very similar to the
previous case. Thus, the factor 1

(1−2zB(z))2
corresponds to two consecutive paths of

left-or-right trees, which are separated by the embedded root which itself gives the
additional factor z. At some point the lower path splits into two subtrees containing
the embeddings of the subtrees SL and SR.

By simple iteration one can see that in case of embedding a Motzkin tree S, the
generating function AS(z) reads as

AS(z) =

(
z

(1− 2zB(z))2

)l−1(
2zB(z)

1− 2zB(z)

)u
(zB′(z))l, (6.2)

where l denotes the number of leaves and u the number of unary nodes in S. The
exponent l− 1 in (6.2) arises from the fact that a Motzkin tree with l leaves has l− 1
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ASL ASR

=

T

T

T

T

T

T

AS̃

T

S̃ SL SR

Figure 6.3: Sketch of the recursive construction of the generating function AS(z),
when S is a Motzkin tree consisting of more than one vertex.

binary nodes, and for each of these nodes we get the respective factor.
Finally, we now consider the general case where S is an arbitrary plane tree without
any restrictions on the degree distribution sequence. Then we proceed as follows:
Every d-ary node with d ≥ 3 is replaced by a binary tree having d leaves. There are
exactly Cd−1 possible ways to construct such a binary tree. Unary and binary nodes
stay unaltered. When doing this for all nodes, the resulting tree is a Motzkin tree,
and the number of Motzkin trees that can be constructed in that way is

∏m−1
i=3 Cdi

i−1.
These Motzkin trees are then embedded with the approach described above, resulting
in

AS(z) =

(
1

1− 2zB(z)

)2l−2

zl−1(zB′(z))l
(

2zB(z)

1− 2zB(z)

)u
·
m−1∏

i=3

(Ci−1)di .

Using some basic simplifications and the identity zB′(z) = B(z)
1−2zB(z)

, which holds for
plane binary trees, we get the desired result. See Figure 6.4 for a sketch of the principle
of embedding an arbitrary plane tree.

Corollary 6.9. Consider a rooted tree S. The generating function GS(z) of the
sequence gBn(S) (counting the cumulative number of good embeddings of S into all
trees of the family Bn) is given by

GS(z) = (1− 2zB(z))AS(z).

Proof. The corollary follows immediately as the only difference in the case of good
embeddings is that the root vertex is always an embedded node and thus, we have
to omit the path of left-or-right trees in the beginning of the construction. This
corresponds to a multiplication by the factor (1− 2zB(z)).

The following theorem provides the asymptotics of aBn(S) and gBn(S).
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Figure 6.4: Sketch of the principle of embedding an arbitrary plane tree.

Theorem 6.10. Consider a rooted tree S with degree distribution sequence dS =
(l, u, d2, . . . , dm−1). Let C =

∏m−1
i=3 (Ci−1)di. The asymptotics of the number of all

embeddings of S in Bn, is given by

aBn(S) ∼ C · 2 6−5l−u
2

Γ(3l+u−2
2

)
· 2n · n 3l+u−4

2 , as n→∞,

for n being odd and aBn(S) = 0 for even n. The number of good embeddings of S in
Bn is asymptotically given by

gBn(S) ∼





C·2
7−5l−u

2

Γ( 3l+u−3
2

)
· 2n · n 3l+u−5

2 if 3l + u− 3 > 0,
√

2·2n√
πn3

if 3l + u− 3 = 0,

for n being odd and gBn(S) = 0 for even n.

Proof. Recall that aBn(S) = [zn]AS(z). The function AS(z) has two dominant singu-
larities at ρ1 = 1/2 and ρ2 = −1/2. The Puiseux expansion of AS(z) for z → ρ1 = 1/2
reads as

AS(z) = C · 2 4−5l−u
2 ·

(
1− z

ρ1

)− 3l+u−2
2

(
1 +O

((
1− z

ρ1

)1/2
))

.
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Note that 3l+ u− 2 ≥ 1, since always l ≥ 1 and u ≥ 0. Expanding AS(z) in Puiseux
series for z → ρ2 = −1/2 gives

AS(z) = −C · 2 4−5l−u
2 ·

(
1− z

ρ2

)− 3l+u−2
2

(
1 +O

((
1− z

ρ2

)1/2
))

.

Using the transfer theorems (see Theorems 2.8 and 2.10) we get that

[zn]AS(z) ∼ C · 2 4−5l−u
2

Γ(3l+u−2
2

)
· (ρ1)−n · n 3l+u−4

2 − C · 2 4−5l−u
2

Γ(3l+u−2
2

)
· (ρ2)−n · n 3l+u−4

2

=

{
C·2

6−5l−u
2

Γ( 3l+u−2
2

)
· 2n · n 3l+u−4

2 if n is odd,
0 if n is even.

The asymptotic analysis for the number of good embeddings is analogous, since
we have again, gBn(S) = [zn]GS(z) with GS(z) having two dominant singularities of
a square root type at ρ1 = 1/2 and ρ2 = −1/2. For 3l + u− 3 > 0 we obtain

[zn]GS(z) ∼
{

C·2
7−5l−u

2

Γ( 3l+u−3
2

)
· 2n · n 3l+u−5

2 if n is odd,
0 if n is even.

The case 3l + u − 3 = 0 needs to be treated separately. Note that 3l + u − 3 = 0
implies that l = 1 and u = 0. Thus, the structure S that we embed is a single
vertex. Therefore the number of good embeddings is just the cardinality of Bn, i.e.,
gBn(S) = C n−1

2
∼
√

2·2n√
πn3

, see Example 3.5. (Note also that for S being a single vertex

aBn(S) = nC n−1
2
∼
√

2·2n√
πn

.)

Now, we can give the average number of embeddings of a given tree S in the class
Bn asymptotically.

Theorem 6.11. Let S be a rooted tree with degree distribution sequence dS =
(l, u, d2, . . . , dm−1) and let C =

∏m−1
i=3 (Ci−1)di. For even n the average number of

embeddings of S in a random tree T ∈ Bn is asymptotically given by

[zn]AS(z)

[zn]B(z)
=

aBn(S)

[zn]B(z)
∼ C2

5−5l−u
2
√
π

Γ(3l+u−2
2

)
n

3l+u−1
2 , as n→∞,

and the average number of good embeddings of S in a random tree T ∈ Bn is asymp-
totically given by

[zn]GS(z)

[zn]B(z)
=

gBn(S)

[zn]B(z)
∼





C2
6−5l−u

2
√
π

Γ( 3l+u−3
2

)
n

3l+u−2
2 if 3l + u− 3 > 0,

1 if 3l + u− 3 = 0.

Proof. The proof follows directly by Theorem 6.10 and the asymptotics of the number
of plane binary trees (see Example 3.5). Moreover, note that if S is a single node,
i.e., l = 1 and di = 0 ∀i ≥ 1 (thus, in particular u = 0), the average number of all
embeddings of S in a random tree from Bn is n, which is obvious, since in this case S
can be embedded in each of the n nodes. The average number of good embeddings of
a single node in a tree T from Bn is 1, since the only possibility to embed the node is
in the root of T .
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Now, we investigate the ratio gBn (S)

aBn (S)
, which occurs in optimal stopping problems

that were briefly introduced in Section 6.1.

Corollary 6.12. Consider a rooted tree S with degree distribution sequence dS =
(l, u, d2, . . . , dm−1). Let k = 3l+u−3

2
and let n be odd. The asymptotic ratio of the

cumulative number of good embeddings of S into Bn to the number of all embeddings
into Bn is given by

gBn(S)

aBn(S)
∼
{

Γ(k+1/2)
Γ(k)

√
2√
n

if k > 0,

1/n if k = 0.

Proof. We have gBn (S)

aBn (S)
= [zn]GS(z)

[zn]AS(z)
. The corollary follows immediately from Theo-

rem 6.10.

In [72] Kubicki, Lehel and Morayne. proved that if T is a complete balanced
binary tree of arbitrary size and S1, S2 are rooted trees in which each node has at
most 2 descendants and S1 ⊆ S2, then gT (S1)

aT (S1)
≤ gT (S2)

aT (S2)
. They also conjectured that

the ratio gT (S)
aT (S)

is weakly increasing with S for S being any rooted tree. One year
later in [73] they also stated an asymptotic result for the ratio gT (S)

aT (S)
when S is an

arbitrary rooted tree and T a complete balanced binary tree of size n. They showed
that limn→∞

gT (S)
aT (S)

= 2l−1 − 1 where l is the number of leaves in S. Thereby they
proved that for any rooted tree S the asymptotic ratio gT (S)

aT (S)
is non-decreasing with S

(the function 2l−1 − 1 increases with l and if S1 ⊆ S2 then the number of leaves of S2

equals at least the number of leaves of S1).
The conjecture from [72] was disproved by Georgiou in [51] who chose specific

ternary trees as embedded structures to construct a counterexample. He also gener-
alized the underlying structure to a complete k-ary tree and considered strict-order
preserving maps instead of embeddings. In this setting he proved that a correlation
inequality (corresponding to gT (S1)

aTn (S1)
≤ gT (S2)

aTn (S2)
) already holds for S1, S2 being arbitrary

rooted trees such that S1 ⊆ S2.
Referring to the asymptotic result from [73], we show below that in our case the

asymptotic ratios
√
n gTn (S)

aTn (S)
and

√
n gVn (S)

aVn (S)
are both weakly increasing with S for S

being an arbitrary rooted tree. Using this asymptotic result we then show that the
ratio gTn (S)

aTn (S)
itself (unlike in the case from [72]) is weakly increasing with S. In order

to do so, we use Gautschi’s inequality given in the following lemma.

Lemma 6.13 (Gautschi’s inequality, [48]). Let x be a positive real number and let
s ∈ (0, 1). Then

x1−s <
Γ(x+ 1)

Γ(x+ s)
< (x+ 1)1−s.

Theorem 6.14. Let S1, S2 be rooted trees such that S1 ⊆ S2. Then

lim
n→∞

√
n
gBn(S1)

aBn(S1)
≤ lim

n→∞

√
n
gBn(S2)

aBn(S2)
.

Proof. Let dS1 = (l1, u1, . . .), dS2 = (l2, u2, . . .), k1 = 3l1+u1−3
2

, k2 = 3l2+u2−3
2

and
k1 > 0 (the case when k1 = 0 is trivial). By Corollary 6.12 we have

lim
n→∞

√
n
gBn(S1)

aBn(S1)
=

√
2 · Γ(k1 + 1/2)

Γ(k1)
and lim

n→∞

√
n
gBn(S2)

aBn(S2)
=

√
2 · Γ(k2 + 1/2)

Γ(k2)
.
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Note that the values k1, k1+1/2, k2 and k2+1/2 all belong to the set {1
2
, 1, 3

2
, 2, 5

2
, . . .}.

First, we are going to show that the function f(k) = Γ(k+1/2)
Γ(k)

is increasing in k for
k ∈ {1

2
, 1, 3

2
, 2, 5

2
, . . .}. Indeed, applying twice Gautschi’s inequality (Lemma 6.13) we

get for k > 1/2

f(k + 1/2)

f(k)
=

Γ(k + 1)

Γ(k + 1/2)

Γ(k)

Γ(k + 1/2)
> k1/2(k + 1/2)1/2.

Thus, for k >
√

17−1
4
≈ 0.78, we obtain f(k+1/2)

f(k)
> 1. For k = 1/2 we also have

f(k+1/2)
f(k)

= π
2
> 1.

Now it suffices to show that whenever S1 ⊆ S2, then k1 ≤ k2 (equivalently 3l1+u1 ≤
3l2 + u2). First, observe that if S1 ⊆ S2, then l1 ≤ l2. (The number of leaves in a
tree is the cardinality of its largest antichain, when considering the tree as the Hasse
diagram of a poset. If S1 has l1 leaves and S1 ⊆ S2, then S2 needs to contain
an antichain of cardinality l1 as a subposet, which means that its number of leaves
has to satisfy l2 ≥ l1.) Aiming for a contradiction, we assume that S1 ⊆ S2 and
3l1 + u1 > 3l2 + u2. Since l2 ≥ l1, we need to have u1 > u2. Thus there exists at
least one vertex which was unary in S1 and evolved into a s-ary node (with s ≥ 2)
in S2. Such a single transformation decreases the number of unary nodes by one but
at the same time increases the number of leaves by at least one. This means that in
the process of evolving S1 to any structure in which S1 can be embedded, the sum of
unary nodes and triplicated number of leaves never drops, which is a contradiction to
3l1 + u1 > 3l2 + u2.

Theorem 6.15. Let S1, S2 be rooted trees such that S1 ⊆ S2. Then for each n

gBn(S1)

aBn(S1)
≤ gBn(S2)

aBn(S2)
.

Proof. Let dS1 = (l1, u1, . . .), dS2 = (l2, u2, . . .), k1 = 3l1+u1−3
2

, k2 = 3l2+u2−3
2

. Aim-
ing for a contradiction, we assume that S1 ⊆ S2 and gBn (S1)

aBn (S1)
>

gBn (S2)

aBn (S2)
. Then by

Theorem 6.14 we get

lim
n→∞

√
n
gBn(S1)

aBn(S1)
= lim

n→∞

√
n
gBn(S2)

aBn(S2)
=

√
2 · Γ(k1 + 1/2)

Γ(k1)
=

√
2 · Γ(k2 + 1/2)

Γ(k2)
.

Recall that the function f(k) = Γ(k+1/2)
Γ(k)

is increasing in k for k ∈ {1
2
, 1, 3

2
, 2, 5

2
, . . .}

thus the above equality implies k1 = k2, or equivalently 3l1 + u1 = 3l2 + u2.
First, assume that l1 = l2 and u1 = u2. Observing the generating functions AS1(z)

and GS1(z), note that the ratio gBn (S1)

aBn (S1)
=

[zn]GS1 (z)

[zn]AS1 (z)
depends only on l1 and u1, since

the constant
∏n−1

i=3 (Ci−1)di cancels out. Thus, in this case gBn (S1)

aBn (S1)
=

gBn (S2)

aBn (S2)
, which is

a contradiction.
Now, assume that either l1 6= l2 or u1 6= u2 by 3l1 + u1 = 3l2 + u2. Since S1 ⊆ S2,

we get l2 ≥ l1 (see the proof of Theorem 6.14). This implies u1 ≥ u2. Note also that
there are at least u1−u2 nodes that were unary in S1 and evolved into s-ary for s ≥ 2
in S2. Each such transformation increases the number of leaves by at least one, thus
l2 ≥ l1 + (u1 − u2). Therefore,

3l2 + u2 ≥ 3(l1 + u1 − u2) + u2 = 3l1 + u1 + 2(u1 − u2).
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Since 3l2 + u2 = 3l1 + u1, we get u1 = u2 which implies l1 = l2. This contradicts the
assumption that either l1 6= l2 or u1 6= u2.

Now, we briefly discuss the case of embedding disconnected structures in Bn. Note
that in this case all the embeddings must be bad, since the underlying structure T
has only one maximal element 1T and if S does not have a single maximal element,
its embedding can not contain 1T .

Assume that S is a forest, i.e., a set of rooted trees S1, S2, . . . , Sr (r ≥ 2) with the
degree distribution sequence dS = (l, u, d2, . . . , dm−1). The underlying structure T is
connected, thus the embedded structures S1, S2, . . . , Sr always have a common parent
in T . Let σ = (σ1, σ2, . . . , σr) be a permutation of the set {1, 2, . . . , r}. Define S(σ) to
be a structure constructed as shown in Figure 6.5, i.e., we add an additional vertex
1S(σ) to S, which is a common parent of S1, S2, . . . , Sr appearing in the order given
by σ. Now, instead of counting the number of embeddings of S in T we can simply
count the numbers of good embeddings of S(σ) in T for all permutations σ generating
non-isomorphic structures S(σ) and sum them up. Thus,

aBn(S) =
∑

σ∈Σ

gBn(S(σ)),

where Σ is a set of permutations of {1, 2, . . . , r} such that whenever σ, τ ∈ Σ and
σ 6= τ then S(σ) and S(τ) are not isomorphic. Moreover, whenever τ is a permutation of
{1, 2, . . . , r} and τ /∈ Σ then there exists σ ∈ Σ such that S(σ) and S(τ) are isomorphic.

1S(σ)

vv
||

�� "" ((
Sσ1 Sσ2 . . . . . . Sσr

Figure 6.5: The structure of S(σ), σ = (σ1, σ2, . . . , σr).

Note that the asymptotics of gBn(S(σ)) is the same for all σ ∈ Σ since the
degree distribution sequence of S(σ) is the same for all σ ∈ Σ. It is given by
dS(σ) = (d̃0, d̃1, . . . , d̃m−1) = (l, u, . . . , dr−1, dr + 1, dr+1, . . . , dm−1). Therefore, by The-
orem 6.10

aBn(S) ∼
{

m!
a1!a2!...a`!

C̃·2
7−5l−u

2

Γ( 3l+u−3
2

)
· 2n · n 3l+u−5

2 if n is odd,
0 if n is even,

where r is the number of equivalence classes of the set {S1, S2, . . . , Sr} with respect to
the equivalence relation of being isomorphic and a1, a2, . . . , a` are the cardinalities of
those classes. Here C̃ =

∏m−1
i=3 (Ci−1)d̃i . (Note that here we do not consider the case

3l + u− 3 = 0 from Theorem 6.10, because by r ≥ 2 we always have 3l + u− 3 > 0.)

6.3 Embeddings in non-plane binary trees
In this section we explain how to take advantage of the results obtained for the plane
case in order to infer about the asymptotics of the number of good and all embeddings
of a rooted tree S in the family Vn of non-plane binary trees.
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Theorem 6.16. Consider a rooted tree S with degree distribution sequence dS =
(l, u, d2, . . . , dm−1). The generating function AS(z) of the sequence aVn(S) (counting
the cumulative number of all embeddings of S into the family Vn) is given by

AS(z) =

(
1

1− zV (z)

)2l+u−1

zu+l−1 V (z)l+u CS (1 + o(1)), for z → ±ρ, (6.3)

where CS is a constant dependent on dS and V (z) is the generating function of the
family of non-plane binary trees, which has two dominant singularities at ρ ≈ ±0.6346
(see page 24).

Proof. Throughout this proof we write S1
∼= S2 whenever the structures S1 and S2

are isomorphic. This time we introduce a bivariate generating function, where z still
marks the total number of vertices of a tree, while u is associated with classes of
vertices. Two vertices v, w are meant to belong to the same class whenever there
exists an isomorphism f : T → T such that f(v) = w. From [79] we have

V (z, u) = zu+
zu

2
(V (z, u)2 − V (z2, u2) + 2V (z2, u)). (6.4)

By Vu(z, u) we denote the derivative of V (z, u) with respect to u, i.e., Vu(z, u) =
∂V (z,u)
∂u

. We proceed as in the plane case and start with recursively defining the
generating function AS(z) for the number of embeddings of S into the family Vn,
when S is a Motzkin tree:

AS(z) =





Vu(z, 1) if S = {•}
zV (z)

1−zV (z)
AS̃ if S = {•} × S̃

z
(1−zV (z))2

ASL(z)ASR(z) if S = {•} × SL × SR and SL 6∼= SR
z

(1−zV (z))2
1
2
(ASL(z)2 + ASL(z2)) if S = {•} × SL × SR and SL ∼= SR

.

The idea of setting up this recursive definition for AS(z) is similar to the plane case
with the following differences: In the first case, corresponding to embedding a single
node, we can mark an arbitrary vertex class, instead of an arbitrary vertex, since there
might be some non-trivial isomorphisms that would lead to multiple countings of the
same embedding. Furthermore, the paths of left-or-right trees from the previous
section, yielding a factor 1

1−2zB(z)
, are now replaced by paths of trees where we do

not distinguish between the left-or-right order, since we are in the non-plane setting.
Thus, these paths give a factor 1

1−zV (z)
. Finally, in the case when the Motzkin tree

starts with a binary root, we have to distinguish between the cases whether the two
attached trees are isomorphic or not. The non-isomorphic case works analogously to
its plane version, while in the isomorphic case we have to eliminate potential double-
countings by using the same idea as for Equation (3.3). We do not have to solve
the recursion for AS(z) explicitly, since we are solely interested in the asymptotic
behavior of its coefficients and it is easy to see that asymptotically the contribution
of the term ASL(z2) is negligible: Since ρ < 1 the function AS(z2) is analytic at ρ2.
Thus, [zn]AS(z2) < ρ−n+ε, which is exponentially smaller than Cρ−nnβ = [zn]AS(z).
Thus, by iterating we obtain

AS(z) ∼
(

z

1− zV (z)

)l−1

Vu(z, 1)l
(

zV (z)

1− zV (z)

)u(
1

2

)s
C, as z → ρ,
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where l denotes the number of leaves, u the number of unary nodes and s the number
of symmetry nodes in S (a symmetry node is a parent of two isomorphic subtrees). In
the general case where S is an arbitrary non-plane tree, i.e., a Pólya tree, we proceed
as in the previous section and consider the embeddings of all binary trees with the
same number of leaves as S. Thus, we get

AS(z) ∼
(

z

1− zV (z)

)l−1

Vu(z, 1)l
(

zV (z)

1− zV (z)

)u
CS, as z → ρ. (6.5)

The constant CS arises from the isomorphisms and reads as

CS =
∑

s∈BS
s symmetry node

(
1

2

)s
, (6.6)

where BS denotes the set of non-plane binary trees that have the same number of
leaves as S. Deriving Equation (6.4) with respect to u and plugging u = 1 yields

Vu(z, 1) ∼ V (z)

1− zV (z)
, as z → ρ

Finally, substituting this expression for Vu(z, u) in Equation (6.5) yields the desired
result. Note that the asymptotic equivalence (6.5), or (6.3) respectively, is also true
for the case when S is a single node, i.e., l = 1 and u = s = 0.

Theorem 6.17. Consider a rooted tree S with degree distribution sequence dS =
(l, u, d2, . . . , dm−1). For even n the asymptotics of the number aVn(S) of all embeddings
of S into Vn, is given by

aVn(S) ∼ 2CSb
−2l−u+1ρ−2l−u

Γ(2l+u−1
2

)
· ρ−n · n 2l+u−3

2 , as n→∞,

while the asymptotic behavior of the number of good embeddings of S into Vn is given
by

gVn(S) ∼
{

2CSb
−2l−u+2ρ−2l−u+1

Γ( 2l+u−2
2

)
· ρ−n · n 2l+u−4

2 if 2l + u− 2 > 0,
b√
π
· ρ−n · n−3/2 if 2l + u− 2 = 0,

where b ≈ 2.5184, ρ ≈ 0.6346 and the constant CS, given in (6.6), depends on the
structure of S.

Proof. First, note that V (ρ) ∼ 1
ρ
(see page 24). Therefore, the dominant part of the

asymptotics of the coefficients of AS(z) comes from the factors 1
1−zV (z)

, which give

1

1− zV (z)
∼ 1

ρb
√

1− z
ρ

for z → ρ.

The result for aVn(S) follows immediately by use of the transfer theorems (cf. The-
orems 2.8 and 2.10). As in the plane case, the generating function GS(z) for the
good embeddings just differs from AS(z) by a factor (1− zV (z)) corresponding to the
staring path of binary trees and thus, the asymptotic behavior of its coefficients can
be determined analogously. Recall that 2l + u− 2 = 0 represents the case where S is
a single vertex. The number of good embeddings is therefore just the cardinality of
Vn.
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By means of Theorem 6.17 we can directly give the expected values for the number
of embeddings of a given rooted tree S in a random non-plane binary tree.

Theorem 6.18. Let S be a rooted tree with degree distribution sequence dS =
(l, u, d2, . . . , dm−1) and let CS be defined as in (6.6). For even n the average num-
ber of embeddings of S in a random tree T ∈ Vn is asymptotically given by

[zn]AS(z)

[zn]V (z)
=

aVn(S)

[zn]V (z)
∼ CSΓ(−1/2)ρ−2l−ub−2l−u

Γ((2l + u− 1)/2)
n

2l+u
2 , as n→∞,

and the average number of good embeddings of S in a random tree T ∈ Vn is asymp-
totically given by

[zn]GS(z)

[zn]V (z)
=

gVn(S)

[zn]V (z)
∼
{
CSΓ(−1/2)ρ−2l−u+1b−2l−u+1

Γ((2l+u−2)/2)
n

2l+u−1
2 if 2l + u− 2 > 0,

1 if 2l + u− 2 = 0.

Proof. The result is obtained immediately by Theorem 6.17 and the asymptotics of
the number of non-plane binary trees given on page 24.

Now we can formulate a corollary analogous to Corollary 6.12 from the plane case.

Corollary 6.19. Consider a rooted tree S with degree distribution sequence dS =
(l, u, d2, . . . , dm−1). Let k = 2l+u−2

2
. The asymptotic ratio of the number of good

embeddings of S in Vn to the number of all embeddings, for n→∞ is given by

gVn(S)

aVn(S)
∼
{

Γ(k+1/2)
Γ(k)

ρb√
n

if k > 0,

1/n if k = 0.

Theorem 6.20. Let S1, S2 be rooted trees such that S1 ⊆ S2. Then

lim
n→∞

√
n
gVn(S1)

aVn(S1)
≤ lim

n→∞

√
n
gVn(S2)

aVn(S2)
.

Proof. By Corollary 6.19 we get that for any S with dS = (l, u, d2, . . . , dm−1)

lim
n→∞

√
n
gVn(S)

aVn(S)
=

Γ(k + 1/2)

Γ(k)
ρb

where k = 2l+u−2
2

> 0. The rest of the proof is then analogous to the proof of Theorem
6.14.

Now, let us briefly comment on embedding disconnected structures in the non-
plane case. Let S be a forest, i.e., a set of rooted trees S1, S2, . . . , Sr, r ≥ 2. Again,
instead of counting all embeddings of S in Vn, we can count the good embeddings of
S̃ in Vn, where S̃ is a forest S with an additional common parent that clips together
all Si’s. Note that in the non-plane case the order of Si’s does not matter, thus we
simply have

aVn(S) = gVn(S̃).
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6.4 Embeddings in planted plane trees
In this section we extend the results from plane binary trees to the class Tn of planted
plane trees (cf. Example 3.3). The structures that we embed are as well planted plane
trees, and therefore every such tree S is of the form S = {•}×S1× . . .×Sk, where the
Si’s denote the subtrees that are attached to the root. The following Lemma contains
the construction of the generating function AS(z) of all embeddings of the tree S in
the family Tn of planted plane trees of size n.

Lemma 6.21. The generating function AS(z) of all embeddings of S = {•} × S1 ×
. . .× Sk into the family Tn of planted plane trees of size n can be recursively specified
as

AS(z) =





zT ′(z) = T (z)(1−T (z))
1−2T (z)

if k = 0

T (z)
1−2T (z)

AS1(z) if k = 1

T (z)2

(1−2T (z))2(1−T (z))
AS1(z)AS2(z) if k = 2

T (z)

(1− 2T (z))2

(
1− 2T (z)

1− T (z)
AS1(z)AS2,k

(z)

+
T (z)(1− 2T (z))

(1− T (z))2
AS1,k−1

(z)ASk(z)

+

(
1− 2T (z)

1− T (z)

)(
AS1,2(z)AS3,k

(z) + . . . AS1,k−2
(z)ASk−2,k

(z)
)
)

if k > 2

,

(6.7)

where T (z) denotes the generating function of the class T of planted plane trees, and
Si,j denotes the tree Si,j = {•} × Si × . . . × Sj that consists of a root to which the
j − i+ 1 subtrees Si, . . . , Sj are attached (in that order).

Proof. The case k = 0 is equivalent to the binary cases, and corresponds to marking
an arbitrary node in the tree T . Deriving both sides of the specification T (z) = z

1−T (z)

of planted plane trees with respect to z and solving for T ′(z) yields the equality

zT ′(z) =
z

1− 2T (z)
=
T (z)(1− T (z))

1− 2T (z)
.

Now, let us continue with the proof of the recurrence for the case k > 2. In order
to do so let us observe Figure 6.6 that visualizes how an embedding of a tree S in a
tree T can be constructed: We start with a path of left-or-right plane trees, followed
by the embedded root node. Attached to the root node there is another such path,
ending with the so-called “splitting node”. To the left and the right of this second
path there can of course be several planted plane trees attached to the embedded root
node, which themselves do not contain any embedded vertices. The two paths that

are separated by the embedded root node contribute a factor
(

1
1− z

(1−T (z))2

)2

, which

can be simplified to
(

1−T (z)
1−2T (z)

)2

by means of the functional equation T (z) = z
1−T (z)

.
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Seq (Seq(T )× {•} × Seq(T ))

Seq(T )× { } × Seq(T )

Seq(T )

S1, . . . , Si

Si+1, . . . , Sk

splitting node

Figure 6.6: Sketch of the principle of embedding a plane tree S = {•}×S1× . . .×Sk
into the family of plane trees T .

The root node together with the two sequences of planted plane trees that can be
attached to the left or to the right of the path give a factor z

(1−T (z))2
= T (z)

1−T (z)
.

The splitting node can as well have a sequence of plane trees attached, that do
not contain any embedded nodes, yielding a factor 1

1−T (z)
, but at some point there

has to appear the first plane tree that contains some embedded nodes (pictured in
blue in Figure 6.6). All subtrees attached to the splitting node that are to the right of
this blue one are comprised in one plane tree (pictured in green in Figure 6.6). Now
we have to distinguish between the cases where a different number of the subtrees
S1, . . . , Sk are embedded in the left (i.e., the blue) subtree, while the remaining ones
are embedded in the right (i.e., the green) tree. These case distinctions give rise to
the recursion (6.7) for the generating function. The first two summands of the last
case in (6.7), i.e. the case k > 2, represent the cases where one of the Si’s is embedded
in a separate subtree:

• Solely S1 is embedded in the left tree: In this case we count all embeddings
of S1 in the left subtree, giving a factor AS1(z), while in the right subtree we
count exclusively the good embeddings of S2,k = {•} × S2 × . . . × Sk, since
the splitting node has to be the embedded root of S2,k in order to prevent
multiple embeddings of the root. We already know that the generating function
of good embeddings is obtained from the generating function of all embeddings
by multiplication with 1−2T (z)

1−T (z)
(corresponding to 1 divided by the generating

function of the starting path) and thus we get the factor 1−2T (z)
1−T (z)

AS2,k
(z), where

AS2,k
(z) = A{•}×S2×...×Sk .

• Solely Sk is embedded in the right tree: Here we count the good embeddings of
S1,k−1 in the left tree, as this is general necessary for all cases where we consider
more than just one of the Si’s to be embedded in the same subtree. However,
in this case we have to count only the bad embeddings of Sk in the right tree,
since no node of S can be embedded into the splitting node, except the root of
S, but then the embedding of Sk is still a bad embedding into the green tree.
Altogether this yields the factor 1−2T (z)

1−T (z)
T (z)

1−T (z)
AS1,k−1

(z)ASk(z).
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In all other cases where we embed at least two of the subtrees S1, . . . , Sk in both the
left and the right (i.e., the blue and the green) subtree, we consider good embeddings

for both subtrees, yielding a factor
(

1−2T (z)
1−T (z)

)2

. Together with the factors from the
two paths, the embedded root and the sequence of plane trees we get the desired
coefficients.

The cases k = 1 and k = 2 can be treated in the exact same way as we just did
for k > 2. However, note that in the case k = 1 the green (i.e., the right) tree and
two of the sequences of planted plane trees are merged together, such that we end
up with one path, the embedded root of S together with its two sequences of planted
plane trees and finally the attached blue tree that contains the embedding of the only
subtree S1. This yields the factor

1− T (z)

1− 2T (z)

T (z)

1− T (z)
AS1(z).

In the case k = 2 we have the pre-factor T (z)
(1−2T (z))2

that covers the two paths, the
embedded root node with its attached sequences of plane trees and the sequence of
plane trees that is attached to the splitting node. Now there is just one splitting
option: S1 has to embedded in the left tree, where we consider all embeddings, and
S2 has to be embedded in the right tree, where we solely count the bad embeddings
of S2, since the splitting node must not be an embedded node. It is easy to verify
that this case gives the factor

T (z)2

(1− 2T (z))2(1− T (z))
AS1(z)AS2(z).

Remark 6.22. Note that for the cases k = 0, 1, 2 the generating function AS(z) of all
embeddings of S = {•}×S1× . . .×Sk into the family Tn of planted planes trees of size
n given in (6.7) is of the form f(T ) ·AS1(z) . . . ASk(z), where f(T ) is a function that
is solely depending on T (z). We want to emphasize that, by digging into the structure
of S and by recursive application of the formulas given in (6.7), it follows that AS(z)
is in fact of the form

AS(z) = f(T ) · AS1(z) . . . ASk(z),

for arbitrary S = {•} × S1 × . . .× Sk.
Now we are in the position to obtain the number of embeddings of a given plane

tree S in the family of planed plane trees asymptotically.

Theorem 6.23. Consider a rooted tree S{•} × S1 × . . .× Sk with degree distribution
sequence dS = (l, d1, d2, . . . , dm−1). The asymptotics of the number of all embeddings
of S in the class Tn of planted plane trees is given by

aTn(S) ∼
k∏

i=1

(
Ci−1

2

)di (1

4

)l
n−(l+d−2)/2

Γ(−(l + d)/2)
4n,

with d :=
∑k

i=1 idi. The asymptotic behavior of the number gTn(S) of good embeddings
of S in the class Tn of planted plane trees of size n is given by

gTn(S) ∼
k∏

i=1

(
Ci−1

2

)di (1

4

)l
n−(l+d−1)/2

Γ(−(l + d+ 1)/2)
4n
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Proof. Let us set f1 = 1, f2 = T (z)2

(1−2T (z))2(1−T (z))
and fk = AS(z)∏k

i=1 ASi (z)
for k > 2. Then

we get

fk(z) =
T (z)

(1− T (z))2

(
1

1− 2T (z)
f1fk−1 +

k−2∑

j=2

fjfk−j

)
for k ≥ 3. (6.8)

Now we set

gk(z) =

{
1
2
f1 k = 1

(1− 2T (z))kfk(z) k > 1
. (6.9)

Plugging (6.9) into (6.8) gives

gk(z) =
T (z)

(1− T (z))2

(
2g1gk−1 +

k−2∑

j=2

gjgk−j

)
=

T (z)

(1− T (z))2

k−1∑

j=1

gjgk−j.

By evaluating this recurrence at z = 1
4
, using T (1

4
) = 1

2
and setting hk := gk

(
1
4

)
, we

get

hk =
k−1∑

j=1

hjhk−j, and h1 = 1,

which is exactly the recurrence for the Catalan numbers, and thus, hk = Ck−1.
Hence, for z → 1

4
we have

fk(z) ∼ 1

2
Ck−1(1− 4z)−k/2,

which implies

AS(z) ∼ Ck−1

2
(1− 4z)−k/2AS1 . . . ASk =

k∏

i=1

(
Ci−1

2
(1− 4z)−i/2

)di (
A{•}

)l
,

where S = {•}×S1× . . .×Sk and di denotes the number of nodes with out-degree i,
and l denotes the number of leaves, i.e. l = d0. Using the equality A{•} = zT ′(z) we
get for z → 1

4

AS(z) =
k∏

i=1

(
Ci−1

2

)di
(1− 4z)(l+

∑k
i=1 idi)/2

(
1

4

)l (
1 +O(

√
1− 4z)

)
. (6.10)

Finally, by means of singularity analysis (cf. Corollary 2.11) we get

[zn]AS(z) ∼
k∏

i=1

(
Ci−1

2

)di (1

4

)l
n−(l+d−2)/2

Γ(−(l + d)/2)
4n,

with d :=
∑k

i=1 idi.

Finally, by the use of the results from Theorem 6.23 we can calculate the average
number of embeddings of a given tree S in a random planted plane tree asymptotically,
as well as study the ratio gTn (S)

aTn(S)
of the number of good to all embeddings.

94



Theorem 6.24. Let S = {•}× S1× . . .× Sk be a rooted tree with degree distribution
sequence dS = (l, u, d2, . . . , dm−1) and let d :=

∑k
i=1 idi. Then the average number of

embeddings of S in a random tree T ∈ Tn is asymptotically given by

[zn]AS(z)

[zn]T (z)
=

aTn(S)

[zn]T (z)
∼ 4
√
π
∏k

i=1

(
Ci

2

)di (1
4

)l

Γ(−(d+ l)/2)
n−(l+d−5)/2, as n→∞,

and the average number of good embeddings of S in a random tree T ∈ Vn is asymp-
totically given by

[zn]GS(z)

[zn]T (z)
=

gTn(S)

[zn]T (z)
∼ 4
√
π
∏k

i=1

(
Ci

2

)di (1
4

)l

Γ(−(l + d+ 1)/2)
n−(l+d−4)/2.

Proof. The proof follows immediately by Theorem 6.23 and the asymptotics of the
number of planted plane trees given in Example 4.3.

Corollary 6.25. Consider a rooted tree S. The asymptotic ratio of the number of
good embeddings of S into Tn to the number of all embeddings is given by

gVn(S)

aVn(S)
∼ 2Γ(−(l + d)/2)

Γ(−(d+ l + 1)/2)
√
n
,

where d :=
∑k

i=1 idi.
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Chapter 7

Conclusion

In Part II we investigated different types of parameters of various different tree classes.

The protection number of a tree is an extremal parameter (cf. Section 2.3), which
was already studied by Heuberger and Prodinger in [65] for the class of planted plane
trees. We generalized this work to a more general framework and obtained the average
protection number for all simply generated trees, as well as for Pólya trees and non-
plane binary trees. We did not include Pólya trees with general degree restrictions,
since the general expressions will look clumsy and only numerical results for specific
classes may be of interest. But it is immediate that the asymptotic mean and variance
of the protection number for Pólya-trees with any kind of degree restriction can be
calculated in the very same way. As we saw in some of the examples in Chapter 4,
there are classes of trees, for which the obtained formulas involve a recurrence that
might not be solvable explicitly. However, using the equations that we obtained, it
is possible to calculate the asymptotic mean and variance in an arbitrarily accurate
way with a very low computational effort.

It is well known that Cayley trees and Pólya trees are very similar, but the latter
are not simply generated, as the simple proof presented in [36] shows. A detailed
analysis of the structural differences was done in [56, 91]: Roughly speaking, Pólya
trees are Cayley trees (more precisely, the simply generated class whose ordinary
generating function is the exponential generating function of Cayley trees) with small
forests attached to each vertex. Comparing the resulting values from Table 4.1 for
Cayley trees and Pólya trees shows the quantitative effect of those forests, which have
on average less than one vertex. As expected, these additional forests decrease the
protection numbers.

The most striking feature of the obtained results is that the average protection
number of all investigated tree classes is asymptotically constant, regardless of any
degree restrictions or planarity properties. While this is also the case for (plane
and non-plane) recursive trees [59], the average protection number of PATRICIA
trees is asymptotically log2 n [31] and for d-ary recursive trees it is asymptotically
αd log n [35, 34]. Another interesting parameter concerning the protection number of
a vertex is the maximal protection number of a node. In [59] the authors mention
that experiments suggest that the average maximal protection number of a node in
plane oriented recursive trees (PORTs), which are the plane counterpart of recursive
trees and frequently studied objects [34, 77, 84, 89], and non-plane recursive trees
is asymptotically Θ(log log n). However, this has not been proven yet and further
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studies concerning this parameter in various classes of trees might deliver interesting
structural results and enable nice comparisons between the classes.

The second parameter that we studied was the number of non-isomorphic subtree-
shapes in two selected families of increasing trees, namely recursive trees and increas-
ing binary trees. The major novelty in our results is that we extended the compact-
ification process to labeled trees, which can be useful in practice since it enables an
efficient search in the compacted data structure [14].

So far there have only been results concerning the number of non-isomorphic sub-
trees in unlabeled trees. In particular, it was shown in [8] that the expected number of
non-isomorphic subtrees in a random simply generated tree of size n is asymptotically
Θ
(

n√
logn

)
. Experiments suggested that for increasingly labeled trees this number is

smaller. We proved that the average number of non-isomorphic subtree-shapes in a
random recursive or increasing binary tree of size n is Ω(

√
n) and O

(
n

logn

)
. Numer-

ical simulations give rise to conjecture that this upper bound is already sharp, i.e.,
that the size of the compacted tree is Θ

(
n

logn

)
. However, in order to prove this claim,

one has to find the distribution of the weights w(t), which turns out to be a very
challenging task, especially in case of non-plane trees due to the appearance of auto-
morphisms. Thus, obtaining the (maximum) number of labelings of non-plane trees
of a given size is still work in progress, with the aim to improve the lower bounds such
that we can show the Θ-result. Furthermore, we conjecture that the average number
of non-isomorphic subtree-shapes is Θ

(
n

logn

)
for all classes of increasing trees. The

reason why we chose to investigate recursive trees and increasing binary trees was that
for these two classes we were able to solve the differential equation defining St(z), al-
though in case of increasing binary trees the solution is already more complicated and
involves some Bessel functions. However, in case of PORTs, we did not get any ex-
plicit solution for St(z). Thus, the compaction rate of PORTs is still an open problem.

The last tree parameter that was studied in Part II of this thesis was the number
of good/all embeddings of a given rooted tree S into three selected families of trees,
namely plane and non-plane binary trees, and planted plane trees. We calculated
the asymptotic mean of the number of embeddings and proved that the ratio of
the number of good embeddings to the number of all embeddings of a given tree
S = {•} × S1 × . . . × Sk into the above mentioned families of trees of size n is
asymptotically of the same order for all the three considered classes of trees. We
expect that this result will also hold for Pólya trees, which are the closest counterpart
to posets that admit a (rooted) treelike shape, i.e., they have a single maximal element.
In principle, the approach that we used within this thesis works for embeddings into
Pólya trees as well. However, one would have to consider all possible partitions of
S1, . . . , Sk indicating potential groups of isomorphisms between the Si’s, which can
get rather involved and is therefore omitted in this work.

To our knowledge we were the first ones to use the methods of analytic combi-
natorics in order to study optimal stopping problems on tree structures. It seems
that so far all investigations were based on probabilistic methods. This new approach
may provoke several new ideas of what and how could be studied next in the context
of optimal stopping. One restriction that comes along with our approach is that we
solely get a result on the cumulative number of embeddings in all trees of a given size
belonging to the class of interest. Thus, we assume to have no additional preliminary
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knowledge of the underlying structure of the occurring poset. However, further stud-
ies concerning this topic with the aim to extend our methodology to both restricted
tree-shapes, as well as to general posets, might reveal interesting results.
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Part III

Parameters of lambda terms
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Chapter 8

Lambda terms with bounded
De Bruijn indices

This chapter is organized in two parts. First, we will provide asymptotic results on
the total number of variables in lambda terms with bounded De Bruijn indices, i.e.,
with a bounded number of abstractions between each leaf and its binding lambda.
This section is based on the article Distribution of variables in lambda terms with
restrictions on De Bruijn indices and De Bruijn levels, which was joint work with
Bernhard Gittenberger and has already been published in the Electronic Journal of
Combinatorics, [57]. Then, in the second part, we will investigate the shape of such
lambda terms and thereby obtain the so-called unary profile of a random term be-
longing to this class of lambda terms, based on joint work with Katarzyna Grygiel in
the already submitted manuscript [62].

8.1 Total number of variables

In this section we prove that the number of all variables in closed lambda terms with
bounded De Bruijn indices is asymptotically normally distributed and we provide ex-
pressions for the mean and the variance when the size n tends to infinity. This is
done by means of bivariate generating functions and the use of Hwang’s Quasi Powers
Theorem 2.18.

By translating Equations (3.9) and (3.10) into bivariate generating functions
P̂ (i,k)(z, u), where z marks the size and u marks the number of leaves, we get

P̂ (k,k)(z, u) = kzu+ zP̂ (k,k)2(z, u) + zP̂ (k,k)(z, u),

and

P̂ (i,k)(z, u) = izu+ zP̂ (i,k)2(z, u) + zP̂ (i+1,k)(z, u),

which can be solved and written in the form

P̂ (i,k)(z, u) =
1− 1[i=k]z −

√
R̂k−i+1,k(z, u)

2z
,
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with

R̂1,k(z, u) =(1− z)2 − 4kuz2, (8.1)

R̂2,k(z, u) =1− 4(k − 1)z2u− 2z + 2z2 + 2z

√
R̂1,k(z, u), (8.2)

and for 3 ≤ i ≤ k + 1

R̂i,k(z, u) =1− 4(k − i+ 1)z2u− 2z + 2z

√
R̂i−1,k(z, u). (8.3)

In analogy to (3.13) the bivariate generating function Gk(z, u) then reads as

Gk(z, u) = P̂ (0,k)(z, u) =
1−

√
R̂k+1,k(z, u)

2z
.

Due to continuity arguments and Lemma 3.13 we know that in a sufficiently small
neighborhood of u = 1 the dominant singularity ρ̂k(u) of Gk(z, u) comes only from the
innermost radicand R̂1,k(z, u) and is of type 1

2
. By calculating the smallest positive

root of R̂1,k(z, u) we get ρ̂k(u) = 1
1+2
√
ku
. Given the nested structure of Gk(z, u), it

follows that ρ̂k(u) is the dominant singularity of all R̂j,k(z, u), for j = 2, . . . , k + 1. By
determining the local behavior of R̂1,k(z, u) near z = ρ̂k(u), we are able to determine
Puiseux expansions of all R̂j,k(z, u) for j = 2, . . . , k+1 at z = ρ̂k(u). This will be done
in Proposition 8.1. In particular, this gives us the Puiseux expansion of Gk(z, u) from
which we can derive the asymptotic behavior of its coefficients by transfer theorems
(see Theorems 2.8 and 2.10). This will be the task of Theorem 8.2 below. It will then
turn out that the shape of ρ̂k(u) near u = 1 determines the characteristic function
of the random variable “number of leaves”, because ρ̂k(u) depends on u in a nicely
regular way. This characteristic function has then the shape of a so-called quasi-power
involving the function ρ̂k(u) so that we can use the Quasi-Powers Theorem (Theorem
2.18) to obtain a central limit theorem.

Proposition 8.1. Let ρ̂k(u) be the root of the innermost radicand R̂1,k(z, u), i.e.
ρ̂k(u) = 1

1+2
√
ku
, where u is in a sufficiently small neighborhood of 1, i.e. |u − 1| < δ

for δ > 0 sufficiently small. Then we have for 1 ≤ i ≤ k + 1

R̂i,k(ρ̂k(u)(1− ε), u) =

{
ρ̂k(u)

(
2− 2ρ̂k(u) + 8kuρ̂k(u)

)
ε+O(|ε|2) i = 1

ci(u)ρ̂k(u)2 + di(u)
√
ε+O(|ε|) i > 1

, (8.4)

for ε→ 0 so that ε ∈ C \ R−, uniformly in u, with

c1(u) = 1, and ci(u) = 4(i− 1)u− 1 + 2
√
ci−1(u), for 2 ≤ i ≤ k + 1,

and

di(u) =
2ρ̂k(u)

√
ρ̂k(u)

(
2− 2ρ̂k(u) + 8kuρ̂k(u)

)
∏i

l=2

√
cl

for 2 ≤ i ≤ k + 1.

Proof. Using the Taylor expansion of R̂1,k(z, u) around ρ̂k(u) we obtain

R̂1,k(z, u) = R̂1,k(ρ̂k(u), u) + (z − ρ̂k(u))
∂

∂z
R̂1,k(ρ̂k(u), u) +O((z − ρ̂k(u))2).
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Per definition, the first summand R̂1,k(ρ̂k(u), u) is equal to zero. Setting
z = ρ̂k(u)(1− ε) and using (8.1) we obtain the claim of Proposition 8.1 for the case
i = 1.
The next step is to compute an expansion of R̂j,k(z, u) around ρ̂k(u) for 2 ≤ j ≤ k+1.
Using the recursive relation (8.2) for R̂2,k(z, u) and the formula ρ̂k(u) = 1

1+2
√
ku

yields

R̂2,k(ρ̂k(u)(1−ε), u) = (1+4u)ρ̂k(u)2+2ρ̂k(u)
√
ρ̂k(u)(2− 2ρ̂k(u) + 8kuρ̂k(u))

√
ε+O(|ε|).

We set c2(u) := 1+4u and d2(u) := 2ρ̂k(u)
√
ρ̂k(u)(2− 2ρ̂k(u) + 8kuρ̂k(u)) and assume

that for 2 ≤ i ≤ k+1 the equation R̂i,k(ρ̂k(u)(1−ε), u) = ci(u)ρ̂2
k(u)+di(u)

√
ε+O(|ε|)

holds. Now we proceed by induction. Observe that

R̂i+1,k(ρ̂k(u)(1−ε), u) = 1−4(k−i)ρ̂2
k(u)u−2ρ̂k(u)+2ρ̂k(u)

√
ci(u)ρ̂2

k + di(u)
√
ε+O(|ε|).

Expanding, using again ρ̂k(u) = 1
1+2
√
ku

and R̂1,k(ρ̂k(u), u) = 1 − 2ρ̂k(u) + ρ̂k(u)2 −
4kuρ̂k(u) = 0 yields

R̂i+1,k(ρ̂k(u)(1− ε), u) = 4iuρ̂k(u)2 − ρ̂k(u)2 + 2ρ̂k(u)2
√
ci(u) +

di(u)√
ci(u)

√
ε+O(|ε|).

Setting ci+1(u) := 4iu − 1 + 2
√
ci(u) and di+1(u) := di(u)√

ci(u)
for 2 ≤ i ≤ k, we

obtain R̂i+1,k(ρ̂k(u)− ε, u) = ci+1ρ̂k(u)2 + di+1

√
ε +O(|ε|). Expanding di+1(u), using

its recursive relation and d2(u) = 2ρ̂k(u)
√
ρ̂k(u)(2− 2ρ̂k(u) + 8kuρ̂k(u)), we get for

2 ≤ i ≤ k

di+1(u) =
2ρ̂k(u)

√
ρ̂k(u)(2− 2ρ̂k(u) + 8kuρ̂k(u))∏i

l=2

√
cl(u)

.

Finally, we show that the cl(u)’s are greater than zero in a neighborhood of u = 1. By
induction it can easily be seen that they are always positive for u = 1. Since c1(1) = 1
and assuming ci−1(1) < ci(1) we get

ci+1(1) = 4i− 1 + 2
√
ci(1) > 4(i− 1) + 4− 1 + 2

√
ci−1(1) = ci(1) + 4.

Using continuity arguments we can see that the functions cl(u) have to be positive
in a sufficiently small neighborhood of u = 1 as well, which completes the proof
of (8.4).

Theorem 8.2. Let for any fixed k, Gk(z, u) denote the bivariate generating function
of the class of closed lambda terms where all De Bruijn indices are at most k. Then
the equation

[zn]Gk(z, u) =

√ √
ku+ 2ku

4π
∏k+1

l=2 cl(u)
(1 + 2

√
ku)nn−

3
2

(
1 +O

(
1√
n

))
, for n→∞,

with c1(u) = 1 and cj(u) = 4(j − 1)u − 1 + 2
√
cj−1(u), for 2 ≤ j ≤ k + 1, holds

uniformly in u for |u− 1| < δ, with δ > 0 sufficiently small.
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Proof. Using Gk(z, u) =
1−
√
R̂k+1,k(z,u)

2z
and (8.4), we get for ε ∈ C \ R− with |ε| → 0

Gk(ρ̂k(u)(1− ε), u) =
1−

√
ck+1(u)ρ̂k(u)

2ρ̂k(u)
− dk+1(u)

4ρ̂k(u)2
√
ck+1(u)

√
ε+O(|ε|).

Hence,

[zn]Gk(z, u) = − dk+1(u)
√
ρ̂k(u)

4ρ̂2
k(u)

√
ck+1(u)

[zn]

√
1− z

ρ̂k(u)
+ [zn]O

(∣∣∣∣1−
z

ρ̂k(u)

∣∣∣∣
)
. (8.5)

The singularity ρ̂k(u) = 1
1+2
√
ku

is of type 1
2
and if we plug

dk+1(u) =
2ρ̂k(u)

√
ρ̂k(u)(2− 2ρ̂k(u) + 8kuρ̂k(u))

∏k
l=2

√
cl(u)

=
4ρ̂k(u)2

(√√
ku+ 2ku

)

∏k
l=2

√
cl(u)

into (8.5) and apply the standard transfer theorems (see Theorems 2.8 and 2.10), we
obtain the desired result.

Using Theorems 8.2 and 3.14, we get for n→∞

E(uXn) =
[zn]Gk(z, u)

[zn]Gk(z, 1)
=

(
1 + 2

√
ku

1 + 2
√
k

)n
√√√√
√
ku+ 2ku

2k +
√
k

k+1∏

j=2

cj(1)

cj(u)

(
1 +O

(
1

n

))
,

where c1(u) = 1 and ci+1(u) = 4iu− 1 + 2
√
ci(u).

Thus, all assumptions for the Quasi-Powers Theorem (Theorem 2.18) are fulfilled, and
we directly obtain the following theorem.
Theorem 8.3. Let Xn be the total number of variables in a random closed lambda
term of size n where the De Bruijn index of each variable is at most k. Then Xn is
asymptotically normally distributed with

E(Xn) ∼ k√
k + 2k

n, and V(Xn) ∼ k2

2
√
k(
√
k + 2k)2

n, as n→∞.

Remark 8.4. Note that E(Xn)→ n
2
and V(Xn)→ 0 for k →∞. Since these values

are known for the number of leaves in binary trees, this gives a hint that almost all
leaves of a large random unrestricted lambda term are located within an almost purely
binary structure. However, one has to be careful, since we have to deal with two limits,
n→∞ and k →∞, and thus it is necessary to check whether we can choose the order
of these two limits arbitrarily.

Since the number of binary nodes differs only by 1 from the number of leaves,
and the remaining nodes (that are neither binary nodes nor leaves) have to be unary
nodes, we can state the following corollary.
Corollary 8.5. Let Yn be the total number of binary nodes in a random closed lambda
term of size n with De Bruijn index at most k, and let Zn be the total number of unary
nodes, respectively. Then

E(Yn) = E(Xn) ∼ k√
k + 2k

n and E(Zn) ∼
√
k√

k + 2k
n as n→∞,

with Xn being defined as in Theorem 8.3.
Remark 8.6. Thus, it is an immediate observation that on average each lambda binds√
k leaves in lambda terms with De Bruijn indices being at most k.
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8.2 Unary profile
In this section we investigate the expected shape of random lambda term with bounded
De Bruijn indices. Considering Equation (3.14) together with its interpretation, it
can easily be seen that the enriched tree corresponding to a lambda term from Gk is
constructed as follows (cf. Figure 8.1):

• It starts with the hat consisting of all De Bruijn levels from 0 to k − 1 along
with the unary nodes from the k-th level;

• To this hat structure we attach k-colored Motzkin trees via unary nodes.

2

1

2

3

1 3

3 2

2

1 2

hat

3-colored Motzkin trees

Figure 8.1: A lambda term from G3 decomposed into the hat (encircled in yellow) and
three attached 3-colored Motzkin trees (encircled in green).

Remark 8.7. Note that the glued binary trees in Equation (3.14) constitute the hat
of the structure, to which we attach the k-colored Motzkin trees.

In the subsequent sections we investigate the structure of these terms in more
detail. We prove that, for a fixed k ≥ 1, the hat of a lambda term belonging to Gk is
on average of constant size and that the average number of De Bruijn levels of a term
of size n is asymptotically of order

√
n. Finally, we provide its unary profile.

8.2.1 Average size of a hat

In this section we prove that the average size of a hat is asymptotically constant, i.e.,
it does not depend on the size of a term. This implies that on average the number of
k-colored Motzkin trees in the decomposition described above is also constant.

Theorem 8.8. For k ≥ 1, let Xk be the random variable defined as the size of the
hat of a lambda term where all De Bruijn indices are at most k. Then, as n→∞

EXk =
Bk

∏k+1
l=2

√
cl√

2k +
√
k
,
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with ci := ci(1), where ci(u) is defined as in Proposition 8.1, and Bk is given by

Bk =

(
√
ρ̂k(2− 2ρ̂k + 8kρ̂k)

(
1 +

1

ρ̂k

)
+

1 + (2k − 3)ρ̂k
ρ̂2
k

k+1∑

l=2

gl

)
k+1∏

j=2

1
√
cj

+
1

2

k−2∑

i=0

((
1 + 4iρ̂k −√ck−iρ̂k

ρ̂2
k

k+1∑

l=k+1−i
gl

k+1∏

j=k+1−i

1
√
cj

)
− gk−i

ρ̂k

k+1∏

j=k+1−i

1
√
cj

)
,

with

gi =

√
ρ̂k(2− 2ρ̂k + 8kρ̂k)∏i

l=2

√
ci

for 2 ≤ i ≤ k + 1.

Proof. Let Gk(z, u) be the bivariate generating function of the class Gk with z marking
the size of the terms and u marking the size of their hats. The average size of a hat
is hence given by

EXk =
[zn]∂Gk(z,u)

∂u
|u=1

[zn]Gk(z)
. (8.6)

Since we want to mark by u all the nodes that belong to the hat, we get

Gk(z, u) = B
(
zu,B

(
zu, 1 +B

(
zu, 2 + . . .+B

(
zu, k − 1 +Mk(z)

)
. . .
)))

,

where B(z, w) and Mk(z) are the functions defined in (3.15). This gives

Gk(z, u) =
1−

√
R̂k+1,k(z, u)

2zu
,

where

R̂i,k(z, u) =





1− 2z − (4k − 1)z2, i = 1,

1− 2zu2 − (4k − 6)z2u2 + 2zu2

√
R̂1,k(z, u), i = 2,

1− 2zu− 4(k − i+ 1)z2u2 + 2zu
√
R̂i−1,k(z, u), i > 2.

Note that the radicands R̂i,k(z, u) defined above are not equal to the radicands defined
in (8.1) - (8.3), since the u marks a different variable in this section. However, for
u = 1 the radicands coincide.

The derivatives of the radicands can also be recursively defined via

∂R̂i,k(z, u)

∂u

∣∣∣
u=1

=




0 i = 1,

−4z − 4(2k − 3)z2 + 4z
√
R̂1,k(z, 1) + z√

R̂1,k(z,1)

∂R̂1,k(z,u)

∂u

∣∣∣
u=1

i = 2,

−2z − 8(k − i+ 1)z2 + 2z
√
R̂i−1,k(z, 1) + z√

R̂i−1,k(z,1)

∂R̂i−1,k(z,u)

∂u

∣∣∣
u=1

i > 2.
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and we get

∂Gk(z, u)

∂u

∣∣∣
u=1

=

√
R̂k+1,k(z, 1)− 1

2z
− 1

4z
√
R̂k+1,k(z, 1)

· ∂R̂k+1,k(z, u)

∂u

∣∣∣
u=1

=

√
R̂k+1,k(z, 1)− 1

2z
+

k−2∑

i=0

zi
(

1 + 4iz −
√
R̂k−i,k(z, 1)

)

2
∏k+1

j=k+1−i

√
R̂j,k(z, 1)

+

zk−1

(
1 + (2k − 3)z −

√
R̂1,k(z, 1)

)

∏k+1
j=2

√
R̂j,k(z, 1)

. (8.7)

Analogously to Proposotion 8.1 we expand the radicands R̂i,k(z, 1) around z = ρ̂k :=
ρ̂k(1), which yields

R̂i,k(ρ̂k(1− ε), 1) =

{
ρ̂k(2− 2ρ̂k + 8kρ̂k)ε+O(|ε|2) i = 1,
ciρ̂

2
k + di

√
ε+O(|ε|) i > 1,

where ε ∈ C \ R− and |ε| → 0, and ci = ci(1) and di = di(1) with ci(u) and di(u)
defined as in Proposition 8.1. Hence, we have

√
R̂i,k

(
ρ̂k(1− ε), 1

)
=

{ √
ρ̂k(2− 2ρ̂k + 8kρ̂k)

√
ε+O(|ε|), i = 1,√

ciρ̂k + gi
√
ε+O(|ε|), i > 1

with

gi =
di

2ρ̂k
√
ci

=

√
ρ̂k(2− 2ρ̂k + 8kρ̂k)∏i

l=2

√
ci

for 2 ≤ i ≤ k + 1. (8.8)

Plugging this into Equation (8.7) gives

∂Gk(ρ̂k(1− ε), u)

∂u

∣∣∣
u=1

=

√
ck+1ρ̂k + gk+1

√
ε− 1

2ρ̂k
+

k−2∑

i=0

ρ̂ik
(
1 + 4iρ̂k −√ck−iρ̂k − gk−i

√
ε
)

2
∏k+1

j=k−i+1

(√
cj ρ̂k + gj

√
ε
)

+
ρ̂k−1
k (1 + (2k − 3)ρ̂k −

√
ρ̂k(2− 2ρ̂k + 8kρ̂k)

√
ε)

∏k+1
j=2

(√
cj ρ̂k + gj

√
ε
) + O

(
|ε|
)

= Ak − Bk

√
ε + O

(
|ε|
)
,

where Ak and Bk are constants depending on k with

Bk =
dk+1

2ρ̂k
√
ck+1

+

(√
ρ̂k(2− 2ρ̂k + 8kρ̂k)

ρ̂k
+

1 + (2k − 3)ρ̂k
ρ̂2
k

k+1∑

l=2

gl

)
k+1∏

j=2

1
√
cj

+
1

2

k−2∑

i=0

((
1 + 4iρ̂k −√ck−iρ̂k

ρ̂2
k

k+1∑

l=k+1−i
gl

k+1∏

j=k+1−i

1
√
cj

)
− gk−i

ρ̂k

k+1∏

j=k+1−i

1
√
cj

)
.
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Since Ak is not important for the result, we omit to give its exact value. By singularity
analysis (see Corollary 2.11) applied to

∂Gk(z, u)

∂u

∣∣∣
u=1

= Ak −Bk

√
1− z

ρk
+O

(∣∣∣1− z

ρk

∣∣∣
)
,

we immediately obtain

[zn]
∂Gk(z, u)

∂u

∣∣∣
u=1
∼ Bk

2
√
π
ρ−nk n−3/2, as n→∞.

Pluggind this and the asymptotics of [zn]Gk(z) given in Theorem 3.14 into (8.6)
completes the proof.

Since the hat of a lambda term where all De Bruijn indices are at most k, for any
k ≥ 1, is constant on average, such a term has on average a finite number of unary
nodes in the k-th De Bruijn level. Therefore, we can conclude the following corollary.

Corollary 8.9. For every k ≥ 1, the average number of k-colored Motzkin trees in
the decomposition (see page 107) of lambda terms where all De Bruijn indices are at
most k, is constant.

8.2.2 Average number of De Bruijn levels

In order to determine the average number of De Bruijn levels of lambda terms with
bounded De Bruijn indices, we first compute the average number of “De Bruijn levels”
(i.e., unary levels) of k-colored Motzkin trees. To this end, we use the following result
by [38]. The notation A(z) � B(z) used therein means that [zn]A(z) ≤ [zn]B(z) for
every n ≥ 0.

Lemma 8.10 ([38, Lemma 1.4]). Suppose that F (z, t) is an analytic function at
(z, t) = (0, 0) such that the equation T (z) = F (z, T (z)) has a solution T (z) that is
analytic at z = 0 and has non-negative Taylor coefficients. Suppose that T (z) has a
square-root singularity at z = z0 and can be continued to a region {z ∈ C : |z| < z0 + ε}\
[z0,∞) for some ε > 0, such that Ft(z0, t0) = 1, Fz(z0, t0) 6= 0, and Ftt(z0, t0) 6= 0,
where t0 = T (z0). Let T [0](z) be a power series with 0 � T [0](z) � T (z) such that
T [0](z) is analytic at z = z0, and let T [k](z), k ≥ 1 be iteratively defined by

T [k](z) = F (z, T [k−1](z)).

Assume that T [k−1](z) � T [k](z) � T (z). Let Hn be an integer valued random variable
that is defined by

P{Hn ≤ k} =
[zn]T [k](z)

[zn]T (z)

for those n with [zn]T (z) > 0. Then

EHn ∼
√

2πn

z0Fz(z0, t0)Ftt(z0, t0)
.

Lemma 8.11. The average number of De Bruijn levels of a k-colored Motzkin tree of
size n is asymptotically equal to

√
πn

2k +
√
k

for n→∞.
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Proof. For k ≥ 1 and h ≥ 0, the generating function M
[h]
k (z) of k-colored Motzkin

trees with at most h De Bruijn levels fulfills

M
[h+1]
k (z) = kz + zM

[h]
k (z) + z

(
M

[h+1]
k (z)

)2
,

and hence

M
[h+1]
k (z) =

1−
√

1− 4kz2 − 4z2M
[h]
k (z)

2z
.

Let us fix k ≥ 1 and define Fk(z, t) := 1−
√

1−4kz2−4z2t
2z

. Then Fk(z, t) satisfies
the assumptions of Lemma 8.10. Indeed, the function Mk(z), with a square-root
singularity at z = ρ̂k = 1

1+2
√
k
, is a solution of Fk(z,Mk(z)) = Mk(z) fulfilling all

necessary conditions. Furthermore, the function M
[0]
k (z) enumerates all k-colored

Motzkin trees with only one (the 0-th) De Bruijn level. These trees are binary trees
with k possible labels for each node, thus M [0]

k (z) = 1−
√

1−4kz2

2z
. As M [0]

k (z) has its
dominant singularity at z = 1

2
√
k
, it is analytic at z = 1

1+2
√
k
. Moreover, by a purely

combinatorial argument, M [h]
k (z) �M

[h+1]
k (z) �Mk(z) for every h ≥ 0. Finally, since

F
(
z,M

[h]
k (z)

)
= M

[h+1]
k (z), we can apply Lemma 8.10. We have Mk(ρk) =

√
k and

∂Fk(z, t)

∂z

∣∣∣
(z,t)=(ρk,

√
k)

=
(
1 + 2

√
k
)2√

k and
∂2Fk(z, t)

∂t2

∣∣∣
(z,t)=(ρk,

√
k)

= 2.

Thus, the average number of De Brujin levels of k-colored Motzkin trees is asymptot-
ically equal to √

2πn
1

1+2
√
k
·
(
1 + 2

√
k
)2√

k · 2
=

√
πn

2k +
√
k
.

As a corollary we immediately get the main result of this subsection.

Corollary 8.12. For every k ≥ 1, the average number of De Bruijn levels of a lambda
term from Gk of size n is Θ(

√
n).

Proof. By Corollary 8.9, the number of k-colored Motzkin trees in the decomposition
of lambda terms is constant on average. Therefore, the size of a largest such a tree
in the decomposition of a lambda term with bounded De Bruijn indices of size n
is asymptotically Θ(n). Since the average number of De Bruijn levels of k-colored
Motzkin trees of size asymptotic to n is Θ(

√
n), the same is true for lambda terms

from Gk, which have just k levels more than a longest (in terms of De Bruijn levels)
k-colored Motzkin tree in their decomposition.

8.2.3 Unary profile

By the unary profile of a lambda term we mean the sequence counting the numbers of
variables in each De Bruijn level of the term. In this section, we determine the mean
unary profile of a random lambda term from Gk asymptotically.

In the forthcoming proof, we will make use of the following technical results.

Lemma 8.13 ([53, Lemma 3.4]). Let γ be a Hankel contour truncated at K. Then
we have, for α, β > 0,

1

2πi

∫

γ

e−α
√−t−βt dt =

αβ
−3
2

2
√
π

exp

(
−α

2

4β

)
+O

(
1

β
e−Kβ

)
.
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Lemma 8.14. Let ε > 0 and γ =
{
ρk

(
1 + t+i

n

)
: t ∈ [log2 n, nε)

}
. Then

max
z∈γ

∣∣∣∣∣

√
1− 2z − (4k − 1)z2

z

∣∣∣∣∣ = O
(

log n√
n

)
.

Proof. The closer to ρk an argument of the function γ 3 z 7→
√

1−2z−(4k−1)z2

z
is, the

greater its modulus gets. Thus, we set z = ρk

(
1 + log2 n

n
+ i

n

)
, which is the closest

point to ρk on γ, and we get
√

1− 2z − (4k − 1)z2

z
=

√
a+ ib

ρk

(
1 + log2 n

n
+ i

n

)

with a ∼ −4
√
kρk

log2 n
n

and b ∼ −4
√
kρk

1
n
. Plugging in the asymptotic formulas for a

and b directly yields the desired result.

Now we are in the position to prove the main theorem of this subsection.

Theorem 8.15. Let κ > 0 be a fixed real number. The expected number of variables
in De Bruijn level bκ√nc in a random lambda term from Gk of size n is asymptotically
equal to

2κ exp
(
−κ2(2k +

√
k)
)√

n.

Proof. Let Uk,`(z, u) be the bivariate generating function for lambda terms where all
De Bruijn indices are at most k, with z marking the size and u marking the number
of leaves in the (k + `)-th De Bruijn level, where ` ≥ 1. Then we have

Uk,`(z, u) = B
(
z,B

(
z, 1 +B

(
z, 2 + . . .

+B
(
z, k +B(z, k +B(. . . B︸ ︷︷ ︸
` occurrences of B(z,k+...)

(z, k +B(z, ku+Mk(z)))))
)
. . .
)))

.

Applying the formulas for B(z, w) and Mk(z) given in (3.15) yields

Uk,`(z, u) =
1−

√
R̂k+`,k(z, u)

2z
,

where

R̂i,k(z, u) =





1− 2z − (4k − 1)z2, i = 1,

1− 2z − (4ku− 2)z2 + 2z
√
R1,k(z, u), i = 2,

1− 2z − 4kz2 + 2z
√
Ri−1,k(z, u), i ∈ {3, . . . , `},

1− 2z − 4(k − i+ `)z2 + 2z
√
Ri−1,k(z, u), i ∈ {`+ 1, . . . , `+ k}.

Furthermore, we have

∂R̂i,k(z, u)

∂u
=





0, i = 1,
−4kz2, i = 2,

−4kzi+1

∏i−1
j=1

√
R̂j,k(z,u)

, i > 2,
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and hence
∂Uk,`(z, u)

∂u
=

zk+`

∏k+`
j=1

√
R̂j,k(z, u)

.

Given the De Bruijn level ` = bκ√nc with κ > 0, we are interested in estimating

[zn]
∂Uk,`(z,u)

∂u

∣∣∣
u=1

[zn]Gk(z)
.

In order to make further computations easier, let us notice that
∣∣
√
R̂j,k(z, 1)

∣∣ =∣∣z +
√
R1,k(z, 1)

∣∣ for j ∈ {2, . . . , `}, i.e. all these radicands describe the same function.
Indeed, let us first notice that the above holds for j = 2, since

R̂2,k(z, 1) = R̂1,k(z, 1) + z2 + 2z

√
R̂1,k(z, 1) =

(√
R̂1,k(z, 1) + z

)2

.

Next, by (3.15), we can notice that x = Mk(z) is a solution of the equation
x = B(z, k + x). Therefore, in particular,

B(z, k +B(z, k +Mk(z)))) = B(z, k +Mk(z)),

which gives
√
R̂2,k(z, 1) =

√
R̂3,k(z, 1). By iteration we obtain the result for

j ∈ {4, . . . , `}. For z = ρ̂k
(
1 + t

n

)
we get the expansions

√
R̂i,k(z, 1) =





2k1/4ρ̂
1/2
k

√
−t/n+O(|t|/n), i = 1,

ρ̂k + 2k1/4ρ̂
1/2
k

√
−t/n+O(|t|/n), i ∈ {2, . . . , `},√

ci−`ρ̂k + gi−`
√
−t/n+O(|t|/n), i ∈ {`+ 1, . . . , `+ k},

(8.9)

where (ci)i≥1 and (gi)i≥2 are as before (see (3.16) and (8.8)). Let ε > 0. We have

[zn]
∂Uk,`(z, u)

∂u

∣∣∣
u=1

=
1

2πi

∫

γ

zk+`−n−1

∏k+`
j=2

√
R̂j,k(z, 1)

dz,

where as an integration path we choose a truncated Hankel contour γ1 ∪ γ2 ∪ γ3

encircling the dominant singularity ρ̂k and a circular arc γ4:

γ1 =

{
z = ρ̂k

(
1 +

t

n

)
: t = e−iθ, θ ∈ [−π/2, π/2]

}

∪
{
z = ρ̂k

(
1 +

t± i
n

)
: t ∈ (0, log2 n)

}
,

γ2 =

{
z = ρ̂k

(
1 +

t+ i

n

)
: t ∈ [log2 n, nε)

}
,

γ3 =

{
z = ρ̂k

(
1 +

t− i
n

)
: t ∈ [log2 n, nε)

}
,

γ4 =

{
z : |z| = ρ̂k

∣∣∣1 + ε+
i

n

∣∣∣,<(z) ≤ ρ̂k

(
1 + ε

)}
.
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Figure 8.2: Left: Contour of integration: γ1 plotted with a solid line, γ2 and γ3 with
dashed lines, and γ4 with a dotted line. Right: Enlarged truncated Hankel contour.

We start by estimating the integral along γ1. To this end, we apply the substitution
z = ρ̂k(1 + t/n), where γ̃1 denotes the transformed curve and we use the expansions
given in (8.9):

∫

γ1

zk+`−n−1

∏k+`
j=2

√
R̂j,k(z, 1)

dz

=
ρ̂k+`−nk

n

∫

γ̃1

(
1 +

t

n

)−n+k+`
(

1

ρ̂k + 2k1/4ρ̂
1/2
k

√
−t/n+O(|t|/n)

)`

·
k+1∏

j=2

1
√
cj ρ̂k + gj

√
−t/n+O(|t|/n)

dt

=
ρ̂k+`−nk

n

∫

γ̃1

e−t
(
1 +

t

n

)k+`
(

1

ρ̂k + 2k1/4ρ̂
1/2
k

√
−t/n

)` k+1∏

j=2

1
√
cj ρ̂k + gj

√
−t/n

(
1 +O

( |t|
n

))
dt

=
ρ̂k−nk

n

∫

γ̃1

e−t
(
1 +

t

n

)k+κ√n
(

1

1 + 2k1/4ρ̂
−1/2
k

√
−t/n

)κ√n

·
k+1∏

j=2

1
√
cj ρ̂k + gj

√
−t/n

(
1 +O

( |t|
n

))
dt

=
ρ̂k−nk

n

∫

γ̃1

e
−t− 2κk1/4√

ρ̂k

√−t(
1 +

κt√
n

)(
1− 2κ

√
kt

ρ̂k
√
n

)
k+1∏

j=2

1
√
cj ρ̂k + gj

√
−t/n

(
1 +O

( |t|
n

))
dt

=
ρ̂−nk

n
∏k+1
i=2

√
ci

∫

γ̃1

e
−t− 2κk1/4√

ρ̂k

√−t(
1 +

κt√
n

)(
1− 2κ

√
kt

ρ̂k
√
n

)
1−

√−t
ρ̂k
√
n

k∑

j=1

gj√
cj



(
1 +O

( |t|
n

))
dt

=
ρ̂−nk

n
∏k+1
i=2

√
ci

∫

γ̃1

e
−t− 2κk1/4√

ρ̂k

√−t

1 +

1

ρ̂k
√
n


κt(ρ̂k − 2

√
k)−

√
−t

k∑

j=1

gj√
cj





(
1 +O

( |t|
n

))
dt

=
ρ̂−nk

n
∏k+1
i=2

√
ci

∫

γ̃1

e
−t− 2κk1/4√

ρ̂k

√−t
(
1 +O

( |t|√
n

))
dt.
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Now, by applying Lemma 8.13, we get that the integral above can be further
estimated to result in
∫

γ1

zk+`−n−1

∏k+`
j=2

√
R̂j,k(z, 1)

dz =
1

n
∏k+1

i=2

√
ci
ρ̂−nk

∫

γ̂1

e
−t− 2κk1/4√

ρ̂k

√−t
dt+O

( ρ̂−nk
n3/2

)

=
κk1/4

√
πρk

1

n
∏k+1

i=2

√
ci
ρ̂−nk exp

(
−κ2(2k +

√
k)
)

+O
( ρ̂−nk
n3/2

)
.

(8.10)

Next, we show that the integrals along γj for j ∈ {2, 3, 4} are all of order o
(
ρ̂−nk n−3/2

)

and hence the whole asymptotic contribution comes from integration along γ1. First,
let us consider the integral along γ4:
∣∣∣∣∣∣

∫

γ4

zk+`−n−1

∏k+`
j=2

√
R̂j,k(z, 1)

dz

∣∣∣∣∣∣
≤ (ρ̂k(1 + ε))k+bκ√nc−n−1 |γ4|max

z∈γ4

∣∣∣∣∣∣
1

∏k+bκ√nc
j=2

√
R̂j,k(z, 1)

∣∣∣∣∣∣

≤ Cρ̂−nk (1 + ε)−n (ρ̂k(1 + ε))bκ
√
ncmin

z∈γ4

∣∣∣∣
√
R̂2,k(z, 1)

∣∣∣∣
−bκ√nc

,

where C is some positive constant. Here, (1 + ε)−n contributes an exponential factor

e−Dn with a positive constantD, which compensates the factor min
z∈γ4

∣∣∣∣
√
R̂2,k(z, 1)

∣∣∣∣
−bκ√nc

and thus guarantees
∫

γ4

zk+`−n−1

∏k+`
j=2

√
R̂j,k(z, 1)

dz = O
((
ρ̂k(1− ε)−n

))
= o

(
ρ̂−nk n−3/2

)
.

Now, we estimate the integral along γ2. For some constant C > 0, we have

∣∣∣∣∣∣

∫

γ2

zk+`−n−1

∏k+`
j=2

√
R̂j,k(z, 1)

dz

∣∣∣∣∣∣
≤ C

∣∣∣∣∣∣∣

∫ εn

log2 n

ρ̂
bκ√nc−n
k

(
1 + t

n
+ i

n

)bκ√nc−n
√
R̂2,k

(
ρ̂k
(
1 + t

n
+ i

n

)
, 1
)bκ√nc

1

n
dt

∣∣∣∣∣∣∣

≤ Cρ̂−nk
1

n
ρ̂
bκ√nc
k max

γ2

∣∣∣∣∣∣
z√

R̂2,k(z, 1)

∣∣∣∣∣∣

bκ√nc ∫ εn

log2 n

(
1 +

t

n
+
i

n

)−n
dt.

Using the fact that
∣∣∣∣
√
R̂2,k(z, 1)

∣∣∣∣ =

∣∣∣∣z +
√
R̂1,k(z, 1)

∣∣∣∣ and by Lemma 8.14, we get that

the maximum contributes a factor

max
z∈γ2

∣∣∣∣∣∣
z√

R̂2,k(z, 1)

∣∣∣∣∣∣

bκ√nc

= max
z∈γ2

∣∣∣∣∣∣
1

1 + 1
z

√
R̂1,k(z, 1)

∣∣∣∣∣∣

bκ√nc

=

(
1 + C̃

log n√
n

)bκ√nc
∼ eC logn,
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for some positive constants C̃ and C > 0. The remaining integral can be estimated
by

∫ εn

log2 n

(
1 +

t

n
+
i

n

)−n
dt = O

(
e− log2 n

)
,

which finally gives us
∣∣∣∣∣∣

∫

γ2

zk+`−n−1

∏k+`
j=2

√
R̂j,k(z, 1)

dz

∣∣∣∣∣∣
= O

(
ρ̂−nk

1

n
e− log2 n+C logn

)
= o

(
ρ̂−nk n−3/2

)
.

The estimate of the integral along γ3 works analogously. Therefore, by (8.10), we get

[zn]
∂Uk,`(z, u)

∂u

∣∣∣
u=1

=
κk1/4

n
√
πρ̂k

∏k+1
i=2

√
ci
ρ̂−nk exp

(
−κ2(2k +

√
k)
)

+O
( ρ̂−nk
n3/2

)
.

Combining this result and the asymptotic behavior of the sequence enumerating all
terms from Gk, we finally obtain that the expected number of leaves at the level bκ√nc
is given by

[zn]
∂Uk,`(z,u)

∂u

∣∣∣
u=1

[zn]Gk(z)
∼

κk1/4√
πρ̂k

∏k+1
i=2

√
ci
n−1ρ̂−nk exp

(
−κ2(2k +

√
k)
)

√
2k+
√
k

4π
∏k+1
j=2
√
cj
n−3/2ρ̂−nk

= 2κ exp
(
−κ2(2k +

√
k)
)√

n.

116



Chapter 9

Lambda terms with bounded number
of De Bruijn levels

In this chapter we study parameters of lambda terms with a bounded number of
De Bruijn levels, based on the article Distribution of variables in lambda terms with
restrictions on De Bruijn indices and De Bruijn levels, which was joint work with
Bernhard Gittenberger and published in the Electronic Journal of Combinatorics,
[57]. A preliminary version of the presented results has been published in the Proceed-
ings of the International Conference on Probabilistic, Combinatorial and Asymptotic
Methods for the Analysis of Algorithms (AofA2018), [58].

As in the previous chapter, the first part is devoted to proving asymptotic results
concerning the total number of variables, while in the second part we investigate the
distribution of the variables, as well as applications and abstractions, within the term,
thereby providing the asymptotic unary profile.

9.1 Total number of variables
This section is devoted to the enumeration of all variables in closed lambda terms with
a bounded number of De Bruijn levels. Analogously to Section 8.1 we translate the
specifications (3.17) and (3.18) into bivariate generating functions P (i,k)(z, u), where
z marks the size and u the number of leaves. Solving for P (i,k)(z, u) and simplifying
yields

P (i,k)(z, u) =
1−

√
Rk−i+1,k(z, u)

2z
,

where

R1,k(z, u) = 1− 4kz2u, (9.1)

and for 2 ≤ i ≤ k + 1

Ri,k(z, u) = 1− 4(k − i+ 1)z2u− 2z + 2z
√
Ri−1,k(z, u). (9.2)

For the bivariate generating function of closed lambda terms with at most k De Bruijn
levels we therefore get

Hk(z, u) = P (0,k)(z, u) =
1−

√
Rk+1,k(z, u)

2z
. (9.3)
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In this section we will prove the following theorem concerning the total number of
variables in lambda terms with a bounded number of De Bruijn levels.

Theorem 9.1. Let ρk(u) denote the dominant singularity of the bivariate generating
function Hk(z, u) given in (9.3) and let B(u) := ρk(1)

ρk(u)
. Furthermore, assume that

B′′(1) + B′(1) − B′(1)2 6= 0. Then the total number of variables in a random closed
lambda term with at most k De Bruijn levels is asymptotically normally distributed
with asymptotic mean µn and asymptotic variance σ2n, where µ = B′(1) and σ2 =
B′′(1) +B′(1)−B′(1)2.

As stated in Theorem 3.18 the type of the dominant singularity of the generat-
ing function Hk(z, 1) changes when the imposed bound k equals an entry Nj of the
sequence (Ni)i≥0 given in Definition 3.17. Thus, although the result concerning the
total number of variables in lambda terms with a bounded number of De Bruijn levels
is the same for both cases, whether k is an element of (Ni)i≥0 or not, the method of
proof is different and we will present both approaches in separate subsections.

9.1.1 The case Nj < k < Nj+1

In this case we can proceed analogously to Section 8.1, since the dominant singularity
of the generating functionHk(z, 1) comes solely from one radicand, namely from Rj+1,k

(see Theorem 3.18). Thus, we can again use continuity arguments to guarantee that
sufficiently close to u = 1 the dominant singularity ρk(u) of Hk(z, u) comes from the
(j+1)-th radicand Rj+1,k(z, u) and is of type 1

2
. Now we will determine the expansions

of the radicands in a neighborhood of the dominant singularity.

Proposition 9.2. Let ρk(u) be the dominant singularity of Hk(z, u), where u is in
a sufficiently small neighbourhood of 1, i.e. |u − 1| < δ for δ > 0 sufficiently small.
Then the expansions

(i) ∀i < j + 1 (inner radicands) : Ri,k(ρk(u)− ε, u) = Ri,k(ρk(u), u) +O(|ε|)

(ii) Rj+1,k(ρk(u)− ε, u) = γj+1(u)ε+O(|ε|2), with γj+1(u) = − ∂
∂z
Rj+1,k(ρk(u), u)

(iii) ∀i > j + 1 (outer radicands) : Ri,k(ρk(u)− ε, u) = ai(u) + bi(u)
√
ε+O(|ε|), with

aj+2(u) = 1− 4(k − j − 1)ρk(u)2u− 2ρk(u),

ai+1(u) = 1− 4(k − i)ρk(u)2u− 2ρk(u) + 2ρk(u)
√
ai(u), for j + 2 ≤ i ≤ k,

and

bj+2(u) = 2ρk(u)
√
γj+1(u),

bi+1(u) =
bi(u)ρk(u)√

ai(u)
for j + 2 ≤ i ≤ k,

hold for ε→ 0 so that ε ∈ C \ R−, uniformly in u.

Proof. The proof works analogously to the proof of Proposition 8.1.

(i) The first statement (for i < j + 1) follows immediately by Taylor expansion
around ρk(u) and setting z = ρk(u)− ε.
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(ii) The equation for i = j + 1 follows analogously to the first case, knowing that
Rj+1,k(z, u) cancels for z = ρk(u).

(iii) The next step is to expand Ri,k(z, u) around ρk(u) for i > j+1. From the second
claim of Proposition 9.2 and from the recurrence relation (9.2) for Ri,k(z, u) it
results

Rj+2,k(ρk(u)−ε, u) = 1−4(k−j−1)ρk(u)2u−2ρk(u)+2ρk(u)
√
γj+1(u)

√
ε+O(|ε|).

We set aj+2(u) := 1−4(k−j−1)ρ2
k(u)u−2ρk(u) and bj+2(u) := 2ρk(u)

√
γj+1(u).

Now we proceed by induction. Assume

Ri,k(ρk(u)− ε, u) = ai(u) + bi(u)
√
ε+O(|ε|). (9.4)

We have just checked that it holds for i = j + 2. Now we perform the induction
step i 7→ i+ 1. Using the recursion (9.2) for Ri,k and plugging in the induction
hypothesis (9.4) yields

Ri+1,k(ρk(u)− ε, u) = 1− 4(k − i)ρk(u)2u− 2ρk(u)

+ 2ρk(u)
√
ai(u) +

bi(u)ρk(u)√
ai(u)

√
ε+O(|ε|).

Setting ai+1(u) := 1 − 4(k − i)ρ2
k(u)u − 2ρk(u) + 2ρk(u)

√
ai(u) and bi+1(u) :=

bi(u)ρk(u)√
ai(u)

for i ≥ j + 2 we obtain

Ri+1,k(ρk(u)− ε, u) = ai+1(u) + bi+1(u)
√
ε+O(|ε|).

Expanding bi(u), using its recursive relation and bj+2(u) = 2ρk(u)
√
γj+1(u) we

get for i > j + 1

bi(u) =
2ρi−jk (u)

√
γj+1(u)

∏i−1
l=j+1

√
al(u)

.

We know that for sufficiently large i the sequence ui, defined in Definition 3.17, is
given by ui = bχ2ic, with χ ≈ 1.36660956 . . . (see [11, Lemma 18]). Therefore we have
Nj ∼ u2

j ∼ χ2j2 and Nj < k < Nj+1 = O(N2
j ), which gives j = Θ(log log k). Taking a

look at values of j corresponding to the initial values of k = 1, . . . , 135, which read as

k 1 2 . . . 7 8 9 . . . 134 135
j 1 1 . . . 1 2 2 . . . 2 3

we can deduce that j + 1 < k + 1, i.e., that the dominant singularity ρk(u) cannot
come from the outermost radical.

Remark 9.3. Obviously the same is true for the case k = Nj. Thus, the dominant
singularity never comes from the outermost radical.
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Theorem 9.4. Let for any fixed k, Hk(z, u) denote the bivariate generating function
of the class of closed lambda terms with at most k De Bruijn levels. Furthermore, let
Nj < k < Nj+1, where Ni is defined in Definition 3.17. Then for n→∞ the equation

[zn]Hk(z, u) = hk(u)ρk(u)−n
n−

3
2

Γ(−1
2
)

(
1 +O

(
1√
n

))
, (9.5)

with

hk(u) = − bk+1(u)
√
ρk(u)

4ρk(u)
√
ak+1(u)

6= 0,

where ai(u) and bi(u) are defined as in Proposition 9.2, holds uniformly in u for
|u− 1| < δ, with δ > 0 sufficiently small.

Proof. Using Proposition 9.2 and Hk(z, u) = 1
2z

(1−
√
Rk+1,k(z, u)) we get

Hk(ρk(u)− ε, u) =
1−

√
ak+1(u)

2ρk(u)
− bk+1,k(u)

4ρk(u)
√
ak+1(u)

√
ε+O(|ε|),

which directly yields Equation (9.5) by applying a transfer theorem (see Theorems 2.8
and 2.10).

Now we show that hk(u) 6= 0 in a sufficiently small neighborhood of u = 1: First, let
us consider that aj+2 := aj+2(1) is positive, since

aj+2 = 1− 4(k − j − 1)ρk(1)2 − 2ρk(1) = 1− 4(k − j)ρk(1)2 − 2ρk(1) + 4ρ2
k,

and 1 − 4(k − j)ρk(1)2 − 2ρk(1) > 0 (see [11]). Now we show by induction that the
sequence ai := ai(1) is monotonically increasing. Let us assume that ai−1 < ai, then
we get

ai+1 > 1− 4(k − i)ρk(1)2 − 2ρk(1) + 2ρk(1)
√
ai

> 1− 4(k − i+ 1)ρk(1)2 − 2ρk(1) + 2ρk(1)
√
ai−1 + 4ρk(1)2 > ai + 4ρk(1)2.

Moreover, it is obvious that if bj+2 := bj+2(1) is non-zero, than all the bi’s, which are
defined via

bi =
ρk(1)bi−1

ai−1

,

are non-zero as well. In order to prove that bj+2 = 2ρk(1)
√
− ∂
∂z
Rj+1,k(ρk(1), 1) is

non-zero, we also proceed by induction. Since

R1,k(z, 1) = 1− 4kz2,

we can see that ∂
∂z
R1,k(ρk(1), 1) < 0. Assuming ∂

∂z
Ri,k(ρk(1), 1) < 0 and using

∂

∂z
Ri+1,k(z, 1) = −8(k − i)z − 2 + 2

√
Ri,k(z, 1) +

z√
Ri,k(z, 1)

∂

∂z
Ri(z, 1),

we proved that all bi’s are non-zero. Thus, by continuity arguments it follows that
hk(u) 6= 0 in a sufficiently small neighborhood of u = 1.
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Now, using (9.5) and Theorem 3.19 we get for n→∞

[zn]Hk(z, u)

[zn]Hk(z, 1)
=

hk(u)

hkΓ(−1/2)

(
ρk(1)

ρk(u)

)n(
1 +O

(
1

n

))
. (9.6)

Assuming that σ2 := B′′(1) + B′(1) − B′(1)2 6= 0 with B(u) = ρk(1)
ρk(u)

we can finally
apply the Quasi-Powers Theorem (Theorem 2.18). Unfortunately, the proof of this
assumption appears to be quite difficult, since there is only very little known about the
function ρk(u). However, numerical data supports the conjecture that this condition
will be fulfilled for arbitrary k (see Table 9.1), which allows for the use of the Quasi-
Powers Theorem (Theorem 2.18) that then directly yields Theorem 9.1 for the case
that k ∈ (Nj, Nj+1).

bound k j + 1 B′′(1) +B′(1)−B′(1)2 B′(1)
1 2 0 0
2 2 0.0385234386 0.4381229337
3 2 0.0210625856 0.4414407371
4 2 0.0167136805 0.4463973717
5 2 0.0148700270 0.4504258849
6 2 0.0138224393 0.4536185043
7 2 0.0131157948 0.4561987871
8 3 0.0125868052 0.4583333333
9 3 0.0582322465 0.4566104777
10 3 0.0470481360 0.4560418340
11 3 0.0396601986 0.4560810348
12 3 0.0345090124 0.4564489368
...

...
...

...
133 3 0.0077469541 0.4821900098
134 3 0.0077234960 0.4822482745
135 4 0.0077002803 0.4823059361
136 4 0.0132855719 0.4823515285
137 4 0.0131816901 0.4823968564
138 4 0.0130800422 0.4824419195
139 4 0.0129805564 0.4824867175

Table 9.1: Table summarizing the coefficients occurring in the variance and the mean
for some initial values of k, where the cases k = Nj are bold.

9.1.2 The case k = Nj

We know from Theorem 3.18 that in the case k = Nj both radicands Rj,k(z, 1) and
Rj+1,k(z, 1) vanish simultaneously and the dominant singularity is therefore of type 1

4
.

This is not true for the radicands Rj,k(z, u) and Rj+1,k(z, u) when u is in a neighbor-
hood of 1. Thus, we have a discontinuity at ρk(1), which is why we do not get any
uniform expansions of the radicands in a neighborhood of ρk(1) and cannot use the
same approach as in the previous section.
In order to overcome this problem we proceed as follows (see Figure 9.1 for a sketch of
the idea of the proof): First, we show that the dominant singularity of the generating
function Hk(z, 1 + ε) comes solely from the radicand Rj,k(z, 1 + ε) (cf. Lemma 9.5).
Then we investigate the expansions of the radicands thoroughly for u = 1 + s√

n
in a
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neighborhood of z = ρk(1) with radius t
n
, where s and t are both bounded complex

numbers (cf. Lemma 9.6). This approach of choosing the considered neighborhoods
of z = ρk(1) and u = 1 to be dependent on each other constitutes the main idea
of the applied method. By use of Cauchy’s coefficient formula we are then able to
obtain an asymptotic expression for the n-th coefficient of the generating function
Hk

(
z, 1 + s√

n

)
by choosing a suitable integration contour (cf. Proposition 9.7). Fi-

nally, we show that the characteristic function of the random variable counting the
total number of variables in a random lambda term with at most k De Bruijn levels
tends to the characteristic function of the normal distribution as the size tends to
infinity (cf. Lemma 9.8). For convenience, we will subsequently use the abbreviation
ρk := ρk(1).

ρk(1)

ρk(u)

u = 1 : Rj = Rj+1 = 0 −→ 4
√

u ∼ 1 : Rj = 0 −→ √

z = ρk(u) ·
(
1 + t

n

)

u = 1 + s√
n

Figure 9.1: Sketch of the idea of the proof.

Lemma 9.5. For u = 1 + ε with ε→ 0 so that ε ∈ C \ R−0 , the dominant singularity
ρk(u) = ρk(1 + ε) of the bivariate generating function Hk(z, 1 + ε) comes from the j-th
radicand Rj,k(z, u).

Proof. Setting u = 1 + ε, expanding ρk(u) around 1 and plugging this expansion into
the recursive definition of the radicands yields

Rj,k (ρk(1 + ε), 1 + ε) =1− 4(k − j + 1)(ρ2
k + 2ρkρ

′
kε+ (ρ′2k + 2ρkρ

′′
k)ε

2 + ρ2
kε)

− (2ρk + 2ρ′kε+ 2ρ′′kε
2)

(
1−

√
Rj−1,k (ρk(1 + ε), 1 + ε)

)

+O(|ε|).

Using
√
Rj−1,k (ρk(1 + ε), 1 + ε) =

√
Rj−1,k (ρk, 1) +O(|ε|) = 2ρk + O(|ε|) and

1− 4(k − j)ρ2
k − 2ρk = 0, which are both shown in [11], we get

Rj,k (ρk(1 + ε), 1 + ε) =− 4(k − j + 1)(2ρkρ
′
kε+ (ρ′2k + 2ρkρ

′′
k)ε

2)

− (2ρ′kε+ 2ρ′′kε
2) (1− 2ρk +O(|ε|)) +O(|ε|).

Thus, Rj,k (ρk(1 + ε), 1 + ε) = Θ(|ε|). Using this result and again the recursive defini-
tion of the radicands results in

Rj+1,k (ρk(u), 1 + ε) = 2
√
Rj,k(ρk(u), 1 + ε) +O (|ε|) = Θ(

√
|ε|).
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Thus, we see that |Rj+1,k(ρk(u), u)| � |Rj,k(ρk(u), u)| in a neighborhood of u = 1,
which implies that the dominant singularity has to come from the j-th radicand, i.e.,
Rj,k(ρk(u), u) = 0 for u being sufficiently close to 1.

Lemma 9.6. Let z = ρk(u) = ρk(1 + s√
n
) be the dominant singularity of the bivariate

generating function Hk(z, 1 + s√
n
) with bounded s ∈ C. Then, as n→∞,

(i) Rj,k

(
ρk(u)

(
1 + t

n

)
, 1 + s√

n

)
= 1

n
pj(t) +O

(
1

n3/2

)
,

with pj(t) := −8t(k − j + 1)ρ2
k − 2ρkt+ 4ρ2

kt+ 2tρkf( t
n
) where f is an analytic

function around 0;

(ii) Rj+1,k

(
ρk(u)

(
1 + t

n

)
, 1 + s√

n

)
= 1√

n
pj+1(s, t) +O

(
1
n

)
,

where pj+1(s, t) = 2ρk
√
pj(t)− 4(k − j)(2ρkρ′ks+ ρ2

ks)− 2ρ′ks;

(iii) Ri,k

(
ρk(u)

(
1 + t

n

)
, 1 + s√

n

)
= Ĉi + 1

4√npi(s, t) +O
(

1√
n

)
for i ≥ j + 2,

where Ĉi are constants and pi are analytic functions in the variables s and t.

Proof. We start with setting u = 1 + s√
n
and z = ρk(u)(1 + t

n
) with bounded s, t ∈ C

(cf. Figure 9.1), which results in

Rj+1,k

(
ρk(u)

(
1 +

t

n

)
, 1 +

s√
n

)
=

1− 4(k − j)ρk(u)2

(
1 +

t

n

)2(
1 +

s√
n

)
− 2ρk(u)

(
1 +

t

n

)(
1−

√
Rj,k

)
,

and

Rj,k

(
ρk(u)

(
1 +

t

n

)
, 1 +

s√
n

)
=

1− 4(k − j + 1)ρk(u)2

(
1 +

t

n

)2(
1 +

s√
n

)
− 2ρk(u)

(
1 +

t

n

)(
1−

√
Rj−1,k

)
,

where the radicand in the square root in the last bracket of both equations is of course
also evaluated at (z, u) =

(
ρk(1 + s√

n
)(1 + t

n
), 1 + s√

n

)
, but we will omit this notation

from now on to ensure a simpler reading, i.e., subsequently we will write Ri,k instead
of Ri,k

(
ρk(1 + s√

n
)
(
1 + t

n

)
, 1 + s√

n

)
. Expanding ρk(1 + s√

n
) around 1 and using the

recursive definition for the radicands yields

Rj,k = 1− 4(k − j + 1)

(
ρ2
k + 2ρkρ

′
k

s√
n

+ (ρ′2k + 2ρkρ
′′
k)
s2

n
+ ρ2

k

s√
n

+ 2ρkρ
′
k

s2

n
+ ρ2

k

2t

n

)

− 2

(
ρk + ρ′k

s√
n

+ ρ′′k
s2

2n
+ ρk

t

n

)(
1−

√
Rj−1,k

)
+O

(
1

n3/2

)
. (9.7)

From Lemma 9.5 we know that for u in a sufficiently small vicinity of 1 the dom-
inant singularity of Hk(z, u) comes from the j-th radicand, i.e. Rj,k (ρk(u), u) = 0.
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Expanding Rj,k

(
ρk(1 + s√

n
), 1 + s√

n

)
this yields

1− 4(k − j + 1)

(
ρ2
k + 2ρkρ

′
k

s√
n

+ (ρ′2k + 2ρkρ
′′
k)
s2

n
+ ρ2

k

s√
n

+ 2ρkρ
′
k

s2

n

)

− 2

(
ρk + ρ′k

s√
n

+ ρ′′k
s2

2n

)(
1−

√
Rj−1,k

(
ρk

(
1 +

s√
n

)
, 1 +

s√
n

))

+O
(

1

n3/2

)
= 0.

Thus, Equation (9.7) simplifies to

Rj,k = −4(k − j + 1)ρ2
k

2t

n
− 2ρk

t

n
+ 4ρ2

k

t

n
+ 2ρk

t

n
f

(
t

n

)
+O

(
1

n3/2

)
, (9.8)

where t
n
f
(
t
n

)
=
√
Rj−1,k −

√
Rj−1,k

(
ρk(1 + s√

n
), 1 + s√

n

)
. Notice that f(x) is ana-

lytic around x = 0. Therefore, the proof of (i) is finished.
Proceeding equivalently for Rj+1,k results in

Rj+1,k =
1√
n

(
− 4(k − j)(2ρkρ′ks+ ρ2

ks)− 2ρ′ks
)

+ 2ρk
√
Rj,k +O

(
1

n

)
.

Finally, to complete the proof of the second statement of the assertion we simply have
to replace Rj,k by the right-hand side of (9.8). Going one step further leads to

Rj+2,k = Ĉj+2 +
1
4
√
n
pj+2(s, t) +O

(
1√
n

)
,

with Ĉj+2 := 4ρ2
k and pj+2(s, t) := 2ρk

√
pj+1(s, t), where pj+1(s, t) is defined as in

Lemma 9.6. Now we proceed by induction. Therefore we assume that Ri,k = Ĉi +
1
4√npi(s, t) +O

(
1√
n

)
with i ≥ j + 2. Thus, we get

Ri+1,k =1− 4(k − i)
(
ρ2
k + 2ρkρ

′
k

s√
n

+ (ρ′2k + 2ρkρ
′′
k)
s2

n
+ ρ2

k

s√
n

+ 2ρkρ
′
k

s2

n
+ ρ2

k

2t

n

)

− 2

(
ρk + ρ′k

s√
n

+ ρ′′k
s2

2n
+ ρk

t

n

)(
1−

√
Ri,k

)
+O

(
1

n3/2

)
.

Inserting the induction hypothesis and simplifying yields

Ri+1,k = 4(i− j)ρ2
k + 2ρk

√
Ĉi +

1
4
√
n

ρkpi(s, t)√
Ĉi

+O
(

1√
n

)
.

Setting Ĉi+1 := 4(i − j)ρ2
k + 2ρk

√
Ĉi and pi+1(s, t) := ρk√

Ĉi
pi(s, t) completes the

proof.

Proposition 9.7. Let Hk(z, u) be the bivariate generating function of the class of
closed lambda terms with at most k De Bruijn levels. Then the n-th coefficient of
Hk(z, 1 + s√

n
) with bounded s ∈ C is given by

[zn]Hk(z, 1 +
s√
n

) = Ck(s)ρ
−n
k n−

5
4

(
1 +O

(
n−

3
4

))
, as n→∞,

with a constant Ck(s) 6= 0.
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Proof. Let us remember that Hk(z, 1 + s√
n
) =

1−
√
Rk+1,k(z,1+ s√

n
)

2z
. Thus, with the

well-known Cauchy coefficient formula we get

[zn]Hk

(
z, 1 +

s√
n

)
=

1

2iπ

∫

γ

Hk

(
z, 1 + s√

n

)

zn+1
dz

=
1

2iπ

∫

γ

1−
√
Rk+1,k

(
z, 1 + s√

n

)

2zn+2
dz,

where γ encircles the dominant singularity ρk(u) as depicted in Figure 9.2. We denote
the small Hankel-like part of the integration contour γ that contributes the main part
of the asymptotics by γH (cf. Figure 9.2). The curve γH encircles ρk(u) at a distance
1
n
and its straight parts (that lead into the direction ρk(u) ·∞) have the length log2(n)

n
.

On γ \ γH we have |z| = |ρk(u)|
∣∣∣1 + log2(n)

n
+ i

n

∣∣∣. This enables use to estimate the
contribution of γ \ γH , which turns out to be exponentially small. Next, we use the
transformation z = ρ(u)

(
1 + t

n

)
, which changes the integration contour γH to γ̃H .

On the new contour γ̃H the integrand is now represented in a way that Lemma 9.6
becomes directly applicable. Summarizing all those arguments, we know now that
there exisits a K > 0 such that

[zn]Hk

(
z, 1 +

s√
n

)

=
1

2iπ

∫

γ̃H

1−
√
Ĉk+1 + 1

4√npk+1(s, t) +O
(

1√
n

)

2ρn+1etn
dt+O

(
e−K log2(n)

)

=
1

2iπ

∫

γ̃H

1−
√
Ĉk+1 − 1

2 4√n
√
Ĉk+1

pk+1(s, t) +O
(

1√
n

)

2ρn+1
k etn

dt+O
(
e−K log2(n)

)
.

(9.9)

ρk(u)
γ

γH

H

Figure 9.2: The integral contours γ and H.

Now, let us observe how the function pk+1(s, t) looks like by using the recursive

definition pi+1(s, t) = ρk√
Ĉi
pi(s, t) and pj+2(s, t) = 2ρk

√
2ρk
√
pj(t) + q(s), with a poly-

nomial q(s) = s (−4(k − j)(2ρkρ′k + ρ2
k)− 2ρ′k) that is linear in s. Thus, pk+1(s, t) =
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D · pj+2(s, t) with a constant D. Inserting this into (9.9) and splitting the integral
yields

[zn]Hk

(
z, 1 +

s√
n

)
=

ρ−nk
4iπρkn

·
(∫

γ̃H

(
1−

√
Ĉk+1

)
e−tdt

−
∫

γ̃H

De−t

2 4
√
n

√
Ĉk+1

√
2ρk

√
pj(t) + q(s)dt

+

∫

γ̃H

O
(

1√
n

)
e−tdt

)
.

The first integral is zero and the third integral contributes O
(

1√
n

)
. Thus, the main

part of the asymptotics results from the second integral: There are some constants
A(s) and B(s) such that

−
∫

γ̃H

De−t

4
√
n

√
Ĉk+1

√
2ρk

√
pj(t) + q(s)dt

= −
∫

γ̃H

De−t

4
√
n

√
Ĉk+1

√
A(s)t+B(s) +O

(
log4(n)

n

)
dt

= −
∫

γ̃H

De−t

4
√
n

√
Ĉk+1

√
A(s)t+B(s)dt+O

(
log6(n)

n

)

= −
∫

H

De−t

4
√
n

√
Ĉk+1

√
A(s)t+B(s)dt+O

(
e−K̃ log2(n)

)

∼ C̃(s)
1
4
√
n
.

Here K̃ denotes a suitable positive constant, and H denotes the classical Hankel
curve, i.e., the noose-shaped curve that winds around 0 and starts and ends at +∞
(cf. Figure 9.2).

Finally, using this result we get

[zn]Hk

(
z, 1 +

s√
n

)
= C(s)ρk

(
1 +

s√
n

)−n
n−5/4

(
1 +O

(
1
4
√
n

))
, for n→∞,

with a constant C(s) that depends on s.

Now we show that the characteristic function of our standardized sequence of
random variables tends to the characteristic function of the normal distribution.

Lemma 9.8. Let Xn be the total number of variables in a random lambda term with
at most k De Bruijn levels. Set σ2 := −ρ′k(1)

ρk(1)
− ρ′′k(1)

ρk(1)
+

ρ′k(1)2

ρk(1)2
. If σ2 6= 0, then

Zn =
Xn − E(Xn)√

n
→ N

(
0, σ2

)
.
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Proof. For the standardised sequence of random variables Zn we have with µ := E(Xn)
n

Zn =
Xn − E(Xn)√

n
=
Xn√
n
− µ√n.

Its characteristic function reads as

φZn(s) = E(eisZn) = e−isµ
√
nφXn

(
s√
n

)
= e−isµ

√
nE(e

isXn√
n ) = e−isµ

√
n [zn]Hk(z, e

is√
n )

[zn]Hk(z, 1)
.

From Proposition 9.7 we know

[zn]Hk(z, 1 + s√
n
)

[zn]Hk(z, 1)
∼ C(s)

(
ρk(1 + s√

n
)

ρk(1)

)−n
,

where the constant C(s) ∼ 1 for n→∞. Thus,

φZn(s) = e−isµ
√
n [zn]Hk(z, e

is√
n )

[zn]Hk(z, 1)
∼ e−isµ

√
n



ρk

(
1 + si√

n
− s2

2n
+O

(
|s3|
n3/2

))

ρk(1)



−n

= e−isµ
√
n exp

(
−n ·

(
log

(
1 +

ρ′kis

ρk
√
n
− s2

2n

ρ′k
ρk

+
s2

2n

ρ′′k
ρk

)
+O

( |s3|
n3/2

)))

∼ e−isµ
√
ne
−is√n ρ

′
k
ρk e

s2

2

(
ρ′k
ρk

+
ρ′′k
ρk
− ρ
′2
k
ρ2
k

)

.

Since we know that the expected value of the standardised random variable is zero,
we get µ = −ρ′k(1)

ρk(1)
+ o

(
1√
n

)
, and thus

φZn(s) ∼ e−
s2σ2

2 ,

with σ2 = −ρ′k(1)

ρk(1)
− ρ′′k(1)

ρk(1)
+

ρ′k(1)2

ρk(1)2
, which completes the proof.

Thus, we get that the total number of leaves in lambda terms with a bounded
number of De Bruijn levels is asymptotically normally distributed and Theorem 9.1
is proved for both cases whether k is an element of the sequence (Ni)i≥0 or not.

9.2 Unary profile

9.2.1 Location of leaves among the De Bruijn levels

The aim of this section is the investigation of the distribution of the number of leaves
in the different De Bruijn levels in closed lambda terms with a bounded number of
De Bruijn levels. In order to do so, we make use of the representation (3.21) of
the generating function Hk(z) that considers a lambda term from Hk as a structure
obtained by glued binary trees. Now, let k−lH̃k(z, u) be the bivariate generating
function of closed lambda terms with at most k De Bruijn levels, where z marks the
size and u marks the number of leaves in the (k−l)-th unary level (0 ≤ l ≤ k), reading
as

k−lH̃k(z, u) = B(z,B(z, 1+ . . .+B(z, (k− l) ·u+ . . .+B(z, (k−1)+B(z, k))) . . .) . . .)).
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This can be written as

k−lH̃k(z, u) =
1−

√
R̃k+1,k(z, u)

2z
,

with

R̃i,k(z, u) =





1− 4z2k i = 1

1− 4z2(k − i+ 1)− 2z + 2z
√
R̃i−1,k(z, u) i > 1, i 6= l + 1

1− 4z2u(k − l)− 2z + 2z
√
R̃l−1,k(z, u) i = l + 1

.

Thus, if we investigate the number of leaves in the (k − l)-th De Bruijn level, for
0 ≤ l ≤ k, a factor u is inserted in the recursive definition of the (l + 1)-th radicand
(cf. Figure 9.3).

level 0

level k − j

level k

l = k

l = j

l = 0

R̃k+1,k

R̃j+1,k

R̃1,k

Figure 9.3: A schematic sketch of a lambda term with at most k De Bruijn levels that
exemplifies the notation that is used within this section: For l = j we investigate the
number of leaves in the (k− j)-th De Brujin level, and the u appears in the (j+ 1)-th
radicand. The levels that are closer to the root will subsequently be denoted by the
“lower levels”, since they have a lower number, while the so-called “upper levels” are
the ones further away from the root.

Remark 9.9. Note that the radicands R̃i,k that are introduced above are very similar
to the radicands Ri,k that were used in the previous section. The only difference is
that now we have a u only in the (l + 1)-th radicand, while in the previous case u
was occurring in all radicands. Thus, from now on we will have further distinctions
of cases now depending on the relative position (w.r.t. l) of the radicand(s) where the
dominant singularity comes from.

The remainder of this section is devoted to the proof of the following theorem.

Theorem 9.10. Let k−lH̃k(z, u) denote the bivariate generating function of the class
of closed lambda terms with at most k De Bruijn levels, where z marks the size and u
marks the number of leaves in the (k− l)-th De Bruijn level. Additionally, we denote
its dominant singularity by ρ̃k(u), and B̃(u) = ρ̃k(u)

ρ̃k(1)
. Then the following assertions

hold:

• If k ∈ (Nj, Nj+1), then the average number of leaves in the first k − j De Bruijn
levels is O(1), as the size n→∞, while it is Θ(n) for each of the last j + 1 levels.
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In particular, if B̃′′(1) + B̃′(1) − B̃′(1)2 6= 0, the number of leaves in each of the
last j + 1 De Bruijn levels is asymptotically normally distributed with mean and
variance proportional to the size n of the lambda term.

• If k = Nj, then the average number of leaves in the first k − j De Bruijn levels
is O(1), as n → ∞, while the average number of leaves in the (k − j)-th level is
Θ(
√
n). Each of the last j De Bruijn levels have asymptotically Θ(n) leaves.

In particular, if B̃′′(1) + B̃′(1)− B̃′(1)2 6= 0, the number of leaves in each of the last
j De Bruijn levels is asymptotically normally distributed with mean and variance
proportional to the size n of the lambda term.

This subsection consists of two subsubsections. In the first part we will derive the
mean values for the number of leaves in the different De Bruijn levels and the second
part deals with the distributions of the number of leaves in these levels.

Mean values
Now we want to determine the mean for the number of leaves in the (k − l)-th De
Bruijn level for abitrary 0 ≤ l ≤ k, i.e.

E(Xn) =

[zn]
(
∂
∂u k−lH̃k(z, u)

) ∣∣∣∣
u=1

[zn]k−lH̃k(z, 1)
,

where Xn denotes the number of leaves in the (k − l)-th De Bruijn level of a random
closed lambda term of size n with at most k De Bruijn levels. In order to do so, we
start with determining the derivatives of the radicands R̃i,k(z, u) recursively:

∂

∂u
R̃i,k(z, u) =





0 i < l + 1,

−4z2(k − l) i = l + 1,

z ·
∂
∂u
R̃i−1,k(z,u)√
R̃i−1,k(z,u)

i > l + 1.

. (9.10)

Therefore we get

(
∂

∂u
k−lH̃k(z, u)

) ∣∣∣∣
u=1

= zk−l+1(k − l)
k+1∏

i=l+1

1√
R̃i,k(z, 1)

. (9.11)

Again we perform a distinction of cases starting with k not being an element of the
sequence (Nj)j∈N.

The case: Nj < k < Nj+1. Let ρ̃k(u) be the dominant singularity of k−lH̃k(z, u),
which we know comes from the (j + 1)-th radicand R̃j+1,k(z, u). Obviously, ρ̃k(1) =
ρk(1). Therefore we will again use the abbreviation ρk := ρ̃k(1). From Proposition 9.2
we get the following expansions of the radicands for u = 1 and ε→ 0 so that ε ∈ C\R−:

• ∀i < j + 1 (inner radicands) : R̃i,k(ρk − ε, 1) = R̃i,k(ρk, 1) +O(|ε|),

• R̃j+1,k(ρk − ε, 1) = γj+1ε+O(|ε|2), with γj+1 = − ∂
∂z
R̃j+1,k(ρk, 1),
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• ∀i > j + 1 (outer radicands) : R̃i,k(ρk − ε, 1) = ai + bi
√
ε+O(|ε|), with

ai+1 = 1− 4(k − i)ρ2
k − 2ρk + 2ρk

√
ai, for j + 2 ≤ i ≤ k, (9.12)

aj+2 = 1− 4(k − j − 1)ρ2
k − 2ρk, (9.13)

and

bi+1 =
biρk√
ai

for j + 2 ≤ i ≤ k, (9.14)

bj+2 = 2ρk
√
γ̃j+1. (9.15)

Remark 9.11. Note that these sequences coincide with the ones given in (3.22) -
(3.23).

Thus, we have

• ∀i < j + 1 (inner radicands) : 1√
R̃i,k(ρk−ε,1)

= 1√
R̃i,k(ρk,1)

+O(|ε|),

• 1√
R̃j+1,k(ρ1−ε,1)

= 1√
γj+1

ε−
1
2 +O(|ε| 12 ),

• ∀i > j + 1 (outer radicands) : 1√
R̃i,k(ρk−ε,1)

= 1√
ai
− bi

2
√
a3i
ε
1
2 +O(|ε| 32 ).

Now we have to perform a distinction of cases whether the De Bruijn level that we
are focusing on is below the (k − j)-th level or not (i.e., whether l is larger than j or
not).

First case: l > j First let us remember that l > j implies that the u is inserted
in a radicand that is located outside the (j + 1)-th. From (9.11) we get for ε→ 0 so
that ε ∈ C \ R− (

∂

∂u
k−lH̃k(ρk − ε, u)

) ∣∣∣∣
u=1

=

ρk−l+1
k (k − l)

(
k+1∏

i=l+1

1√
ai
−

k+1∑

m=l+1

(
bm

2
√
a3
m

k+1∏

i=l+1,i 6=m

1√
ai

)
ε
1
2 +O(|ε|)

)
.

By denoting the sum in the equation above with δ̃l we can determine the coefficient
of zn asymptotically for n→∞ by

[zn]

(
∂

∂u
k−lH̃k(z, u)

) ∣∣∣∣
u=1

= −ρk−l+1
k (k − l)δ̃l

(
1

ρk

)n
n−

3
2

Γ(−1
2
)

(
1 +O

(
1√
n

))
,

and by using the asymptotics of the n-th coefficient of k−lH̃k(z, 1) = Hk(z, 1) (see
Theorem 3.19) we finally get for the mean, asymptotically as n→∞,

[zn]
(
∂
∂u k−lH̃k(z, u)

)
|u=1

[zn]k−lH̃k(z, 1)
=
−ρk−l+1

k (k − l)δ̃l
hk

(
1 +O

(
1√
n

))
.

Thus, we showed that there is only a small number of leaves in the De Bruijn levels
below the (k − j)-th level. More precisely, the asymptotic mean of the number of
leaves is O(1) for all these lower levels.
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Remark 9.12. The constant hk can be expressed by means of the sequences ai and bi
defined in Equations (9.12) – (9.15), thereby enabling a representation of the constant
Ck,l :=

−ρk−l+1
k (k−l)δ̃l

hk
that reads as

Ck,l =
2(k − l)ρ2

k

al+1

(
1 +

ρkal+1

al+2
√
al+1

+
ρ2
kal+1

al+3
√
al+2
√
al+1

+ . . .

)
. (9.16)

This term can be used in order to investigate the asymptotic number of leaves in the
lower De Bruijn levels more thoroughly.

Second case: l ≤ j Similar to the first case we get
(
∂

∂u
k−lH̃k(ρk − ε, u)

) ∣∣∣∣
u=1

=

ρk−l+1
k (k−l)






j∏

i=l+1

1√
R̃i,k(ρk, 1)



(

k+1∏

i=j+2

1√
ai

)
1

√
γj+1

ε−
1
2 + const. term +O(|ε| 12 )


 .

By setting φ̃j+1,l :=

(∏j
i=l+1

1√
R̃i,k(ρk,1)

)(∏k+1
i=j+2

1√
ai

)
1√
γj+1

, we obtain for n→∞

[zn]

(
∂

∂u
k−lH̃k(z, u)

) ∣∣∣∣
u=1

= ρk−l+1
k (k − l)φ̃j+1,l

(
1

ρk

)n
n−

1
2

Γ(1
2
)

(
1 +O

(
1

n

))
.

Thus, we get for the mean, asymptotically as n→∞,

[zn]
(
∂
∂u k−lH̃k(z, u)

)
|u=1

[zn]k−lH̃k(z, 1)
=
ρk−l+1
k (k − l)Γ(−1

2
)φ̃j+1,l

Γ(1
2
)hk

· n
(

1 +O
(

1

n

))
.

Hence, we proved that the asymptotic mean for the number of leaves in the De Bruijn
levels above the (k − j)-th is Θ(n). So, altogether we can see that almost all of the
leaves are located in the upper j + 1 De Bruijn levels.

The case: k = Nj. Now we will deal with the second case, where the bound k is an
element of the sequence (Nj)j∈N.

We start by determining the expansions of the radicands around the dominant
singularity ρ̃k(u) of k−lH̃k(z, u) for u = 1 and ε → 0 so that ε ∈ C \ R− (cf. [11,
Proposition 9]):

• ∀i < j (inner radicands) : R̃i,k(ρk − ε, 1) = R̃i,k(ρk, 1) +O(|ε|),

• R̃j,k(ρk − ε, 1) = γ̃jε+O(|ε|2) with γj = − ∂
∂z
R̃j,k(ρk, 1),

• R̃j+1,k(ρk − ε, 1) = 2ρ̃k
√
γjε

1
2 +O(|ε|),

• ∀i > j + 1 (outer radicands) : R̃i,k(ρk − ε, 1) = ai + biε
1
4 +O(|ε|),

with ai and bi as defined in (9.12) - (9.15).
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Thus, we get

• ∀i < j (inner radicands) : 1√
R̃i,k(ρk−ε,1)

= 1√
R̃i,k(ρk,1)

+O(|ε|),

• 1√
R̃j,k(ρk−ε,1)

= 1√
γj
ε−

1
2 +O(|ε| 12 ),

• 1√
R̃j+1,k(ρ̃k−ε,1)

= 1√
2ρk

4
√
γ̃j
ε−

1
4 +O(|ε| 14 ),

• ∀i > j + 1 (outer radicands) : 1√
R̃i,k(ρk−ε,1)

= 1√
ai
− bi

2
√
a3i
ε
1
4 +O(|ε|).

We proceed analogously to the case where Nj < k < Nj+1, with the only difference
that we have to distinguish between three cases now and since for u = 1 the j-th and
the (j+1)-th radicand vanish simultaneously, we get a closed formula for the dominant
singularity ρk = 1

1+
√

1+4(k−j)
.

First case: l > j Let us again remember that l > j implies that the u is inserted
in the p-th radicand with p > j + 1. From (9.11) we get for ε ∈ C \ R− with |ε| → 0

(
∂

∂u
k−lH̃k(ρk − ε, u)

) ∣∣∣∣
u=1

= ρk−l+1
k (k − l)

k+1∏

i=l+1

(
1√
ãi
− b̃i

2
√
ã3
i

ε
1
4 +O(|ε|)

)

=

(
1

1 +
√

1 + 4(k − j)

)k−l+1

(k − l)
(

k+1∏

i=l+1

1√
ãi

−
k+1∑

m=l+1

(
b̃m

2
√
ã3
m

k+1∏

i=l+1,i 6=m

1√
ãi

)
ε
1
4 +O(|ε| 12 )

)
.

As in the previous case, we set δ̃l :=
∑k+1

m=l+1

(
b̃m

2
√
ã3m

∏k+1
i=l+1
i 6=m

1√
ãi

)
. Extracting the

n-th coefficient and using the asymptotics of [zn]k−lH̃k(z, 1) = [zn]Hk(z, 1) given in
Theorem 3.19 we have for n→∞

[zn]
(
∂
∂u k−lH̃k(z, u)

)
|u=1

[zn]k−lH̃k(z, 1)
=
−4ρj−l+3

k (k − l)δ̃l
∏k+1

m=j+2

√
am

bj+2

(
1 +O

(
n−

1
4

))
.

Thus, as in the previous case (Nj < k < Nj+1) the asymptotic mean for the number
of leaves in the De Bruijn levels below the (k − j)-th level is O(1).

Furthermore the constant Dk,l :=
−4ρj−l+3

k (1)(k−l)δ̃l
∏k+1
m=j+2

√
am

bj+2
can be simplified to

Dk,l =
k − l
2λl−j

(
1 +

√
λl−j

2λl−j+1

+

√
λl−j

4λl−j+2

√
λl−j+1

+

√
λl−j

8λl−j+3

√
λl−j+2

√
λl−j+1

+ . . .

)

(9.17)

with the sequence λi defined by λ0 = 0 and λi+1 = i+ 1 +
√
λi for i ≥ 0.
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Second case: l = j Here the u is inserted in the (j + 1)-th radicand. In this case
we get

[zn]
(
∂
∂u k−lH̃k(z, u)

)
|u=1

[zn]k−lH̃k(z, 1)
=

−4ρ3
k(k − j)Γ(−1/4)ψj

∏k+1
m=j+2

√
am

Γ(1
4
)bj+2

· √n
(

1 +O
(
n−

1
4

))
(9.18)

with

ψj =
1√

2ρk 4
√
γ̃j

k+1∏

i=j+2

1√
ai
. (9.19)

The constant D̂k,l :=
−4ρ3k(k−j)Γ(−1/4)ψj

∏k+1
m=j+2

√
am

Γ( 1
4

)bj+2
simplifies to

D̂k,l =
−Γ(−1/4)(k − j)√ρk

Γ(1/4)
√
γ̃j

.

In order to get some information on the magnitude of this factor we would have to
investigate γ̃j = − ∂

∂z
R̃j,k(ρk, 1), which seems to get rather involved. However, taking

a look at Equation (9.18) we can see that there are already considerably more unary
nodes in the (k − j)-th De Bruijn level, namely Θ(

√
n).

Third case: l < j The third case gives for n→∞

[zn]
(
∂
∂u k−lH̃k(z, u)

)
|u=1

[zn]k−lH̃k(z, 1)
=

−4ρj−l+3
k (k − l)Γ(−1/4)χj

∏k+1
m=j+2

√
am

Γ(3/4)bj+2

· n
(

1 +O
(
n−

1
4

))
,

with

χj =
1√
γ̃j
ψj




j−1∏

i=l+1

1√
R̃i,k(ρk, 1)


 ,

where ψj is defined as in (9.19). Thus, we proved that on average there are Θ(n) leaves

in the upper j De Bruijn levels. The constant D̃k,l :=
−4ρj−l+3

k (k−l)Γ(−1/4)χj
∏k+1
m=j+2

√
am

Γ(3/4)bj+2

can be rewritten as

D̃k,l =
−Γ(−1/4)(k − l)ρj−lk

Γ(3/4)γ̃j

j−1∏

i=l+1

1√
R̃i,k(ρk, 1)

.

The following proposition sums up all the results that we obtained within this section.

Proposition 9.13. Let Xn denote the number of leaves in the (k − l)-th De Bruijn
level in a random lambda term of size n with at most k De Bruijn levels.

If k ∈ (Nj, Nj+1), then we get for the asymptotic mean when n→∞
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• in the case l > j:

E(Xn) =
[zn]

(
∂
∂u k−lHk(z, u)

)
|u=1

[zn]k−lHk(z, 1)
= Ck,l

(
1 +O

(
1

n

))
,

• and in the case l ≤ j:

E(Xn) =
[zn]

(
∂
∂u k−lHk(z, u)

)
|u=1

[zn]k−lHk(z, 1)
= C̃k,l · n

(
1 +O

(
1

n

))
,

with constants Ck,l and C̃k,l depending on l and k.
If k = Nj, then the asymptotic mean for n→∞ reads as

• in the case l > j:

E(Xn) =
[zn]

(
∂
∂u k−lHk(z, u)

)
|u=1

[zn]k−lHk(z, 1)
= Dk,l

(
1 +O

(
n−

1
4

))
,

• in the case l = j:

E(Xn) =
[zn]

(
∂
∂u k−lHk(z, u)

)
|u=1

[zn]k−lHk(z, 1)
= D̂k,l ·

√
n
(

1 +O
(
n−

1
4

))
,

• and in the case l < j:

E(Xn) =
[zn]

(
∂
∂u k−lHk(z, u)

)
|u=1

[zn]k−lHk(z, 1)
= D̃k,l · n

(
1 +O

((
n−

1
4

)))
,

with constants Dk,l, D̂k,l and D̃k,l depending on l and k.

All the constants occurring in Proposition 9.13 have been calculated explicitly and
can be obtained for every fixed k. In particular, we investigated Dk,l in order to show
that for large k the number of leaves in the De Bruijn levels that are closer to the root
is smaller (cf. Figure 9.4). In fact, they rapidly tend to zero for k tending to infinity.

Proposition 9.14. Let us consider a random closed lambda term of size n with at
most k De Bruijn levels and let us consider the case k = Nj. Then the average number
of leaves in De Bruijn level L, with 0 ≤ L ≤ k − j − 1, is asymptotically equal to
Dk,k−L, defined in (9.17). It behaves like

Dk,k−L ∼
L

2(k − j − L)
as k →∞.

Proof. The proposition follows directly by investigating this constantDk,l. The asymp-
totics for the sequence λi (defined by λ0 = 0 and λi+1 = i+ 1 +

√
λi for i ≥ 0) can be

obtained by bootstrapping (see [11]). We obtain λi ∼ i, as i→∞, see (3.25).

Remark 9.15. Note that the expression for Dk,l (cf. Equ. (9.17)) can be obtained
by plugging ãj+l = 4ρ2

kλl−1 into the equation for Ck,l (cf. Equ. (9.16)). However, this
relation is solely valid for the case k = Nj and thus, Proposition 9.14 holds just for the
constants Dk,l. Nonetheless, we expect that by means of some suitable estimates for
the a′is one can obtain a similar behavior for the constants Ck,l. Since computations
get rather involved, we omitted any further investigations of these constants within
this paper. Anyway, we can conclude that in both cases, whether k is an element of
(Ni)i>0 or not, a random closed lambda term with at most k De Bruijn levels has very
few leaves in its lowest levels if k is large.
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Distributions
Now that we derived the mean values for the number of leaves in the different De
Bruijn levels, we are interested in their distribution. Therefore we distinguish again
between the cases of k being an element of the sequence (Ni)i≥0 or not.

The case: Nj < k < Nj+1 We know that the generating function k−lH̃k(z, u) con-
sists of k + 1 nested radicals, where a u is inserted in the (l+ 1)-th radicand counted
from the innermost one. Additionally we know that for Nj < k < Nj+1 the dominant
singularity ρ̃k(u) comes from the (j+1)-th radicand. Therefore, for l > j the function
ρ̃k(u) is independent of u, which is the reason why we do not get a quasi-power in
that case. Thus, for the first k − j levels of the lambda-PDAG (i.e. the case l > j),
where there are just a few leaves, we can not say anything about the distribution of
the leaves so far. It might be a degenerated distribution.

However, in case that l ≤ j (i.e., for the upper levels where there are a lot of
leaves) we will use the Quasi-Powers Theorem to show that the number of leaves in
the (k − j)-th until the k-th level is asymptotically normally distributed.

Analogously as we did in Section 9.1.1 we can show that

[zn] k−lH̃k(z, u)

[zn] k−lH̃k(z, 1)
=
h̃k(u)

hk

(
ρk

ρ̃k(u)

)n(
1 +O

(
1

n

))
. (9.20)

We can easily see that Equation (9.20) has the desired shape for the Quasi-Powers
Theorem. Hence, assuming that B̃′′(1) + B̃′(1) − B̃′(1)2 6= 0, where B̃(u) = ρk

ρ̃k(u)
,

the Quasi-Powers Theorem can be applied, which proves that the number of leaves
in a De Bruijn level that is above the (k − j − 1)-th level is asymptotically normally
distributed.

The case: k = Nj As is the previous case we do not know the distribution of the
number of leaves in the lowest k − j De Bruijn levels (i.e., the levels 0 to k − j − 1),
due to the fact that for these levels the function ρ̃k(u) does not depend on u. It might
as well be a degenerated distribution.

In Section 9.1.2 we showed that the dominant singularity comes from the j-th
radicand when u is in a neighbourhood of 1. Thus, for the case that l = j, where
we insert a u in the (j + 1)-th radicand, the dominant singularity ρk(u) does still do
not depend on u. Therefore we also do not know the distribution of the leaves in the
(k − j)-th De Bruijn level. It seems very unlikely that the number of leaves in this
level will be asymptotically normally distributed, but further studies on this subject
might be very interesting.

Now we are going to show that the number of leaves in the upper j De Bruijn levels
(i.e., from the (k− j+ 1)-th to the k-th level) is asymptotically normally distributed.
In order to do so we proceed analogously as in Section 9.1.2 for the total number
of leaves. Therefore, for l < j we set again z = ρ̃k(u)(1 + t

n
) and u = 1 + s√

n
and

obtain expansions that behave just as the ones in Lemma 9.6. The only differences
that occur concern the constants and therefore do not alter our results for the normal
distribution.

Thus, Theorem 9.10 is proved. Figure 9.4 summarizes the results that we obtained
in Section 9.2.1 and illustrates a combinatorial interpretation of the occurring phe-
nomena. Sections 9.2.2 and 9.2.3 are concerned with the investigation of the number
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of unary nodes, and binary nodes respectively, among the De Bruijn levels. Using the
same techniques as in Section 9.2.1 we can show that their number behaves in fact
very similar to the number of leaves.

Theorem 9.16. If k ∈ (Nj, Nj+1), then both the average number of unary nodes and
the average number of binary nodes in the first k − j De Bruijn levels are O(1), as
n→∞, while they are Θ(n) in each of the last j + 1 levels.

If k = Nj, then both the average number of unary nodes and the average number of
binary nodes in the first k− j De Bruijn levels is O(1), as n→∞, while the average
number of nodes of the respective type in the (k−j)-th De Bruijn level is Θ(

√
n). The

last j De Bruijn levels contain each asymptotically Θ(n) unary nodes, as well as Θ(n)
binary nodes.

k = Nj k = Nj+1Nj < k < Nj+1

k − j k − j k − j − 1

(1) (2) (3)

Θ(n)

Θ(
√
n)

Θ(n)
Θ(n)

Θ(
√
n)

Figure 9.4: (1) In the (k − j)-th Be Bruijn level (l = j) are considerably more leaves
than in the lower levels, but still less leaves then in the levels above. (2) With growing
k the (k − j)-th Be Bruijn level gets filled with leaves, while the number of leaves in
the next level below (i.e., the (k−j−1)-th) slowly increases. (3) As soon as k reaches
the next element of the sequence (Nj)j≥0, namely k = Nj+1 the (k − j − 1)-th De
Bruijn level immediately contains considerably more leaves than the levels below.

9.2.2 Location of unary nodes among the De Bruijn levels

Now we want to investigate the number of unary nodes among the different De Bruijn
levels. The bivariate generating function k−lH̄k(z, w) of the class of closed lambda
terms with at most k De Bruijn levels, where z marks the size and w the number of
unary nodes in the (k − l)-th De Bruijn level, can then be expressed by

B(z,B(z, 1 + . . .+B(z, (k − l) + w ·B(z, . . . (k − 1) +B(z, k)) . . .) . . .)).

This can be rewritten to

k−lH̄k(z, w) =
1−

√
R̄k+1,k(z, w)

2z
,

with

R̄i,k(z, w) =





1− 4z2k i = 1,

1− 4z2(k − i+ 1)− 2z + 2z
√
R̄i−1,k(z, w) i > 1, i 6= l + 1,

1− 4z2(k − l)− 2zw + 2zw
√
R̄l,k(z, w) i = l + 1.
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Thus, for the derivatives we get

∂R̄i,k(z, w)

∂w
=





0 i < l + 1,

−2z + 2z
√
R̄l,k(z, w) i = l + 1,

z√
R̄i−1,k

∂R̄i−1,k(z,w)

∂w
i > l + 1,

which implies

∂k−lH̄k(z, w)

∂w

∣∣∣
w=1

=
zk−l

2

k+1∏

i=l+1

1√
R̄i,k(z, 1)

(
1−

√
R̄l,k(z, 1)

)
. (9.21)

As in the previous section we distinguish between different cases.

The case: k = Nj

First case: l > j + 1 Inserting the expansion of the radicands R̄i,k (see page 132)
into (9.21) and simplifying yields for n→∞

[zn]k−lH̄k(z, w)
∣∣∣
w=1
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1 +O
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))
,

with
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2
√
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i 6=m

1√
ai

(1−√al) , (9.22)

where ai := ãi = ai(1) and bi := b̃i = bi(1) are defined in (3.22) and (3.23). Thus, in
this case the expected value of the number of unary nodes in the (k− l)-th De Bruijn
level reads as

[zn] ∂
∂wk−lH̄k(z, w)

[zn]k−lH̄k(z, 1)
=
−2αlρ
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k
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(
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, as n→∞.

Furthermore, the constant −2αlρ
j−l+2
k

∏k+1
m=j+2

√
am
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can be simplified to

1 +

(
1

4ρkλl−j
−
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)(
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+
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22λl−j+2

√
λl−j+1

√
λl−j

+ . . .

)
,

with the sequence λi defined by λ0 = 0 and λi+1 = i+ 1 +
√
λi for i ≥ 0.

Since the second summand is almost zero for l being close to k and large k, this
implies that the number of unary nodes in these levels (close to the root) is close to
one for large k.
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Second case: l = j + 1 For n→∞ we get
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Thus,
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In this case the constant −2ζlρ
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)
.

So, the expected number of unary nodes in the (k− j− 1)-th De Bruijn level behaves
exactly like in the lower levels. Starting from the next level a change in the behavior
can be determined, as we will see in the following.

Third case: l = j For n→∞ we have
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Thus, as n→∞,
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The constant −2βlρ
2
kΓ(−1/4)
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√
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can be written as
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.

The expected number of unary nodes in this “separating level” is therefore asymptot-
ically Θ(

√
n) (as was the number of leaves).
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Fourth case: l < j For n→∞ we get
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Thus, as n→∞,
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The constant −2εlρ
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Hence, analogously to the number of leaves, we proved that the number of unary
nodes on the upper j + 1 De Bruijn levels is Θ(n).

The case: Nj < k < Nj+1

This case works analogously to the previous one. Thus, we just give the results for
the expected values.

First case: l > j + 1 In this case, the expected value is entirely equal to the mean
for the case k = Nj and l > j+1. So, with αl defined as in (9.22), we have for n→∞
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Second case: l = j + 1 In the second case, the constant differs a little bit, but the
result stays qualitatively unaltered. We get
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Third case: l < j + 1 For n→∞ we have
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Thus, the expected number of unary nodes in the last j+1 De Bruijn levels is asymp-
totically Θ(n).

9.2.3 Location of binary nodes among the De Bruijn levels

In this section we calculate the mean values of the number of binary nodes in the
different De Bruijn levels. We denote by B(z, v, u) the generating function of the
class of binary trees where z marks the total number of nodes, v marks the number
of binary nodes, and u marks the number of leaves. Thus, we have

B(z, v, u) =
1−
√

1− 4z2uv

2zv
. (9.23)

Using this generating function, we can write the bivariate generating function of the
class of closed lambda terms with z marking the size, and v marking the number of
binary nodes on the (k − l)-th De Bruijn level as

k−lHk(z, v) =

B(z, 1, B(z, 1, 1 +B(z, 1, 2 + . . .+B(z, v, (k − l) + . . .+B(z, 1, k)) . . .) . . .))).
(9.24)

Plugging (9.23) into (9.24) gives
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Thus, for the derivatives we get
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(9.25)

Analogously to the previous sections we have to distinguish between different cases.
For the case k = Nj and l > j + 1 we get for n→∞

[zn]k−lH̆k(z, v) = ξl
n−5/4

Γ(−1/4)
ρ−nk

(
1 +O

(
n−

1
4

))
,

with

ξl =−
k+1∑

m=l+2

bm

2
√
a3
m

∏

i=l+2
i 6=m

1√
ai

(
ρk−l−1
k (

√
al+1 − 1)

2
+
ρk−l+1
k (k − l)√

al+1

+
ρk−lk (1−√al)

2
√
al+1

)

+
k+1∏

i=l+2

1√
ai


ρ

k−l−1
k bl+1

2
√
al+1

− ρk−l+1
k (k − l)bl+1

2
√
a3
l+1

+
bl+1

2
√
a3
l+1

(
√
al − 1)− ρk−lk bl

4
√
al
√
al+1


 .

Thus,

[zn] ∂
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, as n→∞.

We performed a thorough investigation of the constant −4ξl
∏k+1
m=j+2

√
am

ρk−jk bj+2
and showed

that - equivalently to the constant Dk,l given in (9.17) - it is almost zero, in case l is
close to k + 1 and k is large, i.e., if we consider a very low De Bruijn level, that is
close to the root.

Due to Equation (9.25) calculations get rather involved. Since the methods that are
used are exactly the same as in the previous sections, we will omit further calculations.
However, the results resemble the ones that we got in Section 9.2.1 for the number
of leaves. The only difference appears in the constants, but qualitatively also these
constants behave equally.
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Chapter 10

Conclusion

We discuss Part III according to the chronological development sequence of the pre-
sented work, since the studies that led to a large part of the results presented in
Chapter 8 were motivated by the results obtained in Chapter 9. However, in order to
provide a clear structure of the thesis, it was beneficial to present the results in the
given order.

Our investigation concerning the shape of lambda terms with bounded number of
De Bruijn levels was triggered by the striking observation that the asymptotic number
of these terms with n vertices is of the form ρnn−3/2 except if the bound belongs to
some peculiar doubly exponentially growing sequence. There was no apparent reason
why bounding the number of De Bruijn levels by 8 is substantially different from
setting the bound to 7 or 9.

The results in this thesis showed that the vertices corresponding to the variables
in the associated lambda terms gather at the bottom of the lambda-PDAG, meaning
the De Bruijn levels of highest order within the lambda-PDAG. Precisely, in each of
the last `n levels, where `n = Θ(log log k), we find Θ(n) variables. The other lev-
els contain only a bounded number of variables. As the bound grows, the higher
levels become fuller and fuller and whenever k reaches a value that makes `n jump
to the next integer, a further De Bruijn level becomes populated with variables. In
this stage, there are only Θ(

√
n) variables, but for the next value of k this level gets

densely populated with variables, just as the other levels of high order. This shows
that there is a structural difference within the classes of lambda terms with at most
k De Bruijn levels, depending on whether the bound belongs to (Ni)i≥0 or not. The
distribution of the variables, in particular the fact that a further level has to contain
a larger but still fairly small number of variables apparently has some slight affects
on the degrees of freedom to choose the bindings which modifies the subexponential
term in the asymptotics.

Since the class of lambda terms with bounded De Bruijn indices is a proper su-
perclass of the above mentioned class of terms with a bounded number of De Bruijn
levels, we were interested in the structure of these terms to see if a similar behavior
concerning the distribution of variables could be observed. Thus, we investigated their
expected unary profile as well and showed that this class of lambda terms behaves
actually very treelike. The expected unary profile looks like the density of a Rayleigh
distribution, as it is known for trees. However, we omitted the calculation of the
distribution of the number of leaves in each De Bruijn level within this thesis, since
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we expect it to get rather involved, while the result might not be very surprising.
By calculating the asymptotic number of nodes by degree that occur in k-colored

Motzkin trees, we get exactly the same results as in Theorem 8.3 (and therefore also as
in Corollary 8.5). Furthermore, the height and the profile of these k-colored Motzkin
trees are also very similar to that of lambda terms with De Bruijn indices at most
k. Thus, lambda terms where all De Bruijn indices are at most k are very much
alike k-colored Motzkin trees. However, their counting sequences differ significantly
due to the restrictions on labelling leaves in the hats of the terms. So, there are
considerably more k-colored Motzkin trees than lambda terms where all De Bruijn
indices are at most k. Nevertheless the great majority of them exhibits the same
structural properties.

This leads to the conjecture that the problem of generating random lambda terms
could be solved by means of generating random k-colored Motzkin trees and finding
a suitable algorithm for repairing their hats. The resulting generation would not
be perfectly uniform, but potentially very close to the uniform one and it would
definitively be an interesting future topic to investigate.
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