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Kurzfassung

Die vorliegende Dissertation beschäftigt sich mit der asymptotischen Analyse von zufälligen
Graphenstrukturen, besonders Zufallsbäumen. Wir betrachten dazu die Menge von Objek-
ten von einer festen Größe n (wobei die Größe meist die Anzahl der Knoten eines Graphen
bezeichnen wird), und wählen daraus ein bezüglich der Gleichverteilung zufälliges Objekt
aus. Es werden Eigenschaften eines solchen zufälligen Vertreters untersucht, wobei die Größe
n gegen unendlich strebt.

Sämtliche Ergebnisse werden mit Hilfe von erzeugenden Funktionen und der Analyse
ihrer Singularitätenstruktur gewonnen. Die Methodik und eine “Werkzeugbox” aus hilf-
reichen Theoremen werden im ersten Kapitel vorgestellt. Diese Grundlagen entstammen
verschiedener Arbeiten auf dem Gebiet der analytischen Kombinatorik und sind in dem
Werk “Analytic Combinatorics” [24] von Flajolet und Sedgewick gesammelt zu finden.

Im zweiten Kapitel beginnen wir unsere Studie mit unmarkierten Wurzelbäumen, auch
bekannt als Pólya-Bäume, da sie von George Pólya in seiner Arbeit [60] erstmals eingehend
untersucht wurden. Wir untersuchen den Rand von Pólya Bäumen, insbesondere berech-
nen wir die asymptotische Größe jener Unterbäume eines Pólya-Baumes, deren Wurzel der
Vater eines Blattes, also eines Knotens mit keinen Kindern ist.
Weiters wird in diesem Kapitel das sogenannte Gradprofil untersucht. Das Gradprofil eines
Baumes ist jene Folge, welche die Anzahl von Knoten eines festen Grades d auf jedem Niveau
k, k ≥ 0, eines Baumes beschreibt, wobei das Niveau k die Menge der Knoten mit Distanz
k zur Wurzel ist. Es wird schwache Konvergenz des Gradprofilprozesses nach der lokalen
Zeit einer Brown’schen Bewegung gezeigt. Weiters zeigen wir, dass der Korrelationskoeffi-
zient zweier verschiedenen Grade d1 und d2 auf einem gemeinsamen Niveau k gegen 1 strebt.

Im dritten Kapitel wird eine Baumklasse vorgestellt, die eine Brücke zum Gebiet der Lo-
gik schlägt: Boole’sche Bäume. Boole’sche Bäume repräsentieren einen logischen Ausdruck,
bestehend aus Und- und Oder- (∧ und ∨) Verknüpfungen und Literalen (Variablen oder
ihren Negationen). Wir untersuchen verschiedene Klassen solcher Boole’schen Bäume, auch
die Klasse der assoziativen und kommutativen Boole’schen Bäume, die den Pólya-Bäumen in
ihrer Struktur stark ähneln, und die Wahrscheinlichkeitsverteilung auf der Menge der Boo-
le’schen Funktionen, die von ihnen erzeugt wird. Wir zeigen, dass die induzierte Wahrschein-
lichkeitsverteilung in allen vorgestellten Modellen dieselbe asymptotische Abhängigkeit von
der Komplexität der Funktion zeigt, die exakten Grenzwahrscheinlichkeiten aber dennoch
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Kurzfassung

von Modell zu Modell verschieden sind.

Das vierte und letzte Kapitel schlußendlich beschäftigt sich mit komplexeren unmarkier-
ten Graphen, die zur Familie der subkritischen planaren Graphen zusammengefasst werden
können. Wir untersuchen die Gradverteilung in verschiedenen unmarkierten subkritischen
Klassen und zeigen einen zentralen Grenzwertsatz, wie er von Drmota, Gimenez und Noy
schon für die analogen markierten Klassen gezeigt wurde [18].

Die Ergebnisse dieser Dissertation sind mehreren Forschungsarbeiten entnommen, die
bereits publiziert oder zur Veröffentlichung eingereicht wurden. Die Ergebnisse zum Pro-
fil von Pólya Bäumen wurde einer gemeinsamen Arbeit mit Bernhard Gittenberger [37]
entnommen, Kapitel 3 entstammt einer Zusammenarbeit mit Antoine Genitrini, Bernhard
Gittenberger sowie Cécile Mailler [28]. Kapitel 4 schlußendlich entstand teilweise in Zu-
sammenarbeit mit Michael Drmota, Eric Fusy, Miyhun Kang und Juan Jose Rue [16] und
wurde durch den Konferenzartikel [49] vervollständigt.
Sämtliche Arbeiten wurden von dem Projekt S9604 der Österreichischen Wissenschaftsfonds
FWF finanziell unterstützt.
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Abstract

This thesis deals with the asymptotic analysis of diverse random graph structures, espe-
cially random trees. For this purpose, we consider the set of objects of fixed size n (where
the size is mostly describing the number of vertices of a graph), and choose an object from
it uniformly at random. We discuss properties of such a random representative, as the size
n tends to infinity.
All results are obtained with the help of generating functions and the analysis of their sin-
gular behaviour. The methods and a “tool box” of helpful theorems are presented in the
first chapter. These basics originate in different papers on the field of analytic combina-
torics and are collected in the book “Analytic combinatorics” [24] by Flajolet and Sedgewick.

In the second chapter we start our study with unlabelled rooted trees, widely known
as Pólya trees, as they were for the first time thoroughly studied by George Pólya in his
paper [60]. We study the fringe of Pólya trees, in particular we compute the asymptotic
size of those subtrees of a Pólya tree whose root is the father of a leaf, that is a vertex with
no children.
Later in this chapter we study the degree profile. The degree profile of a tree is the sequence
which describes the number of vertices of a fixed degree d on each level k, k ≥ 0, of a tree,
where the level k is the set of all vertices at distance k from the root. Weak convergence of
the degree profile process towards the local time of a Brownian motion is proved. Further
we show that the correlation of two different degrees d1 and d2 on the same level k tends to 1.

In the third chapter we introduce a class of trees which connects our topic to the field of
logic, namely Boolean trees. Boolean trees represent a logic expression, consisting of And-
and Or- (∧ and ∨) connectors as well as literals (variables or their negations). We study
different classes of boolean trees, also the class of associative and commutative Boolean
trees, whose structure is much alike the one of Pólya trees, and the probability distribution
on the set of Boolean functions which they induce. We show that the induced probability
distribution has the same dependence on the complexity of the function in all models in-
troduced, but the exact probabilities are still different.

The fourth and last chapter deals with more complex unlabelled graphs, which can be
pooled to the family of subcritical planar graphs. We study the degree distribution in vari-
ous unlabelled subcritical classes and show a central limit theorem, as it was shown for the
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Abstract

corresponding labelled classes by Drmota, Gimenez and Noy [18].

The results of this thesis are taken from several papers which have been published or sub-
mitted for publication. The results on the profile of Pólya trees are joint work with Bernhard
Gittenberger [37], Chapter 3 origins in a collaboration with Antoine Genitrini, Bernhard
Gittenberger as well as Cécile Mailler [28]. Chapter 4, eventually, emerged partially from
a joint work with Michael Drmota, Eric Fusy, Miyhun Kang and Juanjo Rue [16] and was
completed by the conference paper [49]. The research has been supported by project S9604
of the Austrian Science Foundation FWF.
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CHAPTER 1

Preliminaries

Trees and other graph structures are a basic element in discrete mathematics and theoretical
computer science. Trees are used for data storage and search algorithms. Large graphs are
used to model real world networks. In this first chapter we will introduce the basic notations
and terms and will present a summary of the methods which will be used to prove the results
given in the forthcoming chapters.

1.1 Families of graphs

We start with some basic notions on graphs, which should be known to most readers.

• A graph G is a set of vertices V (G) together with a set of edges E(G) ⊂ V (G)×V (G),
where the pairs can be ordered (directed graph) or unordered (undirected graph).

• The degree of a vertex ν ∈ V (G) is the number of edges in E(G) containing ν.

• A graph is connected if for any pair of nodes there exists a path (a sequence of edges)
connecting the two vertices.

• A family or class of graphs is a set of graphs sharing certain properties.

• A tree is a graph which is connected and does not contain a cycle (that is, if there is
a path connecting a pair of vertices, it is unique). We call vertices of degree 1 leaves
or external vertices of the tree, while all other vertices are called internal nodes.

• A graph is called simple, if it does not contain loops (edges of the form e = (v, v)) or
double edges.

Remark. Let G be a graph, and |V | <∞. The following 3 statements defining trees are
equivalent.

• G is connected and contains exactly |V | − 1 edges.

• G does not contain cycles and has exactly |V | − 1 edges.
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Chapter 1. Preliminaries

• every pair of nodes (ν1, ν2) ∈ V ×V is connected by a unique path (this is exactly the
definition of a tree given above).

Let us denote by A a set of structures sharing some properties, e.g. T the family of all
trees, or K the set of all quadrangulations, that is graphs where every circle contains exactly
4 vertices.

We further define a function ω : A → N0, such that the sets Wn := {A ∈ A|ω(A) = n}
are finite. We call ω(A) the size of A and denote by An the number of objects of size n,
An = |Wn|. In most of the following, the size function will count the number of vertices
of an object, but it can also be the number of leaves of a tree, the number of edges or
something similar.

1.1.1 Rooting

Consider an object A from a class A. If we mark one vertex ν of A and call it the root of A,
that is ν is distinguished and does not belong to the set of vertices of A anymore, we call
the new object a derived object. If we point at the vertex ν but still consider it as a vertex
of A, we call the new object a rooted object. Every member A ∈ A can be derived or rooted
at any of its vertices, we call the new class of derived objects of A the derived class A′ and
the class of rooted objects from A the rooted class A•. By the same arguments, we can also
distinguish an edge and obtain an edge-rooted class A◦−◦. Why we use the term derived
will be clear in the section on generating functions. There is the following correspondence
between rooted and unrooted trees:

Theorem 1.1 (dissymmetry theorem on trees). Let T be a family of unrooted trees, and
let T • be the corresponding family of trees rooted at a vertex, T ◦−◦ the family rooted at an
edge and T ◦→◦ the family rooted at an oriented edge. Then there exists a size-preserving
bijection such that:

T ∪ T ◦→◦ = T • ∪ T ◦−◦. (1.1)

Proof. For a proof of the theorem, see [2, Chapter 4].

1.1.2 The labelled vs. the unlabelled setting

In graph theory, graphs can be either labelled or unlabelled, we denote the according la-
belled or unlabelled classes by A(ℓ) and A(u), respectively. In the labelled setting, the
vertices of an object A ∈ A(ℓ) of size n are labelled with distinct numbers {1, . . . , n}. In
the unlabelled setting, vertices of a graph A ∈ A(u) are not distinguishable. An unlabelled
graph is obviously obtained from a labelled one by removing the labels, but this mapping
is not bijective. Two labelled graphs A,B will give the same unlabelled graph Ã if they are
isomorphic, that is, if there exists a permutation σ in the group of permutations Sn on the
set of labels {1, . . . , n}, such that applying the permutation σ to the labels of the vertices
of A gives B. That is, the unlabelled class A(u) is the labelled class A(ℓ), considered up to
isomorphism.

In the following, we will use the notations A(ℓ) and A(u) only when required for under-
standing, while we will stick to the simple notation A if it is clear from the context which
setting we are currently dealing with.
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1.2. Combinatorial enumeration

1.1.3 Planarity of graphs

Apart from unlabelling, there is another reason for isomorphisms to appear. An embedding
into the plane of a graph is, informally speaking, a drawing of the graph where edges only
intersect at vertices. An embedding of a graph G is often called a map of G. Obviously, this
might not exist for all graphs, but it does exist for trees and all other graphs treated in this
thesis. Graphs which have an embedding in the plane are called planar graphs. Different
maps are isomorphic if they are an embedding of the same graph.

Rooted trees are further called plane (sometimes also planar, not to be confounded with
the above definition) if we consider every embedding as a different tree, while they are called
non-plane if we consider the trees before embedding. In Figure 1.1 we see two different plane
trees, but the same non-plane tree. The same determination is made for graphs, where we
talk of maps and graphs.

b

b b

b b

b

b b

b b

Figure 1.1: 2 different plane trees but the same non-plane tree

1.1.4 Random graphs

The underlying idea of this thesis is the setting of random graphs. Consider a class A
together with a suitable size function ω. Throughout this thesis, we will study a random
object of size n instead of a special structure A ∈ A. That is, on all sets Wn = {A ∈
A|ω(A) = n} we define the uniform distribution, i.e. we draw an object from Wn randomly
with the constraint that every graph A ∈ Wn appears with equal probability, which is 1

An
.

We will study the expected properties of such a randomly drawn graph, as the size n tends
to infinity.

1.2 Combinatorial enumeration

One of the basic interests in graph theory is enumeration, that is, obtaining information on
the quantities An of objects of size n in a family A. From this starting point, graphs can
be studied in more detail. Counting techniques to systemize the problem were developed.
We will present the symbolic method, which relies on decomposition of graphs into smaller
objects and results in recursive relations for graphs of a given size, and generating functions,
which are a very powerful tool in explicit as well as asymptotic counting.

3



Chapter 1. Preliminaries

1.2.1 The symbolic method

First, we will present the symbolic method, which is described in detail in [24] or in [2]. The
symbolic method applies for decomposable classes of graphs, the idea is to systematically
decompose a family recursively, and to write this decomposition into a general grammar of
basic combinatorial structures and operations. This grammar translates to counting series
by a given dictionary, from where counting coefficients can be extracted either explicitly or
asymptotically.

The grammar includes the following basic classes:

• The neutral class E contains a single object of size 0.

• The atomic class X is made of a single object of size 1.

Further it contains the following classes of objects, which are of arbitrary size:

• The sequence class Seq(X ) is an ordered sequence of atoms.

• The set class Set(X ) is an unordered (multi)set of atoms.

• The cyclic class Cyc(X ) is an oriented cycle of atoms.

At last, the grammar consists of the following basic operations

• The sum A+ B is the disjoint union of the two classes A and B.

• The product A×B refers to taking a pair (A,B) ∈ A×B and join their set of atoms,
if necessary relabel them with labels from {1, . . . , ω(A) + ω(B)}.

• An object of the composition B ◦ A is obtained by taking an object B ∈ B built of
n atomic objects, e.g, vertices. Then pick a n-set of elements from A and substitute
one of them in each atom of B, relabel if necessary.

We will see an example for applying the symbolic method in the following section.

1.2.2 Generating functions

Throughout this work, we will use generating functions to obtain information on the struc-
tures we analyze. Generating functions are formal power series, which, interpreted as ana-
lytic functions, provide a lot of useful information. Let A be some set of structures together
with a size function ω.

Definition 1.2. The ordinary generating function of a set A, denoted by A(z) is given by

A(z) =
∑

A∈A
zω(A) =

∑

n≥0

Anz
n,

while the exponential generating function is given by

Ã(z) =
∑

n≥0

An

n!
zn,

where we denote by An the cardinality of the set {A ∈ A|ω(A) = n}. The notations [zn]A(z)
and [zn]Ã(z) are used to denote the coefficients of zn, An and An

n! , respectively.

4



1.2. Combinatorial enumeration

Labelled Counting

Counting structures of a given set of labelled objects, we use exponential generating func-
tions

A(z) =
∑

n≥0

An

n!
zn,

due to the n! possibilities to label the vertices. We look for symbolic decompositions, which
then translate into exponential generating functions by the dictionary given in Table 1.1 on
page 10. The translations from symbolic language to exponential generating functions are
quite obvious, for this reason we do not go into detail here.

Consider a class A together with its derived class A′ and its rooted class A•. Note
that in a tree of size n, there are n possibilities to root a vertex, hence A•

n = nAn and

A′
n−1 = nAn(n−1)!

n! = An by the new labelling on the numbers {1, . . . , n − 1} in the derived
case. Therefore

∂

∂z
A(z) =

∑

n≥0

An

(n− 1)!
zn−1 = A′(z)

zA′(z) =
∑

n≥0

nAn

n!
zn = A•(z)

In the following we present a counting example for strict labelled plane binary trees, that
is trees whose vertices have out-degree either 0 or 2. Those trees are also known as Catalan
trees.

Example. Let T be the family of labelled plane rooted binary trees, with the size function
counting the leaves, and T (z) be its exponential generating function. If the tree consists
of more than just one leaf, the left and right subtree of the root are also binary trees of
smaller size. Hence a binary tree is either just a single leaf or it can be decomposed into
smaller binary trees at the root (cf Figure 1.2). This gives a symbolic equation

T = X + T × T (1.2)

b

rs

b

bb

= +

Figure 1.2: The decomposition of a binary tree at its root - � denotes a leaf while • repre-
sents an internal node.

In terms of exponential generating functions T (z), this translates to

T (z) = z + T (z)2.
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Chapter 1. Preliminaries

This quadratic equation solves explicitly to

T (z) =
1

2
(1−

√
1− 4z),

where we ignored the second solution as T (0) will give the number of trees with no leaves,
which must be 0. From there, we can extract coefficients [zn]. With the help of a binomial
series, we get

[zn]T (z) = [zn]
1

2
(1−

√
1− 4z)

= −1

2
[zn](1 − 4z)

1
2

= −1

2

(1
2

n

)
(−4)n =

1

n

(
2(n − 1)

n− 1

)
,

and obtain explicitly the number of labelled binary trees of size n, Tn by Tn = n![zn]T (z).
Note that [zn]T (z) is the (n − 1)-st Catalan number, and that a binary tree with n leaves
has exactly n− 1 internal nodes due to the restricted shape.

Unlabelled counting - Pólya theory

To count unlabelled objects, we need to be aware of the symmetries appearing through
the unlabelling, that is, we need to observe and quantify isomorphisms. Thus, unlabelled
counting is generally more involved than labelled counting. The basic method used in the
unlabelled setting was given by George Pólya [60] in 1937. We give here an overview of
Pólyas theory of counting, which relies mainly on cycle index sums. Cycle index sums
are a refined version of generating functions, defined on an infinite set of variables s1 :=
s1, s2, s3, . . ..

Definition 1.3. Let D be a finite set of size |D| = n and S ⊂ SD a subgroup of the group
of all permutations on D, SD.

• The cycle type ZT (σ) of a permutation σ ∈ S is given by

ZT (σ)(s1, . . . , sn) = s
λ1(σ)
1 s

λ2(σ)
2 · · · sλn(σ)

n ,

where λi(σ), i ≥ 1, denotes the number of cycles of length i in σ.

• The cycle index P (S) of the group S ⊂ SD is given by

P (σ)(s1, . . . , sn) =
1

|S|
∑

σ∈S
ZT (σ).

Note that for every cycle type ZT (σ),
∑n

i=1 iλi = n.

Example. Let |D| = n.

• For the trivial group S = {id},
P (S) = sn1 .

6



1.2. Combinatorial enumeration

• For the full symmetric group S = SD,

P (S) =
∑

σ∈S
ZT (σ) =

1

n!

∑

ℓ1+2ℓ2+...nℓn=n

n!

ℓ1!ℓ2! · · · ℓn!1ℓ12ℓ2 · · ·nℓn
sℓ11 s

ℓ2
2 · · · sℓnn .

With the help of cycle indices, we count unlabelled objects from a family A. For every
structure A ∈ A we define the permutation group SA as the subgroup of permutations on
the set of atoms of A which do not change the object, that is the set of permutations which
represent symmetries. We call SA the set of allowed permutations on A.

Definition 1.4. Let A be a class of structures. The cycle index sum ZA(s1) of the class A
is defined by

ZA(s1) :=
∑

A∈A
P (SA)(s1, . . . , sω(A)),

where SA is the set of allowed permutations of A and s1 denotes the infinite set of variables
s1 = s1, s2, s3, . . ..

Remark. We use the notation s1 here as we will also define series of variables sℓ in the
following, given by sℓ = sℓ, s2ℓ, s3ℓ, . . ..

With this counting series, we keep track of all symmetries the objects of A have. If we
substitute si = zi, i ≥ 0 in the cycle index sum of a class, we obtain its ordinary generating
function. But, when translating equations in the symbolic language to equations on ordinary
generating functions we have to deal with cycle index sums, otherwise information will get
lost.

First we deal with the substitution B ◦ A. It does not translate to B(A(z)), as by re-
placing every atom of a structure from B with a new structure from A, we add and destroy
symmetries. Let ν1, . . . , νℓ be the elements of a cycle of length ℓ of a permutation of the
atoms of an object B ∈ B. We substitute each of the vertices ν1, . . . νℓ with one element
Aℓ ∈ A. If any two of these substituted structures would be different from each other, the
symmetry would be destroyed. Hence we have to substitute ℓ identical copies of an A ∈ A
into the vertices ν1, . . . , νℓ to maintain the symmetry, then every node of A forms a cycle
of length ℓ with all of its identical copies.

The theoretical background therefore is given by Pólya-Redfield theorem, cf also [2]. Let
D and R be finite sets and M = RD, further let S be a subset of SD. A permutation
σ ∈ S induced a permutation

(σ̃(f))(x) := f(σ(x)), f ∈M,x ∈ D,

in SM , the induced set S̃ is a subgroup of SM isomorphic to S, we call two functions
f, g ∈ M equivalent (f ∼ g) if there is a permutation σ ∈ S with σ̃(f) = g. We further
consider a weight function φ : R→W for some weight set W and define the weight of f by

φ(f) =
∏

x∈D
φ(f(x)).

Obviously φ(f) = φ(g) for f ∼ g, hence the weight φ(c) is defined for any equivalence class
c ∈M/∼.

7



Chapter 1. Preliminaries

Theorem 1.5 (Pólya-Redfield). With the above definitions,

∑

c∈M/∼
φ(c) = PS

(∑

r∈R
φ(r),

∑

r∈R
φ(r)2, . . . ,

∑

r∈R
φ(r)|D|

)

This theorem can be extended formally to countable sets D,R. Consider a k-tuple
(A1, . . . , Ak) of objects Ai ∈ A, i = 1, . . . k. Its size is given by ω((A1, . . . , Ak)) =

∑k
i=1 ω(Ai).

Setting D = {1, . . . , k}, R = A and φ(A) = zω(A) we can apply the above theorem to obtain

ZB◦A(s1) = ZB(ZA(s1), ZA(s2), . . .),

for ZB(s1) the cycle index sum of the class B, ZA the cycle index sum of the class A and
where ZA(sℓ) denotes the cycle index sum ZA(sℓ, s2ℓ, s3ℓ, . . .) for all ℓ ≥ 1.

Thus the ordinary generating function C(z) of the class B ◦ A is given by

C(z) = ZB(A(z), A(z2), . . .).

Throughout the whole thesis, we will use the following notation. Let A(z) be some gener-
ating function, P (Sn)(s1, . . . , sn) the cycle index of a group of permutations of n elements,
and ZB(s1) the cycle index sum of a class of structures. We denote by P (Sn)(A(z)) the
substitution s1 ← A(z), s2 ← A(z2), . . . , sn ← A(zn) and by ZB(A(z)) the according sub-
stitution on infinitely many variables.

With the following lemma, we can handle the Set-operator of the symbolic language. The
Set-operator chooses a set of elements of arbitrary size, the group of allowed permutations
on a set is the whole permutation group.

Lemma 1.6. We denote by Zn the cycle index of symmetric group on n elements. Then,

∑

n≥0

Zn(s1) = exp(
∑

n≥1

sn
n
).

.

Proof. Denote by (ℓ1, ℓ2, . . .) a set of arbitrary size with ℓi ∈ N0. We have that

∑

n≥0

Zn(s1) =
∑

n≥0

1

n!

∑

ℓ1+2ℓ2+...nℓn=n

n!

ℓ1!ℓ2! · · · ℓn!1ℓ12ℓ2 · · ·nℓn
sℓ11 s

ℓ2
2 · · · sℓnn

=
∑

(ℓ1,ℓ2,...)

1

ℓ1!ℓ2! · · · ℓn!
sℓ11
1ℓ1

sℓ22
2ℓ2
· · · s

ℓn
n

nℓn

=
∑

ℓ1≥0

1

ℓ1!

(s1
1

)ℓ1 ∑

ℓ2≥0

1

ℓ2!

(s2
2

)ℓ2 · · ·

= exp
(s1
1

)
exp

(s2
2

)
· · · = exp


∑

n≥1

sn
n



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1.2. Combinatorial enumeration

The cycle index sum ZB(s1) of a set of objects B = Set(A) is now given by

ZB(s1) =
∑

n≥0

(Zn ◦ ZA)(s1) = exp


∑

ℓ≥1

1

ℓ
ZA(sℓ)


 ,

and the ordinary generating function B(z) is given by

B(z) = exp


∑

ℓ≥1

1

ℓ
A(zℓ)


 .

Let us consider a class A together with its derived class A′ and its rooted class A•. By
pointing a vertex ν, we eliminate all permutations not fixing the pointed vertex, as the
vertex is distinguished and thus not part of any symmetry. Hence, the cycle index sum of
the derived class is given by

ZA′(s1) =
∂

∂s1
ZA(s1).

The cycle index sum of the rooted class A• is then given by

ZA•(s1) = s1ZA′(s1).

Remark. Let A be an unlabelled class and Ã be the according labelled class. Further let
ZA((s1)) be the cycle index sum of A and Ã(z) be the exponential generating function of
Ã. Note that

Ã(z) = ZA(z, 0, 0, . . .).

Example. Let us consider the class of rooted unlabelled non-plane binary trees C. Obvi-
ously they are the family obtained from the family of labelled binary trees by unlabelling.
As described in the example on page 5 and depicted in Figure 1.2, they can be decomposed
at the root, which leads to

C = X + C2,
when counting external vertices, i.e. leaves. Let us denote by K the binary tree consisting
of one root and two leaves. It has cycle index 1

2 (s
2
1+ s2), as the permutation group consists

of the identity and the reflection exchanging the two leaves. All trees with at least 2 leaves
are obtained by substituting the leaves of K for binary trees C1, C2 ∈ C, which is given by
the symbolic operation K ◦ C. Hence, the cycle index sum of binary trees is given by

ZC(s1) = s1 +
1

2

(
ZC(s1)2 + ZC(s2)

)
,

and the ordinary generating function C(z) by

C(z) = z +
1

2
(A(z)2 +A(z2)).

Note that this equation is not explicitly solvable as the one in the labelled case is, hence we
cannot extract coefficients from this equation directly. To obtain information on the number
of unlabelled trees of size n, we will need analytic tools described in the next section.

9
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Construction Class Labelled setting Unlabelled setting

Neutral Class C = 1 C(z) = 1 ZC(s1) = 1
Atomic class C = X C(z) = z ZC(s1) = s1

Sequence C = Seq(X ) C(z) = 1
1−z ZC(z) = 1

1−s1

Set C = Set(X ) C(z) = exp(z) ZC(s1) = exp
(∑

i≥1
si
i

)

Cycle C = Cyc(X ) C(z) = log( 1
1−z ) ZC(s1) =

∑
r≥1

ϕ(r)
r log( 1

1−s1
)

Sum C = A+ B C(z) = A(z) +B(z) ZC(s1) = ZA(s1) + ZB(s1)
Product C = A× B C(z) = A(z) · B(z) ZC(s1) = ZA(s1) · ZB(s1)

Substitution C = A ◦ B C(z) = A(B(z)) ZC(s1) = ZA(ZB(s1), ZB(s2), . . .)

Table 1.1: The dictionary that translates combinatorial structures and constructions into
(operations on) counting series. ϕ(r) denotes the Eulerian totient function.

Walsh series In some counting problems considered in this thesis, we need to be even
more precise on symmetries and consider a more refined version of cycle index sums, namely
Walsh series. Walsh series track permutations on the set of vertices, but at the same time
observe what impact those symmetries have on the edges. It is hence a refinement of the
bivariate exponential generating function A(z, y), where z counts vertices and y counts
edges, as defined in detail in the next part. Walsh series contain 3 infinite series of variables
s1 = s1, s2, . . ., b1 = b1, b2, . . . and c1 = c1, c2, . . ., where s1 counts cycles on vertices as
before, b1 indicates cycles on edges and c1 counts cycles on edges which additionaly change
their orientation under the permutation.

Example. Consider a simple edge, that is 2 vertices connected by one edge. The symmetry
group contains the identity as well as a reflection. Hence,

We = s21b1 + s2c1,

because under the reflection the edge remains fixed but changes its orientation. Now con-
sider a cycle R of n vertices and n edges. The permutation group SR consists of cyclic
permutations as well as reflections. The cycle index of a cycle on n elements is given by

P (SR) =





1
n

(∑
d|n ϕ(d)s

n/d
d + 1

2(s
2
1s

m−1
2 + sm2 )

)
if n = 2m

1
n

(∑
d|n ϕ(d)s

n/d
d + s1s

m
2

)
if n = 2m+ 1

Hence, the contribution to a Walsh series of R is

P (SR) =





1
n

(∑
d|n ϕ(d)s

n/d
d b

n/d
d + 1

2(b
m
1 s

2
1s

m−1
2 + c21b

m−2
2 sm2 )

)
if n = 2m

1
n

(∑
d|n ϕ(d)s

n/d
d b

n/d
d + s1c1s

m
2 b

m
2

)
if n = 2m+ 1

(1.3)

We will need Walsh series only in the very last part of this thesis, where we compute the
degree distribution of 2-connected series-parallel graphs.
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Counting with additional parameters

In advanced enumeration problems, we want to go beyond counting graphs of size n in a
family A. We want to count graphs which have a certain property among those of size n,
for example, graphs with n nodes and m edges or with n nodes of which m have a given
degree d. Therefore, we introduce multivariate ordinary or exponential generating functions

A(z, v) =
∑

n,m≥0

An,mz
nvm Ã(z, v) =

∑

n,m≥0

An,m
zn

n!
vm,

where the coefficents An,m denote the number of objects in A with n vertices and m edges
(or m vertices of degree d, respectively), where we suppose in the second case that all
vertices are labelled and edges are unlabelled.

Analogously, we define cycle index sums for unlabelled objects ZA(s1;u1) on the “bivari-
ate” infinite set of variables (s1;u1) = (s1, u1; s2, u2; s3, u3; . . .), where the si count cycles of
vertices and the ui track cycles of the second parameter. Note that the cycles of the second
parameter are strongly related to the cycles of the vertices, in the case of v counting edges
we obtain Walsh series mentioned above, in the case of counting degrees a symmetry only
appears when all vertices of a cycle have the same degree, thus every circle on vertices is
also a circle on vertices of degree d.

Of course, we can not only add one additional parameter, but a tupel of parameters of
arbitrary but finite size, v = (v1, . . . , vk), which in case of cycle index sums gives a multi-
variate set of variables (s1; ū1) = (s1;u1, . . . ,uk).

The grammar and translations given in Table 1.1 can be passed on to multivariate cycle
index sums and generating functions under specific conditions, namely that the parameter
considered is a so-called inherited parameter, as described in [24]. That means, basically,
that the value of the parameter remains unchanged under a sum operator, that it is given
additively as the sum of the values of the involved objects in case of a product, and that it
is given by the values of the substituted structures in case of a substitution. We also adapt
the notation introduced earlier in a similar manner, that is let A(z, v) be some generating
function, P (Sn)(s1, . . . , sn) the cycle index of a group of permutations of n elements, and
ZB(s1) the cycle index sum of a class of structures. We denote by P (Sn)(A(z,v)) the
substitution s1 ← A(z, v), s2 ← A(z2, v2), . . . , sn ← A(zn, vn) and by ZB(A(z,v)) the
according substitution on infinitely many variables.

1.3 Analytic combinatorics

Generating functions are formal power series, but they can be considered as power series
in a complex variable z. The following part is a presentation of a very powerful toolbox
provided by this point of view, which leads us to the results presented in this thesis. More
details and proofs of all theorems can be found in [15] or [24], as well as [14].
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1.3.1 Singularity analysis

Given a generating function A(z) =
∑

n≥0 anz
n with positive radius of convergence ρ > 0,

we can apply Cauchy’s formula (cf e.g. [41])

an =
1

2πi

∫

γ
A(z)

dz

zn+1
, (1.4)

where γ is a closed contour encircling z = 0 once and contained in the region of analyticity of
A(z). Thus, the analytic behaviour of A(z) provides information on its coefficients an. The
method of singularity analysis shows that certain kinds of singularities give corresponding
asymptotics for the coefficients an. The method was introduced by Flajolet and Odlyzko
[23].

ρ

∆-domain

b
ρ

γ-contour

b

Figure 1.3: The ∆-domain and the integration contour γ

The basic preliminary for the following theorems is that a generating function A(z) has
an analytic continuation to a so-called ∆-domain (colloquially often referred to as a “Pac-
man region” due to its shape, cf Figure 1.3), that is, there is a unique dominant positive
singularity on the circle of convergence:

∆(ρ, η, δ) = {z
∣∣|z| < ρ+ η, | arg(z

ρ
− 1)| > δ} (1.5)

Further, for proving the results, we use a truncated contour γ = γ1∪γ2∪γ3∪γ4, as depicted
in Figure 1.3, with

γ1 =

{
z = ρ

(
1 +
−i+ (ηn− t)

n
e−iδ

) ∣∣∣∣0 ≤ t ≤ ηn
}
,

γ2 =

{
z = ρ

(
1− eiϕ

n

) ∣∣∣∣−
π

2
+ δ ≤ ϕ ≤ π

2
− δ
}
,

γ3 =

{
z = ρ

(
1 +

i+ t

n
eiδ
) ∣∣∣∣0 ≤ t ≤ ηn

}
,

(1.6)

and γ4 be a circular arc centered at the origin and closing the contour. The integral over
γ4 is exponentially smaller than the contributions of the parts near the singularity, which
give the results. We state here the most important result for our purpose, for a complete
introduction to singularity analysis and proofs see [24] or [15].
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Lemma 1.7 (transfer lemma). Suppose that a generating function A(z) is analytic in a
∆-domain such that

A(z) ∼ C
(
1− z

ρ

)α

(1.7)

for z → ρ with z ∈ ∆, where α is a complex number not in N0. Then, as n tends to infinity,

[zn]A(z) ∼ C n
−α−1

Γ(−α)ρ
−n

Definition 1.8. Let A(z) be a generating function with a unique dominant positive singu-
larity ρ > 0. We call a local singular expansion of the form

A(z) = g(z) − h(z)
(
1− z

ρ

)α

, (1.8)

with α /∈ N and g(z), h(z) functions which are analytic around ρ, a local singular expansion
of order α of A(z).

Note that due to Lemma 1.7, we get asymptotic estimates for the coefficients of a generat-
ing function with a singular expansion of order α. Most of the graph classes we are dealing
with will have squareroot singular expansions, i.e. singular expansions of order α = 1

2 , as
we will see in the next section. The following lemma will be very helpful, as it gives a
correspondance between the singular expansion of the generating function A(z) of a family
A and the one of the generating function A′(z) of the derived family A′. The proof can be
found in [17].

Lemma 1.9. Let A(z) be a generating function with a square root singular expansion around
a dominant positive singularity ρ. Then the derivative and the integral have local singular
expansions of the form

A′(z) =
g2(z)√
1− z

ρ

+ h2(z) (1.9)

and ∫ z

0
A(t)dt = g3(z) + h3(z)

(
1− z

ρ

) 3
2

, (1.10)

where g2(z), h2(z), g3(z) and h3(z) are analytic at ρ.

Let us denote by X =
√
1− z

ρ . Note that a singular expansion of order 1
2 rewrites to

A(z) = g(z) − h(z)X =
∑

j≥0

anX
j = a− bX +O(X2),

because z = ρ(X2− 1) and g(z) and h(z) are analytic at ρ and hence have a representation
as a power series in z.

1.3.2 Functional equations

Throughout this thesis, generating functions will be given by functional equations which
are often not explicitly solvable, as we saw in the example of binary unlabelled trees. There
is a powerful set of theorems to deal with such implicit equations, showing that solutions of

13
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such equations usually have a square root singularity. The following theorem establishes the
basis for all of the subsequent theory. The proof can be found in [15, Theorem 2.19], it is
actually an application of the theory of functions defined by implicit equations in Analysis,
see for example [41].

Theorem 1.10. Suppose that F (z, y) is an analytic function in z, y around z = y = 0 such
that F (0, y) = 0 and that all Taylor coefficients of F around 0 are real and non-negative.
Then there exists a unique analytic solution y = y(z) of the functional equation

y = F (z, y)

with y(0) = 0 that has non-negative Taylor coeffients around 0.
If the region of convergence of F (z, y) is large enough such that there exist positive solutions
z = z0 and y = y0 of the system of equations

y = F (z, y)

1 = Fy(z, y)

with Fz(z0, y0) 6= 0 and Fyy(z0, y0) 6= 0, then y(z) is analytic for |z| < z0 and there exist
functions g(z) and h(z) that are analytic around z = z0 such that y(z) has a square root
singular expansion (1.8) locally around z = z0. We have g(z0) = y(z0) and

h(z0) =

√
2z0Fz(z0, y0)

Fyy(z0, y0)
.

Moreover, (1.8) provides a local analytic continuation of y(z) (for arg(z − z0) 6= 0).
If we assume that [zn]y(z) > 0 for n ≥ n0, then z = z0 is the only singularity of y(z) on
the circle |z| = z0 and we obtain an asymptotic expansion for [zn]y(z) of the form

[zn]y(z) =

√
z0Fz(z0, y0)

2πFyy(z0, y0)
z−n
o n−

3
2

(
1 +O( 1

n
)

)
. (1.11)

1.3.3 Systems of functional equations

Consider a system of equations y = F(z,y):

y1 = F1(z, y1, . . . , yN )

...
...

yN = FN (z, y1, . . . , yN )

(1.12)

We define a graph GF on the set of vertices {1, . . . , N} and the set of directed edges E,
which contains an edge (i → j) if and only if the function Fi really depends on yj, that is
∂
∂yj
Fi 6= 0. We call this graph the dependency graph of the system (E).

Definition 1.11. Consider a system of equations (1.12). It is called strongly connected if
its dependency graph is strongly connected.

The definition above is equivalent to the fact that no subsystem of (1.12) can be solved
before the whole system can be solved. We denote by Fy the Jacobian matrix of the system
(1.12), that is, it is the N×N -matrix whose (i, j)-entry is ∂

∂yi
Fj , and by I theN×N -identity

matrix. The following theorem is a refinement of Theorem 1.10 to systems of equations and
is well known as the Drmota-Lalley-Woods theorem, named after the three authors stating
the theorem at approximately the same time in different contexts, cf [24, 14, 50, 71].
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Theorem 1.12 (Drmota-Lalley-Woods Theorem). Let y = F(z,y) be a nonlinear system
of functional equations which is strongly connected, has only nonnegative Taylor coefficients
and which is analytic around z = 0 and y = 0. Further assume that F(0,y) = 0, F(z,0) 6= 0
and Fz(z,y) 6= 0 and that the region of convergence of F is large enough such that the system

y = F(z,y)

0 = det(I − Fy(z,y))

has solutions z = ρ and y = y0 that are real, positive and minimal. Let y = y(z) denote the
analytic solutions of the system y = F(z,y) with y(0) = 0. Then all solutions yj(z, v), j =
1 . . . , N have a square root singular expansion locally around ρ (for arg(z − ρ) 6= 0):

yj(z) = gj(z)− hj(z)
√

1− z

ρ
, for i = 1, . . . N,

with analytic functions gj(z) and hj(z) and with gj(ρ) = yj(ρ) = (y0)j . Furthermore, if
[zn]yj(z) > 0 for 1 ≤ j ≤ N for sufficiently large n ≥ n0 then y(z) has a unique smallest
positive singularity at ρ within |z| = ρ.

Note that the above theorem holds for algebraic systems of equations. In counting un-
labelled structures, we will often be faced with non-algebraic systems, including terms
y(z2),y(z3), · · · . Drmota-Lalley Woods Theorem can be extended to our needs in such
cases by the following lemma:

Lemma 1.13. Suppose that the system of equations

y1 = F1(z, y1, . . . , yN , y1(z
2), . . . , yN (z2), y1(z

3), . . .)

...
...

yN = FN (z, y1, . . . , yN , y1(z
2), . . . , yN (z2), y1(z

3), . . .)

has a solution y(z) = (y1(z), . . . , yN (z)) which is analytic and all functions y(z) have non-
negative taylor coefficients. Further assume that the system f = G(z,f ) given by

f1 = F1(z, f1, . . . , fN , y1(z
2), . . . , yN (z2), y1(z

3), . . .) =: G1(z, f1, . . . , fN )

...
...

fN = FN (z, f1, . . . , fN , y1(z
2), . . . , yN (z2), y1(z

3), . . .) =: GN (z, f1, . . . , fN )

fulfills the preliminaries of Theorem 1.12 and that
∑N

i=1 yi(z) = y(z) has radius of conver-
gence 0 < ρ < 1. Then, the result of Theorem 1.12 follows for the solution f = y(z).

Proof. We have y(z) =
∑

n ynz
n. For every i = 1, . . . , N , yi(z) =

∑
n yn,iz

i, with yn,i ≤ yn,
as yi(z) is a counting series counting a substructure of the structure counted by y(z). Hence
the radius of convergence ρi of yi(z) is greater or equal to ρ, ρi ≥ ρ, thus yi(z

2) is analytic
at |z| ≤ ρ+ ǫ. Hence we can consider the system G(z,f ) and apply Drmota-Lalley-Woods
theorem to it.

Having the solution y(z) of a system of equations (E), we further get the following Lemma.
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Lemma 1.14. Let y(z) = (y1(z), . . . , yN (z)) be the solution of the system of equations (E)
and assume that all assumptions of Drmota-Lalley-Woods Theorem are satisfied. Suppose
that G(z,y) is a power series such that the point (z0,y0(z0)) is contained in the interior of
the region of convergence of G(z,y) and that Gy(z0,y0(z0)) 6= 0.
Then yG(z) := G(z,y(z)) has a representation of the form

yG(z) = g(z) − h(z)
√

1− z

z0

for |z − z0| < ǫ, where g(z) and h(z) are analytic functions, and yG(z) is analytic in a
∆-domain with z0 = ρ.

1.3.4 Additional parameters

In this section we add an additional k-dimensional parameter v = v1, . . . , vk to the con-
siderations above. For suitable parameters (we will come back to this later), the theory
of analytic combinatorics introduced so far can be extended to this concept, which will be
helpful in the study of graph parameters such as numbers of edges or degree distribution.
Additionally, singularity analysis and some type of quasi power theorem [43] will provide
central limit theorems for the distributions of such parameters.
First of all, we extend the definition of singular expansion to additional parameters. Let

A(z,v) be a multivariate generating function.

Definition 1.15. • A valuation v0 of v is called admissible if all components of v0 are
positive and if A(z,v0) is a valid power series in z, i.e. [zn]A(z,v0) < ∞ for every
n ≥ 0.

• Consider a fixed point valuation (z0,v0) of (z,v). Then A(z,v) is said to have a
singular expansion of order α around (z0,v0) if v0 is an admissible valuation, z0 is
the radius of convergence of A(z,v0), and the expansion

A(z,v) = g(z,v) − h(z,v)
(
1− z

ρ(v)

)α

holds in a neighbourhood of (z0,v0) (except in the part where 1 − z
ρ(v) ∈ R−), where

g(z,v) and h(z,v) are analytic functions at (z0,v0), h(z0,v0) > 0, and ρ(v) is an
analytic function with ρ(v0) = z0. The function ρ(v) is called the singularity function
of A(z,v) relative to z. It is the dominant singularity of the mapping z 7→ A(z,v).

In our applications, we will usually introduce additional parameters by taking a univariate
generating function A(z) and refining it to A(z,v) by counting some additional parameters.
Therefore, the valuation v0 we will use is v0 = 1 = (1, 1, . . . , 1), which is an admissible
valuation if A(z) is the counting series of a class. In this case A(z,v0) = A(z). As mentioned
above, the theory of singularity analysis can be applied also with multivariate parameters,
as we see in the following refinement of Theorem 1.10, cf [15][Theorem 2.21].

Theorem 1.16. Suppose that F (z, y,v) =
∑

n,m Fn,m(v)znym is an analytic function in
z, y around z = y = 0 and v = 0 such that F (0, y,v) = 0, that F (z, 0,v) 6= 0, and that
all coefficients Fn,m(1) of F (z, y,1) are real and non-negative. Then the unique analytic
solution y = y(z,v) =

∑
n≥0 yn(v)z

n of the functional equation

y = F (z, y,v)

16
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with y(0,v) = 0 is analytic around 0 and y(z,1) =
∑

n≥0 yn(1)z
n has non-negative coeffi-

cients yn(1).
If the region of convergence of F (z, y,v) is large enough such that there exist non-negative
solutions z = z0 and y = y0 of the system of equations

y = F (z, y,1)

1 = Fy(z, y,1)

with Fz(z0, y0,1) 6= 0 and Fyy(z0, y0,1) 6= 0, then there exist functions f(v), g(z,v) and
h(z,v) which are analytic around z = z0, v = 1 such that y(z,v) is analytic for |z| < z0
and |uj − 1| ≤ ǫ (for some ǫ > 0 and 1 ≤ j ≤ k) and has a representation of the form

y(z,v) = g(z,v) − h(z,v)
√

1− z

f(v)
(1.13)

locally around z = z0,v = 1.
Moreover, if yn(1) > 0 for n ≥ n0, we also get

yn(v) =

√
f(v)Fz(f(v), y(f(v),v),v)

2πFyy(f(v), y(f(v),v),v)
f(v)−nn−

3
2

(
1 +O( 1

n
)

)
. (1.14)

uniformly for |uj − 1| < ǫ, 1 ≤ j ≤ k.

Stable parameters

Definition 1.17. Let v = (v1, . . . , vk) be a tupel of parameters whose values behave linearly
in the number of vertices, that is, there exists α = (α1, . . . , αk) with αi > 0 for all i such
that the coefficient an,m in A(z,v) is 0 if mi > αin for at least one i ∈ {1, . . . , k}. We call
such parameters stable parameters.

Note that every parameter counting a characteristic of nodes is a stable parameter with
α = 1, as at most every vertex can have the property. Another example for a stable
parameter is the number of edges in labelled planar graphs, which is asymptotically bounded
by αn with α = 2.56 (cf [29, 9, 56]).
From the following lemma we can conclude that the radius of convergence of a mapping
z 7→ A(z,v) is continuous at v = 1 if v counts a stable parameter.

Lemma 1.18. Let A(z,v) = an,mz
nvm be a power series with non-negative coefficients

with the parameters counted by v behaving at most linear in n with constants α, αi > 0 ∀i.
Let ρ(v) denote the radius of convergence of the mapping z 7→ A(z,v), Then, for real vi > 0
and for all i

ρ(1)

k∏

i=1

min{1, v−αi
i } ≤ ρ(v) ≤ ρ(1)

k∏

i=1

max{1, v−αi
i }.

Proof. If for all i = 1, . . . k we have vi ≥ 1 then
∑

m≥0

an,m ≤
∑

m≥0

an,mvm ≤
∑

m≥0

an,mvαn,

where
∑

m≥0 denotes the sum over all tupels m and vαn denotes vα1n
1 · · · vαkn

k . Hence

A(|z|,1) ≤ A(|z|,v) ≤ A(|zvα|, 1),

17
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which implies that ρ(v) ≥ ρ(1)v−α. Similarly, we argue if 0 < vi < 1 for all i. If some
vi ≥ 1 and others 0 < vj < 1 we have

∑

m≥0

an,mvm ≤
∑

m≥0

an,m
∏

i:vi≥1

vαi
i ≤

∑

m≥0

an,m
∏

i:vi≥1

vαin,

and vice versa. Hence the result follows.

Given stable parameters, Lemmas 1.9 and 1.14 and Theorems 1.10 and 1.12 generalize
to theorems on multivariate generating functions like Theorem 1.16. Those specialisations
are stated in Appendix A.

Central limit laws

The concept of multivariate generating functions turns out to be useful to study the dis-
tribution of parameters like the number of vertices of a given degree. There is a strong
relation between multivariate generating functions with a square root singular expansion
and random variables which are asymptotically Gaussian distributed.

Recall that a random variable X is called Gaussian or normally distributed N (µ, σ2) if
its distribution function is of the form

P(X ≤ z) = f

(
z − µ
σ

)
,

where f is given by

f(z) =
1√
2π

∫ z

−∞
e−

1
2
t2dt,

and µ and σ are real and σ is positive. We have that E(X) = µ and Var(X) = σ2.

We say that a sequence of random variables (Xn)n≥0 satisfies a central limit law with
mean µn and variance σ2n, if

P(Xn ≤ µn + zσn) = f(z) + o(1),

as n tends to infinity. This is equivalent to

Xn − µn
σn

d→ N (0, 1),

where
d→ denotes weak convergence of random variables, cf [4].

The following Quasi-power theorem by H.-K. Hwang [43], cf also [15, 24], is very helpful
to prove a central limit theorem for stable parameters on graphs.

Theorem 1.19 (Quasi power theorem). Let Xn be a sequence of random variables with the
property that

E(vXn) = eλn·A(v)+B(v)

(
1 +O

(
1

φn

))

holds uniformly in a complex neighbourhood of v = 1, where λn and φn are sequences of
positive real numbers with λn, φn → ∞ and A(v) and B(v) are analytic functions in a

18
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neighbourhood of v = 1 with A(1) = B(1) = 0. Then Xn satisfies a central limit theorem of
the form

1√
λn

(Xn − E(Xn))
d→ N (0, σ2)

with

E(Xn) = λnµ+O
(
1 +

λn
φn

)
, µ = A′(1),

Var(Xn) = λnσ
2 +O

(
(1 +

λn
φn

)2
)
, σ2 = A′′(1) +A′(1).

By combining Theorems 1.16 and 1.19 we obtain the following central limit theorem for
bivariate generating functions:

Theorem 1.20. Suppose that Xn is a sequence of random variables such that

EvXn =
[zn]y(z, v)

[zn]y(z, 1)
, (1.15)

where y(z, v) is a power series which is the (analytic) solution of the functional equation
y = F (z, y, v), where F (z, y, v) satisfies the assumption of Theorem 1.16. In particular, let
z0 > 0 and y0 > 0 be the (minimal) solution of the system of equations

y = F (z, y, v)

1 = Fy(z, y, v)

and set

µ =
Fv

z0Fz
,

σ2 = µ+ µ2 +
1

z0F 3
z Fyy

(
F 2
z

(
FyyFvv − F 2

yu

)
− 2FzFv (FyyFzv − FyzFyv) + F 2

v

(
FyyFzz − F 2

yz

))
,

where all partial derivatives are evaluated at the point (z0, y0, 1). Then we have

E(Xn) = µn+O(1) and Var(Xn) = σ2n+O(1),

and if σ2 > 0 then
Xn − E(Xn)√

Var(Xn)

d→ N (0, 1).

Note that for a random variable Xn counting the value of an additional parameter in
a counting problem, assumption (1.15) is fulfilled: Let A(z, v) be the generating function
where z counts the size and v the additional parameter. Then the probability that the
value of the parameter is m in an object of size n is the number of objects of size n with
parameter value m divided by the number of all objects of size n:

P(Xn = m) =
An,m

An
,

where An = [zn]A(z, 1). Thus the expectation of vXn is given by

E(vXn) =
∑

m≥0

P(Xn = m)vm =
∑

m≥0

An,mv
m

An
=

[zn]A(z, v)

[zn]A(z, 1)
.
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Remark. Both theorems, Theorems 1.19 and 1.20, can also be stated for multidimen-
sional parameters v = (v1, . . . , vk) and sequences of vectors of random variables Xn =
(X1, . . . ,Xk)n. Furthermore, there is an extension to parameters in systems of generating
functions. Both extensions can be found in Appendix A.
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CHAPTER 2

Random Pólya trees

This chapter is devoted to the study of unlabelled rooted trees, widely known as Pólya
trees. Pólya trees have been thorougly studied during many decades, beginning with George
Pólya’s work [60] in the 1930s. They have been a rich topic not only for their own sake,
but also due to their close relation to simply generated trees, which can be interpreted as
trees arising from a critical Galton-Watson branching process.

It has been proven that simply generated and Pólya trees behave similarly in many pa-
rameters such as asymptotic number [60], height[19, 21], profile process [19, 21] (cf Section
2.1.2) and many more. Marckert and Miermont [52] have shown that binary unlabelled
trees converge in some sense to the continuum random tree, which is the same limit as that
for simply generated trees. Still, it is well known and proven by simple means in [21] that
Pólya trees cannot be generated by a branching process and thus do not belong to the class
of simply generated trees, but the question for a structural difference is not answered.

In an attempt to find structural differences between Pólya trees and simply generated
trees we study a parameter located at the fringe of Pólya trees in Section 2.2, where we
informally speak of the fringe as the structure of the tree close to its leaves. To be more
precice, we study the size of Ward-trees of Pólya trees, those are the subtrees of a tree T
which are rooted at parent nodes of leaves. It is conjectured that the structural difference
between simply generated and Pólya trees is to be found in the fringe. Unfortunately, we
could not find a significant difference in the properties of the fringe we studied, but there
are parameters left to be studied in forthcoming work.

In Section 2.3 of this chapter, we prove that the degree profile of Pólya trees joins all
other parameters and shows a very similar behaviour to the one found in simply generated
trees ([20]), namely convergence to a suitably normalized stochastic process known as the
local time of a Brownian excursion.
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Chapter 2. Random Pólya trees

2.1 Preliminaries

We will give a brief introduction to the main results on Pólya trees which will be the base
of the upcoming results. The following results have been obtained by different researchers,
e.g. Pólya[60], Otter[57], Robinson and Schwenk [62] and many more.

Pólya trees

As for other families of graphs, we decompose a tree T ∈ T at its root in order to obtain
results on the generating function. Therefore, consider the following. A tree is either just
one node, the root, or it is the root together with a set of smaller rooted (sub-)trees attached
to the root, cf Figure 2.1. Note that in Pólya trees the subtrees of the root are not ordered,

b

b

b b

b bb

= + + + · · ·

Figure 2.1: The decomposition of a tree at its root.

as they are non-plane. Therefore the recursive decomposition above translates to

T = X + X ×
∑

k≥1

Setk(T ), (2.1)

where Setk(T ) denotes an unordered set of k elements of T . Translating this to ordinary
generating functions via cycle index sums, as described in Chapter 1 (cf Table 1.1), we
obtain

y(z) = z + z
∑

k≥1

Zk(y(z), y(z
2), . . . , y(zk)).

Using Lemma 1.6 this leads to

y(z) = z exp


∑

k≥1

y(zk)

k


 . (2.2)

It has been shown that y(z) has a dominant positive singularity at ρ ≈ 0.3383219, with
y(ρ) = 1, and around it it has a local expansion of order 1

2 of the form

y(z) = 1− b√ρ− z + c(ρ− z)−+ · · · (2.3)

= 1− b√ρ
√

1− z

ρ
+ cρ(1− z

ρ
)−+ · · · ,

with b ≈ 2.6811266. From there asymptotic coefficients can be deduced via a transfer lemma
(cf Lemma 1.7). We obtain

yn ∼
b
√
ρ

2
√
π
n−

3
2 ρ−n. (2.4)
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Let ∆ be a ∆-domain as given in (1.5). We can prove the following Lemma for the
generating function y(z), which will be helpful in the forthcoming parts.

Lemma 2.1. Provided that η in (1.5) is sufficiently small, the generating function of Pólya
trees y(z) has the following properties:

(a) For z ∈ ∆ we have that |y(z)| ≤ 1. Equality holds only for z = ρ.

(b) Let z = ρ
(
1− 1+it

n

)
and |t| ≤ C log2 n for some fixed C > 0. Then there is a c > 0

such that

|y(z)| ≤ 1− c
√

max(1, |t|)
n

.

(c) For |z| ≤ ρ we have |y(z)| ≤ y(|z|) ≤ 1. Moreover, near z = 0 the asymptotic relation
y(z) ∼ z holds.

(d) There exists an ǫ > 0 such that

|y(z)| ≥ min

(
ǫ

2
,
|z|
2

)

for all z ∈ Θ.

For the proof of the Lemma see [21][Lemma 1].

Simply generated trees

Simply generated trees have been introduced by Meir and Moon [54], and are weighted
rooted trees, where the weights are given according to the degree distribution.

Definition 2.2. Let T denote a family of rooted trees and T (z) =
∑

n≥0 Tnz
n be its gener-

ating function. T is called a simply generated family of trees, if T (z) fulfills

T (z) = zΦ(T (z)), Φ(t) =
∑

i≥0

φit
i, φi ≥ 0, φ0 > 0

The above definition can be interpreted as assigning the weight φi to a node of outdegree i.

Example. The following families are simply generated families:

• labelled trees

T (z) = zeT (z), Φ(t) = et =
∑

i≥0

ti

i!
.

• binary trees

T (z) = z(1 + T (z))2, Φ(t) = 1 + 2t+ t2.

• strict binary trees

T (z) = z(1 + T (z)2), Φ(t) = 1 + t2.
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Chapter 2. Random Pólya trees

It is easily shown that T (z) has a dominant positive singularity at z = 1
Φ′(τ) , where τ

fulfills τΦ′(τ) = Φ(τ), and that it has a local singular expansion

T (z) ∼ τ − b̃
√

1− zΦ′(τ) +O((1 − zΦ′(τ)),

where b̃ =
√

2Φ(τ)
Φ′′(τ) . Furthermore

Tn ∼
b̃

2
√
π
n−

3
2Φ′(τ)n =

√
Φ(τ)

2πΦ′′(τ)
Φ′(τ)n

n
3
2

(2.5)

2.1.1 The degree distribution

The distribution of degrees in a large random Pólya tree has already been studied in 1975 by
Robinson and Schwenk [62]. The results of their work have later been extended by Drmota
and Gittenberger in [20], where the degree distribution is studied for several tree classes,
including simply generated trees and Pólya trees. The following result holds for Pólya trees,
an analogue theorem with different constants holds for simply generated trees.

Theorem 2.3. Let X
(d)
n be the random variable that counts the number of vertices of degree

d in a random Pólya tree of size n. Then the expected value of X
(d)
n is asymptotically given

by

EX(d)
n = µdn+O(1) = 2Cd

b2ρ
ρdn+O(1),

where Cd = C +O
(
dρd
)
with C ≈ 7.7581604 . . . is the constant

C = exp


∑

ℓ≥1

1

ℓ

(
y(ρℓ)

ρℓ
− 1

)
 .

Furthermore Xn follows a central limit law of the form

X
(d)
n − E(X(d)

n )√
Var(X(d)

n )

d→ N (0, 1),

with the above mean E(X(d)
n ) = µdn and the same variance Var(X(d)

n ) = µdn.

Note that the above theorem holds for fixed degree d. If the given degree grows with the
size, a phase transition occurs (cf [55] for simply generated trees and [36] for Pólya trees).
Studying the degree distribution is a first step towards the study of patterns in trees.

The question considered here is the occurence of certain trees as a substructure of a large
tree as well as the number of such occurences. Note therefore that a vertex of degree d is a
star graph and hence an easy pattern, cf Figure 2.2.
A study of general patterns instead of star graphs was carried out by Chyzak et al [12].

2.1.2 Height and profile

Consider the size of level k in a tree, that is the number of certices at distance k from
the root, as well as the height of a tree, that is the maximum distance between the root
and a leaf. In this section we summarize two results given by Drmota and Gittenberger
[21], which provide the base for the results in the Section 2.3. Therefore, we first have to
introduce some stochastic processes.
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b

bb

b

Figure 2.2: A vertex of degree 3 is a certain pattern in a tree.

The Brownian motion

We will state the definition of a Brownian local time, which will appear in the subsequent.
A thorough overview of Brownian local times and related processes can be found in [61].
Explicit representations for the moments and the density of the one-dimensional projec-
tions of the local time of a Brownian excursion and related processes have been derived
by Takács [65, 66]. Multi-dimensional analogues can be found in [38, 39]. For results on
density representations for related processes such as occupation times we refer to [19, 44, 42].

A Brownian Motion (or Wiener process) is a stochastic process W (t), t ≥ 0 with the
following properties:

• The process starts at 0: P(W (0) = 0) = 1

• The increments are independent.

• For 0 ≤ s < t the increment W (t) −W (s) is normally distributed with mean 0 and
variance t− s.

It is proven that such a process exists (see e.g. [4]).

Further, let W (t), t ≥ 0 be a Brownian motion and let t0 > 0, t1 > 0 be two consecutive
zeros of W (t), that is |W (t)| > 0 for t0 < t < t1.
We define the Brownian excursion B(t), t ∈ [0, 1], associated to W (t) by

• (i) W (t0) = B(0) = B(1) =W (t1) = 0,

• (ii) B(t) = |W (t0 + (t1 − t0)t)|.

That is, B(t) is the part of a Brownian motion W (t) between two positive zeros t0, t1,
rescaled on the interval [0, 1].

The local time l(s) characterises the amount of time the process spends at a given level
s. It is defined by

T (s, s+ ǫ) :=

∫ 1

0
χ[s,s+ǫ](B(a))da

l(s) := lim
ǫ→0

1

ǫ
T (s, s+ ǫ)

A possible characterisation of l(s) is via its characteristic function φκ(t) = E(eitl(κ)).
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Height and Profile

We define the following parameters in trees:

Definition 2.4. The height HT of a tree T is the length of the longest path, starting at the
root, in T , i.e. the maximum number of edges on a path from the root to another vertex.

Definition 2.5. The profile (LT (k))k≥0 of a tree T is the number of nodes in T at distance
k from the root. By linear interpolation we obtain a continuous function LT (t).

LT (t) = (⌊t⌋+ 1− t)LT (⌊t⌋) + (t− ⌊t⌋)LT (⌊t⌋+ 1), t ≥ 0

For an example, see Figure 2.3.
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Figure 2.3: The (interpolated) profile of a Pólya tree.

Drawing a tree T ∈ Tn uniformly at random as in our usual random model, the parameters
above get a random property as well. That is, the height becomes a random variableHn, the
profile a sequence of random variables (Ln(k))k≥0, and the interpolated profile a stochastic
process Ln(t), t ≥ 0.

It has been proven in [21] that the following holds for the moments of Hn:

Theorem 2.6 (Drmota, Gittenberger, 2010). Let Hn denote the height of a random Pólya
tree with n vertices. Then

E(Hn) ∼
2
√
π

b
√
ρ

√
n,

and

E(Hr
n) ∼

(
2

b
√
ρ

)r

r(r − 1)Γ(
r

2
)ζ(r)n

r
2

for every integer r ≥ 2, as n tends to infinity.

The proof of this theorem is in close relation to the proof of the following statement on
the profile process (cf [21]):
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Theorem 2.7 (Drmota, Gittenberger, 2010). Let ln(t) =
1√
n
Ln(t
√
n), and l(t) denote the

local time of a standard Brownian excursion. Then ln(t) converges weakly to the local time
of a Brownian excursion, i.e., we have

(ln(t))t≥0
w→ b
√
ρ

2
√
2
· l
(
b
√
ρ

2
√
2
t

)

t≥0

,

where b and ρ are the constants in (2.3).

Similar statements have been proven in [19] for simply generated trees, showing that the
height is of asymptotic order

√
n and the profile converges weakly to a suitably normalized

Brownian local time. Note that the scaling factor for the profile process in the above the-
orem is

√
n, which is due to the fact that the expected height is of order

√
n, and thus no

vertices are to be expected at deeper levels.

The above theorem on the profile holds only for levels on height κ
√
n. The bahaviour of

the profile close to the root has been studied for trees and forests in [33, 35].

2.2 The fringe of trees

In this section we study properties of the fringe of Pólya trees and compare them to results
on simply generated trees presented by Drmota et. al. in [22]. Let ν be a leaf in a random
tree and ζ be its parent node. We call the tree rooted at ζ the Ward tree of the leaf ν, and
the set of all Ward trees of a tree T the fringe of T . The name of this parameter origins
in the first study of this parameter in tries and suffix tries by Ward in his Ph.D. Thesis
[69]. In [22] the size of a Ward tree is studied for several graph classes, including simply
generated trees, but not for Pólya trees. We complement this survey with this result. Note
that the definition of the fringe we use here differs from the one used in papers on the fringe
analysis of search trees, cf e.g. [72, 1].

2.2.1 The Ward-parameter of Pólya trees

Let T be a family of trees, and T ∈ T . Further, let ν be a leaf of T . The Ward-parameter
w(ν) counts the number of internal nodes of the Ward tree of ν (alternatively we could
count the number of leaves in the Ward tree, w̄(ν), or the total size of the Ward tree,
w̃(ν) = w(ν) + w̄(ν)). We define W (T ) = 0 for a tree being a single root, T = •. As Pólya
trees are unlabelled, we cannot distinguish between leaves. As the method of generating
functions does not allow us to consider a random leaf, we consider the cumulative Ward
parameterW (T ), summing up the Ward parameter of all leavesW (T ) =

∑
νleafofT w(ν). We

denote by Wn the random variable counting the cumulative Ward parameter of a random
tree of size n.
Therefore, we define the generating fuction

G(z, u, v) =
∑

n≥1

∑

ℓ≥1

∑

r≥1

ynℓrz
nuℓvr,

where ynℓr counts the number of trees T with n nodes and ℓ internal nodes with cumulative
Ward-parameter equal to W (T ) = r.
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Chapter 2. Random Pólya trees

Lemma 2.8. The generating function G(z, u, v) fulfils the equation

G(z, u, v) =z


∑

m≥0

uzmvm exp


∑

k≥1

G(zk, (uvm)k, vk)− zk
k


+ (1− u)


 ,

where Zk−m(G(z,uvm,v)− z) denotes the substitution described on page 8 in Chapter 1.

Proof. Remember that the generating function of Pólya trees is given by a node together
with a set of subtrees rooted at that node:

y(z) = z(
∑

k≥0

Zk(y(z), y(z
2), . . . , y(zk)) = z exp


∑

k≥1

y(zk)

k




If a tree T consists of one node only, this node is a leaf and the tree has no internal nodes,
just as the Ward-tree of the leaf. Otherwise, k rooted subtrees are attached to the root of
the tree. Of those k subtrees, m consist only of their roots, which are therefore leaves, while
the remaining k −m subtrees are “real” trees, that are trees which are more than a single
vertex z, where 0 ≤ m ≤ k. For each of the m leaves, the root and every internal node of
the tree T contributes to the Ward parameter of this node, and thus all internal vertices
contribute m times to the cumulative Ward parameter W (T ). Thus

G(z, u, v) =

z


1+

∑

k≥1

k∑

m=0

zmvmuZk−m(G(z,uvm,v) − z)


 , (2.6)

Note that

∑

k≥0

k∑

m=0

f(m)g(k −m,m) =
∑

k≥0

∑

m≥0

1[0,k](m)f(m)g(k −m,m)

=
∑

m≥0

f(m)
∑

k≥0

1[0,k](m)g(k −m,m)

=
∑

m≥0

f(m)
∑

k≥m

g(k −m,m) =
∑

m≥0

f(m)
∑

ℓ≥0

g(ℓ,m)

and hence (2.6) rewrites to the desired equation with the help of Lemma 1.6.

Remark. Of course, setting the variables u and v to 1 should give the ordinary generating
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2.2. The fringe of trees

function of Pólya trees, G(z, 1, 1) = y(z). This is easily proven:

G(z, 1, 1) = z


∑

m≥0

zm exp


∑

k≥1

G(zk, 1, 1) − zk
k






= z


∑

m≥0

zm


 exp


∑

k≥1

G(zk, 1, 1)

k


 exp


−

∑

k≥1

zk

k




= z
1

1− z exp


∑

k≥1

G(zk, 1, 1)

k


 exp(log(1− z))

= z exp


∑

k≥1

G(zk, 1, 1)

k


 ,

which is the equation for the ordinary generating function y(z) of Polya trees, given in
Equation (2.2).

To obtain results on the expected value E(Wn) we need to determine

E(Xn) = [zn]Gv(z, 1, 1)
1

yn
,

where Gv(z, u, v) denotes the derivative with respect to v of G(z, u, v) and yn is the number
of trees of size n, because

[zn]Gv(z, 1, 1)
1

yn
= [zn](

∑

n,m,ℓ

ℓynmℓz
n)

1

yn
= [zn]

∑

n,m,ℓ

ℓ
ynmℓ

yn
zn

= [zn]
∑

n,ℓ

ℓP(Wn = ℓ)zn =
∑

ℓ

ℓP(Wn = ℓ) = E(Wn).

We first set u = 1,

G(z, 1, v) =z


∑

m≥0

zmvm exp


∑

k≥1

G(zk, vmk, vk)− zk
k




 ,

and then derivate with respect to v:

∂

∂v
G(z, 1, v) = z


∑

m≥0

mzmvm−1 exp


∑

k≥1

G(zk, vmk, vk)− zk
k




+
∑

m≥0

zmvm exp


∑

k≥1

G(zk, vmk, vk)− zk
k




×
∑

k≥1

(
mvmk−1Gu(z

k, vmk, vk) + vk−1Gv(z
k, vmk, vk)

)

 .
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Chapter 2. Random Pólya trees

Setting v = 1 we get

Gv(z, 1, 1) = z exp


∑

k≥1

y(zk)− zk
k




×




∑

m≥0

mzm


+

∑

m≥0

zm
∑

k≥1

(
mGu(z

k, 1, 1) +Gv(z
k, 1, 1)

)



= (1− z)y(z)


z
(

1

1− z

)′

1 +

∑

k≥1

Gu(z
k, 1, 1)


 +

1

1− z
∑

k≥1

Gv(z
k, 1, 1)




= y(z)


 z

1− z


1 +

∑

k≥1

Gu(z
k, 1, 1)


 +

∑

k≥1

Gv(z
k, 1, 1)


 .

Rewriting this equation gives

Gv(z, 1, 1)(1 − y(z)) = y(z)


 z

1− z


1 +

∑

k≥1

Gu(z
k, 1, 1)


 +

∑

k≥2

Gv(z
k, 1, 1)




Gv(z, 1, 1) =
y(z)

1− y(z)

[
z

1− z (1 +Gu(z, 1, 1)) +
∑

k≥2

(
z

1− zGu(z
k, 1, 1) +Gv(z

k, 1, 1)

)

︸ ︷︷ ︸
=:A(z)

]
,

where A(z) is an analytic function near ρ, which follows immediately from the following
Lemma.

Lemma 2.9. Gu(z, 1, 1) and Gv(z, 1, 1) have a dominant singularity at ρ, where ρ is the
singularity of y(z).

Proof. We know that G(z, 1, 1) = y(z) has a singularity at ρ. As G(z, u, v) =
∑
ynmℓz

numvℓ

has only positive coefficients, it is analytic at (ρ − ε1, 1 − ε2, 1 − ε3). Now Gu(z, 1, 1) =∑
mynmℓz

n and Gv(z, 1, 1) =
∑
ℓynmℓz

n can only have radius of convergence smaller or
equal to ρ, but as G(z, u, v) is differentiable infinitely often at (ρ − ε1, 1 − ε2, 1 − ε3),
Gu(z, u, v) and Gv(z, u, v) are as well. Thus ρ has to be the dominant singularity.

We need to determine Gu(z, 1, 1). Note therefore that

Gu(z, 1, 1) =
∂

∂u
G(z, u, 1)|u=1 =

∂

∂u
P (1)(zu,

1

u
)|u=1

= zP (1)
z (z, 1) − P (1)

u (z, 1)

where P (1)(z, u) is the generating function of planted1 Polya trees, where u counts vertices
of degree 1, i.e. leaves, cf e.g. [15]. It is given by

P (1)(z, u) = z exp


∑

k≥1

P (1)(zk, uk)

k


+ z(u− 1).

1A planted tree is a rooted tree where we assume that the root node is adjacent to an additional node
which is not counted. This assumption does not alter the tree structure, but allows us to treat the root
vertex like a normal vertex, that is, a root of degree d has in-degree 1 and out-degree d− 1.
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2.2. The fringe of trees

Derivation gives

P (1)
z (z, 1) = y′(z) = exp


∑

k≥1

y(zk)

k


+ z exp


∑

k≥1

y(zk)

k


∑

k≥1

y′(zk)zk−1

y′(z)(1 − y(z)) = y(z)

z
+ y(z)

∑

k≥2

y′(zk)zk−1

P (1)
u (z, 1) = z exp


∑

k≥1

y(zk)

k


∑

k≥1

P (1)
u (zk, 1) + z

P (1)
u (z, 1)(1 − y(z)) = y(z)

∑

k≥2

P (1)
u (zk, 1) + z,

and thus

Gu(z, 1, 1) =
1

1− y(z)


y(z)


1 + z

∑

k≥2

y′(zk)zk−1 −
∑

k≥2

P (1)
u (zk, 1)


 − z




We obtain

Gv(z, 1, 1)

=
y(z)

1− y(z)

[
z

1− z


1+

y(z)
(
1+z

∑
k≥2 y

′(zk)zk−1−∑k≥2 P
(1)
u (zk, 1)

)
−z

1− y(z)


+A(z)

]

Proposition 2.10. Let Wn be the random variable that counts the size of the cumula-
tive Ward-parameter in random Pólya trees of size n. Then the expected value of Wn is
asymptotically, as n tends to infinity, given by

E(Xn) ∼
√
π

b3
√
ρ(1− ρ)


ρb2− 2(

∑

k≥2

P (1)
u (ρk, 1) + ρ)


 n

3
2 =: Bn

3
2 , (2.7)

with B ≈ 0.31838978 being numerically computable.

Proof. To calculate [zn]Gv(z, 1, 1) we will use the singular expansion (2.3) of y(z) near its
singularity, which by Lemma 2.9 is the same singularity as for Gv(z, 1, 1), and apply the
transfer lemma (Lemma 1.7). Near z = ρ we have

z ∼ ρ
y(z) ∼ 1

1− y(z) ∼ b√ρ
√

1− z

ρ

Derivating equation (2.2) gives

y′(z) = exp


∑

k≥1

y(zk)

k


+ z exp


∑

k≥1

y(zk)

k


∑

k≥1

y′(zk)zk−1.
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Chapter 2. Random Pólya trees

Using the singular expansion (2.3) of y(z) near ρ we obtain

lim
z→ρ−

y′(z)(1 − y(z)) = lim
z→ρ−

y(z)

z
+ y(z)

∑

k≥2

y′(zk)zk−1 =
b2

2
,

which implies that

lim
z→ρ−

y(z)(1 + z
∑

k≥2

y′(zk)zk−1) =
ρb2

2

Expanding near the singularity, we obtain

Gv(z, 1, 1) ∼
1

b
√
ρ
√

1− z
ρ

[
ρ

1− ρ


1+

ρb2− 2(
∑

k≥2 P
(1)
u (ρk, 1) + ρ)

2b
√
ρ
√

1− z
ρ


+A(ρ)

]

And hence, extracting the coefficient [zn] gives

[zn]Gv(z, 1, 1) ∼
ρ

1− ρ
ρb2− 2(

∑
k≥2 P

(1)
u (ρk, 1) + ρ)

2b2ρ
ρ−n

(
1 +O( 1

n
)

)
.

Dividing by the well known estimate yn ∼ b
√
ρ

2
√
π
n−

3
2ρ−n, the result follows.

Note that obviously ρb2 > 2(
∑

k≥2 P
(1)
u (ρk, 1) + ρ), as the expected number of leaves in

a tree, µ1n, is given by

µ1n ∼
2(
∑

k≥2 P
(1)
u (ρk, 1) + ρ)

ρb2
n ≤ n,

which immediately implies that the expected size of the Ward tree of a random leaf is
asymptotically of order

√
n.

2.2.2 Comparison with simply generated trees

We want to compare the value we just obtained with the one for simply generated trees.
In [22] the Ward parameter has been studied for specific leaves with number j in their left-
to-right order. We have to modify this result to be able to compare it with our cumulative
result.

Let F (z, u, v) =
∑
fnmjz

nujvm be the generating function where the coefficient fnmj

counts simply generated trees of size n where the j-th leaf has Ward-parameter m. In [22]
it is shown that this generating function fulfils

F (z, u, v) = φozu+
φ0z

2uv
φ(L(zv, 1

v
))−φ(L(zv,u

v
))

L(zv, 1
v
)−L(zv,u

v
)

1− z φ(T (z))−φ(L(z,u))
T (z)−L(z,u)

,

where L(z, u) is the generating function counting leaves and φ(x) is the generating function
with non-negative coefficients from the relation

T (z) = zφ(T (z)). (2.8)
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2.2. The fringe of trees

To sum up over all leaves, we set u = 1. In the above equation, two differential quotients
appear when u tends to 1.

F (z, 1, v) = φ0 +
φ0z

2vφ′(L(zv, 1v ))
1− zφ′(T (z))

From equation (2.8) we get

T ′(z) = φ(T (z)) + zφ′(T (z))T ′(z)

T ′(z) =
φ(T (z))

1− zφ′(T (z))
φ(T (z))

T ′(z)
= 1− zφ′(T (z))

φ′(T (z)) =
1

z
− φ(T (z))

zT ′(z)
=

1

z
− T (z)

z2T ′(z)

We derive F (z, 1, v) with respect to v and obtain

∂

∂v
F (z, 1, v) =

φ0z
3T ′(z)
T (z)

(
φ′(L(zv,

1

v
)) + vφ′′(L(zv,

1

v
))

(
zLz(zv,

1

v
)− 1

v

2

Lu(zv,
1

v
)

))

Hence, setting v = 1, gives

Fv(z, 1, 1) =
φ0z

3T ′(z)
T (z)

(
φ′(T (z)) + φ′′(T (z))((zLz(z, 1) − Lu(z, 1))

)
.

The leaf counting function is given by

L(z, u) = φ0z(u− 1) + zφ(L(z, u)),

hence we obtain

∂

∂z
L(z, u) = φ0(u− 1) + φ(L(z, u)) + zφ′(L(z, u))

∂

∂z
L(z, u)

∂

∂u
L(z, u) = φ0z + zφ′(L(z, u))

∂

∂u
L(z, u)

zL(z, 1) − Lu(z, 1) =
T (z)− φ0z

1− zφ′(T (z)) =
zT ′(z)(T (z) − φ0z)

T (z)
.

This finally gives

Fv(z, 1, 1) =
φ0z

3T ′(z)
T (z)

(
φ′(T (z)) + φ′′(T (z))

zT ′(z)(T (z) − φ0z)
T (z)

)

We know that near the singularity z0 =
1

φ′(τ) , the generating function has a singular expan-

sion T (z) ∼ τ − b
√

1− zφ′(τ). This implies

T (z) ∼ τ −
√

2φ(τ)

φ′′(τ)

(
1− zφ′(τ)

) 1
2 (2.9)

T ′(z) ∼ φ′(τ)
2

√
2φ(τ)

φ′′(τ)

(
1− zφ′(τ)

)− 1
2 (2.10)

T ′′(z) ∼ φ′(τ)2

4

√
2φ(τ)

φ′′(τ)

(
1− zφ′(τ)

)− 3
2 (2.11)

33



Chapter 2. Random Pólya trees

Further, we need an expression for φ′′(T (z)) from (2.8).

φ′′(T (z)) =
T (z)T ′′(z)
z2T ′(z)3

− 2

zT ′(z)
φ′(T (z))

Putting everything together, we obtain a singular expansion

Fv(z, 1, 1) ∼
φ0

2τφ′(τ)

(
τ − φ0

φ′(τ)

)(
1− zφ′(τ)

)−1
(
1 +O

(
1− zφ′(τ)

) 1
2

)
,

which gives an asymptotic coefficient

[zn]Fv(z, 1, 1) ∼
φ0

2τφ′(τ)

(
τ − φ0

φ′(τ)

)
φ′(τ)n

(
1 +O

(
1√
n

))
.

Hence, using (2.5), we obtain

E(Wn) ∼
φ0

2
√

2πφ(τ)φ′′(τ)

(
τ − φ0

φ′(τ)

)
n

3
2

for the expected value of the cumulative Ward parameter of a random simply generated
tree of size n.

We now choose a simply generated family which is very similar to the family of Pólya
trees, i.e. labelled nonplane trees, with Φ(t) = et. We have the system

y = zey 1 = zey,

hence, for this family, τ = 1,Φ(τ) = Φ′(τ) = Φ′′(τ) = e and φ0 = 1. We obtain

E(Wn) ∼ 0.04638584832n
3
2 .

Recall that in the Pólya case, we obtained E(Wn) ∼ 0.31838978n
3
2 for the expected value

of the cumulative Ward parameter of a Pólya tree of size n (Proposition 2.10). Hence the
asymptotic behaviour of the parameters is equivalent, although the constant in the example
of a simply generated tree family is significantly smaller.

2.3 The degree profile

As mentioned before (cf Theorem 2.7), Drmota and Gittenberger [21] showed that the
profile of random Pólya trees converges weakly to a normalized local time of a standard
brownian excursion. In this chapter, we will refine this result and examine the degree profile
of random Pólya trees, that is, the number of vertices of given degree d on a level k. The
degree profile of simply generated trees has been studied in [14].
We will terminate this section by a study of the correlation of two different degrees on a
given level of a Pólya tree. This problem has been adressed by Hofstad et al in [68] and by
Gittenberger and Louchard in [38] for simply generated trees.

Definition 2.11. We define by L
(d)
n (k) the number of nodes of degree d at distance k from

the root in a randomly chosen unlabelled rooted tree of size n. Obviously, (L
(d)
n (k))k≥0

is another sequence of random variables. By linear interpolation we create a continuous

stochastic process, which we call the degree profile process L
(d)
n (t) of Pólya trees of size n

with respect to degree d.

L(d)
n (t) = (⌊t⌋+ 1− t)L(d)

n (⌊t⌋) + (t− ⌊t⌋)L(d)
n (⌊t⌋+ 1), t ≥ 0
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2.3. The degree profile

Example. In Figure 2.4 we show an example for the 3-profile of a tree.
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Figure 2.4: The 3-profile of a tree.

As mentioned before, a vertex of given degree corresponds to a star graph, hence defining
the degree profile is a first step on the way to examining the profile of arbitrary patterns,
that is the number and location of patterns in trees, see Figure 2.5.

ordinary profile degree profile d = 3

b k

b

bb

b k

Figure 2.5: The degree profile represents star graphs located at level k of a tree.

In close relation to Theorem 2.7, we prove the following main result:

Theorem 2.12. Let

l(d)n (t) =
1√
n
L(d)
n (t
√
n)

and l(t) denote the local time of a standard Brownian excursion. Then l
(d)
n (t) converges

weakly to the local time of a Brownian excursion, i.e., we have

(l(d)n (t))t≥0
w→ Cdρ

d

√
2ρb
· l
(
b
√
ρ

2
√
2
t

)

t≥0

, (2.12)

where Cd = C +O
(
dρd
)
with C = exp

(
∑
i≥1

1
i

(
y(ρi)
ρi
− 1
))
≈ 7.7581604 · · · .
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Remark. Recall Theorem 2.7: It has been shown that the general profile of an unlabelled
rooted random tree converges to Brownian excursion local time with

(ln(t))t≥0
w→
(
b
√
ρ

2
√
2
l
( b√ρ
2
√
2
t
))

t≥0

.

The normalising constant in Theorem 2.12 equals µd
b
√
ρ

2
√
2
, where µdn is asymptotically equal

to the expected value of nodes of degree d in trees of size n, with µd = 2Cd
b2ρ ρ

d, as given in
Theorem 2.3.

To proof the above statement, weak convergence of the finite dimensional distributions
and tightness have to be shown:

Theorem 2.13. For any choice of fixed numbers t1, . . . , tm and for large d

(l(d)n (t1), . . . , l
(d)
n (tm))

w→ Cdρ
d

√
2ρb

l

(
b
√
ρ

2
√
2
t1, . . . ,

b
√
ρ

2
√
2
tm

)

as n→∞.

Remark. We will show this theorem by proving the convergence of the corresponding
characteristic functions. It is well known (cf. [13]) that the characteristic function of
Cdρ

d
√
2ρb
l
(
b
√
ρ

2
√
2
t
)
is

ψ(t) = 1 +
Cdρ

d

ib
√
ρπ

∫

γ

t
√−x exp

(
− κb

2
√−ρx

− x
)

√−x exp
(

κb
2
√−ρx

)
− Cdρdt

b
√
ρ sinh

(
κb

2
√−ρx

) dx (2.13)

where γ is a contour going from +∞ back to +∞ while encircling the origin clockwise.

A sequence of stochastic processes might not converge even if the sequence of their im-
ages with respect to every finite-dimensional projection does. Roughly speaking, in order
to guarantee convergence in the sense of stochastic processes (i.e., when constructing a
sequence by applying an arbitrary continuous bounded functional to the corresponding
probability measures, this sequence must converge) the sample paths of the processes must
not fluctuate too wildly. Tightness is a technical property of stochastic processes which
guarantees this. The next theorem states a technical condition for the profile process which
implies tightness (cf. [4] and [45] for the general theory.)

Theorem 2.14. There exists a constant C > 0 such that for all integers r, h, n the inequality

E (Ln(r)− Ln(r + h))4 ≤ C h2n (2.14)

holds.

Remark. According to [4, Theorem 12.3] the inequality

E |Ln(r)− Ln(r + h)|α = O
(
hβ(
√
n)α−β

)

implies tightness of the process ln(t) if α > 0 and β > 1. In the theorem above we have
α = 4 and β = 2 and thus ln(t) is tight.
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2.3. The degree profile

Proving Theorem 2.13, we will start with the one-dimensional case and then extend

results to multiple dimensions. Therefore, we introduce generating functions y
(d)
k (z, v),

which represent trees where all nodes of degree d on level k are marked and counted by v.
Note that we consider planted trees instead of ’ordinary’ rooted trees, which allows us to
treat the root vertex like a normal vertex, that is, a root of degree d has in-degree 1 and
out-degree d− 1.

Refining the decomposition of trees along their root, the y
(d)
k (z, v) can be defined recursively:

y
(d)
0 (z, v) = y(z) + (v − 1)zZd−1(y(z))

y
(d)
k+1(z, v) = z exp


∑

i≥1

y
(d)
k (zi, vi)

i


 , (2.15)

where Zd(s1, s2, . . . , sd) is the cycle index of the permutation group Sd on d elements and

Zd−1(y
(d)
h (z,v)) denotes the substitution described on page 8 in Chapter 1.

Examining two levels k, k+h at once, we use the generating function y
(d)
k,h(z, v1, v2) where

all nodes of degree d on level k are marked by v1 and nodes of degree d on level k + h are
marked by v2. We get the recursive relation

y
(d)
0,h(z, v1, v2) = y

(d)
h (z, v2) + (v1 − 1)zZd−1(y

(d)
h (z,v2))

y
(d)
k+1,h(z, v1, v2) = z exp


∑

i≥1

y
(d)
k,h(z

i, vi1, v
i
2)

i


 . (2.16)

In general, observing levels k1,k2 = k1 + h1,. . . , km = km−1 + hm−1, we get:

y
(d)
0,h1,...,hm−1

(z, v1, . . . , vm) =

y
(d)
h1,...hm−1

(z, v2, . . . , vm) + (v1 − 1)zZd−1(y
(d)
h1,...hm−1

(z,v2, . . . ,vm))

y
(d)
k+1,h1,...,hm−1

(z, v1, . . . , vm) = z exp


∑

i≥1

y
(d)
k,h1,...,hm−1

(zi, vi1, . . . , v
i
m)

i




These functions are related to the process L
(d)
n (t) by

P(L(d)
n (k) = ℓ1, L

(d)
n (k + h1) = ℓ2, . . . , L

(d)
n (k +

∑
hi) = ℓm)

=
[znvℓ11 v

ℓ2
2 · · · vℓmm ]y

(d)
k,h1,...,hm−1

(z, v1, . . . , vm)

[zn]y(z)

We will give a detailed analysis of the functions yk(z, v) in Section 2.3.1, providing us with
bounds and asymptotic expressions of them near their singularity. The lemmas given in
this section will allow us to find a closed expression for the characteristic function of the
one-dimensional profile process. In Section 2.3.2 we will extend the bounds computed in Sec-
tion 2.3.1 to the multidimensional case. The proof of Theorem 2.14 is given in Section 2.3.3.
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Chapter 2. Random Pólya trees

For this study, we introduce a ∆-domain, cf (1.5), and some other domains

∆ = ∆(η, θ) = {z ∈ C
∣∣|z| < ρ+ η, | arg(z − ρ)| > θ}, (2.17)

∆ǫ = ∆ǫ(θ) = {z ∈ C
∣∣|z − ρ| < ǫ, | arg(z − ρ)| > θ}, (2.18)

Θ = Θ(η) = {z ∈ C
∣∣|z| < ρ+ η, | arg(z − ρ)| 6= 0}, (2.19)

Ξk = Ξk(η̃) = {z ∈ C
∣∣|v| ≤ 1, k|v − 1| ≤ η̃}, (2.20)

with ǫ, η, η̃ > 0 and 0 < θ < π
2 .

In all the proofs in the subsequent sections we will assume (even without explicitely men-
tioning) that η, θ, ǫ are sufficiently small for all arguments to be valid.

ρ b

∆(η, θ)

∆ǫ(θ)

bρ

Θ(η)

bρ

Figure 2.6: The regions used for the proofs

2.3.1 The one dimensional case

In the following, we will use the notations

w
(d)
k (z, v) = y

(d)
k (z, v) − y(z)

Σ
(d)
k (z, v) =

∑

i≥2

w
(d)
k (zi, vi)

i

γ
(d)
k (z, v) =

∂

∂v
y
(d)
k (z, v)

γ
(d)[2]
k (z, v) =

∂2

∂v2
y
(d)
k (z, v)

Our main goal is to prove the following theorem, from where the main result follows by
integration.

Theorem 2.15. Let z = ρ(1+ s
n), v = e

it√
n , k = ⌊κ√n⌋ and d be a fixed integer. Moreover,

assume that | arg s| ≥ ϑ > 0 and, as n → ∞, we have s = O(log2 n), whereas κ and t are

fixed. Then, w
(d)
k (z, v) admits the local representation

w
(d)
k (z, v) ∼ Cdρ

d

√
n
· it

√−se− 1
2
κb

√−ρs

√−se 1
2
κb

√−ρs − itCρd

b
√
ρ sinh(12κb

√−ρs)
(2.21)
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2.3. The degree profile

The one-dimensional limiting distribution

Let us first assume that Theorem 2.15 holds. Then, to prove Theorem 2.13 in one dimension,
we need to determine the characteristic function

φ
(d)
k,n(t) =

1

yn
[zn]y

(d)
k (z, e

it√
n )

=
1

2πiyn

∫

Γ
y
(d)
k (z, e

it√
n )

dz

zn+1
(2.22)

where the contour Γ = γ ∪ Γ′ consists of the line

γ = {z = ρ(1− 1 + iτ

n
)| −D log2 n ≤ τ ≤ D log2 n}

with an arbitrarily chosen constant D > 0 and Γ′ is a circular arc centered at the origin
and closing the curve, see Figure 2.7. The contribution of Γ′ is exponentially small since

for z ∈ Γ′, 1
yn
|z−(n+1)| = O(n 3

2 e− log2 n) whereas |y(d)k (z, e
it√
n )| is bounded.

b
ρ

Γ

Figure 2.7: The contour Γ

If z ∈ γ the local expansion (2.21) is valid and thus, inserting into (2.22) leads to:

lim
n→∞

φ
(d)
k,n(t) = lim

n→∞
1

2πiyn

[ ∫

Γ′
w

(d)
k (z, v)

dz

zn+1
+

∫

Γ′
y(z)

dz

zn+1
︸ ︷︷ ︸

=2πiyn

]

= 1 + lim
n→∞

Cdρ
dnρn

√
2

b
√
2ρπ

1+i log2 n∫

1−i log2 n

t
√−se(−κb

√−ρs
2

)

e(
κb

√−ρs
2

) − itCρd√
ρb sinh(κb

√−ρs
2 )

1

ρnn
e−sds

= ψ(t),

where ψ(t) is the charateristic function of Cρd√
2ρb
· l
(
b
√
ρ

2
√
2
κ
)
given in (2.13).

Now let us turn back to the proof of Theorem 2.15.
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Chapter 2. Random Pólya trees

The local behaviour of y
(d)
k (z, v)

For the proof of Theorem 2.15, we study the local behaviour of the functions y
(d)
k (z, v) near

the singularity. As v is a stable parameter (cf Definition 1.17) and y
(d)
k (z, 1) = y(z), there

is a unique dominant singularity ρ(v) on the circle of convergence of y
(d)
k (z, v) which fulfils

ρ(1) = ρ due to Lemma 1.18.

Lemma 2.16. Let |z| ≤ ρ2 + ε for sufficiently small ε and |v| ≤ 1. Then there exists a
constant L with 0 < L < 1 and a positive constant D such that

|w(d)
k (z, v)| ≤ D|v − 1| · |z|d · Lk

Proof. We will only provide a short sketch, since the proof is similar to that of [21, Lemma 2]
For k = 0 we have

|w(d)
0 |(z, v)| = |v − 1| · |z| · |Zd−1(y(z))|︸ ︷︷ ︸

O(|y(z)|d−1)=O(|z|d−1)

≤ |v − 1| ·D · |z|d

The result for general w
(d)
k (z, v) follows by induction. Starting with the recurrence relation

w
(d)
k+1(z, v) = y(z)


exp


w(d)

k (z, v) +
∑

i≥2

w
(d)
k (zi, vi)

i


− 1




we use the trivial estimate |wk(z, v)| ≤ 2y(|z|) which is valid for |z| ≤ ρ and |v| ≤ 1, the
convexity of y(z)/z on the positive reals, and some elementary estimates for ez. For the
precise details see [21].

Corollary 2.17. For |v| ≤ 1 and |z| ≤ ρ + ε (ε > 0 small enough) there is a positive
constant C̃ such that (for all k ≥ 0, d ≥ 1)

|Σ(d)
k (z, v)| ≤ C̃|v − 1|Lk.

Proof. By Lemma 2.16 and with |vi − 1| = |1 + v + · · · vi−1||v − 1| ≤ i|v − 1| as |v| ≤ 1 we
have

|Σ(d)
k (z, v)| ≤

∑

i≥2

1

i
|w(d)

k (zi, vi)| ≤ D
∑

i≥2

1

i
|vi − 1||z|i·dLk

≤ D|v − 1|Lk |z|2d
1− |z|d ≤ D|v − 1|Lk 1

1− (ρ+ ǫ)d
= D̃|v − 1|Lk

Corollary 2.18. Let v ∈ Ξk(η̃) and z ∈ Θ(η). Then there exists L ∈ (0, 1) such that

∑

i≥2

γ
(d)
k (zi, vi) = O(Lk).
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2.3. The degree profile

Proof. As i ≥ 2 the functions γ
(d)
k (zi, vi) are analytic in the whole region and Γ

(d)
k (z, v) :=∑

i≥2 γ
(d)
k (zi, vi) =

∑
n,m y

(d)
nmkz

nym with positive coefficients y
(d)
knm, we have |Γ(d)

k (z, v)| ≤
Γ
(d)
k (|z|, |v|) where the right-hand side is monotone in |z| and |v|.
Now let z ≥ 0 and 0 < v < 1. Using Taylor’s theorem we get

|Σ(d)
k (z, v)| = |(v − 1)Γ

(d)
k (z, 1 + ϑ(v − 1))| ≥ |v − 1|Γ(d)

k (z, v).

In view of Corollary 2.17 this implies for all z ∈ Θ(η) and v ∈ Ξk the estimate |Γ(d)
k (z, v)| ≤

Γ
(d)
k (|z|, |v|) ≤ CLk for some positive constant L < 1.

Now we will refine these a priori bounds. First we show that the first derivate γ
(d)
k (z, 1)

is almost a power of y(z). Afterwars we will derive estimates for the second derivative

and then obtain a power-like representation for w
(k)
k (z, v). Finally, utilizing the recurrence

relation for w
(k)
k (z, v) we will arrive at the desired result (2.21).

Lemma 2.19. For z ∈ Θ(η) (where η > 0 is sufficiently small) the functions γ
(d)
k (z) can

be represented as

γ
(d)
k (z) := γ

(d)
k (z, 1) = C

(d)
k (z)y(z)k+d,

where the functions C
(d)
k (z) are analytic and converge uniformly to an analytic limit function

C(d)(z) (for z ∈ Θ) with convergence rate

C
(d)
k (z) = C(d)(z) +O(Lk)

for some 0 < L < 1, and further C(d)(ρ) = Cdρ
d, where Cd is the constant given in (2.12).

Proof. We define the functions C
(d)
k (z) :=

γ
(d)
k (z)

y(z)k+d .

We prove the analyticity of the functions γ
(d)
k (z) by induction:

γ
(d)
0 (z) = zZd−1(y(z)) = zO(y(z)d−1) = O(xd)

is analytic in Θ(η) as y(z) is analytic in Θ(η), and so is C
(d)
0 (z), since it is a quotient of two

power series starting with zd, namely

C
(d)
0 (z) =

zO(y(z)d−1)

y(z)d
= O(1) (2.23)

The step of induction works like in [21], as the γ
(d)
k fulfill the same recursion as the γk:

γ
(d)
k+1(z, v) =

∂

∂v
z exp


∑

i≥1

y
(d)
k (zi, vi)




= z exp


∑

i≥1

y
(d)
k (zi, vi)

i


∑

i≥1

∂

∂v
y
(d)
k (zi, vi)vi−1

= y
(d)
k+1(z, v)

∑

i≥1

γ
(d)
k (zi, vi)vi−1, (2.24)
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and for v = 1

γ
(d)
k+1(z) = y(z)γ

(d)
k (z) + y(z)Γ

(d)
k (z),

with Γ
(d)
k (z) =

∑
i≥2

γ
(d)
k (zi), which is analytic for |z| ≤ √ρ and hence in Θ. Applying the

induction hypothesis, this proves the analyticity of γ
(d)
k (z). Solving the recurrence, we

obtain

γ
(d)
k (z) = y(z)kγ

(d)
0 (z) +

k−1∑

ℓ=0

y(z)k−ℓΓ
(d)
ℓ (z)

and hence the analyticity of γ
(d)
k implies the analyticity of the functions C

(d)
k (z) in Θ.

We now want to show that the functions (C
(d)
k (z))k≥0 have a uniform limit C(d)(z), which

works analogously as in [21]. Setting v = 1, (2.24) translates to

C
(d)
k+1(z)y(z)

k+d+1 = y(z)
(
C

(d)
k (z)y(z)k+d + C

(d)
k (z2)y(z2)k+d + C

(d)
k (z3)y(z3)k+d · · ·

)
.

Hence

C
(d)
k+1 =

∑

ℓ≥1

C
(d)
k (zℓ)

y(zℓ)k+d

y(z)k+d
. (2.25)

We set

L
(d)
k := sup

z∈Θ

∑

ℓ≥2

|y(zℓ)|k+d

|y(z)|k+d
.

If η is sufficiently small, we know from Lemma 2.1 that

sup
z∈Θ

|y(zℓ)|
|y(z)| < 1 for all ℓ ≥ 2 and sup

z∈Θ

|y(zℓ)|
|y(z)| = O(L̄

ℓ)

for some L̄ with 0 < L̄ < 1. Consequently, we also get L
(d)
k = O(Lk) for some L with

0 < L < 1 (actually we can choose L = L̄2). We use the notation ‖f‖ := supz∈Θ |f(z)| and
obtain from (2.25)

‖C(d)
k+1‖ ≤ ‖C

(d)
k ‖(1 + L

(d)
k )

and also

‖C(d)
k+1 − C

(d)
k ‖ ≤ ‖C

(d)
k ‖L

(d)
k .

The first inequality implies that the functions C
(d)
k (z) are uniformly bounded in the given

domain by

‖C(d)
k ‖c0 := ‖C(d)

k ‖
∏

ℓ≥1

(1 + L
(d)
ℓ ),

while the second equation guarantees the existence of a limit limk→∞C
(d)
k (z) = C(d)(z)

which is analytic in Θ, and we have a uniform exponential convergence rate

‖C(d)
k − C(d)‖ ≤ c0

∑

ℓ<k

Lℓ = O(Lk),

hence it follows that the uniform limit exists.
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2.3. The degree profile

Finally, note that
∑

k≥0

γ
(d)
k (z, 1) =

∑

k≥0

d(d)n zn = D(d)(z),

where d
(d)
n is the total number of vertices of degree d in all trees of size n, and D(d)(z) is

the according generating function, introduced in e.g. [62]. On the other hand,

∑

k≥0

γ
(d)
k (z, 1) =

∑

k≥0

(C(d)(z) +O(Lk))y(z)k =
C(d)(z)y(z)d

1− y(z) +O(1),

and therefore

C(d)(ρ) = lim
z→ρ

(1− y(z))D(d)(z)

y(z)d
.

We know that

D(d)(z) =
y(z)

∑
i≥2D

(d)(zi) + zZd−1(y(z))

1− y(z)

(cf. [62, Eq. (36)] or [48]). Schwenk [63, Lemma 4.1] computed the limit of the cycle index
in the numerator. In his proof he provides the speed of convergence as well. In fact, [63,
Eq. (32)] says that

∣∣∣∣∣Zd

(
y(z)

z

)
− exp

(
d∑

i=1

1

i

(
y(z)

z
− 1

))∣∣∣∣∣ ≤ z
d+1 exp

(
λ

d∑

i=1

1

i

)

with λ = sup0≤z≤ρ
1
z

(
y(z)
z − 1

)
= 1−ρ

ρ2 . Thus zZd−1(y(z)) = zdF (z) + O
(
dz2d+1

)
. Note

further that D(d)(z) = O
(
zd+1

)
since there are no nodes of degree d in trees of size less

than d+1. This implies C(d)(ρ) = Cdρ
d with Cd = C +O

(
dρd
)
and C as in Theorem 2.12.

Hence Lemma 2.19 is proven.

Lemma 2.20. There exist constants ǫ, θ, η̃ > 0 and θ < π
2 such that

|γ(d)k (z, v)| = O(|y(z)|k+d)

uniformly for z ∈ ∆ǫ(θ) and v ∈ Ξk(η̃).

Proof. For ℓ ≤ k we set

C̄
(d)
ℓ = sup

z∈∆ǫ(θ)
v∈Ξk(η̃)

∣∣∣∣∣
γ
(d)
ℓ (z, v)

y(z)ℓ+d

∣∣∣∣∣ .
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First we derive the following inequality, using the recurrence (2.15) for y
(d)
k (z, v):

|y(d)ℓ+1(z, v)| =

∣∣∣∣∣∣
z exp


∑

i≥1

1

i

(
y
(d)
ℓ (zi, vi)− y(zi) + y(zi)

)


∣∣∣∣∣∣

=

∣∣∣∣∣∣
y(z) exp


∑

i≥1

1

i
w

(d)
ℓ (zi, vi)



∣∣∣∣∣∣

≤ |y(z)| exp


|w(d)

ℓ (z, v)| +
∑

i≥2

1

i
|w(d)

ℓ (zi, vi)|




≤ |y(z)| exp


|γ

(d)
ℓ (z, 1 + ϑ(v − 1))||v − 1|︸ ︷︷ ︸

≤C̄
(d)
ℓ |v−1|

+
∑

i≥2

|vi − 1|
i
|γ(d)ℓ (zi, 1 + ϑ(vi − 1))|




where we did a Taylor expansion in the last step, with some 0 < ϑ < 1 and thus 1+ϑ(vi−1) ∈
Ξk. To get an estimate for the second term, we use that |vi−1| = |1+v+ · · ·+vi−1||v−1| ≤
i|v − 1| as |v| ≤ 1 and hence |vi−1

i | ≤ |v − 1| ≤ 2. Further we use |γ(d)ℓ (zi, 1 + ϑ(vi − 1))| ≤
|γ(d)ℓ (zi, 1)|, |y(z)| ≤ 1 and Corollary 2.18 to obtain

|y(d)ℓ+1(z, v)| ≤ |y(z)| exp
(
C̄

(d)
ℓ |v − 1|+O(Lℓ)

)
.

Using recurrence (2.24) leads to

C̄
(d)
ℓ+1 = sup

z∈∆ε(θ)
v∈Ξk(η̃)

∣∣∣∣∣
y
(d)
ℓ+1(z, v)

y(z)

∣∣∣∣∣

∣∣∣∣∣
γ
(d)
ℓ (z, v) +

∑
i≥2 γ

(d)
ℓ (zi, vi)vi−1

y(z)ℓ+d

∣∣∣∣∣

≤ eC̄
(d)
ℓ

η
k
+O(Lℓ)(C̄

(d)
ℓ +O(Lℓ))

= C̄
(d)
ℓ eC̄

(d)
ℓ

η
k (1 +O(Lℓ)), (2.26)

where we used Lemma 2.19 to get |∑i≥2 γ
(d)
ℓ (zi, vi)vi−1| = O(∑i≥2 |y(zi)|ℓ+d) and hence

sup
z∈∆ǫ(θ)
v∈Ξk(η̃)

∣∣∣∣∣

∑
i≥2 γ

(d)
ℓ (zi, vi)vi−1

y(z)ℓ+d

∣∣∣∣∣ = sup


O


∑

i≥2

(
y(zi)

y(z)

)ℓ+d



 = O(Lℓ+d) = O(Lℓ).

We now set

c0 =
∏

j≥0

(1 +O(Lj)).

Recall that, by Equation (2.23), |γ
(d)
0 (z,v)

y(z)d
| = O(1), hence C̄(d)

0 = sup |γ
(d)
0 (z,v)

y(z)d
| = O(1),

too. Thus we can choose η > 0 such that e2C̄
(d)
0 c0η ≤ 2. For fixed k we get

C̄
(d)
ℓ ≤ C̄(d)

0

∏

j<ℓ

(1 +O(Lj))e2C̄
(d)
0 c0c

ℓ
k ≤ 2C̄0c0 = O(1).
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The second estimate is clear by the choice of η and by ℓ ≤ k. The first inequality can be
obtained from (2.26) by induction:

C̄
(d)
1 ≤ C̄(d)

0 (1 +O(L0))eC̄
(d)
0

η
k ≤ C̄(d)

0

∏

j<1

(1 +O(Lj))e2C̄
(d)
0 c0η

1
k ,

C̄
(d)
ℓ+1 ≤ C̄

(d)
ℓ e

η
k
C

(d)
ℓ (1 +O(Ll))

=
∏

j<ℓ

(1 +O(Lj))(1 +O(Lℓ))C̄
(d)
0 e2C̄

(d)
0 c0η

ℓ
k exp


η
k
C̄

(d)
0 Πj<ℓ e

2C̄0
(d)

c0η
ℓ
k︸ ︷︷ ︸

≤2
ℓ
k ≤2




≤ C̄0

∏

j<ℓ+1

(1 +O(Lj))e2C̄0c0η
ℓ+1
k )

And hence, knitting together everything, we obtain the formula of Lemma 2.20.

For the second derivatives with respect to v of y
(d)
k (z, v), γ

(d)[2]
k (z, v), we find

Lemma 2.21. Suppose that |z| ≤ ρ− η for some η > 0 and |v| ≤ 1. Then

γ
(d)[2]
k (z, v) = O(y(|z|)k+d) (2.27)

uniformly in z and v. There also exist constants ǫ, θ, η̃ such that uniformly for v ∈ Ξk(η̃)
and z ∈ ∆ǫ(θ)

γ
(d)[2]
k (z, v) = O(ky(|z|)k+d). (2.28)

Proof. Derivation of (2.24) leads to the recurrence

γ
(d)[2]
k+1 (z, v) = y

(d)
k+1(z, v)


∑

i≥1

γ
(d)
k (zi, vi)vi−1




2

+ y
(d)
k+1(z, v)

∑

i≥1

iγ
(d)[2]
k (zi, vi)v2(i−1)

+ y
(d)
k+1(z, v)

∑

i≥2

(i− 1)γ
(d)
k (zi, vi)vi−2

with initial condition γ
(d)[2]
0 (z, v) = 0.

For |z| < ρ−η, for some η > 0 and for |v| ≤ 1 we have |γ(d)[2]k (z, v)| ≤ γ(d)[2]k (|z|, 1). Thus,
in this case we can restrict ourselves to non-negative real z ≤ ρ− η.

By using the bounds γ
(d)
k (z, 1) ≤ C

(d)
k y(z)k+d from Lemma 2.20,

∑
i≥2 γ

(d)
k (zi, vi) =

O(Lk) from Corollary 2.18 and the induction hypothesis γ
(d)[2]
k (z, 1) ≤ D(d)

k y(z)k+d, we can
derive the following upper bound from the above:
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γ
(d)[2]
k+1 (z) = y(z)


∑

i≥1

γ
(d)
k (zi)




2

+ y(z)
∑

i≥1

iγ
(d)[2]
k (zi) + y(z)

∑

i≥2

(i− 1)γ
(d)
k (zi)

≤ y(z)



(
C

(d)
k y(z)k+d +O(Lk)

)2
+D

(d)
k (
∑

i≥1

iy(zi)k+d) +
∑

i≥2

C
(d)
k y(zi)k+d)




≤ y(z)k+d+1
[
(C

(d)
k )2y(z)k+d + C

(d)
k O(Lk)

+Dk


1 +

∑

i≥2

i
y(zi)k+d

y(z)k+d


+ C

∑

i≥2

(i− 1)
y(zi)k+d

y(z)k+d




≤ y(z)k+d+1((C(d))2ky(ρ− η)k+d +D
(d)
k (1 +O(Lk)) +O(Lk)).

Consequently

D
(d)
k+1 = ((C

(d)
k )2y(ρ− η)k+d +D

(d)
k (1 +O(Lk)) +O(Lk)),

which leads to D
(d)
k = O(1) as k →∞.

To prove the second property we use the same constants ǫ, θ, η̃ as in Lemma 2.20 and set

D̄
(d)
ℓ = sup

z∈∆ǫ(θ)
v∈Ξk(η̃)

|γ
(d)[2]
ℓ (z, v)

y(z)ℓ+d
|

for ℓ ≤ k. We use the already known bound |γ(d)ℓ (z, v)| ≤ C̄(d)|y(z)k+d| and by similar
considerations as in the proof of this lemma, we get

D̄
(d)
ℓ+1 = sup

z∈∆ǫ(θ)
v∈x

∣∣∣∣∣
y
(d)
ℓ+1(z, v)

y(z)

∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣

(
∑
i≥1

γ
(d)
ℓ (zi, vi)vi−1

)2

+
∑
i≥1

iγ
(d)[2]
ℓ (zi, vi)v2(i−1) +

∑
i≥2

(i− 1)γ
(d)
ℓ (zi, vi)vi−2

y(z)ℓ+d

∣∣∣∣∣∣∣∣∣∣∣

≤ D̄(d)
ℓ eC̄

(d)
ℓ

η
k (1 +O(Lℓ)) + (C

(d)
ℓ )2eC̄

(d)
ℓ

η
k +O(Lℓ))

≤ α(d)
ℓ D̄

(d)
ℓ + β

(d)
ℓ

with α
(d)
ℓ = eC̄

(d)
ℓ

η
k (1 +O(Lℓ)) and β

(d)
ℓ = C(d)2eC̄

(d)
ℓ

η
k +O(Lℓ)). Thus
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D̄
(d)
k ≤ α(d)

k−1(α
(d)
k−2(. . . (α

(d)
0 D

(d)
0 + β

(d)
0 ) . . .)β

(d)
k−2) + β

(d)
k−1

=
k−1∑

j=0

β
(d)
j

k−1∏

i=j+1

α
(d)
i + α

(d)
0 D̄

(d)
0

≤ kmax
j
β
(d)
j eC̄

(d)
ℓ c
∏

i≥0

(1 +O(Li))

= O(k),
which completes the proof of the Lemma.

Lemma 2.22. Let ǫ, θ, η̃ and C
(d)
k (z) be as in Lemma 2.19 and Lemma 2.20. Then

w
(d)
k (z, v) = C

(d)
k (z)(v − 1)y(z)k+d(1 +O(k|v − 1|)) (2.29)

uniformly for z ∈ ∆ǫ(θ) and v ∈ Ξk(η̃). Furthermore we have for |z| ≤ ρ+ η and |v| ≤ 1

Σ
(d)
k (z, v) = C̃

(d)
k (z)(v − 1)y(z2)k+d +O(|v − 1|2y(|z|2)k+d), (2.30)

where the analytic functions C̃
(d)
k (z) are given by

C̃
(d)
k (z) =

∑

i≥2

C
(d)
k (zi)

(
y(zi)

y(z2)

)k+d

and have a uniform limit C̃(d)(z) with convergence rate

C̃
(d)
k (z) = C̃(d)(z) +O(Lk)

for some constant L with 0 < L < 1.

Proof. To prove the first statement, we expand w
(d)
k (z, v) into a Taylor polynomial of degree

2 around v = 1 and apply Lemmas 2.19 and 2.21.
To prove the second statement, we again use Taylor series. Note that for i ≥ 2 we have

|zi| < ρ− η if |z| < ρ+ η and η is sufficiently small. We get

w
(d)
k (zi, vi) = C

(d)
k (zi)(vi − 1)y(zi)k+d +O(|vi − 1|2y(|zi|)k+d)

and consequently

Σ
(d)
k (z, v) =

∑

i≥2

1

i
C

(d)
k (zi)(vi − 1)y(zi)k+d +O(|v − 1|2y(|z2|)k+d)

= (v − 1)C̃
(d)
k (z)y(z2)k+d +O(|vi − 1|2y(|zi|)k+d),

where we used the property that

∑

i≥2

C
(d)
k (zi)

vi − 1

i(v − 1)

y(zi)k+d

y(z2)k+d
=
∑

i≥2

C
(d)
k (zi)

(1 + v + · · ·+ vi−1)

i

y(zi)k+d

y(z2)k+d

= C̃
(d)
k (z) +O(C̃(d)

k (z)(v − 1))

represents an analytic function in z and v, and thus its leading term, as v → 1, is our

function C̃
(d)
k (z). Finally, since C

(d)
k (z) = C(d)(z)+O(Lk) it follows that C̃

(d)
k (z) has a limit

C̃(d)(z) with the same order of convergence.
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Lemma 2.23. For z ∈ ∆ǫ(θ) and v ∈ Ξk (with the constants ǫ, θ, η̃ as in Lemma 2.20) we
have

w
(d)
k (z, v) =

(v − 1)y(z)k+dC
(d)
k (z)

1− y(z)dC
(d)
k (z)(v−1)
2

1−y(z)k

1−y(z) +O(|v − 1|)
.

Proof. w
(d)
k (z, v) satisfy the recursive relation

w
(d)
k+1(z, v) = z exp


∑

i≥1

1

i
y
(d)
k (zi, vi)


− y(z)

= z exp


∑

i≥1

1

i

(
w

(d)
k (zi, vi) + y(zi)

)

− y(z)

= y(z)
(
exp

(
w

(d)
k (z, v) + Σ

(d)
k (z, v)

)
− 1
)
,

and further, since by Lemma 2.22 it follows that Σ
(d)
k (z, v) = O(w(d)

k (z, v)Lk) = O(w(d)
k (z, v))

(for brevity, we omit the arguments now),

w
(d)
k+1 = y

[
(w

(d)
k +Σ

(d)
k ) +

(w
(d)
k +Σ

(d)
k )2

2
+O

(
(w

(d)
k +Σ

(d)
k )3

)]

= y(w
(d)
k +Σ

(d)
k )

(
1 +

(w
(d)
k +Σ

(d)
k )

2
+O

(
(w

(d)
k +Σ

(d)
k )2

))

= yw
(d)
k

(
1 +

Σ
(d)
k

w
(d)
k

)(
1 +

w
(d)
k

2
+O(Σ(d)

k ) +O
(
(w

(d)
k )2

))
.

From there, we obtain

y

w
(d)
k+1

·
(
1 +

Σ
(d)
k

w
(d)
k

)
=

1

w
(d)
k

1(
1 +

w
(d)
k
2 +O(Σ(d)

k ) +O
(
(w

(d)
k )2

))

=
1

w
(d)
k

(
1− w

(d)
k

2
+O(Σ(d)

k ) +O(w(d)2
k )

)

=
1

w
(d)
k

− 1

2
+O

(
Σ
(d)
k

w
(d)
k

)
+O(w(d)

k ).

This leads to a recursion

yk+1

w
(d)
k+1

=
yk

w
(d)
k

− Σ
(d)
k · y(z)k+1

w
(d)
k w

(d)
k+1

− 1

2
y(z)k +O

(
Σ
(d)
k · yk

w
(d)
k

)
+O(w(d)

k yk),
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which we can solve to

yk

w
(d)
k

=
1

w
(d)
0

−
k−1∑

ℓ=0

Σ
(d)
ℓ · y(z)ℓ+1

w
(d)
ℓ w

(d)
ℓ+1

− 1

2

k−1∑

ℓ=0

yℓ +O
(

k−1∑

ℓ=0

Σ
(d)
ℓ · yℓ

w
(d)
ℓ

)
+O(

k−1∑

ℓ=0

w
(d)
ℓ yℓ)

=
1

w
(d)
0

(
1− w(d)

0

k−1∑

ℓ=0

Σ
(d)
ℓ · yℓ+1

w
(d)
ℓ w

(d)
ℓ+1

− w(d)
0

1

2

1− yk
1− y +O(w(d)

0

1− Lk

1− L ) +O((w(d)
0 )2

1− y2k
1− y2 )

)
,

(2.31)

where we used that
Σ

(d)
ℓ yℓ

w
(d)
ℓ

= O(Lℓ) and that by Lemma 2.22 w
(d)
k = O(yw(d)

k−1) = O(ykw
(d)
0 ).

We now analyze the terms of (2.31). Again we apply Lemma 2.22 and (2.15) to obtain

w
(d)
0

k−1∑

ℓ=0

Σ
(d)
ℓ · y(z)ℓ+1

w
(d)
ℓ w

(d)
ℓ+1

= (v − 1)zZd−1

k−1∑

ℓ=0

C̃
(d)
ℓ (v − 1)y(z2)ℓ+d +O(|v − 1|2y(|z|2)ℓ+d)

C
(d)
ℓ C

(d)
ℓ+1y

2(ℓ+d)+1(v − 1)2(1 +O(ℓ|v − 1|))
yℓ+1

=
zZd−1

y(z)d

k−1∑

ℓ=0

C̃
(d)
ℓ y(z2)ℓ+d +O(|v − 1|2y(|z|2)ℓ+d)

C
(d)
ℓ C

(d)
ℓ+1y(z)

ℓ+d(1 +O(ℓ|v − 1|))

=
zZd−1

y(z)d

[
k−1∑

ℓ=0

C̃
(d)
ℓ

C
(d)
ℓ C

(d)
ℓ+1

y(z2)ℓ+d

y(z)ℓ+d
+

k−1∑

ℓ=0

O(|v − 1|2y(|z|2)ℓ+d)

C
(d)
ℓ C

(d)
ℓ+1y(z)

ℓ+d

](
1

1 +O(ℓ|v − 1|)

)

=
zZd−1

y(z)d




k−1∑

ℓ=0

C̃
(d)
ℓ

C
(d)
ℓ C

(d)
ℓ+1

y(z2)ℓ+d

y(z)ℓ+d
+

k−1∑

ℓ=0

O(|v − 1|2y(|z|2)ℓ+d)

C
(d)
ℓ C

(d)
ℓ+1y(z)

ℓ+d

︸ ︷︷ ︸
=O(|v−1|2Lℓ)



(1 +O(ℓ|v − 1|))

zZd−1

y(z)d




k−1∑

ℓ=0

C̃
(d)
ℓ

C
(d)
ℓ C

(d)
ℓ+1

y(z2)ℓ+d

y(z)ℓ+d
+

k−1∑

ℓ=0

C̃
(d)
ℓ

C
(d)
ℓ C

(d)
ℓ+1

y(z2)ℓ+d

y(z)ℓ+d

︸ ︷︷ ︸
=O(Lℓ)

O(ℓ|v − 1|) +O(|v − 1|2)




= c
(d)
k +O(|v − 1|),

where c
(d)
k denotes the first sum. Note that by (2.23),

zZd−1

y(z)d
= O(1).

Now turn to the error terms of (2.31) and observe that w
(d)
0

1−y2k

1−y2 = O(k|v − 1|y(z)d) =

O(y(z)d) = O(1) if k|v−1| ≤ η̃. Thus, we obtain the following representation for w
(d)
k (z, v):

w
(d)
k =

w
(d)
0 yk

1− c(d)k (z)− w
(d)
0
2

1−yk

1−y +O(|v − 1|)
.

We use the expressions

C
(d)
k+1 =

∑

i≥1

C
(d)
k

y(zi)k+d

y(z)k+d
and C̃

(d)
k =

∑

i≥2

C
(d)
k

y(zi)k+d

y(z2)k+d
,

which are consequences of Lemmas 2.19, Equation (2.24) and 2.22, to obtain

C̃
(d)
k (z) = (C

(d)
k+1(z)− C

(d)
k (z))

(
y(z)

y(z2)

)k+d

. (2.32)

49



Chapter 2. Random Pólya trees

This provides the telescope sum:

c
(d)
k =

zZd−1

y(z)d

k−1∑

ℓ=0

C
(d)
ℓ+1 − C

(d)
ℓ

C
(d)
ℓ C

(d)
ℓ+1

(2.33)

=
zZd−1

y(z)d

(
1

C
(d)
0

− 1

C
(d)
k

)
(2.34)

(2.35)

and hence, since C
(d)
0 =

γ
(d)
0

y(z)d
=

zZd−1

y(z)d
, we get

1− c(d)k =
zZ(Sd−1)

y(z)dC
(d)
k

,

which provides the result.

It is now easy to prove Theorem 2.15. With z = ρ(1 + s
n), v = e

it√
n , d and t 6= 0 fixed,

k = κ
√
n and representation (2.3) of y(z) we obtain the expansions:

v − 1 ∼ it√
n

1− y(z) ∼ b
√
−ρs
n

y(z)k ∼ 1− kb
√
−ρs
n

+ · · · ∼ e−κb
√−ρs

y(z)d ∼ 1− db
√
−ρs
n

+ · · · ∼ 1.

Since the functions C
(d)
k (z) are continuous and uniformly convergent to C(d)(z), they are

also uniformly continuous and thus C
(d)
k (z) ∼ C(d)(ρ) = Cdρ

d. This leads to

w
(d)
k (z, v) ∼

it√
n
Cdρ

de−κb
√−ρs

1− it√
n
Cdρd

(
1
2
1−e−κb

√−ρs

b
q

−ρs
n

)

=
1√
n
·

√−s it Cdρ
de−κb

√−ρs

√−s− itCdρd

2b
√
ρ

(
1− e−κb

√−ρs
)

=
Cdρ

d

√
n
· it

√−se 1
2
−κb

√−ρs

√−se 1
2
κb

√−ρs − itCdρd.

b
√
ρ sinh(12κb

√−ρs)
(2.36)

2.3.2 Finite dimensional limiting distributions

First we consider the case m = 2. The computation of the 2-dimensional limiting distri-
bution shows the general method of the proof. Iterative applications of the arguments will
eventually prove Theorem 2.13.
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Theorem 2.24. Let z = ρ(1+ s
n), v1 = e

it1√
n , v2 = e

it2√
n , k = κ

√
n and h = η

√
n. Moreover,

assume that | arg s| ≥ Θ > 0 and, as n → ∞, we have s = O(log2 n), whereas κ, t1 and t2

are fixed. Then, for large d, w
(d)
k,h(z, u) admits the local representation

w
(d)
k,h(z, v1, v2) ∼

Cρd√
n

×

(
it2 +

it1
√−se(−

1
2κb

√−ρs)

√−se(
1
2κb

√−ρs)− it1Cρd√
ρb

sinh ( 1
2
κb

√−ρs))

)
√−se(− 1

2
ηb

√−ρs)

√−se( 12ηb
√−ρs) − Cρd

b
√
ρ

(
it2 +

it1
√−se(−

1
2κb

√−ρs)

√−se(
1
2κb

√−ρs)− it1Cρd√
ρb

sinh ( 1
2
κb

√−ρs))

)
sinh (12ηb

√−ρs))
.

(2.37)

Note that y
(d)
k,h(z, v1, 1) = y

(d)
k (z, v1) and y

(d)
k,h(z, 1, v2) = yk+h(z, v2). Considering the first

derivative, we denote by

∂

∂v1
y
(d)
k,h(z, v1, v2) =: γ

(d)[v1]
k,h (z, v1, v2)

∂

∂v2
y
(d)
k,h(z, v1, v2) =: γ

(d)[v2]
k,h (z, v1, v2),

and by simple induction, we observe that:

γ
(d)[v1]
k,h (z, 1, 1) = γ

(d)
k (z, 1) = γ

(d)
k (z) = C

(d)
k (z)y(z)k+d

γ
(d)[v2]
k,h (z, 1, 1) = γ

(d)
k+h(z, 1) = γ

(d)
k+h(z) = C

(d)
k+h(z)y(z)

k+h+d. (2.38)

As |γ(d)[ui]
k,h (z, v1, v2)| ≤ γ

(d)[ui]
k,h (z, 1, 1) for i = 1, 2, v1 ∈ Ξk, v2 ∈ Ξk+h, and |z| ≤ ρ it

follows that |γ(d)[v1]k,h (z, v1, v2)| = O(y(z)k+d) and γ
(d)[v2]
k,h (z, v1, v2) ≤ O(y(z)k+h+d) in the

same regions. To be more precise, we can prove the following analogue to Lemma 2.20.

Lemma 2.25. There exist constants ǫ, θ, η̃1, η̃2, such that for z ∈ ∆ǫ(θ), v1 ∈ Ξk(η̃1) and
v2 ∈ Ξk+h(η̃2)

γ
(d)[v1]
k,h (z, v1, v2) + γ

(d)[v2]
k,h (z, v1, v2) = O(|y(z)|k+d)

Proof. Set

C
(d)[v1]
ℓ,h = sup

z∈∆ǫ
v1∈Ξk,v2∈Ξk+h

∣∣∣∣∣∣
γ
(d)[v1]
ℓ,h (z, v1, v2)

y(z)k+d

∣∣∣∣∣∣

C
(d)[v2]
ℓ,h = sup

z∈∆ǫ
v1∈Ξk,v2∈Ξk+h

∣∣∣∣∣∣
γ
(d)[v2]
ℓ,h (z, v1, v2)

y(z)k+h+d

∣∣∣∣∣∣
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As in the proof of Lemma 2.21, we apply Taylor’s theorem (in two variables) to get

|y(d)ℓ+1,h(z, v1, v2)| = |y(z)| exp


|w(d)

ℓ (z, v1, v2)|+
∑

i≥2

|w(d)
ℓ (zi, vi1, v

i
2)|

i




≤ |y(z)| exp
(
γ
(d)[v1]
ℓ,h (z, 1 + ϑ1(v1 − 1), 1 + ϑ2(v2 − 1))(v1 − 1)

+ γ
(d)[v2]
ℓ,h (z, 1 + ϑ1(v1 − 1), 1 + ϑ2(v2 − 1))(v2 − 1)

+
∑

i≥2

γ
(d)[v1]
ℓ,h (zi, 1 + ϑ1(v

i
1 − 1), 1 + ϑ2(v

i
2 − 1))

(vi1 − 1)

i

+ γ
(d)[v2]
ℓ,h (zi, 1 + ϑ1(v

i
1 − 1), 1 + ϑ2(v

i
2 − 1))

vi2 − 1

i

)
,

∣∣∣y(d)ℓ+1,h(z, v1, v2)
∣∣∣ ≤ |y(z)| exp

(
C

(d)[v1]
ℓ,h |v1 − 1|y(z)ℓ+d + C

(d)[v2]
ℓ,h |v2 − 1|y(z)ℓ+d +O(Lℓ)

)
,

where we use that, for i ≥ 2,

|γ(d)[v1]ℓ,h (zi, 1 + ϑ1(v
i
1 − 1), 1 + ϑ2(v

i
2 − 1))| ≤ |γ(d)[v1]ℓ,h (zi, 1, 1)| and

|γ(d)[v2 ]ℓ,h (xi, 1 + ϑ1(v
i
1 − 1), 1 + ϑ2(v

i
2 − 1))| ≤ |γ(d)[v2]ℓ,h (zi, 1, 1)|.

By using recursion (2.16) and Lemma 2.20, we obtain

C
(d)[v1]
ℓ+1,h = sup

z∈∆ǫ
v1∈Ξk ,v2∈Ξk+h

∣∣∣∣∣∣
y
(d)
ℓ+1,h(z, v1, v2)

y(z)

∣∣∣∣∣∣

∣∣∣∣∣∣
γ
(d)[v1]
ℓ,h (z, v1, v2) +

∑
i≥2 γ

(d)[v1]
ℓ,h (zi, vi1, v

i
2)

y(z)k+d

∣∣∣∣∣∣

≤ exp
(
C

(d)[v1]
ℓ,h

η1
k

+ C
(d)[v2]
ℓ,h

η2
k

+O(Lℓ)
)(

C
(d)[v1]
ℓ,h +O(Lℓ)

)

= C
(d)[v1]
ℓ,h exp

(
C

(d)[v1]
ℓ,h

η1
k

+C
(d)[v2]
ℓ,h

η2
k

)(
1 +O(Lℓ)

)
,

and analogously

C
(d)[v2]
ℓ+1,h ≤ C

(d)[v2]
ℓ,h exp

(
C

(d)[v1]
ℓ,h

η1
k

+ C
(d)[v2]
ℓ,h

η2
k

)(
1 +O(Lℓ)

)
.

We choose η1 and η2 such that e2co(C
(d)[v1]
0,h η1+C

(d)[v2]
0,h η2 ≤ 2. Then, by induction we get

C
(d)[v1]
ℓ,h ≤ C(d)[v1]

0,h

∏

j<ℓ

(1 +O(Lj))e2co(C
(d)[v1]
0,h η1+C

(d)[v2]
0,h η2)

ℓ
k ≤ 2C

(d)[v1]
0,h c0 = O(1),

C
(d)[v2]
ℓ,h ≤ C(d)[v2]

0,h

∏

j<ℓ

(1 +O(Lj))e2co(C
(d)[v1]
0,h η1+C

(d)[v2]
0,h η2)

ℓ
k ≤ 2C

(d)[v2]
0,h c0 = O(1).
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Note therefore that

C
(d)[v1]
0,h = sup

z∈∆ǫ
v1∈Ξk,v2∈Ξk+h

∣∣∣∣∣
zZd−1(y

(d)
h (z,v2))

y(z)d

∣∣∣∣∣ = O(1)

C
(d)[v1]
0,h = sup

z∈∆ǫ
v1∈Ξk,v2∈Ξk+h

∣∣∣∣∣∣
γ
(d)[v2]
0,h (z, v1, v2) + (v1 − 1)z ∂

∂v2
Zd−1(yh(z,v2))

y(z)h+d

∣∣∣∣∣∣

= O


 sup

z∈∆ǫ
v1∈Ξk,v2∈Ξk+h

∣∣∣∣∣∣
γ
(d)[v2]
0,h (z, v1, v2)

y(z)h+d

∣∣∣∣∣∣


 = O(1).

Let

γ
(d)[2v1]
k,h (z, v1, v2) :=

∂2

∂v21
y
(d)
k,h(z, v1, v2),

γ
(d)[2v2]
k,h (z, v1, v2) :=

∂2

∂v22
y
(d)
k,h(z, v1, v2),

γ
(d)[v1v2]
k,h (z, v1, v2) :=

∂2

∂v1∂v2
y
(d)
k,h(z, v1, v2),

γ
(d)[2]
k,h (z, v1, v2) := γ

(d)[2v1 ]
k,h (z, v1, v2) + γ

(d)[2v2]
k,h (z, v1, v2) + 2γ

(d)[v1v2]
k,h (z, v1v2).

Lemma 2.26. With the same constants ǫ, θ, η̃1, η̃2 as in Lemma 2.25 and for |v1| ≤ 1, |v2| ≤
1 and |z| ≤ ρ− η for some η > 0

γ
(d)[2v1]
k,h (z, v1, v2) = O(y(|z|)k+d)

γ
(d)[v1v2]
k,h (z, v1, v2) = O(y(|z|)k+h+2d−1)

γ
(d)[2v2]
k,h (z, v1, v2) = O(y(|z|)k+h+d)

uniformly. Furthermore, for z ∈ ∆ǫ, v1 ∈ Ξk and v2 ∈ Ξk+h

γ
(d)[2]
k,h (z, v1, v2) = O((k + h)y(z)k+d)

,

Proof. The proof of the statements on the partial derivatives is identical to the one of Lemma

2.21, as we can derive identical recursive relations for γ
(d)[2v1]
k,h (z, v1, v2) and γ

(d)[2v2 ]
k,h (z, v1, v2)

and a similar one for γ
(d)[v1v2]
k,h (z, v1, v2):

γ
(d)[v1v2]
k+1,h (z, v1, v2) = y

(d)
k+1,h(z, v1, v2)


∑

i≥1

∂

∂v1
y
(d)
k,h(z

i, vi1, v
i
2)v

i−1
1




∑

i≥1

∂

∂v2
y
(d)
k,h(z

i, vi1, v
i
2)v

i−1
2




+ y
(d)
k+1,h(z, v1, v2)

∑

i≥1

iγ
(d)[v1v2]
k,h (zi, vi1, v

i
2)v

(i−1)
1 v

(i−1)
2 .
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Then we prove the three statements inductively on k with the following initial conditions

γ
(d)[2v1]
0,h (z, v1, v2) = 0,

γ
(d)[2v2]
0,h (z, v1, v2) ≤ γ(d)[2]h (z, v2) = O(y(z)h+d),

and with ∂
∂si
Zn(s1, . . . , sn) =

1
iZn−i(s1, . . . , sn−i) (cf [48, Chapter 2, page 25])

γ
(d)[v1v2]
0,h (z, v1, v2) = z

∂

∂v2
Zd−1(y

(d)
h (z,v2))

=
d−1∑

r=1

∂

∂sr
Zd−1(s1, . . . , sd−1)

∣∣∣∣∣
si=yh(zi,v

i
2)

γ
(d)
h (zr, vr2)rv

r−1
2

=
d−1∑

r=1

1

r
Zd−r−1(s1, . . . , sd−1−r)

∣∣∣∣∣
si=yh(zi,v

i
2)

γ
(d)
h (zr, vr2)rv

r−1
2

= O
(
Zd−2(y

(d)
h (z,v2))γ

(d)
h (z, v2)

)

= O(y(z)h+2d−2).

For the proof of the last statement we define for ℓ ≤ k

D
(d)
ℓ,h = sup

z∈∆ǫ
v1∈Ξk,v2∈Ξk+h

∣∣∣∣∣∣
γ
(d)[2]
ℓ,h (z, u, v)

y(z)ℓ+d

∣∣∣∣∣∣
,

as in the proof of the second part of Lemma 2.21. We use the estimate

∣∣∣y(d)ℓ+1,h(z, v1, v2)
∣∣∣ ≤ |y(z)| exp

(
C

(d)[v1]
ℓ,h

η1
k

+ C
(d)[v2]
ℓ,h

η2
k

+O(Lℓ)
)
, (2.39)

which we obtained in the proof of Lemma 2.25. From the recursive description, we obtain

D
(d)
ℓ+1,h = sup

z∈∆ǫ
v1∈Ξk ,v2∈Ξk+h

∣∣∣∣∣∣
γ
(d)[2v1 ]
ℓ+1,h (z, v1, v2) + γ

(d)[2v2]
ℓ+1,h (z, v1, v2) + γ

(d)[v1v2]
ℓ+1,h (z, v1v2)

y(z)k+d+1

∣∣∣∣∣∣

= sup
z∈∆ǫ

v1∈Ξk ,v2∈Ξk+h

∣∣∣∣∣∣
y
(d)
ℓ+1,h(z, v1, v2)

y(z)

∣∣∣∣∣∣

×

∣∣∣∣∣∣

∑2
r=1(

∑
i≥1 γ

(d)[ur ]
ℓ,h (zi, vi1, v

i
2)u

i−1
r )2 +

∏2
r=1(

∑
i≥1 γ

(d)[ur ]
ℓ,h (zi, vi1, v

i
2)u

i−1
r )

y(z)ℓ+d

+

∑
i≥1 γ

(d)[2]
ℓ,h (z, v1, v2) +

∑2
r=1

∑
i≥2(i− 1)γ

(d)[ur ]
ℓ,h (zi, vi1, v

i
2)u

i−2
r

y(z)ℓ+d

∣∣∣∣∣∣

By applying known bounds from Lemma 2.25 and from the previous statement, and from
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(2.38) and (2.39), similar to the proof of Lemma 2.21, we can derive

D
(d)
ℓ+1,h ≤ exp

(
C

(d)[v1]
ℓ,h

η1
k

+ C
(d)[v2]
ℓ,h

η2
k

+O(Lℓ)
)

×
(
(C

(d)[v1]
ℓ,h )2|y(z)|k+d + C

(d)[v1]
ℓ,h C

(d)[v2]
ℓ,h |y(z)|k+h+d + (C

(d)[v2]
ℓ,h )2|y(z)|k+2h+d +D

(d)
ℓ,h +O(Lℓ)

)

≤ D(d)
ℓ,h exp

(
C

(d)[v1]
ℓ,h

η1
k

+ C
(d)[v2]
ℓ,h

η2
k

)
(1 +O(Lℓ))

+ exp
(
C

(d)[v1]
ℓ,h

η1
k

+ C
(d)[v2]
ℓ,h

η2
k

)(
(C

(d)[v1]
ℓ,h )2 + C

(d)[v1]
ℓ,h C

(d)[v2]
ℓ,h + (C

(d)[v2]
ℓ,h )2 +O(Lℓ))

)

= D
(d)
ℓ,hα

(d)
ℓ,h + β

(d)
ℓ,h .

As in the proof of Lemma 2.21 we get

D
(d)
k,h ≤ α0,hD0,h +

k−1∑

j=0

β
(d)
j,h

k−1∏

i=j+1

α
(d)
j,h (2.40)

= O(k) +O(D(d)
0,h). (2.41)

It remains to prove that D
(d)
0,h = O(h):

γ
(d)[2v1]
0,h (z, v1, v2) = 0,

γ
(d)[2v2]
0,h (z, v1, v2) = γ

(d)[2]
h (z, v2) +

∂2

∂v22
Zd−1(y

(d)
h (z,v2))

= γ
(d)[2]
h (z, v2) +

d−1∑

l=1

d−l−1∑

j=1

Zd−j−l−1(y
(d)
h (z,v2))γ

(d)
h (zl, vl)vl−1

+

d−1∑

l=1

Zd−l−1(y
(d)
h (z,v2))γ

(d)[2]
h (zl, vl)ul−1

+
d−1∑

l=1

Zd−l−1(y
(d)
h (z,v2))(l − 1)γ

(d)
h (zl, vl)ul−2

= O(hy(z)h+d) +O(y(z)h+2d−3 +O(hy(z)h+2d−2 +O(y(z)h+2d−2)

= O(hy(z)h+d)

and

γ
(d)[v1v2]
0,h (z, v1, v2) =

∂

∂v2
Zd−1(y

(d)
h (z,v2)) = O(y(z)h+2d−2)

D
(d)
0,h = sup

z∈∆ǫ
v1∈Ξk,v2∈Ξk+h

∣∣∣∣∣∣
γ
(d)[2v1]
0,h (z, v1, v2) + γ

(d)[2v2 ]
0,h (z, v1, v2) + γ

(d)[v1v2]
0,h (z, v1, v2)

y(z)d

∣∣∣∣∣∣

≤ sup
z∈∆ǫ

v1∈Ξk,v2∈Ξk+h

O(hy(z)h + y(z)h+2d−2) = O(h).
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Remark. Obviously, for z ∈ ∆ǫ and v1 ∈ Ξk, v2 ∈ Ξk+h the latter statement also holds
for the partial derivatives:

γ
(d)[2v1]
k,h (z, v1, v2) = O(ky(z)k+d),

γ
(d)[2v2]
k,h (z, v1, v2) = O((k + h)y(z)k+h+d),

γ
(d)[v1v2]
k,h (z, v1, v2) = O((k + h)y(z)k+d).

Lemma 2.27. For z ∈ ∆ǫ, v1 ∈ Ξk and v2 ∈ Ξk+h, with the same constants as in the
previous lemmas, we can approximate

w
(d)
k,h(z, v1, v2) =C

(d)
k (z)(v1 − 1)y(z)k+d +C

(d)
k+h(z)(v2 − 1)y(z)k+h+d

+O((k + h)y(z)k+d(|v1 − 1|2 + |v2 − 1|2)).

Furthermore

Σ
(d)
k,h(z, v1, v2) =C̃

(d)
k (z2)(v1 − 1)y(z2)k+d + C̃

(d)
k+h(z)(v2 − 1)y(z2)k+h+d

+O(y(|z|2)k|v1 − 1|2 + y(|z|2)k+h|v2 − 1|2).

Proof. For the first statement, we expand w
(d)
k,h(z, v1, v2) into a Taylor polynomial of degree

2 around v1 = v2 = 1 and obtain

w
(d)
k,h(z, v1, v2) = γ

(d)
k (z)(v1 − 1) + γ

(d)
k+h(z)(v2 − 1) +R

with |R| ≤ 1

2

(
γ
(d)[2v1]
k,h (z, 1 + ϑ1(v1 − 1), 1 + ϑ2(v2 − 1))(v1 − 1)2

+ 2γ
(d)[v1v2]
k,h (z, 1 + ϑ1(v1 − 1), 1 + ϑ2(v2 − 1))(v1 − 1)(v2 − 1)

+γ
(d)[2v2]
k,h (z, 1 + ϑ1(v1 − 1), 1 + ϑ2(v2 − 1))(v2 − 1)2

)
.

Hence,

w
(d)
k,h(z, v1, v2) = C

(d)
k (z)(v1 − 1)y(z)k+d + C

(d)
k+h(z)(v2 − 1)y(z)k+h+d

+O((k + h)y(z)k+d(|v1 − 1|2 + |v2 − 1|2)),

where we can neglect the mixed derivatives as either (v1 − 1)2 or (v2 − 1)2 will determine
the dominant part of the error term. For the second part we again use a Taylor polynomial,
using the fact that |zi| < ρ < 1 and |uir − 1| ≤ i|ur − 1| for i > 2, r = 1, 2, hence the result
follows immediately.

Note that the terms v1− 1 and v2− 1 are asymptotically proportional: v2
v1

= e
it1√
n −1

e
it2√
n −1

∼ t2
t1
,

and that y(z2)k+h+d is exponentially smaller than y(z2)k+d as h = ξ
√
n.

Lemma 2.28. There exist constants ǫ, θ, η̃1, η̃2 such that w
(d)
k,h = w

(d)
k,h(z, v1, v2) is given by

w
(d)
k,h =

w
(d)
0,hy(z)

k

1− f (d)k − w
(d)
0,h

2
1−y(z)k

1−y(z) +O(|v1 − 1|+ |v2 − 1|
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for v1 ∈ Ξk(η̃1), v2 ∈ Ξk+h(η̃2) and z ∈ ∆ǫ(θ), where f
(d)
k is given by

f
(d)
k (z, v1, v2) = w

(d)
0,h(z, v1, v2)

k−1∑

l=0

Σl,h(z, v1, v2)y(z)
l+1

w
(d)
l,h (z, v1, v2)wl+1,h(z, v1, v2)

. (2.42)

Proof. We can argue similarly as in the proof of Lemma 2.23 and derive the recursive
description

w
(d)
k+1,h = yw

(d)
k,h


1 +

Σ
(d)
k,h

w
(d)
k,h




1 +

w
(d)
k,h

2
+O(w2(d)

k,h ) +O(Σ(d)
k,h)


 ,

and equivalently

y

w
(d)
k+1,h

·


1 +

Σ
(d)
k,h

w
(d)
k,h


 =

1

w
(d)
k,h

− 1

2
+O(w(d)

k,h) +O


Σ

(d)
k,h

w
(d)
k,h


 .

Further we get

yk+1

w
(d)
k+1,h

=
yk

w
(d)
k,h

−
Σ
(d)
k,h · y(z)k+1

w
(d)
k,hw

(d)
k+1,h

− 1

2
y(z)k +O(w(d)

k,hy
k) +O


Σ

(d)
k,h · yk

w
(d)
k,h


 .

Solving the recurrence leads to

yk

w
(d)
k,h

=
1

w
(d)
0,h

−
k−1∑

l=0

Σ
(d)
l,h · y(z)l+1

w
(d)
l,hw

(d)
l+1,h

− 1

2

1− yk
1− y +O

( k−1∑

l=0

w
(d)
ℓ,hy

ℓ

︸ ︷︷ ︸
=O(w0,hy2ℓ)

)
+O

( k−1∑

l=0

Σ
(d)
l,h · yl

w
(d)
l,h︸ ︷︷ ︸

=O(Ll)

)

=
1

w
(d)
0,h



1−w(d)

0,h

k−1∑

l=0

Σ
(d)
l,hy(z)

l+1

w
(d)
l,hw

(d)
l+1,h︸ ︷︷ ︸

=:f
(d)
k (z,v1,v2)

−
w

(d)
0,h

2

1− yk
1− y +O(w2(d)

0,h

1− y2k
1− y2 ) +O(w(d)

0,h

1− Lk

1− L )



.

Finally, observe that

w
(d)
0,h = y

(d)
h (z, v) + (u− 1)zZd−1(y

(d)
h (z,v))− y(z)

= w
(d)
h + (u− 1)zZd−1(y

(d)
h (z,v))

= C
(d)
h (z)(v2 − 1)y(z)h+d + (v1 − 1)y(z)d = O(|v1 − 1|+ |v2 − 1|).

Proof of Theorem 2.24. In the following, we denote by U := (v1 − 1)y(z)d and W :=

w
(d)
h (z, v2). Note that w0,h ∼ U +W . By Lemma 2.27 we obtain for w

(d)
ℓ,h , 0 ≥ ℓ ≥ k − 1
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(note that C
(d)
ℓ+h(z) = C

(d)
h (z)(1 + Lℓ))

w
(d)
ℓ,h(z, v1, v2) = C

(d)
ℓ (z)(v1 − 1)y(z)ℓ+d + C

(d)
ℓ+h(z)(v2 − 1)y(z)ℓ+h+d

+O
(
(ℓ+ h)y(z)ℓ(|v1 − 1|2 + |v2 − 1|2)

)

= y(z)ℓ
(
C

(d)
ℓ U + C

(d)
h (z)(v2 − 1)y(z)h+d

+O
(
(ℓ+ h)(|v1 − 1|2 + |v2 − 1|2)

))

= y(z)ℓ(C
(d)
ℓ (z)U +W )(1 +O(h(|v1 − 1|+ |v2 − 1|))

We use representation (2.32) for C̃ℓ(z), which we already used in the proof of Lemma 2.23,
and omit all error terms, to obtain by telescoping

f
(d)
k (z, v1, v2) = w

(d)
0,h(z, v1, v2)

k−1∑

ℓ=0

y(z)ℓ+1
(
C̃

(d)
ℓ (z)(v1 − 1)y(z2)k+d

)

y(z)ℓ(C
(d)
ℓ (z)U +W )y(z)ℓ+1(C

(d)
ℓ+1(z)U +W )

= Uw
(d)
0,h(z, v1, v2)

k−1∑

l=0

C̃
(d)
l (z)

(
y(z2)
y(z)

)l+d

(C
(d)
l (z)U +W )(C

(d)
l+1(z)U +W )

= w
(d)
0,h(z, v1, v2)

k−1∑

l=0

(C
(d)
l+1(z)U +W )− (C

(d)
l (z)U +W )

(C
(d)
l (z)U +W )(C

(d)
l+1(z)U +W )

= w
(d)
0,h(z, v1, v2)

(
1

C
(d)
0 (z)U +W

− 1

C
(d)
k (z)U +W

)
.

As we know from (2.23), C
(d)
0 =

zZ(Sd−1)
y(z)d

= O(1) near u = 1 (analytic), hence

f
(d)
k (z, u, v) ∼

(
1− (U +W )

C
(d)
k (z)U +W

)
.

Using

C
(d)
k (z) ∼ Cdρ

d

(v1 − 1) ∼ it1√
n

y(z)k ∼ e−κb
√−ρs

1− y(z) ∼ b
√
ρs

n

and w
(d)
0,h(z, v1, v2) ∼W + U , we can derive
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w
(d)
k,h =

w
(d)
0,hy(z)

k

((U+W )
CdρdU+W

− w
(d)
0,h

2
1−y(z)k

1−y(z)

=
(Cdρ

d it1√
n
+ w

(d)
h (z, v))

√−se−κb
√−ρs

√−s− ((Cdρd
it1√
n
+ w

(d)
h (z, v)) 1

2b
√

ρ
n

(1− e−κb
√−ρs)

=
Cdρ

d

√
n

(it1 + w
(d)
h (z, v))

√−se−κ
2
b
√−ρs

√−seκ
2
b
√−ρs − ((Cdρd

it1√
n
+ w

(d)
h (z, v)) 1

b
√

ρ
n

(sinh(κ2 b
√−ρs))

,

and with the expansion (2.21) of w
(d)
h (z, v2) with v2 = e

it2√
n and h = η

√
n, given by Theorem

2.15, we can derive the expansion given in Theorem 2.24.

Proof of Theorem 2.13. The characteristic function of the two dimensional distribution is
given by

φ
(d)
k,k+h,n(t1, t2) =

1

yn
[zn]y

(d)
k,h(z, e

it1√
n , e

it2√
n )

=
1

2πiyn

∫

Γ
y
(d)
k,h(z, e

it1√
n , e

it2√
n )

dz

zn+1

= 1 +
1

2πiyn

∫

Γ
w

(d)
k,h(z, e

it1√
n , e

it2√
n )

dz

zn+1
. (2.43)

We use the same contour as in the one dimensional case. With the same arguments, only

integration over γ contributes to the result, hence the representation (2.37) of w
(d)
k,h leads

to:

φ
(d)
k,h,n(t1, t2) = 1 +

√
2√
πi

×
1+i log2 n∫

1−i log2 n

Cdρ
d

b
√
2ρ
i

(
t1 +

t2
√−se(−

1
2ηb

√−ρs)

√−se(
1
2ηb

√−ρs)− it2Cdρ
d

√
ρb

sinh ( 1
2
ηb

√−ρs))

)
√−se(− 1

2
κb

√−ρs)

√−se(−κ
2
b
√−ρs) − iCdρd

2b
√
ρ

(
t1 +

t2
√−se(−

1
2ηb

√−ρs)

√−se(
1
2ηb

√−ρs)− it2Cdρ
d

√
ρb

sinh ( 1
2
ηb

√−ρs))

)
(sinh (κ2 b

√−ρs))

n→∞−−−→ ψκ,ξ(t1, t2)

where ψκ,ξ(t1, t2) is the characteristic function of the random variable Cdρ
d

√
2ρb

(
l
(

b
√
ρ

2
√
2
κ,

b
√
ρ

2
√
2
ξ
))

.

2.3.3 Tightness

We must show the estimate (2.14) in Theorem 2.14. The fourth moment in (2.14) can be

obtained by by applying the operator
(
v ∂
∂v

)4
and setting v = 1 afterwards. Hence, using
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the transfer lemma of Flajolet and Odlyzko [23] it turns out that it suffices to show that
[(

∂

∂v
+ 7

∂2

∂v2
+ 6

∂3

∂v3
+

∂4

∂v4

)
ỹr,h

(
z, v, v−1

)]

v=1

= O
(

h2

1− |y(z)|

)
(2.44)

uniformly for z ∈ ∆ and h ≥ 1 (see [21, pp.2046] for the detailed argument).
Set

γ
(d)[j]
k (z) =

[
∂jyk(z, v)

∂vj

]

v=1

and γ
(d)[j]
k,h (z) =

[
∂j ỹr,h

(
z, v, 1v

)

∂vj

]

v=1

.

The left-hand side of (2.44) is a linear combination of γ
(d)[j]
k,h (z) for j = 1, 2, 3, 4. Therefore

we need bound for those quantities. We will derive upper bounds for all j since this more
general result is easier to achieve. We start with an auxiliary result.

Lemma 2.29. Let j be a positive integer. Under the assumption that for all i ≤ j the

bound γ
(d)[i]
k (z) = O

(
|z/ρ|k

)
holds uniformly for |z| ≤ ρ, we have

[(
∂
∂v

)j
Σ
(d)
k

]
v=1

= O
(
Lk
)

for some positive constant L < 1.

Proof. By Faà di Bruno’s formula we have
[(

∂

∂v

)j

Σ
(d)
k

]

v=1

=
∑

i≥2

1

i

[(
∂

∂v

)j

w
(d)
k (zi, vi)

]

v=1

=
∑

i≥2

1

i

∑
Pj

m=1 mνm=j

j!

ν1! · · · νj !
γ
(d)[ν1+···+νm]
k (zi, 1)

j∏

λ=1

(
1

λ!

[(
∂

∂v

)λ

vi

]

v=1

)νλ

.

By our assumption we have γ
(d)[ν1+···+νm]
k (zi, 1) = O

(
|zi/ρ|k

)
. The product is essentially a

derivative of order j =
∑
λνλ of vi and can therefore be estimate by O

(
ij
)
. So the whole

expression is bounded by a constant times
∑

i≥2 i
j−1zik/ρk = O

(
(|z2|/ρ)ki

)
= O

(
(ρ+ ε)k

)
.

Hence we can choose L = ρ+ ε to get the desired bound.

Exactly the same line of arguments yield the analogous result for two levels.

Lemma 2.30. Let j be a positive integer and set

Σ̃
(d)
k,h =

∑

i≥2

1

i
w

(d)
k,h(z

i, vi, v−i). (2.45)

Under the assumption that for all i ≤ j the bound γ
(d)[i]
k,h (z) = O

(
|z/ρ|k

)
holds uniformly

for |z| ≤ ρ we have
[(

∂
∂v

)j
Σ̃
(d)
k,h

]
v=1

= O
(
Lk
)
for some positive constant L < 1.

With the auxiliary lemmas we can easily get bounds for γ
(d)[j]
k (z) and γ

(d)[j]
k,h (z).

Lemma 2.31. We have

γ
(d)[1]
k (z) =

{
O (1) uniformly for z ∈ ∆,
O
(
|z/ρ|k

)
uniformly for |z| ≤ ρ (2.46)

and for ℓ > 1

γ
(d)[ℓ]
k (z) =

{
O
(
min

(
kℓ−1, kℓ−2

1−|y(z)|

))
uniformly for z ∈ ∆,

O
(
|z/ρ|k

)
uniformly for |z| ≤ ρ.

(2.47)
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Proof. The estimate (2.46) essentially follows from Lemma 2.19: We know

γ
(d)[1]
k (z) = C(d)(z)y(z)k+d

(
1 +O

(
Lk
))

= O (1)

with some 0 < L < 1 and |y(z)| ≤ 1 and this is sufficient to show the first part of (2.46).
If |z| ≤ ρ we can exploit the convexity of y(z) on the positive real line to get |y(z)| ≤ |z/ρ|.

This implies γ
(d)[1]
k (z) = O

(
|z/ρ|k+d

)
, an even better bound than stated in the assertion.

Now we are left with the induction step. Again we use Faà di Bruno’s formula and the

fact that w
(d)
k (z, 1) = Σ

(d)
k (z, 1) = 0 and obtain

γ
(d)[ℓ]
k (z) =

[
∂

∂v
w

(d)
k (z, v)

]

v=1

= y(z)

[
∂

∂v
exp

(
w

(d)
k−1(z, v) + Σ

(d)
k−1(z, v)

)]

v=1

=
∑

Pℓ
i=1 iλi=ℓ

ℓ!

λ1! · · · λℓ!
ℓ−1∏

j=1

(
1

j!

[(
∂

∂v

)j (
w

(d)
k−1(z, v) + Σ

(d)
k−1(z, v)

)]

v=1

)λj

+ y(z)

[(
∂

∂v

)ℓ (
w

(d)
k−1(z, v) + Σ

(d)
k−1(z, v)

)]

v=1

=
∑

Pℓ
i=1 iλi=ℓ

ℓ!

λ1! · · · λℓ!
ℓ−1∏

j=1

(
γ
(d)[j]
k−1 (z) + Γ

(d)[j]
k−1 (z)

j!

)λj

+ y(z)(γ
(d)[ℓ]
k−1 (z) + Γ

(d)[ℓ]
k−1 ,

(2.48)

where Γ
(d)[ℓ]
k−1 =

[(
∂
∂v

)ℓ
Σ
(d)
k−1(z, v)

]
v=1

.

Consider the case |z| ≤ ρ. The product comprises only terms which essentially have

the form γ
(d)[j]
k−1 (z) + Γ

(d)[j]
k−1 (z) with j < ℓ. Thus by the induction hypothesis, γ

(d)[j]
k−1 (z) =

O
(
|z/ρ|j

)
. Therefore the assumption of Lemma 2.29 is satisfied and the terms as a whole

are bounded by C · |z/ρ|j . Since ∑ℓ−1
j=1 jλj = ℓ we get

γ
(d)[ℓ]
k (z) = y(z)(γ

(d)[ℓ]
k−1 (z) + Γ

(d)[ℓ]
k−1 +O

(
|z/ρ|ℓ

)
.

So we finally get the desired estimate by induction on k and Lemma 2.29, starting with

γ
(d)[ℓ]
0 =

{
zZd−1(y(z)) if ℓ = 1,

0 else.
(2.49)

Now let us turn to general z ∈ ∆. Like before we focus first on the terms of the product
of (2.48). Again the induction hypothesis guarantees that the assumption of Lemma 2.29

is satisfied and so Γ
(d)[j]
k−1 (z) is exponentially small. Furthermore, the induction hypothesis

implies γ
(d)[j]
k−1 (z) = O

(
min

(
kj−1, kj−2

1−|y(z)|

))
. Since γ

(d)[1]
k−1 (z) = O (1) this implies

ℓ−1∏

j=1

(
γ
(d)[j]
k−1 (z) + Γ

(d)[j]
k−1 (z)

j!

)λj

= O
(
min

(
k

Pℓ−1
j=1(j−1)λj ,

k
Pℓ−1

j=2(j−2)λj

(1− |y(z)|)
Pℓ−1

j=2 λj

))
. (2.50)

Set

A = k
Pℓ−1

j=1(j−1)λj and B =
k

Pℓ−1
j=2(j−2)λj

(1− |y(z)|)
Pℓ−1

j=2 λj

.
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Note that
∑ℓ−1

j=1(j − 1)λj = ℓ−∑ℓ−1
j=1 λj. Since the term corresponding to λℓ = 0 in Faà di

Bruno formula is the very last term in (2.48), we must have
∑ℓ−1

j=1 λj ≥ 2 and thus A ≤ kℓ−2.
Moreover, we have

ℓ−1∑

j=2

(j − 2)λj = ℓ− k1 − 2

ℓ−1∑

j=2

kj ≤ ℓ− 3

since
∑ℓ−1

j=2 λj < 2 implies k1 > 0, and in particular if
∑ℓ−1

j=2 λj = 0 then k1 = ℓ. Therefore

B ≤ kℓ−3

(1− |y(z)|)
Pℓ−1

j=2 λj

.

We want to show that

B ≤ kℓ−3

1− |y(z)| . (2.51)

Set Aj = kj−1 and Bj = kj−2/(1−|y(z)|). Note that Bj < Aj is equivalent to 1/(1−|y(z)|) < k.
Therefore the term B appears in our upper bound (2.50) if and only if z is such that

1/(1− |y(z)|) < k. But this implies that B ≤ kℓ−3

1−|y(z)| as desired, because the desired bound
is equivalent to

1

1− |y(z)) < k(−2+2
Pℓ−1

j=2 λj)/(−1+
Pℓ−1

j=2 λj)
= k1+α

where α =
∑ℓ−1

j=1 λj − 1 > 0 and hence the desired bound (2.51) is weaker than 1/(1 −
|y(z)|) < k.

Now let ak := γ
(d)[ℓ]
k (z). We have shown so far that

ak = y(z)ak−1 + y(z)Ak with Ak = O
(
min

(
kℓ−2,

kℓ−3

1− |y(z)|

))

and we know that a0 is given by (2.49). Solving this recurrence relation gives

ak = y(z)ka0 +O
(∣∣∣∣y(z)

1− y(z)k
1− y(z)

∣∣∣∣ ·min

(
kℓ−2,

kℓ−3

1− |y(z)|

))
.

Since
∣∣∣y(z)1−y(z)k

1−y(z)

∣∣∣ ≤ k and a0y(z)
k = O

(
y(z)k+d

)
= O (1) we get the desired bound for ak

and the proof is complete.

Lemma 2.32. We have

γ
(d)[1]
k,h (z) =

{
O (1) uniformly for z ∈ ∆,
O
(
|z/ρ|k

)
uniformly for |z| ≤ ρ, (2.52)

and for ℓ > 1

γ
(d)[ℓ]
k,h (z) =

{
O
(
min

(
kℓ−1, kℓ−2

1−|y(z)|

))
uniformly for z ∈ ∆,

O
(
|z/ρ|k

)
uniformly for |z| ≤ ρ.
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Proof. As the bounds are precisely like in the previous lemma, the induction step works in
an analogous way, using Lemma 2.30 instead of Lemma 2.29. Thus we only have to show
the initial step of the induction, Eq. (2.52).

We can use a similar reasoning as in the proof of [21, Lemma 7]. Indeed, by applying the
operator

[
∂
∂v ·

]
v=1

to (2.16) we obtain the recurrence relation

γ
(d)[1]
k+1,h(z) = y(z)

∑

i≥1

γ
(d)[1]
k,h (zi)

with initial value γ
(d)[1]
0,h (z) = zZd−1(y(z))− γh(x). Induction on k gives the representation

γ
(d)[1]
k,h (z) = γ

(d)[1]
k (z) − γ

(d)[1]
k+h (z) and using γ

(d)[1]
k (z) = C(d)(z)y(z)k+d(1 + O

(
Lk
)
) from

Lemma 2.19 we obtain

γ
(d)[1]
k (z) = O

(
sup
z∈∆
|y(z)k+d(1− y(z)h)|+ Lk

)
= O

(
h

k + d+ h

)
.

Since the last term is bounded the proof is complete.

Now, applying Lemma 2.32 to (2.44) proves tightness and Theorem 2.14 after all.

2.3.4 The joint distribution of two degrees

We want to gain knowledge on the correlation between two different degrees d1, d2 in a
certain level k = κ

√
n.

The covariance Cov(X(d1)
n (k),X

(d2)
n (k))

The covariance of two random variables X and Y is given by

Cov(X,Y ) = E(XY )− E(X)E(Y ).

In this section, we will prove the following result on the covariance function of the two ran-

dom variables X
(d1)
n (k) and X

(d2)
n (k), counting the vertices of degree d1 and d2, respectively,

on level k.

Proposition 2.33. The covariance Cov(X(d1)
n (k),X

(d2)
n (k)) of random variables X

(d1)
n (k)

and X
(d2)
n (k) counting vertices of degrees d1 and d2, with d1 6= d2 fixed, at level k = κn in

a random Pólya tree of size n is asymptotically given by

Cov(X(d1)
n (k),X(d2)

n (k)) =

Cd1Cd2ρ
d1+d2n

(
2

b2ρ

(
e−

κ2b2ρ
4 + e−κ2b2ρ

)
− κ2e−κ2b2ρ

2

)(
1 +O

(
1√
n

))
,

(2.53)

as n tends to infinity.

Let y
(d1d2)
k (z, v1, v2) be the generating function of Pólya trees where all vertices of degrees

d1 and d2 on level k are marked and counted by v1 and v2, respectively. The y
(d1d2)
k (z, v1, v2)

are given by a similar recursion as (2.15), namely

y
(d1d2)
0 (z, v1, v2) = y(z) + (v1 − 1)zZd1−1(y(z), y(z

2), . . . , y(zd−1))

+ (v2 − 1)zZd2−1(y(z), y(z
2), . . . , y(zd−1))

y
(d1d2)
k+1 (z, v1, v2) = z exp


∑

i≥1

y
(d1d2)
k (zi, vi1, v

i
2)

i


 .

(2.54)
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To compute E
(
X

(d1)
n (k) ·X(d2)

n (k))
)
we need to determine

1

yn
[zn]

[
∂2

∂v1v2
y
(d1d2)
k (z, v1, v2)

]

v1=v2=1

,

while E(X(d1)
n (k)) and E(X(d2)

n (k)) are given by

1

yn
[zn]γ

(d1)
k (z) and

1

yn
[zn]γ

(d2)
k (z), respectively.

We use the notations

γ
(d1)
k (z, v1, v2) =

∂

∂v1
y
(d1d2)
k (z, v1, v2), γ

(d2)
k (z, v1, v2) =

∂

∂v2
y
(d1d2)
k (z, v1, v2),

as well as

γ̃
(d1d2)
k (z, v1, v2) =

∂2

∂v1v2
y
(d1d2)
k (z, v1, v2) and γ̃

(d1d2)
k (z) = γ̃

(d1d2)
k (z, 1, 1).

We further define w
(d1d2)
k (z, v1, v2) and Σ

(d1d2)
k (z, v1, v2) by

w
(d1d2)
k (z, v1, v2) = y

(d1d2)
k (z, v1, v2)− y(z)

Σ
(d1d2)
k (z, v1, v2) =

∑

i≥2

w
(d1d2)
k (zi, vi1, v

i
2)

i
.

In analogy to Lemma 2.16 and Corollary 2.17 can prove the following results.

Lemma 2.34. Let |z| ≤ ρ2 + ε for sufficiently small ε and |v1| ≤ 1 and |v2| ≤ 1. Then
there exists a constant L with 0 < L < 1 and a positive constant D such that

|w(d)
k (z, v1, v2)| ≤ D(|v1 − 1|+ |v2 − 1|) · |z|d · Lk

Corollary 2.35. For |v1| ≤ 1, |v2| ≤ 1 and |z| ≤ ρ + ε (ε > 0 small enough) there is a
positive constant C̃ such that (for all k ≥ 0, d1 ≥ 1, d2 ≥ 1)

|Σ(d1d2)
k (z, v1, v2)| ≤ C̃(|v1 − 1|+ |v2 − 1|)Lk.

Hence it follows, that ∑

i≥2

iγ̃
(d1d2)
k (zi) = O(Lk) (2.55)

Lemma 2.36. There exist constants ǫ and θ such that for z ∈ ∆(η, θ)

γ̃
(d1d2)
k (z) = C(d1)(z) · C(d2)(z)y(z)k+d1+d2

k−1∑

ℓ=0

(y(z)ℓ +O(Lℓ)),

where C(d1)(z) and C(d2)(z) are given in Lemma 2.19.
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Proof. We use the recursive representation (2.24) for γ(d1)(z, v1, v2) with the additional
variable v2. This gives

γ
(d1)
k+1(z, v1, v2) = y

(d)
k+1(z, v1, v2)

∑

i≥1

γ
(d1)
k (zi, vi1, v

i
2)v

i−1
1 .

Derivating with respect to v2 gives

γ̃
(d1d2)
k+1 (z, v1, v2) = γ

(d2)
k+1(z, v1, v2)

∑

i≥1

γ
(d1)
k (zi, vi1, v

i
2)v

i−1
1

+ yk+1(z, v1, v2)
∑

i≥1

iγ̃
(d1d2)
k (zi, vi1, v

i
2)v

i−1
1 vi−1

2

= yk+1(z, v1, v2)


∑

i≥1

γ
(d1)
k (zi, vi1, v

i
2)v

i−1
1




∑

i≥1

γ
(d2)
k (zi, vi1, v

i
2)v

i−1
2




+ yk+1(z, v1, v2)
∑

i≥1

iγ̃
(d1d2)
k (zi, vi1, v

i
2)v

i−1
1 vi−1

2 ,

with γ̃
(d1d2)
0 (z) = 0. Setting v1 = v2 = 1 we obtain

γ̃
(d1d2)
k+1 (z) = y(z)




∑

i≥1

γ
(d1)
k (zi)




∑

i≥1

γ
(d2)
k (zi)


+

∑

i≥1

iγ̃
(d1d2)
k (zi)




= y(z)
(
(γ

(d1)
k (z) + Γ

(d1)
k (z))(γ

(d2)
k (z) + Γ

(d2)
k (z)) + γ̃

(d1d2)
k (z) + Γ̃

(d1d2)
k (z)

)
,

where we use the notations Γ
(d1)
k (z) =

∑
i≥2

γ
(d1)
k (zi) and Γ

(d2)
k (z) =

∑
i≥2

γ
(d2)
k (zi) as in the

proof of Lemma 2.19, and Γ̃
(d1d2)
k (z) =

∑
i≥2

iγ̃
(d1d2)
k (zi). Solving the recurrence, we get

γ̃
(d1d2)
k (z) =

k−1∑

ℓ=1

y(z)k−ℓ
(
(γ

(d1)
ℓ (z) + Γ

(d1)
ℓ (z))(γ

(d2)
ℓ (z) + Γ

(d2)
ℓ (z)) + Γ̃

(d1d2)
ℓ (z)

)
(2.56)

From Corollary 2.18 we know that Γ
(d1)
ℓ (z) = O(Lℓ) and Γ

(d2)
ℓ (z) = O(Lℓ) in Θ(η) for

v1 = v2 = 1. Together with Equation (2.55) we have

γ̃
(d1d2)
k (z) =

k−1∑

ℓ=1

y(z)k−ℓ
(
(C(d1)(z)y(z)ℓ+d1 +O(Lℓ))(C(d2)y(z)ℓ+d2 +O(Lℓ)) +O(Lℓ)

)
,

and the result follows.

To extract coefficients we will use Cauchy’s formula.

[zn]γ̃(d1d2)(z) =
1

2πi

∫

δ
γ̃(d1d2)(z)

1

zn+1
dz,
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where δ is the truncated contour δ = δ1 ∪ δ2 ∪ δ3 ∪ δ4 given by

δ1 =

{
z = a+

ρi

n

∣∣∣∣ρ ≤ a ≤ ρ+
η log2 n

n

}
,

δ2 =

{
z = ρ

(
1− eiϕ

n

) ∣∣∣∣−
π

2
≤ ϕ ≤ π

2

}
,

δ3 =

{
z = a− ρi

n

∣∣∣∣ρ ≤ a ≤ ρ+
η log2 n

n

}
(2.57)

and δ4 being a circular arc closing the contour, cf Figure 2.8.

ρ

δ-contour

b

Figure 2.8: The integration contour δ

It can be shown that the circular arc δ4 gives only negligible contribution to the integral,
we omit the details here as the proof is very similar to the one in Section 2.3.1. Near ρ,
more precicely for z = ρ(1 + s

n) with z ∈ δ1 ∪ δ2 ∪ δ3 and for k = κ
√
n, we have

y(z)d1+d2 = 1 +O
(√∣∣∣ s

n

∣∣∣
)

1− y(z) ∼ b√ρ
√
− s
n

(
1 +O

(√∣∣∣ s
n

∣∣∣
))

y(z)k ∼ exp(−κb√−ρs)
(
1 +O

(∣∣∣∣
s√
n

∣∣∣∣
))

C(d1)(z) ∼ Cd1ρ
d1 +O

(∣∣∣ s
n

∣∣∣
)
, C(d2)(z) ∼ Cd2ρ

d2 +O
(∣∣∣ s
n

∣∣∣
)

dz =
ρ

n
ds

Hence, the expected value [zn]γ̃(d1d2)(z) is given by

[zn]γ̃(d1d2)(z) ∼

∼ Cd1Cd2ρ
d1+d2 1

2πi

∫

δ̃

√
n

b
√
ρ
√−se

−κb
√−ρs(1− e−κb

√−ρs)e−s

(
1 +O

(∣∣∣∣
s√
n

∣∣∣∣
))

1

n
ρ−nds,

66



2.3. The degree profile

δ̃

1
η
ρ log

2 n

Figure 2.9: The contour δ̃ obtained by substitution

as
∑k−1

ℓ=0 y(z)
ℓ = 1−y(z)k

1−y(z) , where δ̃ is the contour displayed in Figure 2.9 obtained by the
substitution z 7→ s.

For an integral of the shape
∫
δ̃

1√−s
e−α

√−s−sds we use the following auxiliary result.

Lemma 2.37. Let δ̂ be a Hankel contour (cf [24]), that is, informally speaking, a contour
like δ̃, but beginning and ending in infinity. We have for β > 0

1

2πi

∫

δ̂

1√−se
−α

√−s−sds ∼ 1√
π
e−

α2

4 ,

as n tends to infinity.

Proof. We first substitute s = u2. Then we have

− 1

2πi

∫ ∞

−∞

1

iu
e−iαu−u2

2udu,

where we get a negative sign due to taking the root
√
−1 = −i to preserve the correct

orientation of the contour. We further complete the exponent to a full square and therefore
subsitute v = u+ iα

2 to obtain

1

π
e−

α2

4

∫ ∞+α2

4

−∞+α2

4

e−v2dv ∼ 1√
π
e−

α2

4

Further, for an integral of the shape O
(∣∣∣ s√

n

∣∣∣
) ∫

δ̂
1√−s
e−α

√−s−sds, we obtain

1

2πi
O
(∣∣∣∣

s√
n

∣∣∣∣
) ∫

δ̂

1√−se
−α

√−s−sds =
1

2πi
O
(

1√
n

)∫

δ̂

√
−se−α

√−s−sds

=
1

2πi
O
(

1√
n

)
∂2

∂α2

∫

δ̂

1√−se
−α

√−s−sds

= O
(

1√
n

)
1√
π
e−

α2

4
1

2
(1 + α) = O

(
1√
n

)
.

Recall that the coefficients of y(z) are asymptotically given by yn ∼ b
√
ρ

2
√
π
ρ−nn−3/2 (cf (2.4)).

Hence with α = κb
√
ρ and α = 2κb

√
ρ, respectively, we obtain for E

(
X

(d1)
n (k) ·X(d2)

n (k))
)

E
(
X(d1)

n (k) ·X(d2)
n (k))

)
= Cd1Cd2ρ

d1+d2 2

b2ρ
n

(
e−

κ2b2ρ
4 + e−κ2b2ρ

)(
1 +O

(
1√
n

))
.
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With the same substitutions as in the proof of Lemma 2.37, we obtain (this has already
been proven in [34, Lemma 3.4])

1

2πi

∫

δ̂
e−α

√−s−sds ∼ α

2
√
π
e−

α2

2 .

With this auxiliary result, the representation of the covariance given in Proposition 2.33
follows immediately as n tends to infinity. Note that the covariance function is strictly
positive, as depicted in Figure 2.10.

Figure 2.10: The covariance for κ ∈ [0,E(Hn) + 3
√

Var(Hn)]

The correlation coefficient

To obtain more information on the correlation of two degrees d1 and d2 on the same level
k = κ

√
n, we compute the correlation coefficient, given by

Cor
(
X(d1)

n (k),X(d2)
n (k))

)
=

Cov(X(d1)
n (k),X

(d2)
n (k))√

Var(X(d1)
n (k))

√
Var(X(d2)

n (k))

.

Theorem 2.38. Let X
(d1)
n (k) and X

(d2)
n (k) be the random variables counting the number

of vertices of degree d1 and d2, respectively, on a level k = κ
√
n in a Pólya tree of size n.

Then the correlation coefficient is asymptotically equal to

Cor
(
X(d1)

n (k),X(d2)
n (k))

)
= 1 +O

(
1√
n

)
,

as n tends to infinity.

To compute the correlation coefficient, it remains to compute the variance Var(X(d1)
n (k)),

given by

Var(X(d1)
n (k)) = E

(
(X(d1)

n (k))2
)
−
(
E(X(d1)

n (k))
)2
.

We need to determine E
(
(X

(d1)
n (k))2

)
, which can be done very similarly to the previous

part.

E
(
(X(d1)

n (k))2
)
=

1

yn
[zn]

[
∂

∂v1

(
v1

∂

∂v1
yk(z, v1, 1)

)]

v1=1

,
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2.3. The degree profile

Proposition 2.39. The Variance Var(X(d1)
n (k)) of the random variable X

(d1)
n (k) counting

vertices of degree d1, with d1 fixed, at level k = κn in a random Pólya tree of size n is
asymtotically given by

Var(X(d1)
n (k)) = C2

d1ρ
2d1n

(
2

b2ρ

(
e−

κ2b2ρ
4 + e−κ2b2ρ

)
− κ2e−κ2b2ρ

2

)(
1 +O

(
1√
n

))
,

(2.58)
as n tends to infinity.

We proceed analogously to the computation of the variance, and obtain the following
auxiliary result.

Lemma 2.40. There exist constants ǫ and θ such that for z ∈ ∆(η, θ)

γ̃
(d1[2])
k (z) = (C(d1)(z))2y(z)k+2d1 1− y(z)k

1− y(z) + C(d1)(z)y(z)k+d1 ,

where C(d1)(z) and C(d1)(z) are given in Lemma 2.19.

Proof. The proof of this lemma is analogous to the proof of Lemma 2.36, derivating recur-
rence (2.24) a second time. The additional summand C(d1)(z)y(z)k+d1 origins in derivating
twice with respect to the same variable v1.

Note that the additional summand C(d1)(z)y(z)k+d1 in Lemma 2.40, where γ̃
(d1[2])
k (z)

and γ̃
(d1d2)
k (z) differ from each other, is equal to the expexted value E

(
X

(d1)
n (k)

)
when

extracting coefficients 1
yn
[zn]C(d1)(z)y(z)k+d1 . As this is of order

√
n, while the coeffient of

the other terms will be of order n, this term is part of the error term, and we obtain

E
(
(X(d1)

n (k))2
)
= C2

d1ρ
2d1 2

b2ρ
n

(
e−

κ2b2ρ
4 + e−κ2b2ρ

)(
1 +O

(
1√
n

))
(2.59)

by using Cauchy’s formula and the integration contour δ given in (2.57). Applying the

known estimate for E(X(d1)
n (k)) we obtain the representation given in Proposition 2.39, and

with Proposition 2.33 the result given in Theorem 2.38 follows immediately.

Remark. From the result of Theorem 2.38 it follows that asymptotically, X
(d1)
n (k) and

X
(d2)
n (k) are linearly related, i.e.

X(d1)
n (k) ∼ A ·X(d2)

n (k) +B,

with some constants A(d1, d2) > 0 and B(d1, d2). We cannot provide any further infor-
mations on these constants at the moment. Their study would propose some forthcoming
research.
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CHAPTER 3

Boolean trees

Consider the set Fn of Boolean functions on a set of n variables. There are 22
n

such
Boolean functions, as a value from {True, False} can be assigned to every variable, which
gives 2n different assignments, for every assignment the function has output True or False.
In this chapter we consider several models of And/Or trees, i.e. trees where internal
nodes carry labels from the set {∧,∨} and external nodes (leaves) have labels from the
set {x1, x̄1, . . . , xn, x̄n}. Obviously, every such tree represents a function f from Fn. We
consider the uniform distribution on the set of And/Or trees of size m (denoting by size the
number of leaves) and are interested in the limiting probability Pn(f) of a given function
f ∈ Fn being computed by a random tree of size m, as m tends to infinity, if it exists. In
all tree models we will study, such a limiting distribution exists.

A lot of work has been going on in this field. Lefmann and Savický [51] were first to
prove the existence of the limiting probability of f . The bounds given in their paper were
improved by Chauvin et al. [11]. A comparison to the probability distribution induced by
a critical Galton Watson process as well as various numerical results are given in Gardy
[26]. A similar study on implication trees, i.e. Boolean trees where internal nodes carry
implication labels (⇒) has been done by Fournier et al. [25].
The content of this chapter origins in a collaboration with Antoine Genitrini, Bernhard
Gittenberger and Cécile Mailler. It will be subject of a forthcoming paper. The methods
and results are based on a recent work by Kozik [47] on pattern languages. In his paper,
Kozik proves a strong relation between the limiting probability of a given function f and
its complexity L(f) (that is the minimal size of a tree computing the function f) in bi-
nary planar And/Or trees, asymptotically as the number of variables tends to infinity. We
want to study the impact of removing step by step the restrictions on these tree, that is
considering first planar, but non-binary or non-planar but binary And/Or trees, and later
non-planar non-binary trees, which relate strongly to Pólya trees. Considering such tree
structures seems quite natural, as the new characteristics correspond to adding the proper-
ties of associativity (non-binary) and commutativity (non-planar), which are given for the
∧ and ∨ operator on the level of Boolean logic.
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Kozik has shown that the asymptotic order of Pn(f) depends on L(f) for binary planar
trees (c.f. Kozik’s paper [47]). First, we compare the limiting probabilities of the constant
function True1. Supported by numerical results for n equals 1 and 2, we conjectured that
commutativity does not matter. Surprisingly to us, we find that both characteristics have
impact on the limiting probability Pn(True). To be more precise, the asymptotic leading
coefficient differs from model to model as n tends to infinity. To get more insight, we further
compare probabilities of functions of complexity 1, those are the literals x, x̄, in a next step.
In the last section of this chapter, we prove that for all tree models compared, the asymptot-
ically relevant fraction of trees computing a given function f is given by the set of minimal
trees of f expanded once in a given way, and give bounds for the arising probability dis-
tribution. A similar result is proved in [47] for planar binary And/Or trees and in [25] for
implication trees.

3.1 Associative and commutative trees: definitions, generating
functions.

Kozik [47] has shown that in binary planar trees the order of magnitude of the limiting
probability of a given Boolean function is related to its complexity. We generalise this
result and therefore define And/Or trees and the complexity of a function.

Definition 3.1. We define an And/Or tree as a labelled tree. Each internal node is labelled
with one of the connectors {∧,∨} and each leaf with one of the literals {x1, x̄1 . . . , xn, x̄n}.
We define the size of an And/Or tree to be the number of its leaves.

Definition 3.2. The complexity L(f) of a non-constant function f , i.e. f /∈ {True, False},
is given by the size of a smallest And/Or tree computing f (in the rest of the paper such
trees will be called minimal for f). We define the complexity of True and False to be
L(True) = L(False) = 0.

As it will be clear later, the complexity of a function does not depend on the chosen
model.

Definition 3.3. We are considering sets Tm,n of And/Or trees of size m = 1, 2, 3 . . .. Let
Um,n be the uniform distribution on Tm,n, Pm,n its image on the set of Boolean functions.
We call

Pn = lim
m→∞

Pm,n

the limiting distribution, assuming that this limit exists.

At first, we will present the result proven by Kozik. This result will be generalised in the
forthcoming parts of this chapter.

3.1.1 The classical model.

Let us consider the set T of binary planar trees, whose internal nodes are labelled with ∧ or
∨, and whose external nodes are labelled with literals chosen in {x1, x̄1, . . . , xn, x̄n}: every
such tree computes a Boolean function on n variables. We denote by T (z) =

∑
m≥0 Tmz

m

1Note that by negation, the probability distribution behaves symmetrically, i.e. the probability of False
will be the same as that of True, and just as well for all other functions and their negations.
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the generating function of this set of trees, and by Tf (z) the generating function of such
trees computing the Boolean function f . Let us recall some well known results about this
generating function:

Proposition 3.4. Binary And/Or trees fulfil the symbolic equation

T = X + T ∧ T + T ∨ T (3.1)

and thus the generating function T (z) verifies T (z) = 2nz + 2T (z)2. Therefore, we have:

T (z) =
1−
√
1− 16nz

4

and the singularity ρn of T (z) is 1
16n .

Let us consider the uniform distribution over the set of trees of size m and then the
probability distribution Pm,n it induces in the set Fn of Boolean functions on n variables.
The limit of this distribution when m tends to infinity, denoted by Pn, has already been
studied, in particular by Lefmann and Savický [51], Chauvin et al. [11] and Kozik [47] who
has shown:

Theorem 3.5. [47] For all Boolean functions f ,

Pn(f) =
Cf

nL(f)+1
as n→∞

where L(f) is the complexity of f , i.e. the size of a minimal tree computing f , and Cf is
some positive constant, which we will specify later in this chapter.

Remark. Be careful that in this theorem, f (and thus L(f)) is fixed, and n tends to
infinity. The considered function depends on a finite number of variables.

First of all, let us define associative trees, commutative trees and finally associative and
commutative trees, and the induced laws over the set of Boolean functions over Fn. The
final aim of this chapter is to generalise Theorem 3.5.

3.1.2 The associative planar model.

Definition 3.6. An associative tree is a planar tree where each node has outdegree chosen
in N\{1}. A labelled associative tree is an associative tree in which each external node has
a label in {x1, x̄1, . . . , xn, x̄n} and each internal node has a ∧-label or a ∨-label but cannot
have the same label as its father. We denote by A the family of associative trees and by Am

the set of such trees of size m.

Note that the trees are stratified. i.e. the root can be labelled either by ∧ or ∨ and it
determines the labels of all others internal nodes.

We denote by Pa
n = limm→∞ Pa

m,n the limiting distribution of Boolean functions induced
by associative And/Or trees. Our aim is to compare the limiting distributions Pa

n and Pn.
The generating function of associative trees is given by A(z) = Â(z)+ Ǎ(z)− 2nz, where

Â (resp. Ǎ) is the generating function of associative trees being a leaf or being rooted at a
∧ (resp. ∨). We have to note that Â = Ǎ and,

Â(z) = 2nz +
∑

k≥2

Ǎk = 2nz +
Â2(z)

1− Â(z)
.
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Therefore,

A(z) =
1

2

(
1− 2nz −

√
1− 12nz + 4n2z2

)
(3.2)

and its dominant singularity is

αn =
3− 2

√
2

2n
.

Moreover, A(αn) =
√
2− 1.

Remark. Thanks to the Drmota-Lalley-Woods theorem (Theorem 1.12), we can show
that P a

m,n has indeed a limit when m tends to infinity. If we denote by Âf (z) (resp. Ǎf (z))
the generating function of the number of associative trees which are a leaf or whose root is
labelled by ∧ (resp. ∨) computing f , these generating functions satisfy the system:

Âf (z) = z l1{f lit} +
∞∑

i=2

∑

g1,...,gi
g1∧...∧gi=f

Ǎg1(z) · · · Ǎgi(z)

Ǎf (z) = z l1{f lit} +
∞∑

i=2

∑

g1,...,gl
g1∨...∨gi=f

Âg1(z) · · · Âgi(z).

This system fulfils all preliminaries of the Drmota-Lalley-Woods theorem, hence Âf (z)

and Ǎf (z) and also Af (z) = Âf (z)+ Ǎf (z)− z l1{f lit} have the same singularity αn as A(z),
and therefore the limit

lim
m→∞

Pm,n(f) =
[zm]Af (z)

[zm]A(z)

exists.

3.1.3 The non-planar binary model.

Definition 3.7. A labelled commutative tree on n variables is a non-plane binary tree
where every internal node is labelled with one of the labels {∧,∨} and every leaf is labelled
by a literal {xi, x̄i, i = 1, . . . , n}. We denote by C this family of trees.

We consider the distribution Pc
m,n induced over the set of Boolean functions of n variables

by the uniform distribution over such trees of size m.
Binary commutative trees fulfil the same symbolic equation as in the planar case (cf.

(3.1)) but because of commutativity, the generating function of all commmutative trees on
n variables, counting leaves, is given implicitely by

C(z) = 2nz + C(z)2 + C(z2), (3.3)

where the term 1
2 (C

2(z)+C(z2)) tracks a possible symmetry if both subtrees of the root are
identical. The system of equations for the generating functions Cf (z) computing a given
Boolean function f is given by

Cf (z) = z l1{f lit} +
1

2

∑

g,h6=f

g∧h=f

Cg(z)Ch(z) +
1

2

∑

g,h6=f

g∨h=f

Cg(z)Ch(z) + Cf (z)
2 + Cf (z

2). (3.4)
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This system is not algebraic due to the term Cf (z
2), hence we cannot apply Drmota-Lalley-

Woods theorem in the first place. Still, knowing that for the singularity of C(z) we have
0 < γn < 1 we can use Lemma 1.13 to apply the Drmota-Lalley-Woods theorem. Thus, we
conclude that all the Cf (z) and C(z) have the same singularity γn, and moreover that Pc

m,n

converges to a limiting probability distribution P c
n when m tends to infinity.

3.1.4 The non-planar associative model.

Definition 3.8. Finally we define general trees as non-planar and non-binary trees, with
internal nodes labelled by ∧ or ∨ (with the condition that father and sons cannot have the
same label), and external nodes labelled by literals chosen in {x1, x̄1, . . . , xn, x̄n}. We denote
by P this family of trees.

Remark. Note that general trees are closely related to Pólya trees treated in Chapter 2.
In fact, they are Pólya trees with the only restriction of not having nodes with outdegree
one, and with the label of the root being chosen from {∨,∧} (and thus determining labels
for all other internal nodes) and the leaves labelled with literals (if the tree consists only of
a single leaf then this is labelled with a literal).

As in the other models, we consider the distribution Pa,c
m,n induced over the set of Boolean

functions by the uniform distribution over such trees of size m.
Let P (z) be the generating function of general And/Or trees, and P̂ (z) (resp. P̌ (z)) the

generating function of general trees being a leaf or being rooted by ∧ (or by ∨, resp.). Then

P (z) = P̂ (z) + P̌ (z)− 2nz, (3.5)

with

P̂ (z) = exp


∑

i≥1

P̌ (zi)

i


− 1− P̂ (z) + 2nz

P̌ (z) = exp


∑

i≥1

P̂ (zi)

i


− 1− P̌ (z) + 2nz.

(3.6)

Moreover, the generating function P̂f (z) of general trees computing f , and P̌f (z), satisfy
the following system:

P̂f (z) = z l1{f lit} +
∞∑

l=2

∑

g1,...,gl
g1∧...∧gl=f

l∏

j=1


exp


∑

i≥1

P̌gj (z
i)

i


− 1




P̌f (z) = z l1{f lit} +
∞∑

l=2

∑

g1,...,gl
g1∧...∧gl=f

l∏

j=1


exp


∑

i≥1

P̂gj (z
i)

i


− 1


 .

Thus, we can check the hypothesis of the Drmota-Lalley-Woods theorem and conclude that
the limiting distribution Pa,c

n of Pa,c
m,n when m tends to infinity exists, and moreover, that

all the P̂f , P̌f and P̂ , P̌ have the same singularity, denoted by δn.
In the forthcoming parts of this chapter, we will prove that Theorem 3.5 still holds in the

associative or commutative cases. We start by showing in Section 3.2 that the limiting ratio
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of tautologies is of order 1
n . We compute the limit of Pn(True) when n tends to infinity for

the different models. If these limits were the same, we could not conclude anything, but in
fact they are all different, which permits us to conclude that asymptotically, when n tends
to infinity, the probability distributions induced by the various models are all different. In
Part 3.3, we proceed in a similar manner to prove that in all models, the asymptotic ratio
of literals, i.e. functions of complexity 1, is of order 1

n2 when n tends to infinity, but the
limiting ratios are different from model to model. Finally, we generalise Theorem 3.5 in
Section 3.4.

3.2 Limiting ratio of tautologies

In this part we compute the limiting probability of the constant function True. As suggested
by Kozik’s results, the limiting probability of tautologies reduces to the limiting probability
of so-called simple tautologies, defined by the following:

Definition 3.9. A simple tautology realized by xi, i = 1 . . . n, is a Boolean expression which
has the shape xi ∨ x̄i ∨ f for some Boolean function f , i.e. there exists a leaf labelled by xi
and a leaf labelled by x̄i, both connected to the root by an ”∨-only-path” (c.f. Figure 3.1).
A simple tautology is a simple tautology realized by any variable x ∈ {x1, . . . , xn}.
We denote by STm the number of simple tautologies of sizem (on n variables, n is omitted

for simplicity), and let Gx(z) the generating function of simple tautologies realized by x.

Definition 3.10. Let V be a set of variables and STm(V) the set of simple tautologies
realized by all x ∈ V, but not by any other variable y /∈ V, and ⊎ denote the disjoint union.

• K1,m is the set of simple tautologies that are realized by exactly one variable: i.e.
K1,m =

⊎n
i=1 STm({xi}),

• K2,m is the set of simple tautologies that are realized by exactly two different variables:
i.e. K2,m =

⊎n
i,j=1
i6=j

(STm({xi, xj})),
...

• Kn,m is the set of simple tautologies that are realized by exactly n different variables
: Kn,m = ST ({x1, . . . , xn}).

Let G(z) = nGx(z) =
∑

m≥0Gmz
m. Obviously, Gm = K1,m+2K2,m+ · · ·+nKn,m. Note

that this function does not count simple tautologies, but the number of simple tautologies
of size m is smaller than Gm, and hence we have

K1,m ≤ STm ≤ Gm.

To calculate limiting probabilities, we use the singular expansions of the considered gener-
ating functions around their dominant singularities. Consider the generating function T (z)
of a given family of And/Or trees together with the generating function S(z) of a subset S
of such trees.

Lemma 3.11. We assume that T (z) and S(z) have the same dominant singularity ρ and
a squareroot singular expansion

T (z) = aT − bT
√

1− z

ρ
+O

(
1− z

ρ

)
S(z) = aS − bS

√
1− z

ρ
+O

(
1− z

ρ

)
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∨

∨

∨

∨

∨ ∨
x ∨ ∧

x̄

a binary simple tautology

∨

x x̄

an associative simple tautology.
Note that x and x̄ appear on the first level.

Figure 3.1: Simple tautologies - △ stands for arbitrary trees

around ρ. Then

lim
m→∞

Sm
Tm

= lim
z→ρ

S′(z)
T ′(z)

.

We call this number the limiting ratio of the set S.

Proof. If m tends to infinity, transfer lemma (cf Lemma 1.7) give

Tm ∼
bT

Γ(12)
n−

3
2ρ−m

Sm ∼
bS

Γ(12)
n−

3
2 ρ−m




⇒ Sm

Tm
∼ bS
bT
.

Derivation of the singular expansions gives

T ′(z) ∼ bT
2

(
1− z

ρ

)− 1
2
,

S′(z) ∼ bS
2

(
1− z

ρ

)− 1
2
.

Hence the result follows.
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Remark. If S is the set of tree computing a given function f , then, the limiting probability
of f is equal to the limiting ratio of S because

Pm,n(f) =
# trees of size m computing f

# all trees of size m
=
Sm
Tm

.

3.2.1 Binary planar trees

In the binary planar model, it has been shown by Woods [70] and again by Kozik [47] that
asymptotically, when n tends to infinity, all tautologies are simple tautologies. Therefore,
to estimate the probability that a binary planar tree computes the function True, it suffices
to count simple tautologies, and furthermore, thanks to the following proposition, simple
tautologies that are realized by only one variable (i.e. the set K1,m).

Proposition 3.12. If n tends to infinity, then

lim
m→∞

∑n
k=1 k#Kk,m

Tm
= lim

m→∞
#K1,m

Tm
+O

(
1

n2

)
.

The proof of the proposition is deferred to the end of this section since further technical
concepts are required.

Theorem 3.13. The limit ratio of simple tautologies in the binary planar model, and thus
the limit ratio of tautologies in the binary planar model is

lim
m→∞

STm
Tm

= lim
m→∞

Pm,n(True) =
3

4n
+O

(
1

n2

)
,

where Tm is the total number of planar binary trees and STm is the number of simple
tautologies of size m labelled with n variables.

Proof. Let us compute the generating function of simple tautologies. First, let gx be the
generating function of trees containing a leaf labelled by x which is connected to the root
by an ∨-only-path (c.f. Figure 3.2) and ḡx(z) the generating function of trees which are not
of such shape. Hence ḡx = T − gx.
The function ḡx is given by

ḡx(z) = T (z)2 + ḡ2x(z) + (2n − 1)z.

We obtain this equation by decomposing the tree at its root: if the root is labelled by an ∧,
the tree is not of the shape depicted in Figure 3.2 and both subtrees are arbitrary random
trees. If the root is labelled by a ∨, neither of the two subtrees may have the shape of
Figure 3.2. If the root is a single leaf, it must not not be labelled by x. By a symbolic
argumentation, the three cases translate to the three terms in the equation. Solving this
equation, thanks to the explicit value of T (z) given in Proposition 3.4, we get:

ḡx(z) =
1

2
−
√

2 + 2
√
1− 16nz − 16nz + 16z

4
,

and thus

gx(z) =

√
2 + 2

√
1− 16n − 16nz + 16z −

√
1− 16nz − 1

4
. (3.7)
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∨

∨

∨

∨
x

Figure 3.2: A tree counted by the generating function gx(z), where △ denotes an arbitrary
tree

Let hx be the generating function of trees given by t1 ∨ t2 (or t2 ∨ t1) where t1 is a tree
counted by gx and t2 is a tree counted by gx̄, i.e. simple tautologies realized by x, where x
and x̄ lie in different subtrees of the root (c.f. Figure 3.3).

∨

∨ ∨

∨

∨

x

∨

x̄

Figure 3.3: A tree counted by the generating function hx(z), where △ denotes an arbitrary
tree

Obviously, hx(z) = 2g2x(z). Now, let Gx(z) be the generating function of simple tautolo-
gies realized by the variable x, and Ḡx(z) be the generating function of trees that are not
simple tautologies realized by x. Again by decomposing and analyzing the label of the root,
we get:

Ḡx = T (z)2 + Ḡx(z)
2 − hx(z) + 2nz.

In particular, if the root is labelled by an ∨, neither of the two subtrees can be a simple
tautology and additionally the whole tree cannot be of the shape depicted in Figure 3.3.
Solving this equation, we obtain an explicit expression of Ḡx(z), and Gx(z) = T (z)− Ḡx(z)
yields an expression for Gx(z), where Z denotes Z :=

√
1− 16nz:
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Gx(z) =
1

4
(−1− Z

+

√
6 + 6Z − 2

√
2 + 2Z − 16nz + 16z − 2Z

√
2 + 2Z − 16nz + 16z − 48nz + 16z

)

(3.8)

By Proposition 3.12, limm→∞ STm
Tm

= limm→∞ Gm
Tm

+O
(

1
n2

)
when n tends to infinity. Due

to Lemma 3.11 we can compute the ratio

lim
m→∞

Gm

Tm
= lim

z→ 1
16n

G′(z)
T ′(z)

=
3

4n
+O

(
1

n2

)

where G(z) = nGx(z) as defined earlier. Thus,

lim
m→∞

STm
Tm

=
3

4n
+O

(
1

n2

)

when n tends to infinity. Since, when n tends to infinity, asymptotically almost every
tautology is a simple tautology, this implies

lim
m→∞

Pm,n(True) = lim
m→∞

STm
Tm

+O

(
1

n2

)
.

To prove Proposition 3.12, we need to state some definitions that Kozik used for his
proof [47] in a binary version.

Definition 3.14. A pattern language L̃ is a set of planar trees with internal nodes labelled
by ∧ or ∨, and external nodes labelled by • or �. The leaves labelled by � are called
placeholders and the • are called pattern leaves. We define s(x, y) as the generating function
of L̃, with x marking the pattern leaves and y marking the placeholders.

Given a pattern language L̃, we will denote by L the set of planar labelled trees with
internal nodes labelled by ∧ or ∨, and external nodes labelled by literals or placeholders,
such that if we replace every literal by a •, we obtain a tree of L̃. Therefore, s(2nx, y) is
the generating function of L.

Given a set of trees T , we define L̃[T ] (resp. L[T ]) as the set of trees obtained by taking
an element of L̃ (resp. L) and plugging an element of T in every placeholder.

Given two pattern languages L and M , we define the composition L[M ] of L and M to be
the pattern language obtained by plugging M -patterns into the placeholders of the elements
of L.

Definition 3.15. A pattern language L is unambiguous if for every family T every element
of L[T ]can be constructed in only one way.
A pattern language L is subcritical for T if the generating function t(z) of T has a square
root singularity ρ and if s(x, y) is analytic in some set {(x, y) : |x| ≤ ρ+ ǫ, |y| ≤ t(ρ) + ǫ}.

Definition 3.16. A variable x is essential for a function if putting x to False or True
does change the restricted function.
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3.2. Limiting ratio of tautologies

Remark. An essential variable appears in every tree representation of the function.

Definition 3.17. If t is an element of L[T ], we say that t has q L-repetitions if q equals the
difference between the number of its L-pattern leaves and the number of distinct variables
(and not literals) that appear in its L-pattern leaves.
We say that t has q L-restrictions if q equals the number of its L-repetitions plus the number
of essential variables of t that appear at least once in its L-pattern leaves.

For an example of repetitions and restrictions, see Figure 3.4.

∨

∧∨
x3∨ x4 �

x1 ∨
x̄1

x2

Figure 3.4: A binary tree with one repetition and one restriction - note that none of the
variables x1, x2, x3, x4 are essential as the tree computes a tautology.

Kozik proved the following theorem:

Theorem 3.18 ([47]). Let L be a binary unambiguous pattern language which is subcritical

for T . We denote by L[T ][k]m,n (resp by L[T ][≥k]
m,n ) the number of elements of L[T ] of size m

which have k (resp. at least k) L-restrictions. Then,

lim
m→∞

L[T ][≥k]
m,n

Tm
∼ lim

m→∞
L[T ][k]m,n

Tm
∼ d

nk

when n tends to infinity, and d is a constant.

Due to this theorem, we can now prove Proposition 3.12:

Proof of Proposition 3.12. Let us consider the pattern language S = •|S ∨ S| � ∧� (c.f.
[47]). The set of all terms computing True with exactly i S-restrictions is exactly Ki.
Therefore, thanks to Theorem 3.18, we get that, when n tends to infinity:

lim
m→∞

#Km
i

Tm
= O

(
1

ni

)
.

Therefore,

lim
m→∞

#Km
2 + . . .+#Km

n

Tm
= O

(
1

n2

)
+ (n− 2)O

(
1

n3

)
= O

(
1

n2

)
.
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3.2.2 Associative planar trees.

To compute the limit of Pa
n(True) when n tends to infinity, we again use simple tautologies,

and prove that asymptotically every tautology is a simple tautology. Therefore, we will
generalize Theorem 3.18 to associative trees. We will prove

Theorem 3.19. The limiting probability of True in the associative case is:

lim
m→∞

Pa
m,n(True) =

51− 36
√
2

n
+O

(
1

n2

)
.

Let us first show that Theorem 3.18 can be generalized to the associative case, and then
use it to show Theorem 3.19.

Generalization of Kozik’s theorem to associative trees

Theorem 3.20. Let L be an unambiguous pattern language where all nodes have out-degree

different from 1, which is subcritical for A. We denote by L[A][k]m,n (resp by L[A][≥k]
m,n ) the

number of elements of L[A] of size m which have k (resp. at least k) L-restrictions. Then,

lim
m→∞

L[A][≥k]
m,n

Am
∼ lim

m→∞
L[A][k]m,n

Am
∼ d

nk

when n tends to infinity, and d is a constant.

The proof of the generalization works analogously to the one of Theorem 3.18 in [47],
still we will state the main ideas as they will be useful in the following.
Let Ã be the family of associative trees with leaves unlabelled, and let t ∈ L̃[Ã]m with

l L-pattern leaves. For any r ≤ k, the number of different leaf-labellings of t which give r
L-repetitions and k L-restrictions is:

{
l

l − r

}(
v

k − r

)
(l − r)k−r (n − v)l−r−(k−r) nm−l2m.

where xy = x(x − 1) . . . (x − y + 1),

{
y
x

}
are the Stirling numbers of second kind2, and

v stands for the number of essential variables. In this formula, the different terms of the
product represent, from left to right:

• the number of partitions of the L-pattern leaves into l− r classes (leaves in the same
class will be labelled by the same variable),

• the number of different choices for the k − r essential variables that appear in the
L-pattern leaves,

• the number of different assignments of these k−r essential variables to the l−r classes
of the first term,

• the number of assignments of non-essential variables to the remaining classes of the
L-pattern leaves,

2The Stirling number of second kind



n
k

ff

counts the number of ways to partition a set of n elements into

k non empty sets.
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3.2. Limiting ratio of tautologies

• the number of assignment of variables to the leaves that are not L-pattern leaves,

• and the number of ways to distribute the negations.

Then, the following Proposition is immediate:

Proposition 3.21. Given an associative tree t ∈ L̃[Ã]m with leaves unlabelled, the number
of leaf-labellings of t which make it have k L-restrictions is:

(n− v)l−k nm−l 2mwv,k(l)

where wv,k(l) =
∑k

r=0

{
l

l − r

}(
v

k − r

)
(l − r)k−r is a polynomial in l.

As one can check reading the proof of [47, Lemma 2.7], the following proposition holds
when T is a set of (leaf-unlabelled) associative trees:

Proposition 3.22. Let T̃ be a set of trees whose generating function t(z) =
∑
tmz

m has
a unique dominating singularity ρ in R+ of the squareroot type. Let L̃ be an unambiguous
pattern language, subcritical for T̃ . Let L̃[T̃ ](m, l) denote the number of trees from L̃[T̃ ] of
size m with exactly l pattern leaves. Finally, let w(l) be a non zero polynolmial. Then,

lim
n→∞

∑
l≥0 L̃[T̃ ](m, l)w(l)

tm
= cw

for some nonnegative real cw.
Moreover, if w(l) has nonnegative values and is positive at some point l0, and if L̃ contains

a pattern with l0 non pattern leaves and at least one placeholder, then cw 6= 0.

Thanks to those propositions, we can now prove the extension of Theorem 3.18 to asso-
ciative trees:

Proof of Theorem 3.20. Let L be an associative pattern and Ã the family of trees from A
with leaves unlabelled. We have, thanks to Proposition 3.21:

L[T ][k]m,n

Am
=

2m
∑

l≥0 L̃[T̃ ](m, l)wk,v(l)(n − v)l−knm−l

Am
; (3.9)

and this implies:

L[T ][k]m,n

Am
≤

2m
∑

l≥0 L̃[T̃ ](m, l)wk,v(l)n
l−knm−l

(2n)mÃm

. (3.10)

Thanks to Proposition 3.22, we get:

lim
m→∞

L[T ][k]m,n

Am
≤ lim

m→∞
2m
∑

l≥0 L̃[T̃ ](m, l)wk,v(l)n
m−k

(2n)mÃm

∼ ck,v
nk

(3.11)

when n tends to infinity. Moreover, we can check that ck,v is positive. The lower bound can
be handled by the same method, but it won’t be useful in the commutative cases. Therefore,
we do not write it down, but it can be found in [47] for the binary case. The proof is exactly
the same in the associative case.

It follows that

lim
m→∞

L[T ][k]m,n

Am
∼ d

nk
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when n tends to infinity. Moreover, we can see that:

L[T ][≥k]
m,n

Am
≤

2m
∑

l≥0 L̃[T̃ ](m, l)wk,v(l)n
m−k

Am
,

and since

lim
m→∞

L[T ][k]m,n

Am
≤ lim

m→∞
L[T ][≥k]

m,n

Am
,

the theorem is proved.

Associative tautologies

Proposition 3.23. In the associative model, asymptotically almost every tautology is a
simple tautology when n tends to infinity.

The proof is very similar to the proof of the binary case which can be found in Kozik’s
paper [47]. First we need to introduce a pattern:

N̂ = •|Ň ∧�|Ň ∧� ∧�| . . .
Ň = •|N̂ ∨ N̂ |N̂ ∨ N̂ ∨ N̂ | . . .
R = {N̂ , Ň}, (3.12)

where R = {N̂ , Ň} means we start with either an ∨- or an ∧-node, and use the according
pattern Ň or N̂ , and then use both partial patterns alternatingly until the process finishes.
Then R is an unambigous pattern language.

Lemma 3.24. The pattern R is subcritical for associative trees.

Proof. The generating function p(x, y) of the unlabelled pattern R̃ is given by

p(x, y) = p̂(x, y) + p̌(x, y)− x,

where p̂(x, y) (resp. p̌(x, y)) is the generating function of the partial patterns N̂ (resp. Ň).
These two generating functions satisfy the following system:

p̌ = x+
p̂2

1− p̂
p̂ = x+

y

1− y p̌ (3.13)

Solving this system, we get

p̂(x, y) =
1

2

(
x− y − 1−

√
(x− y − 1)2 − 4x

)
. (3.14)

and hence

p̂(2nx, y) =
1

2

(
2nx− y − 1−

√
(2nx− y − 1)2 − 8nx

)
. (3.15)

Recall that (cf. (3.2))

A(z) =
1

2

(
1− 2nz −

√
1− 12nz + 4n2z2

)
,
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A(αn) =
√
2− 1 and αn =

3− 2
√
2

2n
.

To prove that αn is the dominant singularity of p(2nz,A(z)), it is enough to prove that
it is the dominant singularity of p̂(2nz,A(z)) and p̌(2nz,A(z)). Actually, p̂(2nx, y) and
p̌(2nx, y) are analytic in C2 \ {(x, y) | (2nx− 1− y)2 = 8nx}. For all n,

(2nαn −
√
2)2 = 9(3− 2

√
2) > 8nαn = 4(3− 2

√
2),

and due to nonnegative coefficients the inequality holds for all z ∈ R, 0 ≤ z ≤ αn. Thus the
dominant singularity of p̂(2nz,A(z)) is αn and R is subcritical for associative trees.

Remark. The R pattern has an interesting property: if one valuates all the R-pattern
leaves of a tree to False, then the whole tree itself computes False. This can be checked
by induction. If the pattern is only a leaf, it returns False. If the root is an ∨-node, then
all subtrees of the root are patterns returning False by induction hypothesis. If the root is
an ∧-node, the leftmost subtree is a pattern returning False by the induction hypothesis.
Thus the whole tree computes False in all cases.

This property is the key point of the following proof.

Remark. The pattern R is a generalization of the pattern N = •|N ∨N |N ∧ � defined
in Kozik’s paper [47] to handle the proof in the binary planar case.

Proof of Proposition 3.23. Let us consider a tree t with exactly one R[R]-restriction, which
computes True. This restriction has to be a repetition.

If the repetition is of the kind x/x, then we can assign all the R-pattern leaves to False,
and with this assignment the whole tree computes False, which is impossible.

Thus the repetition has to be an x/x̄ repetition. Let us first assume that the repetition
does not appear among the R-pattern leaves. Thus we can assign all these leaves to False,
and then the whole tree computes False. This is impossible. The repetition must occur in
the R-pattern leaves. Let us assume that there is a node ν labelled by ∧ between the leaf
labelled by x (resp. x̄) and the root. Then, the subtree rooted at ν has shape t1∧t2∧. . .∧ts.
Let us assume that x appears in tj . Then, we can assign all the R[R]-pattern leaves of the
other subtrees (ti)i6=j, and all the R[R]-pattern leaves of the whole tree except those in
the subtree rooted at ν to False. This makes the whole tree compute False, which is
impossible.

Thus, x and x̄ are linked to the root by an ∨-only path. As the trees are stratified,
the only possibility for t is to be a simple tautology. Thus every term with exactly one
R[R]-restriction computing True is a simple tautology.

Moreover, there are no terms computing True with zeroR[R]-restrictions, and the number
of trees computing True with more than two R[R]-restrictions is negligible in comparison
to the number of simple tautologies, by Theorem 3.18 which can be applied thanks to
Lemma 3.24.

We are now able to prove Theorem 3.19 by counting associative simple tautologies.

Proof of Theorem 3.19. Let Gx be the generating function counting the number of simple
tautologies realized by x and such that x and x̄ appear only once on the first level. Then,
Gx(z) =

∑
l≥2 l(l−1)(A(z)−2)l−2. If x or x̄ appear at least twice in the first generation, the
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tree has at least two P [P ]-restrictions, and the set of such trees is negligibly small compared
to the set counted by Gx. Thus, asymptotically speaking (when n tends to infinity), Gx

counts the set of simple tautologies realized by x.

Finally, note that in view of Theorem 3.20, the assertion of Proposition 3.12 extends to
the associative case. So a Maple computation giving

lim
z→αn

G′(z)
A′(z)

∼ 51 − 36
√
2

n

completes the proof of Theorem 3.19.

3.2.3 Binary commutative trees

The generating function of binary commutative And/Or trees, C(z) =
∑

mCmz
m, is given

in (3.3), and γn is the dominant positive singularity of C(z). Solving the singularity system
of equations

y = 2nz + y2 + F (z) (3.16)

1 = 2y (3.17)

we obtain C(γn) =
1
2 and γn = 1

8n −
C(z2)
2n . As C(z) = 2nz + O(z2) by inserting into the

equation we can further derive γ = 1
8n

(
1− 1

8n

)
+O( 1

n3 ). As we need more terms in some
of our calculations, we do a more refined analysis with Maple and further obtain

γn =
1

8n

(
1− 1

8n
+

7

256n3

)
+O( 1

n4
). (3.18)

Theorem 3.25. The limiting probability of the function True in the binary commutative
case Pc

m,n(True) is given by

lim
m→∞

Pc
m,n(True) =

641

1024

1

n
+O( 1

n2
).

To prove the theorem we will extend the method of pattern languages of Kozik to the
non-planar case. We consider binary commutative trees, together with a half-embedding,
that is certain branches of the tree will be planar and some will stay non-planar. We use
the planar pattern language known from Section 3.2.1, given by

N = •|N ∨N |N ∧�.

As N is planar, it is unambigous for any tree family. A tree of N [C] is a ”mobile”, that
is, the pattern-trees consisting of internal nodes and • and �-leaves are planar, while the
terms substituted into the �-nodes are still nonplanar trees.

Remark. While in the planar cases the considered pattern was subcritical for the non-leaf
labelled family of trees, this is not the case for commutative trees. Therefore, the strategy
will be different as before.
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3.2. Limiting ratio of tautologies

Generalization of Kozik’s theorem to commutative trees

Theorem 3.26. Let L be a labelled planar binary unambiguous pattern language with ℓ(x, y)
its generating function. Further assume that the coefficients Al(y), given by

ℓ(x, y) =
∑

l≥0

∑

i≥0

si,ly
ixl =

∑

l≥0

Al(y)x
l

are subcritical for C(z).

We denote by L[C][k]m,n (resp by L[C][≥k]
m,n ) the number of elements of L[C] of size m which

have k (resp. at least k) L-restrictions, and by L[C]m the number of elements of L[C] of size
m.
Then,

lim
m→∞

L[C][≥k]
m

Cm
= O

(
1

nk

)
and lim

m→∞
L[C][k]m

Cm
= O

(
1

nk

)

when n tends to infinity.

Remark. In the planar cases, the patterns N and R we considered fulfilled N [T ] = T
and R[A] = A, respectively. For commutative trees, this is not the case. The proofs of
Theorems 3.18 and 3.20 rely completely on planar structures and subcriticality, which is
not given anymore. Hence the above generalization of Theorem 3.18 to mobile structures is
indeed different and we will need additional arguments to show that asymptotically almost
every tautology is a simple tautology.
Definitions of restrictions are valid in the mobile case, as pattern-leaves appear in planar
parts of a mobile. We will adapt the proof, relying on the sketch in Section 3.2.2.

Let L̃ be a planar pattern and C be a family of commutative trees. Let Λ be an element
of L̃[C] of size m with l pattern leaves. Note that the leaves of the non-planar parts are
labelled while the pattern leaves are unlabelled. For any r ≤ k, the number of different
labellings of the pattern leaves of Λ which give r L-repetitions and k L-restrictions is given
by {

l
l − r

}(
v

k − r

)
(l − r)k−r (n− v)l−r−(k−r) 2l,

where, as in the planar case, xy = x(x− 1) . . . (x− y +1),

{
y
x

}
are the Stirling numbers of

second kind, and v stands for the number of essential variables. The different terms of the
product again represent, from left to right:

• the number of partitions of the L-pattern leaves into l− r classes (leaves in the same
class will be labelled by the same variable),

• the number of different choices for the k − r essential variables that appear in the
L-pattern leaves,

• the number of different assignments of these essential variables to k − r of the l − r
classes of the first term,

• the number of assignments of non-essential variables to the remaining classes of the
L-pattern leaves,
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Chapter 3. Boolean trees

• and the number of distribution of the negations.

With this, the following version of Proposition 3.21 is obvious:

Proposition 3.27. Given a binary mobile Λ ∈ L̃[C] with pattern leaves unlabelled, the
number of leaf-labellings of Λ which make it have k L-restrictions satifies

♯(labellings)k = (n− v)l−k nm−l 2lwv,k(l)

where wv,k(l) =
∑k

r=0

{
l

l − r

}(
v

k − r

)
(l − r)k−r is a polynomial in l.

We adapt Proposition 3.22 to our needs.

Proposition 3.28. Let L be an unambiguous labelled pattern language, with ℓ(x, y) its
generating function, and let T be a family of leaf-labelled trees with generating function T (z).
Further assume that the coefficients Al(y), given by ℓ(x, y) =

∑
l≥0Al(y)x

l are subcritical
for T (z).
Let L[T ](m, l) be the number of trees of L[T ] of size m with exactly l pattern leaves and
w(l) be a non-zero polynomial of degree λ. Then,

lim
m→∞

∑N
l=0 L[T ](m, l)w(l)

Tm
= cw

for some nonnegative real cw, where N is some fixed integer.

Proof. The generating function of the numerator
∑N

l=0 L[T ](m, l)w(l) is denoted by ℓw(x, y).

Moreover, w(l) =
∑λ

j=0wj l
j is a representation of the polynomial w, and ℓN (x, y) =∑N

l=0Al(y)x
l is the truncation of ℓ(x, y) =

∑
l≥0Al(y)x

l. Note that,

xj
∂jℓN (x, y)

∂xj
=

N∑

l=0

ljAl(y)x
l.

Thus
λ∑

j=0

wjx
j ∂

jℓN (x, y)

∂xj
=

N∑

l=0

w(l)Al(y)x
l.

Therefore, the generating function ℓw(x, y), is a linear combination of the derivatives of
ℓN (x, y), which are finite sums of terms which are subcritical for T (z). Hence, ℓw(z,C(z))
and T (z) have the same radius of convergence. By [47, Observation 3.3] every subcritical
summand has a square root expansion around the singularity, if T (z) has a square root
singularity, hence the type of singularity of ℓw(z,C(z)) is also of order 1/2 or of higher
order, if there is a cancellation.
Thanks to a transfer lemma (Lemma 1.7), we easily get

[zm]ℓw(z,C(z))

[zm]T (z)
∼ const,

when m tends to infinity. Therefore,

lim
m→∞

∑
l≥0 L[T ](m, l)w(l)

Tm
= cw

for some nonnegative constant cw. Further cw is positive if there is no cancellation and zero
otherwise.
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3.2. Limiting ratio of tautologies

Proof of Theorem 3.26. We have, thanks to Proposition 3.27:

L[C][k]m

Cm
=

∑N
l=0 L̃[C](m, l)wk,v(l)(n− v)l−k 2l

Cm
,

where N = n− v + k, because for larger l the factor (n− v)l−k gives 0. This implies

L[C][k]m

Cm
≤
∑N

l=0 L̃[C](m, l)wk,v(l)n
l−k 2l

Cm
=

∑N
l=0 L[C](m, l)wk,v(l)

Cm
· 1

nk
(3.19)

because L[C](m, l) = (2n)lL̃[C](m, l). And therefore, by applying Proposition 3.28, we get
that

lim
m→∞

L[C][k]m

Cm
≤ cw
nk
.

Commutative tautologies

Proposition 3.29. Almost every binary commutative And/Or tree computing the function
True is a simple tautology.

Before proving Proposition 3.29, we introduce some half-embedding of a tree t into the
plane: Start at the root and choose a left-right order of the children of the root. If the root
is an ∧-node, proceed recursively with the root of the left subtree, the right subtree remains
non-planar. If the root is an ∨-node, proceed recursively with both subtrees. If doing so
we meet a leaf, it is a pattern leaf. Doing this for the whole tree t, we obtain an element of
N [C], where the non-planar subtrees are the structures substituted into the placeholders.
Now do the same half-embedding starting at every root of a non-planar subtree. Thus we
obtain an element of N [N ][C]. Note that different trees t1 6= t2 ∈ C will create different
patterns N [t1] and N [t2], thus the function C → N [C] described above is an injection. Of
course, there are several ways to embed a tree t with the above method.

Definition 3.30. Let t be a non-plane tree and choose a half-embedding of t as described
above, such that the resulting N [N ]-pattern has a minimal number of N [N ]-restrictions.
We call such an embedding a minimal N [N ]-embedding of t .

Note that there could be various minimal embeddings for one tree.

Lemma 3.31. Let t be a tree computing the function True. Then a minimal [N ]-embedding
has at least one restriction.

Proof. Suppose N [t] has no restriction and set all pattern leaves to False. We proceed
inductively. If N [t] is just a leaf, it returns False. If the root of N [t] is an ∧-node, the left
subtree is a pattern and will, by the induction hypothesis, return False, thus the whole
tree returns False. If the root of N [t] is a ∨ node, both subtrees are patterns returning
False by the induction hypothesis. Thus the whole tree returns False.

Lemma 3.32. Let t be a tree whose minimal N [N ]-embedding has exactly one N [N ]-
restriction. Then t is a simple tautology.

Proof. There are two cases to distinguish.
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Chapter 3. Boolean trees

• The restriction is of type x/x. Set all N -pattern leaves to False. The same arguments
as in the proof of Lemma 3.31 show that t returns False.

• The restriction is of type x/x̄. Then the restriction appears on the first level, that
is, in N [t], as otherwise setting all N -pattern leaves to False would lead to a tree
computing False by the same arguments as before. If t is not a simple tautology, then
there exists at least one node labelled with ∧ on the path from the root to either x or
its negation. Let t1 be the non-planar subtree rooted at such a node. After the second
N -embedding, the N [t1] pattern contains no repetition as the whole tree N [N ][t] had
only one N [N ]-repetition, thus it is easy to have t1 contribute False by setting all
N [t1]-pattern leaves to False. Then the ∧ at v gives False, thus t does not compute
the function True. Thus, every tautology t which has a minimal N [N ]-embedding
with a single repetition is a simple tautology.

In order to take advantage of the above arguments on N [N ]-embeddings and hence to
prove Proposition 3.29, we need to check if the assumptions of Proposition 3.28 are fulfilled.
We prove the following result in full generality, as it will be useful later in this chapter.

Lemma 3.33. Let L be a pattern language with generating function ℓ(x, y) =
∑

l≥0Al(y)x
l

and with A0(y) = 0, and let Lr be its r-th power for any r ∈ N, with

ℓ∗(x, y) = ℓ(x, (ℓ(x, · · · ℓ(x︸ ︷︷ ︸
r−times

, y) · · · ))) =
∑

l≥0

A∗
l (y)x

l

its generating function. Further let T be a family of trees with generating function T (z).
Assume that, for all l ≥ 0, Al(y) is subcritical for T (z). Then A∗

l (y) is subcritical for T (z).

Proof. First note that A0(y) = 0 means that every pattern in L has at least one pattern
leaf. Obviously, this property still holds for A∗

0(y).

We prove the statement by induction: the case r = 1 is true by assumption. Let us
assume that the result holds for r, and let s̄(x, y) =

∑
l≥0 Āl(y)x

l be the generating func-

tion of Lr with Āl(y) being subcritical for T (z). We want to show that [xl]s(x, s̄(x, y)) is
subcritical for T (z). It is sufficient to show that [xλ]Al(s̄(x, y)) is subcritical for T (z) for
all λ, because s(x, s̄(x, y)) =

∑
l≥0Al(s̄(x, y))x

l and Al(s̄(x, y)) is a power series in x. Then

[xl]s(x, s̄(x, y)) =
∑l

j=0[x
l−j ]Aj(s̄(x, y)), which is a finite sum of such coefficients.

[xλ]Al(s̄(x, y)) = [xλ]
∑

j/geq0

sl,j s̄(x, y)
j

= [xλ]
∑

j≥0

sl,j

(∑

µ

xµĀµ(y)

)j

= [xλ]
∑

j≥0

sl,j
∑

µ1,...,µj

x
P

µiĀµ1 · · · Āµj

=
∑

j≥0

sl,j
∑

µ1+...+µj=λ

Āµ1 · · · Āµj .
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3.2. Limiting ratio of tautologies

As Ā0(y) = 0, µi > 0 for i = 1, . . . j, and hence we have a maximum of λ factors in every
summand, that is,

[xλ]Al(s̄(x, y)) =
λ∑

j=0

sl,j
∑

µ1+...+µj=λ

Āµ1 · · · Āµj .

This is a finite sum of finite products of subcritical factors and hence it is subcritical for
T (z).

Additionally, we prove subcriticality of the functions Al(z) for C(z) in order to apply
Theorem 3.26.

Lemma 3.34. Let s(x, y) =
∑

l≥0Al(y)x
l be the generating function of the pattern N .

Then the functions Al(y) are subcritical for C(z).

Proof. Thanks to symbolic arguments and to the recursive definition of Ñ = •|Ñ∨Ñ |Ñ∧�,
we get that:

s(x, y) = 2nx+ s(x, y)2 + ys(x, y).

Solving this equation gives s(x, y) = 1
2

(
1− y −

√
(y − 1)2 − 8nx

)
. We want to deduce an

explicit formula for the Al(y) from this expression. With s(0, 0) = 0, we obtain the following
power series in x.

s(x, y) =
1− y
2
− 1

2

√
(y − 1)2

√
1− 8nx

(y − 1)2

=
1− y
2
− 1

2
(1− y)

∑

l≥0

(
1/2
l

)
(−8n)l(y − 1)−2lxl.

Therefore, Al(y) = −1
2(1−y)

(
1/2
l

)
(−8n)l(y−1)−2l is a rational function of y and its radius

of convergence is 1. Therefore, these functions are subcritical for C(z).

Proof of Proposition 3.29. Let t be a tree in C which computes True. Then there is at
least one variable x appearing twice in the leaves of t, because otherwise the tree computes
a read-once function where every variable is essential. We half-embed t into the plane as
described before.
As this N -embedding represents an injection it follows that C

(k)
m ≤ (N [C])(k)m . Hence, by

Theorem 3.26, which can be applied thanks to Lemmas 3.33 and 3.34:

C
(k)
m

Cm
≤ N [C](k)m

Cm
= O

(
1

nk

)
,

and thus asymptotically almost all tautologies in a binary non-planar And/Or tree are
simple (and have a minimal N [N ]-embedding with one restriction). Proposition 3.29 is
thus proved.

Proof of Theorem 3.25. Let gx(z) be the generating function counting the trees in C with
a path from the root to a leaf labelled with x containing only internal nodes with label ∨.
It is given by gx(z) = C(z)− ḡx(z) with

ḡx(z) = (2n − 1)z +
1

2

(
C2(z) + C(z2)

)
+

1

2

(
ḡ2x(z) + ḡx(z

2)
)
, (3.20)
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because a tree rooted at an ∧-node cannot contain an ∨-only path from the root, while if
the root is labelled with ∨ both subtrees of the root must not contain an ∨-only path to an
x-leaf.
The generating function Gx(z) which counts trees which are a simple tautology realized

by x is given by Gx(z) = C(z) − Ḡx(z), where Ḡx(z) counts trees which are not simple
tautologies realized by x. Similarly to ḡx(z), such a tree is either rooted at an ∧-node, or
it is rooted at an ∨-node, and both subtrees of the root are not simple tautologies. Still, it
could return True if one of the subtrees contains an ∨-only path to x and the other subtree
contains an ∨-only path to x̄. This gives the following implicit equation for Ḡx(z).

Ḡx(z) = 2nz +
1

2

(
C2(z) + C(z2)

)
+

1

2

(
Ḡ2

x(z) + Ḡx(z
2)
)
− gx(z)gx̄(z). (3.21)

To calculate the limiting ratio of simple tautologies we need to compute n(1−limz→γn
Ḡ′

x(z)
C′(z) ),

where the factor n is the choice of x in the set of variables, and we use an analogue of
Lemma 3.12. We denote by un := ḡx(γn), vn := ḡx(γ

2
n), Un := Ḡx(γn) and Vn := Ḡx(γ

2
n),

and compute Un up to terms of order 1
n2 . From (3.20) we get

un = (2n − 1)
1

8n

(
1− 1

8n

)
+

1

2

(
1

4
+ C(γ2n)

)
+

1

2
(u2n + vn) (3.22)

vn = (2n − 1)
1

64n2

(
1− 1

8n

)2

+
1

2
(C2(γ2n) + C(γ4n)) +

1

2
(v2n + ḡx(γ

4
n)) (3.23)

We know that C(z2) = 2nz2 +O(z4), hence C(γ2n) =
1

32n(1 +O( 1
8n))

2 +O
(

1
n3

)
. Inserting

this into (3.23) we can compute vn = 1
32n +O

(
1
n2

)
, and with (3.22), un = 1

2 − 1
4
1
n +O

(
1
n2

)
.

Solving the equations for Un and Vn, up to terms of order 1
n2 , we get

Vn =
1

32n
− 7

1024n2
and Un =

1

2
− 129

1024n2
+O

(
1

n4

)

Derivating Ḡx(z) and ḡx(z), we obtain

ḡ′x(z) = 2n− 1 + C(z)C ′(z) + zC ′(z2) + ḡx(z)ḡ
′
x(z) + zḡ′x(z

2) and

Ḡ′
x(z) = 2n+ C(z)C ′(z) + zC ′(z2) + Ḡx(z)Ḡ

′
x(z) + zḠ′

x(z
2)− 2g(z)g′(z).

Hence

lim
z→γn

ḡ′x(z)
C ′(z)

=
1

1− ḡx(z)

(
2n− 1

C ′(z)
+ C(z) +

zC ′(z2)
C ′(z)

+
zḡ′x(z

2)

C ′(z)

)

∼ 1

1− un
1

2
= 1− 1

2n
+

1

4n2
+O( 1

n3
)

lim
z→γn

Ḡ′
x(z)

C ′(z)
=

1

1− Ḡx(z)

(
2n

C ′(z)
+ C(z) +

zC ′(z2)
C ′(z)

+
zḠ′

x(z
2)

C ′(z)
− 2g(z)g′(z)

C ′(z)

)

∼ 1

1− Un

(
1

2
− 2un lim

z→γn

ḡ′x(z)
C ′(z)

)
∼
(
2− 129

512n2

)(
1

2
− 1

4n2

)

= 1− 641

1024n2
+O

(
1

n4

)

The result of Theorem 3.25 follows immediately.
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3.2. Limiting ratio of tautologies

3.2.4 Associative and commutative trees

Recall that the generating function of general And/Or-trees is given by (cf. Equation (3.5))

P (z) = P̂ (z) + P̌ (z)− 2nz,

and P̂ (z) = P̌ (z) fulfils (cf Equation (3.6))

P̂ (z) = exp


∑

i≥1

P̂ (zi)

i


− 1− P̂ (z) + 2nz

Let δn be the dominant positive singularity of P̂ (z), and hence also of P (z). To get δn, P̂ (δn)
and P (δn) we need to solve the singular system

y = ey · F (z)− 1− y − 2nz (3.24)

1 = ey · F (z)− 1 (3.25)

with F (z) = exp(
∑

i≥2 P̂ (z
i)/i) = 1 + 2n2z2 + O(z3). Therefore F (z) ∼ 1 for z = O

(
1
n

)

and n tending to infinity, hence (3.25) gives ey(z) ∼ 2 or y(z) ∼ ln(2). Inserting (3.25) into
(3.24) gives y = 1+2nz

2 and thus the first order asymptotic of δn is δn ∼ 2 ln 2−1
2n .

Theorem 3.35. The limiting ratio of tautologies in the binary commutative case, Pa,c
n (True),

is given by

lim
m→∞

Pa,c
n,m(True) ∼

(2 ln 2− 1)2

4

1

n
+O

(
1

n2

)

≈ 0.03730583332

n
.

To prove the theorem, we will again use mobiles, relying on the unambiguous pattern
R = {N̂ , Ň} from Section 3.2.2, given in (3.12), and will prove an analogue to Theorem 3.26
in the associative case.

Generalization of Kozik’s theorem to associative and commutative trees

Theorem 3.36. Let L be a labelled unambiguous pattern language where all nodes have
out-degree different from 1, and ℓ(x, y) its generating function. Further assume that the
coefficients Al(y), given by ℓ(x, y) =

∑
l≥0Al(y)x

l, are subcritical for P (z).

We denote by L[P][k]m,n (resp by L[P][≥k]
m,n ) the number of elements of L[P] of size m which

have k (resp. at least k) L-restrictions. Then,

lim
m→∞

L[P][≥k]
m,n

Pm
= O

(
1

nk

)
and lim

m→∞
L[P][k]m,n

Pm
= O

(
1

nk

)

when n tends to infinity.

The proof of Theorem 3.36 now is an easy generalization of Sections 3.2.2 and 3.2.3. We
use mobiles on a non-binary planar pattern L, that is pattern leaves are on planar paths
from the root, while non-planar trees have been substituted in the �-nodes of the planar
pattern. We can easily prove Proposition 3.27 in the associative case.
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Proof of Theorem 3.36. As in previous parts, Proposition 3.27 gives:

L[P][k]m,n

Pm
=

∑N
l=0 L̃[P](m, l)wk,v(l)(n− v)l−k2l

Pm
;

with N = n− v + k, which implies:

L[P][k]m,n

Pm
≤
∑N

l=0 L̃[P](m, l)wk,v(l)n
l−k2l

Pm
=

∑N
l=0 L[P](m, l)wk,v(l)

nkPm
. (3.26)

Hence the result follows from Proposition 3.28, which was proven for all patterns.

Non-planar associative tautologies

Proposition 3.37. Almost every non-planar associative And/Or tree computing the func-
tion True is a simple tautology.

Again we introduce a half-embedding of a tree t into the plane: Start at the root and
choose a left to right order of the children of the root. If the root is a ∧-node, proceed with
the leftmost child of the root. If the root was a ∨-node, then do the same for every child
of the root. If we end up at a leaf, this is a pattern leaf. By this procedure we obtain an
element of R[P]. Appyling the same procedure to every root of a non-planar subtree, we
obtain an element of R[R][P], we call it an R[R]-embedding of t. There are several ways
to embed t, choose one embedding with a minimal number of R[R]-restrictions. Again, the
function t 7→ R[R]min(t) represents an injection.

Now looking at all trees with a minimal R[R]-embedding having exactly one restriction,
we can proceed in the same way as in the proof of Theorem 3.19 to prove that they are
simple tautologies.

We again prove that the functions Al(y) of the pattern R are subcritical for P (z).

Lemma 3.38. Let p(x, y) =
∑

l≥0Al(y)x
l be the generating function of the pattern language

R. The functions Al(y) are subcritical for P (z).

Proof. The generating function of the R pattern is p(x, y) = p̂(x, y) + p̌(x, y) − 2nx where

p̂(x, y) =
1

2

(
1− 2nx− y − 1−

√
(2nx− y − 1)2 − 8nx

)
.

Therefore,

p(x, y) = −(y + 1)−
√

(2nx− y − 1)2 − 8nx

= −(y + 1)−
√

(y + 1)2

√
1− 4nx(n− 1 + y)

(y + 1)2

= −(y + 1) + (y + 1)
∑

l≥0

(
1/2
l

)
(y + 1)−2l(−4nx)l(n− 1 + y)l

since p(0, 0) = 0. Therefore, the Al(y) are rational functions with radius of convergence 1
which is bigger than δn. Thus Al(y) is subcritical for P (z).
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Proof of Proposition 3.37. Let t ∈ P be a tree that computes True. We half-embed t and
argue as in the proof of Proposition 3.29 in Section 3.2.3 to prove Proposition 3.37 with the
help of Lemma 3.33, the above result and Theorem 3.36.

Proof of Theorem 3.35. We define Gx(z) as previously and obtain

Gx(z) = z2
∑

ℓ≥0

Zℓ((P̂(z)− 2z) = z2 exp


∑

ℓ≥1

P̂ (zℓ)− 2zℓ

ℓ


 , (3.27)

Hence

G′
x(z) = 2z(exp


∑

ℓ≥1

P̂ (zℓ)− 2zℓ

ℓ


+ z2 exp


∑

ℓ≥1

P̂ (zℓ)− 2zℓ

ℓ




∑

ℓ≥1

zℓ−1(P̂ ′(zi)− 2)




=
2

z
Gx(z) +Gx(z)


P̂ ′(z)− 2 +

∑

ℓ≥2

zℓ−1(P̂ ′(zi)− 2)


 .

At z = δn, by (3.25) Gx(z) equals

Gx(δn) = δ2n exp


∑

i≥1

P̂ (δin)

i




︸ ︷︷ ︸
=2

exp


∑

i≥1

−2δin
i




︸ ︷︷ ︸
=(1−δn)2∼1

∼ 2δ2n.

Hence, due to P (z) = 2P̂ (z)− 2nz,

lim
z→δn

G′
x(z)

P ′(z)
= lim

z→δn

Gx(z)P̂
′(z)

P ′(z)

= lim
z→δn

Gx(z)P̂
′(z)

2P̂ ′(z) − 2n
∼ 2δ2n

2
=

(2 ln 2− 1)2

4n2

and
G′(z)
P ′(z)

= n
G′

x(z)

P ′(z)
=

(2 ln 2− 1)2

4n
.

3.3 Limiting ratio of literals

In this section, we will compute the exact limiting ratios of functions of complexity L(f) = 1,
that is literals x or x̄. Therefore, in analogy to Section 3.2, we will define so called simple
x-trees.

Definition 3.39. A simple x is a tree of the shape x ∧ ST , x ∨ SC, x ∧ (x ∨ · · · ) or
x ∨ (x ∧ · · · ), where ST denotes a simple tautology and SC a simple contradiction3. The
shape of such trees is depicted in Figures 3.5 and 3.6.

3A simple contradiction is a negated simple tautology, i.e. a Boolean expression of the form x ∧ x̄ ∧ f for
any variable x and any function f .
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Chapter 3. Boolean trees

For all cases, we will prove the following proposition:

Proposition 3.40. Asymptotically, almost all trees computing the function x are simple x.

We state the proposition without a complete proof. The proof is easily done by similar
arguments as in the previous section, using the patterns N [N ] or R[R], respectively. We
can prove that every tree t ∈ T or t ∈ C with exactly 2 N [N ]-restrictions, and every tree
t ∈ A or t ∈ P with exactly 2 R[R]-restrictions, respectively, computing x is a simple x
tree. Theorem 3.18 and its counterparts for the different models implies that those trees
give asymptotically almost all trees computing x, as it is an easy task to prove that a large
tree computing x will have at least 2 restrictions. Still we suggest a much simpler argument
which proves the proposition in Section 3.5.

3.3.1 Binary planar trees

Theorem 3.41. The limit ratio of functions of complexity 1 in the binary planar model is

lim
m→∞

Pm,n(x) =
5

16n2
+O

(
1

n3

)
.

Simple x of type tautology.

∨
x SC

∧
x ST

Simple x of type x.

∨
x ∧

∧
x

∧
x ∨

∨
x

Figure 3.5: The different kinds of simple x - ST denotes a simple tautology and SC a simple
contradiction.

Proof. We distinguish between simple x of type tautology, which we denote by xT , and
simple x of type x, denoted by xX (c.f. Figure 3.5). By Proposition 3.40, we have Pn(x) =
Pn(xT ) + Pn(xX).
First we compute Pn(xT ) = limm→∞ Pm,n(xT ). Let G(z) be the generating function

used for computing simple tautologies, given in Section 3.2.1. Of course, G(z) also counts
contradictions. The generating function G̃(z) of simple x of the first kind is given by
4z · G(z), where the factor z counts the leaf labelled with x, and the factor 4 is explained
by the constant function being a tautology or a contradiction, the label of the internal node
then being fixed, and the constant being positioned left or right. Hence

[zm]G̃(z)

[zm]T (z)
∼ 4ρn

[zm]G(z)

[zm]T (z)
= 4ρnPn(True) ∼

3

16n2
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For the computation of Pn(xX) we use the function gx(z) given in (3.7). Let g̃x(z) be the
function counting simple x of type x. Then g̃x(z) = 4zgx(z) by the same arguments as
above, hence

[zm]g̃x(z)

[zm]T (z)
∼ 4ρn

[zm]gx(z)

[zm]T (z)
∼ 4

16n
lim

z→ 1
16n

g′x(z)
T ′(z)

Using Maple, we get limz→ 1
16n

g′(z)
T ′(z) =

1
2n +O

(
1
n2

)
, hence

Pn(x) = Pn(xT ) + Pn(xX) ∼ 3

16n2
+

1

8n2
+O

(
1

n3

)
=

5

16n2
+O

(
1

n3

)

3.3.2 Associative planar trees

Theorem 3.42. The limit ratio of functions of complexity 1 in the associative planar case
is

lim
m→∞

Pa
m,n(x) =

546− 386
√
2

n2
+O

(
1

n3

)
≈ 0.1135651

n2
+O

(
1

n3

)
.

Proof. Again we distinguish between simple x of type tautology (xT ), and simple x of type
x (xX), cf. Figure 3.6. Note that a simple x in the associative case is represented by a tree
with a binary root.

Simple x of type tautology.

∨
xSC SC SC SC SC

∨
xST ST ST ST ST

Simple x of type x.

∨
x ∧

x

∧
x ∨

x

Figure 3.6: The different kinds of simple x in the associative case - ST denotes a simple
tautology and SC a simple contradiction.

Calculating Pn(xT ) = limm→∞ Pm,n(xT ), we obtain G̃(z) = 4z · G(z) by the same argu-
ments as above and

[zm]G̃(z)

[zm]A(z)
∼ 4αn

[zm]G(z)

[zm]A(z)
= 4αnPa

n(True) ∼ 4
3− 2

√
2

2n

51 − 36
√
2

n
=

594− 420
√
2

n2
.
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The contribution of xX is counted by g̃x(z) = 4zgx(z), where gx(z) counts trees with an
∨-root and exactly one leaf labelled by x. Note that the other leaves may not be labelled
with x neither with x̄, because this would give a simple tautology. Hence, gx(z) is given by

gx(z) = z
∑

ℓ≥2

ℓ(A(z)− 2z)ℓ−1.

Maple computations give lim
z→ 3−2

√
2

2n

g′x(z)
A′(z) ∼ 3

√
2−4
n +O

(
1
n2

)
, and thus

[zm]g̃x(z)

[zm]A(z)
∼ 4αn

[zm]gx(z)

[zm]A(z)
∼ 4

3− 2
√
2

2n

3
√
2− 2

n
=

34
√
2− 48

n2
+O

(
1

n3

)
.

Adding the two limiting ratios gives the constant in Theorem 3.42.

3.3.3 Binary non-planar trees

Theorem 3.43. The limit ratio of functions of complexity 1 in the binary non-planar case
is

lim
m→∞

Pc
m,n(x) =

1153

4096n2
+O

(
1

n3

)
≈ 0.2814941406

n2
+O

(
1

n3

)
.

Proof. Simple x-trees are the same as in the planar binary case, but there is no left-to-right
order anymore. Hence, G̃(z) = 2γnG(z), and G(z) = C(z)−Ḡ(z) with Ḡ(z) given in (3.21).
Hence

[zm]G̃(z)

[zm]C(z)
∼ 2γn

[zm]G(z)

[zm]C(z)
= 2γnPc

n(True) ∼ 2
1

8n

(
1 +

1

8n

)
641

1024n
=

641

4096n2
+O

(
1

n3

)

g̃x(z) = 2γngx(z), and g(z) = C(z) − ḡx(z) with ḡ(z) given in (3.21) and limz→γn
ḡ′x(z)
C′(z)

computed in the proof of Theorem 3.25. Hence

[zm]g̃x(z)

[zm]C(z)
∼ 2γn

[zm]gx(z)

[zm]C(z)
∼ 2

1

8n

(
1 +

1

8n

)
1

2n
=

1

8n2
+O

(
1

n3

)
=

512

4096n2
+O

(
1

n3

)
.

3.3.4 Associative non-planar trees

Theorem 3.44. The limit ratio of functions of complexity 1 in the associative non-planar
case is

lim
m→∞

Pa,c
m,n(x) =

(2 ln 2− 1)2(2 ln 2 + 1)

4n2
+O

(
1

n3

)
≈ 0.08902269970

n2
+O

(
1

n3

)
.

Proof. Again, G̃(z) = 2δnG(z), with G(z) given in (3.27), and

[zm]G̃(z)

[zm]P (z)
∼ 2δn

[zm]G(z)

[zm]P (z)
= 2δnPa,c

m (True)

∼ 2
(2 ln 2− 1)

2n

(2 ln 2− 1)2

8n
=

(2 ln 2− 1)3

8n2
+O

(
1

n3

)
.
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Moreover gx(z) is given by

gx(z) = z + z

(
exp

(∑
ℓ≥1 P̂ (z

ℓ)− 2zℓ

ℓ

)
− 1

)
,

and

g′x(z) = 1 +
1

z
(gx(z)− z) + gx(z)


∑

ℓ≥1

zℓ−1(P̂ (zℓ)− 2)


 .

Since gx(z) ∼ 2δn as z → δn, we get:

lim
z→δn

g′x(z)
P ′(z)

∼ lim
z→δn

gx(z)P̂
′(z)

2P̂ ′(z)− 2n
∼ 2δn

2
=

2 ln 2− 1

2n
,

and finally, with g̃x(z) = 2δngx(z),

[zm]g̃x(z)

[zm]P (z)
∼ 2δn

[zm]gx(z)

[zm]P (z)
∼ 2

(2 ln 2− 1)

2n

(2 ln 2− 1)

4n
=

(2 ln 2− 1)2

4n2
+O

(
1

n3

)
.

3.4 Limiting probability of a general function

In the previous parts, we have studied functions of complexity zero and one. In this part
we are interested in the limiting probability of functions of higher complexity. To prove
Theorem 3.5 Kozik showed that asymptotically almost all trees computing a function f
have a ”simple f” shape. To be more precise, they are obtained from a minimal tree by a
single well-defined expansion. In this part, we generalize this result to all models and give
bounds for the number of such expansions.

3.4.1 The binary planar case

Theorem 3.45 ([47]). For all Boolean functions f ,

Pn(f) ∼
λf

nL(f)+1

when n tends to infinity, where λf is the number of possible expansions of a minimal tree
computing f .

The idea of this part is to bound λf . We show the following result:

Proposition 3.46. For all Boolean function f ,

10r − 3

2 · 16r Mf ≤ λf ≤
8r2 + 2r − 3

2 · 16r Mf

where Mf is the number of minimal trees representing f and r = L(f).

The proof of this proposition is based on a result by Kozik [47]. The set of non negligible
trees computing f , i.e. the trees determining the asymptotic leading term, is exactly the
set of trees obtained by expanding a minimal tree of f once.
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Definition 3.47. Let t be an And/Or tree computing f , ν one of its nodes and tν the
subtree rooted at ν. An expansion of t in ν is a tree obtained by replacing the subtree tν
rooted at ν by a tree tν ⋄ te where ⋄ ∈ {∧,∨} and where te is an And/Or tree. Moreover,
the expanded tree still has to compute f .

Kozik has shown that the only non negligible expansions that are to be considered are:

• The T-expansions: an expansion is a T-expansion if the inserted subtree te is a simple
tautology (resp. a simple contradiction) and if the new label of ν is ∧ (resp. ∨).

• The X-expansions: an expansion is an X-expansion if the inserted subtree te is (up
to commutativity and associativity) of the shape x ∨ ... (resp. x ∧ ...) where x is an
essential variable of f , and if the new label of ν is ∧ (resp. ∨).

In the following, we will call a T-expansion an ∧-T-expansion (resp. an ∨-T-expansion)
if the new label of ν is ∧ (resp. ∨), and analogously for X-expansions.

Proof of Proposition 3.46. In a Catalan And/Or tree, a T-expansion is possible in every
node without changing the computed function. At each node, either we can expand by an
∨-T-expansion on the right side and on the left side, or by an ∧-T-expansion on the right
side and on the left side. As a minimal tree of f is of size L(f), it has 2L(f)− 1 nodes and
there are λT (f) = 2(2L(f) − 1)Mf different kinds of T-expansions that can be done from
all minimal trees computing f .
We can now consider λX(f), the number of different kinds of X-expansions which do

not change the computed function f . This number depends heavily on the shape of the
minimal trees of f , therefore, we only find bounds for this number. An ∧-X-expansion
(resp. ∨-X-expansion) according to xi is allowed at each node linked to a leaf labelled by
xi by an ∨-only (resp. ∧-only) path, and at all its sons. Let us note that:

• for each leaf, we can do at least one ∨-X-expansion to the right and one to the left and
one ∧-X-expansion to the right and to the left at its father, because two different leaves
having the same father can be labelled by the same variable; this gives contribution
4L(f);

• at each node (internal or external), we can do at most 4 X-expansions (we choose
between ∧ and ∨ and between right and left side) for every different literal that appears
on the leaves. There are at most L(f) different literals appearing on the leaves of a
minimal tree and a minimal tree has exactly 2L(f) − 1 (internal or external) nodes.
Therefore, 4L(f)(2L(f)− 1)Mf is an upper bound of λX(f).

Therefore, we have the following bounds:

4L(f)Mf ≤ λX(f) ≤ 4L(f)(2L(f)− 1)Mf (3.28)

To end the proof of Proposition 3.46, we need to note that the expansions of different
types are weighted by their limiting ratio, and hence

λf

nL(f)+1
=Mfρ

L(f)
n (λT (f)w1 + λX(f)w2),

where w1 is the limiting ratio of simple tautologies (resp. simple contradictions), and w2

is the limiting ratio of trees of shape x ∨ ... for x a variable. Thanks to the computations
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made in Section 3.2 (cf. Theorem 3.13), we know that w1 = 3
4n . Moreover, the generating

function gx defined in Section 3.2.1 counts exactly the number of trees that can be used for
an X-expansion (according to a variable x). Therefore,

lim
z→ρn

g′x(z)
P (z)

∼ 1

2n
= w2,

and with (3.28) we prove Proposition 3.46.

3.4.2 The associative planar case

The associative case appears to be similar to the binary planar case. We show the following
theorem.

Theorem 3.48. In the associative planar case, the probability distribution Pa
n(f) is asymp-

totically given by

Pa
n(f) ∼

λaf

nL(f)+1
,

as n tends to infinity, and

(
3− 2

√
2

2

)r [
145r + 153 − (102r + 108)

√
2
]
Mf ≤ λf

λf ≤
(
3− 2

√
2

2

)r [
−(12r2 − 247r + 51) + (9r2 − 174r + 36)

√
2
]
Mf

where Mf is the number of minimal trees computing f and r = L(f) is the complexity of f .

To show Theorem 3.48, we first have to prove that, as in the binary planar case, the set
of non negligible associative trees computing a Boolean function is the set of trees obtained
from a minimal tree by expanding once. Moreover, we have to find the non-negligible
expansions that have to be considered. Then, we can prove Theorem 3.48 with the same
methods as in the binary planar case.

Associative expansions.

Because of the structure of associative trees (they are stratified), we have to be careful with
the definition of expansions, which is different to the one in the binary case:

Definition 3.49 (cf. Figure 3.7 on page 109). Let t be an And/Or associative tree com-
puting f . We define two types of expansions of t.

• Let ν be an internal node of t (possibly the root) with subtrees t1, . . . , tj , j ≥ 2. An
expansion of t in ν of the first kind is a tree obtained by adding a subtree te = tj+1 to
ν.

• Let ν be the root or a leaf of the tree. The tree obtained by replacing the subtree
tν rooted at ν by te ⋄ tν, where ⋄ ∈ {∧,∨} is chosen such that the obtained tree is
stratified, is an expansion of t in ν of the second kind. In this case, ⋄ will be called
the new label of ν.

In all cases, the expanded tree still has to compute f .
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Remark. We have to keep in mind that both types of expansions are possible at the root
of the tree.

Proposition 3.50. The set of non-negligible trees computing a Boolean function f is the set
of trees obtained by expanding a minimal tree of f once. Moreover, the only non-negligible
expansions we have to consider are:

• The T-expansions: an expansion is a T-expansion if the inserted subtree te is a simple
tautology (resp. a simple contradiction) and if the new label of ν is ∧ (resp. ∨).

• The X-expansions: an expansion is an X-expansion if the inserted subtree te is (up to
commutativity) of the shape x∨ ... (resp. x∧ ...) where x is an essential variable of f
and if the new label of ν is ∧ (resp. ∨).

Proof. The proof is inspired by the proof of the corresponding result for binary trees that
can be found in Kozik’s paper [47]. The idea is to take a well-chosen tree computing f , and
to replace every subtree which can be evaluated to True or False independently from the
rest of the tree by a ⋆. Then, we state that simplifying the stars gives a minimal tree of the
considered Boolean function.

Let f be a Boolean function whose complexity L(f) will be denoted by r. Let us consider
the following patterns:

P̂ = •|P̌ ∧ P̌ |P̌ ∧ P̌ ∧ P̌ | . . .
P̌ = •|P̂ ∨�|P̂ ∨� ∨�| . . .
S = {P̂ , P̌}

and R the pattern defined in Section 3.2.2 (see (3.12)).

Remark. The pattern P has the following property: if all the P -pattern leaves of a tree
are valuated to True, then the whole tree itself computes True.

Now consider the patterns L = R(r+1)[R ⊕ S] and L̄ = R(r+1)[(R ⊕ S)2]. We need the
following definition:

Definition 3.51. A leaf which is a R(i)-pattern leaf but not a R(i−1)-pattern leaf is said to
be on level i. A L-pattern leaf which is not an Rr+1-pattern leaf is said to be on level r+ 2
and a L̄-pattern leaf which is not a L-pattern leaf is said to be on level r + 3.

Let t be a tree of size r representing f . If the root of t is labelled with ∨ (resp. ∧),
then using a simple contradiction (resp. tautology) Φ, the new tree Φ ∧ t (resp. Φ ∨ t) still
represents the function f . Since the limiting ratio of simple tautologies or contradictions is
equal to Θ(1/n) and the r nodes of t are counted by zr, for large enough n we obtain the
following lower bound:

Pa
n(f) ≥

α

nr+1
.

Consequently, we can neglect trees with at least r + 2 L̄-restrictions.
By the same arguments as Kozik gives in [47] for binary planar trees, it is easily proven

that a tree computing f has to have at least r+1 L-restrictions (if it has leaves on level r+2,
which we can assume), because otherwise it could be simplified to a tree of size smaller than
r computing f by the properties of the patterns R and S. Further, we consider trees with
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exactly r+1 L-restrictions and exactly r+1 L̄-restrictions (those with more L̄-restrictions
are negligible). Finally, we know that the set of non negligible trees computing f is the set
of trees with exactly r+1 L-restrictions and r+1 L̄-restrictions. Thus, we know that every
variable appearing in a level r + 3 pattern leaf is non essential and not repeated among L̄
pattern leaves. Therefore, each subtree of t rooted on level r + 3 with its parent node on
level r + 2 can be replaced by a ⋆, because it can be valuated to False by assigning all
the R-pattern leaves to False and to True by assigning all the S-pattern leaves to True.
Both valuations can be done independently from the rest of the tree because these pattern
leaves are non essential and not repeated. After this operation all the remaining leaves are
L-pattern leaves.

Moreover, we replace by ⋆ every leaf of the tree which is not an essential variable of f
and which appears only once among the leaves of t. We now have obtained a tree t⋆.

Then, we can simplify the tree in order to obtain a tree without stars, according to the
following rules:

⋆ ∨ . . . ∨ ⋆ ≡ ⋆ ⋆ ∧ . . . ∧ ⋆ ≡ ⋆
⋆ ∨ . . . ⋆ ∨t1 ∨ . . . ∨ tj ≡ True ⋆ ∧ . . . ⋆ ∧t1 ∧ . . . ∧ tj ≡ False (3.29)

True ∨ t1 ∨ . . . ∨ tj ≡ True False ∧ t1 ∧ . . . ∧ tj ≡ False
False ∨ t1 ∨ . . . ∨ tj ≡ t1 ∨ . . . ∨ tj True ∧ t1 ∧ . . . ∧ tj ≡ t1 ∧ . . . ∧ tj (3.30)

where t1, . . . , tj are subtrees containing no stars.

The tree t̂ obtained after this process still computes f . Let us prove that the obtained
tree is a minimal tree of f and that the least common ancestor4 of the stars in t⋆ has been
simplified during the process.

The tree t⋆ contains at least one ⋆ since t is big enough to have at least one leaf on
level r + 3. Moreover, the tree t⋆ has exactly r + 1 restrictions and no constants. The
final tree t̂ has no ⋆, and no constant. Therefore, a rule of type (3.29) must have been
used at least once during the simplification process, because the rules (3.29) are the only
ones simplifying stars. But, using such a rule simplifies at least one subtree with at least
one non-star pattern leaf. Therefore, this leaf had to be labelled by a variable which was
either essential or repeated. Therefore, the simplifying process has at least simplified one
restriction and the obtained tree has at most r leaves. Thus, t̂ is a minimal tree of f .

Moreover, let ν be the least common ancestor of the stars in t⋆. Let us assume that
ν does not disappear during the simplification process. Therefore, two stars have been
simplified independently during the process, and thus at least two rules of type (3.29)
have been applied, which means that at least two restrictions have disappeared during the
simplification process. Therefore, the simplified tree t̂ still computes f and contains at most
r − 1 restrictions, i.e. at most r − 1 leaves, which is impossible since the complexity of f
is r. Therefore, the node ν has to disappear during the simplification process. Thus a
non-negligible tree computing f is indeed a minimal tree expanded once.

Finally, let us remark that the last simplifying rule applied during the process has to be
of the kind (3.30).

The second part of the proof is to understand which are the non-negligible expansions
allowed, i.e. which do not change the computed function f .

4the least common ancestor of a set of nodes is the node ν farthest from the root such that the tree rooted
at ν contains all the nodes of the considered set.
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First, let us remark that, thanks to Theorem 3.18, the trees obtained by expanding with
a tree te with more than two (R⊕ S)2-restrictions are negligible. On the other hand there
has to be at least one (R⊕ S)2-restriction in te, because if there was none, we could assign
this tree to False or True independently from the rest of the tree. Since the expanded tree
must still compute the function f , by simplification we would obtain a tree computing f
being smaller than the minimal tree, which is impossible.

First case: The tree te contains one repetition and no essential variable. Then it has
to compute a constant function (i.e. True or False). If it does not, the subtree can be
valuated to True or False independently from the rest of the tree. Thus, by simplification,
we can obtain a tree, smaller than the minimal tree, computing f , which is a contradiction.
Therefore, the expanding tree te is a simple tautology or a simple contradiction (thanks to
Proposition 3.23). Moreover, as the expanded tree still has to compute f , if the father of te
is a ∧ (resp. ∨), te is a simple tautology (resp. contradiction), which gives a T -expansion.

Second case: The subtree te contains no repetition and one essential variable, let us say
x. Then the essential variable has to appear on the first level. If it does not, the Boolean
expression has shape s1 ∧ (s2 ∨ x) or s1 ∨ (s2 ∧ x) (up to commutativity). Moreover, the
terms s1 and s2 have no R⊕S-restrictions and therefore we can make them False or True
independently from the rest of the tree. Then we can valuate the whole term either to
False or True independently from x, which is impossible since x is an essential variable of
f .
If a ∧-X-expansion te according to the variable xi is allowed in a node ν, then every ∧-X-

expansion t′e according to this variable x is allowed at ν (and as well for ∨-X-expansions).

Proof of Proposition 3.48.

Proof. As in the binary case, we have to compute the limiting ratio of T-expansions and
X-expansions, then the number of nodes where each kind of such expansions are allowed.
Let us denote by Mf the number of minimal trees representing a given Boolean function f
of complexity r.
The limiting ratio of T -expansions is the limit ratio of simple tautologies, which has

already been computed in section 3.2.2. We have that wa
1 = 51−36

√
2

n .
Let gx be the generating function of associative trees rooted at ∧ (resp. ∨) and containing

exactly one x in the first generation. Then,

gx(z) = z
∑

j≥2

j(A(z) − 2z)j−1.

Since the set of trees with more than one x in the first generation is negligible in front of
the set of trees with exactly one x in the first generation, we can assume that:

wa
2 = lim

z→αn

g′x(z)
A′(z)

=
3
√
2− 4

n

is the limiting ratio of ∧-X-expansions (resp. ∨-X-expansions).
As in the binary case, the number λX(f) of different kinds of X-expansions and the

number λT (f) of different T -expansions allowed in a minimal tree depend on the shape of
the considered minimal tree. Given a minimal tree t of f , let us number its internal nodes
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from 1 to N . Let us denote by s(i) the number of sons of the internal node i. Moreover,
let us denote by d(i) the number of sons of the node i which are leaves. Then, if λT (t) is
the number of different T -expansions in the minimal tree t of f , we have that:

λT (t) = 2r +

N∑

i=1

(s(i) + 1) + 2

where 2r is the number of different T -expansions allowed at the leaves of the tree (if the
parent node is labelled by ∧ (or ∨ respectively), only simple tautology (or contradiction
respectively) T-expansions are allowed), s(i) + 1 is the number of different T -expansions
allowed at the node i (the number of different positions at node i is s(i) + 1); and 2 is the
number of expansions allowed at the root by pushing the root to the first generation and
adding a new root with two sons. Therefore,

λT (t) = 2r +

N∑

i=1

s(i) +N + 2 = 2r + (r +N − 1) +N + 2,

and since 1 ≤ N ≤ r − 1, we obtain that:

3(r − 1)Mf ≤ λT (f) ≤ (5r − 1)Mf .

Further, given a label xi, an ∧-X-expansion according to xi is allowed at its father and
at all its sisters (brothers that are reduced to a leaf), because two sisters cannot have the
same label. Indeed, if two sisters have the same label (or even opposite labels), then the
considered tree can be simplified, and since we consider a minimal tree, this is impossible.
Therefore,

λX(t) =
N∑

i=1

d(i)(s(i) + 1) + 2d(root) +
N∑

i=1

d(i)2.

Lemma 3.52. For all i, d(i) ≤ r −N + 1.

Proof. Let us assume that there exist an internal node i0 such that d(i0) > r−N +1. It is
easy to see that, as each node except the root has a unique father,

∑N
i=1 d(i) = r +N − 1.

Moreover,
N∑

i=1

d(i) >
∑

i6=i0

d(i) + (r −N + 1) > 2(N − 1) + (r −N + 1)

since every internal node has at least two sons. Therefore,
∑N

i=1 d(i) > r + N − 1, which
gives a contradiction.

Therefore, thanks to the Lemma,

λX(t) ≤
N∑

i=1

d(i) + (r −N + 1)

N∑

i=1

s(i) + 2(r −N + 1) + 2(r −N + 1)

N∑

i=1

d(i)

≤ r + (r −N + 1)[(N + r − 1) + 2 + 2r]

≤ r(3r + 2).
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On the other hand,

λX(t) ≥
N∑

i=1

d(i) +

N∑

i=1

d(i) = 2r,

and
λX(f) ≥ 2rMf .

Finally, since
λf

nL(f)+1
=Mfα

L(f)
n (λT (f)w

a
1 + λX(f)wa

2),

we get that:
(
3− 2

√
2

2

)r [
145r + 153− (102r + 108)

√
2
]
Mf ≤ λf

λf ≤
(
3− 2

√
2

2

)r [
−(12r2 − 247r + 51) + (9r2 − 174r + 36)

√
2
]
Mf

3.4.3 The binary non-planar case

Theorem 3.53. Let f be a Boolean non-constant function of complexity L(f) = r. Then
the limiting ratio of f is given by

lim
m→∞

Pc
m,n(f)

n→∞∼
λcf

2nr+1
,

where λc(f) denotes the total number of expansions on all minimal trees of f . Moreover,

2306r − 641

1024 · 8r Mf ≤ λcf ≤
(2r − 1)(1024r + 641)

1024 · 8r Mf

where Mf is the number of minimal trees of f .

Proof. The proof relies completely on the binary planar case, doing minimal [N ]-embeddings
and [N ⊕ P ]-embeddings (the planar parts of an [N ⊕ P ]-embeddings are both the planar
parts of an [N ]-embedding or a [P ]-embedding). It has been proven in Lemmas 3.33 and 3.34
that Proposition 3.28 can be applied to the pattern [N ⊕ P ][C], as the generating function
of P is the same as the one of N . As in the proof of Theorem 3.25, embedding a tree t ∈ C
into N (r)[N ⊕ P ] or N (r)[N ⊕ P ](2) represents an injection. Hence asymptotically almost
all trees computing a function f are obtained by a single expansion of a minimal tree of f .

The calculation of the bounds can be done in the same way as in the planar binary case.
We denote by wc

1 the limiting ratio of simple tautologies and by wc
2 the limiting ratio of X-

expansions. Thanks to Section 3.2.3, we know that wc
1 =

641
1024n . And thanks to Section 3.3,

we know that wc
2 = 1

2n . Moreover, since asymptotically almost all trees computing f are

obtained by a single expansion of a minimal tree, we have
λc
f

nL(f)+1 = γ
L(f)
n (λTw

c
1 + λXw

c
2)

and

λT = (2L(f)− 1)Mf

2L(f)Mf ≤ λX ≤ 2L(f)(L(f)− 1)Mf ,

since γn ∼ 1
8n when n→∞, we obtain the desired result.
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3.4.4 The associative non-planar case

Theorem 3.54. Let f be a Boolean non-constant function of complexity L(f) = r. Then
the limiting ratio of f is given by

lim
m→∞

Pa,c
m,n(f)

n→∞∼
λa,cf

2nr+1
Mf ,

where λa,cf denotes the total number of expansions on all minimal trees of f . Moreover,

(
2 ln 2− 1

2

)r ((
ln2 2− 1

4

)
r + ln2 2− 2 ln 2 +

1

2

)
Mf ≤ λa,cf

λa,cf ≤
(
2 ln 2− 1

2

)r (2 ln 2− 1)(r + 1 + 4 ln 2)r

4
,

where Mf is the number of minimal trees of f .

Proof. The result is easily proven by using the pattern R(r)[R⊕S] and applying arguments

of Section 3.4.2 and Section 3.4.3. Therefore, we have
λa,c
f

nL(f)+1 = δ
L(f)
n (λTw

a,c
1 + λXw

a,c
2 ).

The calculation of the bounds is similar to the calculation done in the planar associative

case. Thanks to Section 3.2.4, wa,c
1 = (2 ln 2−1)2

4n and thanks to Section 3.3, wa,c
2 = 2 ln 2−1

4n .

Moreover, δn ∼ 2 ln 2−1
2n . We can further show that

(r + 2)Mf ≤ λT ≤ 2rMf

2rMf ≤ λX ≤ (r2 + 3r)Mf

and we can conclude the proof.

3.5 Conclusion

Finally we have understood better the influence of associativity and commutativity on
the behaviour of the probability distribution on Boolean functions induced by their tree
representations. Indeed, we know that associativity and commutativity do not change the
order of Pn(f) when n tends to infinity. It is still of order Θ

(
n−(L(f)+1)

)
. But, thanks

to Sections 3.2 and 3.3, we know that associativity and commutativity change the exact
limiting ratio of tautologies and literals. We summarize the different constants computed
in Table 3.1. Note that the numerical results obtained for tautologies and literals suggests
that

Pn(f) > Pc
n(f) > Pa

n(f) > Pa,c
n (f),

which is not possible as probabilities have to sum up to 1. Hence for (some) functions of
higher complexity the above inequality has to flip.
Section 3.4 gives bounds for the constants for a general f and gives an interesting result
about the shape of an average tree computing a function f : it is a minimal tree expanded
once. Still it is not obvious from the given bounds that functions of higher complexity will
have a bigger limiting distribution in the new models, as further knowledge on the number
of minimal trees in the different models would be required.

Finally note that the simple x trees we defined in Section 3.3 are exactly those trees ob-
tained by expanding once a tree consisting of a single leaf x. Hence the proof of Proposition
3.40 is immediate.
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Catalan Commutative Associative General
trees binary trees planar trees trees

True
3

4
≈ 0.75

641

1024
≈ 0.626 51− 36

√
2 ≈ 0.088

(2 ln 2− 1)2

8
≈ 0.019

x
5

16
≈ 0.312

1153

4096
≈ 0.281 546− 396

√
2 ≈ 0.114

(2 ln 2− 1)2(2 ln 2 + 1)

4
≈ 0.089

Table 3.1: The different constants λ such that P(True) ∼ λ
n and P(x) ∼ λ

n2 when n tends
to infinity, depending on the studied model of trees.
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Expansions at an internal node.

∨

→

∨

t∧e

∧

→

∧

t∨e

Expansions at the root.

∨

→

∧

∨ t∨e

∧

→

∨

∧ t∧e

Expansions at a leaf.

∨

• →

∨

∧

t∨e •

∧

• →

∧

∨

t∧e •

Figure 3.7: possible expansions at a node ν in the associative case. Here, t∨e (or t∧e , respec-
tively) represents an associative tree rooted by ∨ (or ∧, respectively).
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CHAPTER 4

Random Graphs

In this chapter we are dealing with certain families of random planar graphs, which contain
more symmetries than trees and are thus a bit more difficult to handle. A graph G is called
planar if it can be drawn in the plane without crossings edges. Note that we will only study
simple graphs, that is, graphs which do not contain multiple edges or loops. An outerplanar
graph is a planar graph which can be drawn on the plane such that all nodes lie on the outer
face, and a series-parallel graph is a graph obtained from series- and parallel extensions of
the edges of a forest.

The study of random planar graphs is a quite active field of research. In the labelled
setting, many problems have been solved recently. Bodirsky et al [7] asymptotically enu-
merated series-parallel graphs, an important class of graphs which will be described in detail
later in this chapter. Gimenez and Noy solved the problem of enumeration of labelled planar
graphs in 2009 [30], to be extended in the same year to count graphs embedded in general
surfaces [31]. The degree distributions in labelled outerplanar and series-parallel graphs
and later in general planar graphs have been studied in [18] and [17]. In the unlabelled
setting, less is known. Outerplanar graphs have been enumerated by Bodirsky et al in [5],
while the degree distribution of outerplanar graphs as well as enumeration and degree dis-
tribution of series-parallel graphs are presented in the following. We will present a general
method for enumeration and asymptotic study of families with certain properties. Through-
out the presentation, we will also reprove some of the results in the labelled setting as the
method applies and understanding of the unlabelled results will be easier. The whole survey
is based on a joint paper of Drmota, Fusy, Kang, Rue and myself, [16] and the results of [49].

In the following, we will denote by G certain families of graphs, and by G(z) its exponen-
tial or ordinary generating function. We will not use different notations for the labelled and
the unlabelled setting, as it will be clear from the context in which setting we are currently
working. Further we will denote by C the subset of G containing only connected graphs
from the family G and by C(z) the generating function of this subset.

Let A(z) be some exponential generating function of a labelled class A, A′(z) = ∂
∂zA(z) be
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the generating function of the derived class A and A•(z) = zA′(z) the generating function
of the rooted class. Recall that the derived class contains all structures from A where one
vertex is distinguished and not labelled, we call this the pointed vertex, while the rooted
class A• contains those structures from A which have a pointed vertex which is part of the
vertex set.
Analogously, let A(z) be the ordinary generating function and ZA(s1) the corresponding
cycle index sum of an unlabelled class A, ZA′(s1) =

∂
∂s1
ZA(s1) the cycle index sum of the

pointed and ZA•(s1) = s1ZA′(s1) the cycle index sum of the rooted class. By substitution
we obtain the ordinary generating functions A′(z) and A•(z).
Recall that in the labelled setting

A′(z) =
d

dz
A(z), A•(z) = zA′(z),

and in the unlabelled setting

ZA′(s1) =
∂

∂s1
ZA(s1), ZA•(s1) = s1ZA′(s1).

4.1 Subcritical graph families

Definition 4.1. Let G be a given class of graphs. A graph G ∈ G is called k-connected,
if we need to delete at least k vertices together with their incident edges to disconnect the
graph.

We can decompose a graph G ∈ G into its connected components, such that any graph
G ∈ G is the set of its connected components. Further we can decompose a connected graph
C ∈ G into its 2-connected components, which we also call blocks. Different blocks of G
possibly share common vertices, these are then cut-vertices of G.

Definition 4.2. A vertex ν ∈ V (G) from the set of vertices of a graph G is called a cut-
vertex, if by removing ν together with its incident edges we disconnect G.
We say that a vertex ν of a graph G ∈ G is incident to a block B of G if ν belongs to B.

Certain families of graphs are determined completely by the set of 2-connected compo-
nents building them:

Definition 4.3. We call a family of graphs block-stable if a graph belongs to the family if
and only if all of its 2-connected components belong to the family.

The block structure of a connected graph yields a bipartite tree, consisting of two types
of nodes, namely blocks and vertices, cf Figure 4.1.

If a family of graphs G is block-stable, the family is completely determined by the set of
2-connected graphs in G, which we denote by B. A rooted connected graph C ∈ G is then
a set of blocks from B, where every vertex is replaced by a rooted connected graph from C•
(which can of course consist of the root only). To get a symbolic equation for this relation,
we need to root the graph. We obtain the system

G = Set(C)
C• = X × Set(B′ ◦ C•)). (4.1)
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Figure 4.1: An example for the decomposition of an outerplanar graph - the black and
white dots denote vertices while the circles labelled with B denote 2-connected
components

In block-stable families, there are two phenomena that might appear as the graphs grow
big. In some families, which we will later define exactly, in a large random graph of size n
almost all blocks will asymptotically be of small, comparable size. In other graph families,
on the other hand, asymptotically almost surely there is one giant block, which contains
a linear number of nodes, say αn, with α > 0, while all other blocks are comparably very
small. The families with no giant component phenomena are those families which are sub-
critical according to the following definitions.

For the results presented in the following section, see also [3]. Let G(z) be the (exponential
or ordinary) generating function of a given block-stable graph family, C(z) the (exponential
or ordinary) generating function of the family of connected components of C ⊂ G, B(z) the
GF of blocks B ⊂ C, and C•(z) and B′(z) the generating functions of the according rooted
or derived classes.

4.1.1 Subcriticality in the labelled setting

In the labelled setting, (4.1) translates to

G(z) = exp(C(z)) (4.2)

C•(z) = z exp
(
B′(C•(z))

)
. (4.3)

Definition 4.4. Let G be a block-stable family of graphs and let ρB and ρC be the radii of
convergence of B′(z) and C•(z). The family G is called subcritical, if C•(ρC) < ρB.

Subcritical families have a unified singular behaviour, which gives their asymptotic coef-
ficients.

Lemma 4.5. Let G be a labelled subcritical block-stable graph class with C the connected
subclass and B the 2-connected subclass. Then C•(z) has a square-root singular expansion
around its radius of convergence ρC . Furthermore if [zn]C•(z) > 0 for n ≥ n0 then ρC is
the only singularity on the circle |z| = ρC and C•(z) can be continued analytically to the
region D = {z ∈ C

∣∣|z| < ρC + ε, 1− z
ρC

/∈ R−} for some ε > 0.

Proof. The function y = C•(z) is a solution of

y = F (y; z), with F (y; z) = z exp(B′(y)).
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Let ρC and ρB be the radii of convergence of C•(z) and of B′(y), respectively, and let
τ := C•(ρC). Since G is subcritical, we have τ < ρB , hence F (y; z) is analytic at (τ, ρC).
We conclude from Theorem A.3 that C•(z) has a square-root expansion at ρC and can be
continued analytically to D.

Theorem 4.6. Let G be a subcritical block-stable graph class with [zn]C•(z) > 0 for n ≥ n0.
Then there exist constants γ ≥ e ≈ 2.71828 and c > 0 such that

[zn]G(z) = c n−5/2 γn(1 + o(1)) as n→∞. (4.4)

Proof. The function C(z) satisfies

C(z) =

∫ z

0
C•(t)

dt

t
,

hence C(z) has a singular expansion of order 3/2 at ρC , by Lemma 1.9. Since G(z) =
exp(C(z)) and exp is analytic everywhere (in particular at C(ρC)), we conclude that G(z)
also has a singular expansion of order 3/2 at ρC . The transfer lemma (Lemma 1.7) yield
an estimate of the form (4.4), where γ = 1/ρC .

Lemma 4.7. A block-stable family of graphs G is subcritical if B′(z) has a square-root
singular expansion at ρB.

Proof. If B′(z) has a square root singular expansion, then limz→ρB− B
′′(z) =∞. To proof

subcriticality, we need to prove that τ := C•(ρC) < ρB.
Assume that τ > ρB . Then, by continuity of C•(z), there exists 0 < z0 < ρC such that
C•(z0) = ρB . Obviously, C•(z) is regular at z0 while B′(C•(z)) is singular at z0. Hence, also
z exp(B′(C•(z))) is singular at z0, which is a contradiction, as C•(z) = z exp(B′(C•(z))).
Hence τ ≤ ρC .
Assume now that τ = ρC . Derivating Equation (4.3) gives

d

dz
C•(z) =

C•(z)
z

+ C•(z)B′′(C•(z))
d

dz
C•(z).

As C•(z) starts with a z, C•(z)
z > 0 for z ∈ (0, ρC ). Hence,

d

dz
C•(z) ≥ C•(z)B′′(C•(z))

d

dz
C•(z),

1 ≥ C•(z)B′′(C•(z)).

This gives B′′(C•(z)) ≤ 1
C•(z) for C•(z) ∈ (0, ρB), which contradicts the fact that B′′(ρB)

tends to infinity. Hence, τ < ρB .

4.1.2 Subcriticality in the unlabelled setting

In the unlabelled setting, (4.1) translates to

ZG(s1) = exp


∑

i≥1

1

i
ZC(si)




ZC•(s1) = s1 exp


∑

i≥1

1

i
ZB′(ZC•(si), ZC•(s2i), . . .)


 . (4.5)
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and thus

G(z) = exp


∑

i≥1

1

i
C(zi)


 , (4.6)

C•(z) = z exp


∑

i≥1

1

i
ZB′(C•(zi), C•(z2i), C•(z3i) . . .)


 . (4.7)

Denote by

g(y, z) := ZB′(y,C•(z2), C•(z3), . . .) and

Σ(z) :=
∑

i≥2

1

i
ZB′(C•(zi), C•(z2i), C•(z3i) . . .).

Then equation (4.7) translates to

C•(z) = z exp (g(C•(z), z) + Σ(z))

Definition 4.8. Let G be a block-stable family of graphs and let ρC be the radius of con-
vergence of C•(z). The family G is called subcritical, if

(i) ρC is non-zero,

(ii) g(y, z) is analytic at (C•(ρC), ρC),

(iii) the radius of convergence of Σ(z) is larger than ρC and

(iv) the radius of convergence of the series ZC(0, z2, z3, . . .) is larger than ρC .

Note that for any block stable class G, the class C• of rooted connected graphs from G
dominates coefficient-wise the class of Pólya trees by Equation (4.7), thus ρC ≤ ρ = 0.33832,
where ρ is the singularity of Pólya trees given in Chapter 2.

Lemma 4.9. Let G be an unlabelled subcritical block-stable graph class with C the connected
subclass and B the 2-connected subclass. Let ρC be the radius of convergence of C•(z).
Then C•(z) has a square-root singular expansion around ρC , and (y, z) = (C•(ρC), ρC) is
a solution of the singular system

y = F (y, z) = z exp(g(y, z) + Σ(z)), (4.8)

1 = ygy(y, z),

with g(y, z) and Σ(z) as before.

Proof. Note that h(z) = ZB′(C•(z), C•(z2), . . .) is bounded from above coefficient-wise by
C•(z) as C•(z) is a solution of equation (4.8), hence the singularity of h(z) is larger than
ρC . Since ρC ∈ (0, 1), as mentioned above, the function Σ(z) =

∑
i≥2 h(z

i)/i is analytic
at ρC . By subcriticality, the function g(y, z) is analytic at (C•(ρC), ρC). Hence F (y, z) is
analytic at (C•(ρC), ρC). Since the system is clearly strongly connected and the function
C•(z) aperiodic, we conclude from Theorem A.3 (see page 144) that C•(z) has a square-root
expansion at ρC .
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Lemma 4.10. Define R(s, z) := ZC•(s, z2, z3, . . .). Then R(s, z) has a square-root singular
expansion around (ρC , ρC), and the singularity function ξ(z) of s 7→ R(s, z) is analytic at
ρC and has a negative derivative at ρC .

Proof. Note that C•(z) = R(z, z), hence the bivariate series R(s, z) is a refinement of C•(z).
Equation (4.5) implies that y = F (y, z, s) := s exp(g(y, z)+Σ(z)), with g(y, z) and Σ(z) as
before. The singular system for R(s, z) is

y = s exp(g(y, z) + Σ(z)), 1 = y gy(y, z).

This is the same as the singular system of C•(z) (given in Lemma 4.9) except that the
variable z on the left-hand side of exp is replaced by the variable s. By Lemma 4.9,(y, z) =
(C•(ρC), ρC) is a solution of the singular system of C•(z), hence (y; z, s) = (C•(ρC); ρC , ρC)
is a solution of the singular system of R(s, z), and F (y; z, s) is analytic at (C•(ρC); ρC , ρC),
since g(y, z) is analytic at (C•(ρC), ρC). Thus, Theorem A.3 ensures that R(s, z) has a
square-root singular expansion at (ρC , ρC). In addition, the singularity function ξ(z) has a
negative derivative, since ξ(z) = −Fs/Fz and Fs(y; z, s) depends only on z.

Theorem 4.11. Let G be an unlabelled subcritical block-stable graph class. Then there exist
constants c > 0 and γ such that

[zn]G(z) = c n−5/2 γn(1 + o(1)) as n→∞

for γ ≥ γ∗ ≈ 2.95576, where γ∗ = 1
ρ is the exponential growth rate of the number of Pólya

trees.

Proof. First we show that C(z) has a singular expansion of order 3/2 at ρC . Define
Q(s, z) := ZC(s, z2, z3, . . .) (note that C(z) = Q(z, z)). The general relation ZA′ = ∂

∂s1
ZA

ensures that R(s, z) = sQs(s, z), hence

Q(s, z) = Q(0, z) +

∫ s

0
R(w, z)

dw

w
.

The term Q(0, z) = ZC(0, z2, z3, . . .) = q(z) is analytic at ρC by subcriticality of G. Since
R(s, z) has a square-root expansion at (ρC , ρC), the integral term has a singular expansion
of order 3/2 at (ρC , ρC) (see Lemma A.2) of the form

Q(s, z) = a(s, z) + h(s, z) · (1− s/ξ(z)) 3
2 .

Therefore, C(z) = Q(z, z) has a singular expansion of the form

C(z) = a(z, z) + h(z, z) ·
(
ξ(z)− z
ξ(z)

) 3
2

.

Since ξ(z) has a negative derivative at ρC and ξ(ρC) = ρC , the function ξ(z)−z
1− z

ρC

is analytic

and nonzero at ρC . We conclude that C(z) has a singular expansion of order 3/2, of the
form

C(z) = α(z) + β(z) ·
(
1− z

ρC

)3/2

,

with α(z) = a(z, z) and β(z) = h(z, z) ·
(
λ(z)
ξ(z)

) 3
2
.
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4.1. Subcritical graph families

Recall that G(z) and C(z) are related by

G(z) = exp(C(z) + E(z)), with E(z) :=
∑

i≥2

1

i
C(zi).

Since E(z) is analytic at ρC , the singular expansion of order 3
2 at ρC for C(z) yields also a

singular expansion of order 3
2 at ρC for G(z). The transfer lemma then yield the estimate

for [zn]G(z).

Similarly as in the labelled case, we provide conditions that imply subcriticality, but will
be convenient to check on examples:

Lemma 4.12. For an unlabelled block-stable graph class G, let η(z) be the radius of con-
vergence of y 7→ g(y, z) for z > 0. Assume that

1. there exist constants c and γ > 0 such that [zn]C• ≤ c γn,

2. the series gy(y, z) :=
∂
∂yg(y, z) satisfies limy→η(ρC )− gy(y, ρC) = +∞,

3. the function η(z) is continuous at ρC , and

4. the radius of convergence of q(z) = ZC(0, z2, z3 . . . ) is larger than ρC .

Then the unlabelled class G is subcritical.

Proof. Criterion 4 in the above theorem is identical to (iv) in Definition 4.8, criterion 1
directly implies (i), that is ρC is non-zero. We even argued that ρC < 1 in a remark right
after the definition, thus Lemma 4.9 implies that Σ(z) is analytic at ρC , which proves (ii).
It remains to prove (iii) from Definition 4.8, namely that g(y, z) is analytic at (C•(ρC), ρC).
The proof of this is similar to that of Lemma 4.7, even though more technical. We refer the
reader to the proof of [16, Lemma 14].

4.1.3 Examples of subcritical graph families

In this section, we present several block-stable families of graphs, which are subcritical both
in the labelled and in the unlabelled case (cf [16]).

Definition 4.13. We define the following families of graphs:

• Cacti graphs are graphs where every edge lies in exactly one elementary cycle, that is
the class of 2-connected components consists of convex polygons together with a simple
edge.

• Outerplanar graphs are graphs which can be embedded in the plane such that all nodes
lie on the outer face, hence the class of 2-connected components consists of dissected
polygons together with a simple edge.

• Series-parallel graphs are graphs which are obtained by series (subdividing) and par-
allel(doubling) extensions of the edges of a forest.
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Chapter 4. Random Graphs

There are several other ways to define the families of graphs above, e.g. by sets of avoided
minors. Outerplanar graphs are all those graphs which do not contain the complete graph
on 4 vertices, K4, or the complete bipartite graph on 2 sets of 3 vertices each, K2,3, as a
minor (Note that these graphs are the smallest graphs which do not have an embedding
as explained above). Series-parallel graphs are those graphs not containing K4 as a minor.
All these classes do not contain 3-connected components, as K4 is the smallest 3-connected
graph. A result analogous to the following theorem holds also for classes of graphs that are
stable under taking connected, 2-connected, and 3-connected components, but have only a
finite 3-connected subclass (cf. [32]).

Theorem 4.14. The classes of cacti graphs, outerplanar graphs, and series-parallel graphs
are subcritical both in the labelled and unlabelled cases. As a consequence, the counting
coefficient gn of each of these classes – gn = |Gn|/n! in the labelled case, gn = |Gn| in the
unlabelled case – is asymptotically of the form

gn = g n−5/2ρ−n
C (1 + o(1))

for some constants g > 0, ρC ∈ (0, 1). The first few digits of 1/ρC in the labelled case and
the approximate values of 1/ρC in the unlabelled case are resumed in Table 4.1.

As mentioned in the introduction of this chapter, the above asymptotic estimates have
been separately obtained by several people (cf [59, 64] for cacti graphs, [7, 5] for outerplanar
graphs and [7] for labelled series-parallel graphs. Still, in [16] all results are reproved by
a unified method, checking whether the sufficient conditions for subcriticality (Lemma 4.7
in the labelled case, Lemma 4.12 in the unlabelled case) are satisfied, hence we refer the
reader to this paper for a proof of Theorem 4.14.

By numerical calculations, it is possible to compute the singularities of the given families
of graphs, and hence also the growth rate of their coefficients. These estimates are given in
table 4.1.

Family
1/ρC

Labelled Unlabelled

Acyclic 2.71828 2.95577

Cacti 4.18865 4.50144

Outerplanar 7.32708 7.50360

Series-Parallel 9.07359 9.38527

Table 4.1: Exponential growth for distinct subcritical classes. All constants are referred to
connected and general classes.

4.2 The degree distribution in subcritical graph families

In this section we discuss the degree distribution of graphs of a subcritical family G. We
denote by Xk

n the random variable which counts the number of vertices of degree k in
a randomly chosen member of size n of the family G, either labelled or unlabelled. We
further denote by dk the limiting probability (as n tends to infinity) that the degree of
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4.2. Subcritical degree distribution

root vertex of a randomly chosen member of G′ is k. The main tools to obtain asymptotic
results is the Drmota-Lalley-Woods Theorem on multiple variables (Theorem A.3), giving
singular expansions of generating functions, and the refinement of Theorem 1.20 to systems
of equations (Theorem A.5), stating sufficient conditions to obtain a central limit law.

4.2.1 The labelled case

Consider the series

B′
j(z,v) =

∑

n,n1,...,nk,n∞

b′j;n;n1,...,nk,n∞v
n1
1 · · · vnk

k vn∞
∞

zn

n!
,

where we use the notation v = (v1, . . . , vk, v∞) and where b′j;n;n1,...,nk,n∞ is the number of
derived 2-connected graphs with 1 + n = 1 + n1 + · · · + nk + n∞ vertices such that the
distinguished vertex has degree j and the remaining n vertices are labelled by 1, 2, . . . , n
and where nℓ vertices have degree ℓ, 1 ≤ ℓ ≤ k, and n∞ vertices have degree greater than
k.

By definition we have

B′(z) =
∑

2≤j≤∞
B′

j(z,1).

Hence the radius of convergence of the functions B′
j(z,1) is greater or equal than the radius

of convergence of B′(z).
We introduce an analogous series

C ′
j(z,v) =

∑

n,n1,...,nk,n∞

c′j;n;n1,...,nk,n∞v
n1
1 · · · vnk

k vn∞
∞

zn

n!
,

for derived connected graphs. For convenience, we set

C ′
0(z,v) = 1,

which corresponds to the case of a graph consisting of a single derived vertex. We further
set

B′(z,w) =
∑

j

B′
j(z,1)w

j =
∑

n,j

b′n,jz
nwj

where b′n,j is the number of derived 2-connected graphs with n+1 vertices, where one vertex
of degree j is marked and the remaining n vertices are labelled by 1, 2, . . . , n. Analogously,
we define the function C ′(z,w) =

∑
j C

′
j(z,1)w

j . According to the block decomposition of
connected graphs

C ′(z,w) = exp(B′(zC ′(z), w)). (4.9)

In the following, we set B′
j(z) := B′

j(z,1). We will also use the series B(z,v), which is
the refined version of the generating function B(z) of unrooted blocks taking into account
vertex degrees.

We need the following auxiliary result, proven in [15][Theorem 9.17] with the help of
Lemma A.1, to prove the main result of this section.

Lemma 4.15. The generating function p(w) =
∑
dkw

k satisfies

p(w) = ρCe
B′(z,w) ∂

∂z
B′(z,w)

∣∣∣∣
z=ρCC′(ρC )

,

and p(1) = 1, thus the dk’s are indeed a probability distribution.
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Chapter 4. Random Graphs

With the help of this lemma, we can prove the following.

Proposition 4.16. Let G be a subcritical family of random labelled graphs and G′ be its
derived family. Then for k fixed, the limiting probability dk that the pointed vertex of a
member of G′ has degree k exists and is given by

dk = ρC

(
k∑

i=1

∂

∂z
B′

i(z)
∣∣
z=ρCC′(ρC )

C ′
k−i(ρC)

)
.

Proof. Using Lemma 4.15, we have

dk = [wk]p(w) = [wk]ρC exp(B′(z,w))
∂

∂z
B′(z,w)

∣∣∣∣
z=ρCC′(ρC)

= ρC

(
k∑

i=0

[wk−i] exp(B′(z,w))[wi]
∂

∂z
B′(z,w)

) ∣∣∣∣
z=ρCC′(ρC)

=

(
k∑

i=1

∂

∂z
B′

i(z)[w
k−i]

(
1 +

∑

k

B′
k(z)w

k +
(
∑

k B
′
k(z)w

k)2

2
+ · · ·

)) ∣∣∣∣
z=ρCC′(ρC)

=




k∑

i=1

∂

∂z
B′

i(z)




k−i∑

m=1

∑

l1+···lm=k−i

Bl1(z) · · ·Blm(z)





∣∣∣∣
z=ρCC′(ρC )

.

From there the result follows, as the second term is exactly the representation of a con-
nected graph of root degree k−i according to the block decomposition, evaluated at z = ρC ,
i.e. C ′

k−i(ρC).

To obtain results on the degree distribution of random vertices, we derive a system of
functional equations which is satisfied by C ′

j = C ′
j(z,v). This is a refined version of the

equation
C•(z) = z exp(B′(C•(z))).

Lemma 4.17. Consider the series Wj = Wj(z,v;C
′
1, . . . , C

′
k, C

′
∞), j ∈ {1, 2, . . . , k, ∞},

defined by

Wj =

k−j∑

i=0

vi+jC
′
i(z,v) + v∞




k∑

i=k−j+1

C ′
i(z,v) + C ′

∞(z,v)


 , 1 ≤ j ≤ k,

W∞ = v∞

(
k∑

i=0

C ′
i(z,v) + C ′

∞(z,v)

)
.

Set W = (W1, . . . ,Wk,W∞). Then the series C ′
1, . . . , C

′
k, C

′
∞ satisfy the system of equations

C ′
j(z,v) =

∑

ℓ1+2ℓ2+3ℓ3+···jℓj=j

j∏

r=1

B′
r(z,W)ℓr

ℓr!
, 1 ≤ j ≤ k,

C ′
∞(z,v) = exp




k∑

j=1

B′
j(z,W) +B′

∞(z,W)


 − 1

−
∑

1≤ℓ1+2ℓ2+3ℓ3+···kℓk≤k

k∏

r=1

B′
r(z,W)ℓr

ℓr!
.
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4.2. Subcritical degree distribution

Proof. As already indicated, the proof is a refined version of the functional equation fulfilled
by C•(z), which reflects the decomposition of a rooted connected graph into a finite set of
derived 2-connected graphs, where every vertex (different from the root) is substituted by
a rooted connected graph. The functions Wj serve the purpose of marking (recursively) the
degree of the vertices in the 2-connected blocks which are substituted by other graphs. In
the definition ofWj, a connected graph with a distinguished vertex of degree i is plugged into
the vertex of degree j, hence this vertex now has degree i+ j, which is marked accordingly
by vi+j in the sum. The analogous holds for W∞.

With the same preliminaries as in Proposition 4.16, we prove the following central limit
theorem:

Theorem 4.18. The random variable Xk
n that counts the number of vertices of degree k in a

randomly chosen member of G satisfies a central limit theorem with mean EXk
n = dkn+O(1)

and variance VarXk
n = σ2kn+O(1), with some computable constant σk > 0.

Proof. To prove Theorem 4.18 we observe

C ′(z) =
∑

0≤j≤∞
C ′
j(z,1).

Furthermore, since the above system of equations is strongly connected, all functions
C ′
j(z,1) have the same radius of convergence as C ′(z) by the Drmota-Lalley-Woods Theo-

rem (Theorem 1.12). By subcriticality this radius of convergence is smaller than the radius
of convergence of B′(z). Hence, if v is sufficiently close to 1 then the singularities of B′

j

and C ′
j do not interfere due to Lemma 1.18, in particular we can apply Theorem A.3 and

obtain that all functions C ′
j have a square-root singularity. Finally, let

C(k)(z, v) =
∑

n,m

ck;n,mv
m z

n

n!

be the generating function for the numbers ck;n,m of unrooted connected outerplanar graphs
of size n with m nodes of degree k. Then C(k)(z, v) satisfies

∂C(k)(z, v)

∂z
=

k−1∑

j=1

C ′
j(z, 1, . . . , 1, v, 1) + vC ′

k(z, 1, . . . , 1, v, 1) + C ′
∞(z, 1, . . . , 1, v, 1),

and thus, by integration, C(k)(z, v) has a singular expansion of order 3
2 around v = 1.

Furthermore, the central limit theorem for the number of vertices of given degree k with
asymptotic mean µkn and variance σ2kn follows by the analogue of Theorem A.5 for systems
of equations. It immediately follows that dk = µk as there are exactly n possible ways to
root an unrooted object of size n at one of the vertices and thus the probability that a
random vertex has degree k is exactly the same as the probability that the root vertex has
degree k. Despite that, we can also use formula (A.4) to compute µk, we obtain the same
result as for dk here, as we will see in the following:

µk =
1

ρC

bTFv(ρC ,C(ρC , 1), 1)

bTFz(ρC ,C(ρC , 1), 1)
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Chapter 4. Random Graphs

where F(z,y, v) is the vector defined by the system of equations C(z, v) = F(z,C(z, v), v),
with C(z, v) = (C1(z, v), . . . , Ck(z, v), C∞(z, v)), and b is a unique positive left eigenvector
of Fy to the eigenvalue 1, which, in a system like ours, is b = (1, . . . , 1)T (cf [15]). For

brevity, we denote by
∑k,∞

j=1 Bj =
∑k

j=1Bj +B∞ in the following. Note that

F∞ = exp(

k,∞∑

j=1

B′
j(z,W))

︸ ︷︷ ︸
=:E

−1−
k∑

j=1

Fk,

as F∞ counts all graphs with root degrees different from 1, . . . k, therefore only the derivative
of the exponential term E remains in bTFv(ρC ,C(ρC , 1), 1) and bTFz(ρC ,C(ρC , 1), 1), as
all other terms cancel in the vector product. This gives

bFv(ρC ,C(ρC , 1), 1) =


E ·

k,∞∑

j=1

k∑

i=1

(B′
j)vi(z,W)yk−i



∣∣∣∣
ρC ,C(ρC ,1),1)

bFz(ρC ,C(ρC , 1), 1) =


E ·

k,∞∑

j=1

(B′
j)z(z,W)



∣∣∣∣
ρC ,C(ρC ,1),1)

Note that we can exchange summation in bFv and that B′
j(z,v) = 1

z
∂
∂vj
B(z, v1, . . . , v∞).

Further,
Wi(ρC , 1) = C ′(ρC) for i = 1, . . . , k,∞.

With that, it is relatively easy to prove

k,∞∑

j=1

(Bj)
′
vi(ρC , C

′(ρC), . . . , C
′(ρC)) = ρC(Bi)z(ρCC

′(ρC))

and
k,∞∑

j=1

(Bj)
′
z(ρC , C

′(ρC), . . . , C ′(ρC)) = C ′(ρC)B′′(ρCC ′(ρC)) =
1

ρC
,

the latter relation following from the implicit representation in a single equation of C ′(z).
Hence, µk is given by the same formula as dk.

4.2.2 The unlabelled case

We introduce cycle index sums

ZB′
j
(s1, ū1) = ZB′

j
(s1, s2, . . . ;u1,1, u1,2, . . . ; . . . ;uk,1, uk,2, . . . ;u∞,1, u∞,2, . . .)

for the class of pointed blocks, where the pointed vertex has degree j and is not counted,
and where the variables ui,j count the cycles of length j of vertices of degree i, and u∞,j

counts those vertices of degree greater than k. As in Section 4.2.1 let v = (v1, . . . , vk, v∞).
Denote the corresponding OGFs by B′

j(z,v), j = 1, . . . , k,∞ and let

B′(z,v) :=
k∑

j=2

vjB
′
j(z,v) + v∞B′

∞(z,v)

122



4.2. Subcritical degree distribution

Note that

ZB′(s1,1) = ZB′(s1),

and thus the singularity ρB(v) of B
′(z,v) is the same as that of B′(z) at v = 1, and ρB(v)

is the dominant singularity of the system B′(z,v) = (B′
j(z,v))j=1..k,∞.

We now introduce the multivariate generating functions

C ′
j(z,v) =

∑

n;n1,...,nk,n∞

ci;n;n1,...,nk,n∞v
n1
1 · · · vnk

k vn∞
∞ zn (4.10)

where the coefficient ci;n;n1,...,nk,n∞ denotes the number of elements of size n of C′, where
the pointed vertex has degree j and with ni, i = 1, . . . , k, vertices of degree i and n∞ vertices
of degree greater than k. We further set

B′(z,w) =
∑

j

B′
j(z,1)w

j =
∑

n,j

b′n,jz
nwj

and
C ′(z,w) =

∑

j

C ′
j(z,1)w

j =
∑

n,j

c′n,jz
nwj .

As we need cycle indices for the block decomposition, we set

ZB′(s1;w) =
∑

j

ZB′
j
(s1)w

j .

Note that the variable w, which counts the degree of the root, is not involved in any
permutation cycle. Then,

C ′(z,w) = exp


∑

ℓ≥1

1

ℓ
ZB′(zℓC′(zℓ);wℓ)


 .

In analogy to the labelled case, we first prove the following auxiliary result.

Lemma 4.19. The generating function p(w) =
∑
dkw

k satisfies

p(w) = ρ
∂

∂u
exp


ZB′(u, z2C ′(z2), . . . ;w) +

∑

ℓ≥2

1

ℓ
ZB′(zℓC′(zℓ);wℓ)


 ,

and p(1) = 1, that is, the dk are indeed a probability distribution.

Proof. We use Lemma A.1 with

f(z,w) = zC ′(z)

H(z,w, u) = exp


ZB′(u, z2C ′(z2), . . . ;w) +

∑

ℓ≥2

1

ℓ
ZB′(zℓC′(zℓ);wℓ)




and the same line of reasoning as in Lemma 4.15 proves the first part of the lemma. For
p(1) = Hu(ρ, 1, ρC

′(ρ)) we obtain

ρC ′(ρ)
∂

∂u
ZB′(u, ρ2C ′(ρ2), . . .)

∣∣∣∣
u=ρC′(ρ)

= 1

by the implicit function representation (4.7) of zC ′(z).
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Proposition 4.20. Let G be a family of random subcritical graphs and G′ be it’s derived
family. Further, let dk be the limiting probability that the root vertex of a member of G′ has
degree k and let Xk

n be the random variable that counts the number of vertices of degree k
in a randomly chosen member of G. Then

dk = ρ

(
k∑

i=1

∂

∂z
ZB′

i
(z, ρ2C ′(ρ2), ρ3C ′(ρ3), . . .)

∣∣
z=ρC′(ρ)C

′
k−i(ρ)

)
.

Proof. With the help Of Lemma 4.19 we can determine dk = [wk]p(w):

dk = ρ [wk]


exp


∑

ℓ≥1

1

ℓ
ZB′(ρℓC′(ρℓ);wℓ)


 ·

(
∂

∂u
ZB′(u, ρ2C ′(ρ2), . . . ;w)

)

u=ρC′(ρ)




= ρ [wk]


exp


∑

ℓ≥1

1

ℓ
ZB′(ρℓC′(ρℓ);wℓ)


 ·


∑

ℓ≥1

∂

∂u
ZB′

ℓ
(u, ρ2C ′(ρ2), . . .)wℓ




u=ρC′(ρ)




= ρ
k∑

i=1

∂

∂u
ZB′

i
(u, ρ2C ′(ρ2), . . .)

∣∣
u=ρC′(ρ) · [w

k−i] exp


∑

ℓ≥1

1

ℓ
ZB′(ρℓC′(ρℓ);wℓ)




where the second term translates into C ′
k−i(ρ) as

exp


∑

ℓ≥1

1

ℓ
ZB′(ρℓC′(ρℓ);wℓ)


 = C ′(ρ,w) =

∑

j

C ′
j(ρ,1)w

j =
∑

j

C ′
j(ρ)w

j .

As in the labelled case, we observe that the functions C ′
j(z,v) satisfy a system of equa-

tions, using a refinement of the block decomposition. Recall that we denote by
∑k,∞

i=r Fi =∑k
i=r Fi + F∞.

Lemma 4.21. For each j = 1, 2, . . . , k,∞, let Wj be defined by

Wj(z,v) =
k−ℓ∑

i=0

vj+iC
′
j(z,v) + v∞




k,∞∑

i=k−j+1

C ′
i(z,v)


 ,

W∞(z,v) = v∞

(
k,∞∑

i=0

C ′
i(z,v)

)
.

Let Wj,i =Wj(z
i, vi1, . . . , v

i
k, v

i
∞) and

W(l) = (W1,l,W1,2l, . . . ; . . . ;Wk,l,Wk,2l, . . . ;W∞,l,W∞,2l, . . .).

Zn[ZB] denotes the substitution sl ← ZB(sl, s2l, . . . ;W(l)), l ≥ 1 in Sn(s1, s2, . . .).
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4.2. Subcritical degree distribution

The series C ′
1, . . . , C

′
k, C

′
∞ satisfy the system of equations

C ′
j(z,v) =

∑

l1+2l2+···+jlj=j

j∏

r=1

Slr
[
ZB′

r

]
(si=zi)

, j = 1, . . . , k

C ′
∞(z,v) = exp


∑

l≥1

1

l

(
k∑

r=1

ZB′
r

(
zl, z2l, . . . ;W(l)

)
+ ZB′∞

(
zl, z2l, . . . ;W(l)

))



−
∑

l1+2l2+···+klk≤k

j∏

r=1

Slr
[
ZB′

r

]
(si=zi)

Proof. As in the labelled case, we refine the recursive decomposition of graphs into their
2-connected components. The functions Wj,i play the analogous role as in the labelled case,
except that we need a second index for representing the cycles of different length appearing
in the cycle indices. This directly leads to the representation of C ′

j(z,v) for j = 1, . . . k.
For C ′

∞(z,v) we obtain

∑

(l1,l2,...,lk,l∞)

k∏

r=1

Slr

[
ZB′

r

(
z, z2, . . . ;W(1)

)]
Sl∞

[
ZB′∞

(
z, z2, . . . ;W(1)

)]

−
∑

l1+2l2+...lk≤k

k∏

r=1

Slr

[
ZB′

r

(
z, z2, . . . ;W(1)

)]
,

We can rewrite the first sum to
∑

l1≥0

Sl1[ZB′
1
(s1, s2, . . . ,W1,1,W1,2, . . . ,Wk,1,Wk,2, . . .)]

×
∑

l2≥0

Sl2[ZB′
2
(s1, s2, . . . ,W1,1,W1,2, . . . ,Wk,1,Wk,2, . . .)]

× · · ·

=

k,∞∏

r=1


∑

lr≥0

Slr [ZB′
r
(s1, s2, . . . ,W1,1,W1,2, . . . ,Wk,1,Wk,2, . . .)]




=

k,∞∏

r=1

exp


∑

l≥1

sl
l
[ZB′

r
(s1, s2, . . . ,W1,1,W1,2, . . . ,Wk,1,Wk,2, . . .)]




=

k,∞∏

r=1

exp


∑

l≥1

ZB′
r
(sl, s2l, . . . ,W1,l,W1,2l, . . . ,Wk,l,Wk,2l, . . .)

l




= exp




k,∞∑

r=1

∑

l≥0

ZB′
r
(sl, s2l, . . . ,W1,l,W1,2l, . . . ,Wk,l,Wk,2l, . . .)

l




= exp


∑

l≥0

k,∞∑

r=1

ZB′
r
(sl, s2l, . . . ,W1,l,W1,2l, . . . ,Wk,l,Wk,2l, . . .)

l



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Chapter 4. Random Graphs

Remark. The functionsWj,i and thus the whole system can also be considered in terms of
cycle index sums, using the cycle index sum ZC′

j
(s1, ū1) for rooted connected graphs. The

root vertices in Wj,i are fixed and thus have cycle length 1. We will need this terminology
in the proof of Lemma 4.23.

It is easily checked that the system is strongly connected as every C ′
j(z,v) depends on

C ′
∞(z,v) for j = 1, . . . , k and C ′

∞(z,v) depends on all C ′
j(z,v), j = 1, . . . , k.

Obviously,




k∑

j=1

vjC
′
j(z,v) + v∞C

′
∞(z,v)



v=1

= C ′(z). (4.11)

Define

C ′(z,v) :=
k∑

j=1

vjC
′
j(z,v) + v∞C ′

∞(z,v).

Then the generating function of derived connected graphs of G, where the variable v counts
the nodes of degree k, is given by C ′(k)(z, v) = C ′(z,vk), where vk = (1, 1, . . . , 1, v, 1).

Lemma 4.22. C ′(k)(z, v) has a square-root singular expansion around its singularity ρC(v)
in a neighbourhood of v = 1.

Proof. By Equation (4.11) the singularity of the system C′(z,v) at v = 1 is ρC , the same as
that of C ′(z). As the system is strongly connected, every C ′

j(z,1) has radius of convergence

ρC . Since C
′(k)(z, 1) is a linear combination of these functions, it has the same singularity,

which fulfills ρCC
′(ρC) < ρB due to the subcriticality assumption. By Lemma 1.18 it

follows that (C ′(k)(z, v), B′(k)(z, v)) is subcritical near 1, and hence we obtain a square-root
singular expansion.

Consider the cycles index sums ZC(s1, ū1) for (unpointed) connected graphs of G. By
taking s1 = s, si = zi for i ≥ 2, uj,i = 1 for 1 ≤ j < k, i ≥ 1 and uk,i = vi for i ≥ 1
we obtain its corresponding OGF C(k)(z, v) = ZC(z, z2, . . . ; 1, 1, . . . ; . . . ; v, v2, . . . ; 1, 1, . . .),
where the variable v counts the nodes of degree k.

Lemma 4.23. C(k)(z, v) has a singular expansion of order 3
2 around its singularity ρC(v)

in a neighbourhood of v = 1.

Proof. We have to express the system of equations in Lemma 4.21 in terms of cycle index
sums and analyze the trivariate generating functions

C(k)(s, z, v) = ZC(s, z
2, z3, . . . ; 1, 1, . . . ; . . . ; v, v2, . . . ; 1, 1, . . .).

Obviously, C(k)(z, z, v) = C(k)(z, v). Analogously we define C ′(k)(s, z, v). We obtain

C(k)(s, z, v) = C(k)(0, z, v) +

∫ z

0
C ′(k)(s, z, v)ds,

because by rooting, we derivate with respect to the first variable, which we now isolated.
Doing so, all those symmetries without fixed points got lost, so we have to take them into
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4.3. 2-connected degree distribution

account when integrating. Due to the stability condition (Lemma 1.18), we obtain a square-

root singular expansion for C ′(k)(s, z, v), with a singular term of the form (1− s/ρ̄(z, v)) 1
2 .

Integration and subcriticality conditions lead to a singular expansion of the form

C(k)(s, z, v) = g(s, z, v) + h(s, z, v)

(
1− s

ρ̄(z, v)

) 3
2

.

At s = z we can represent the singular part as

(
1− z

ρ̄(z, v)

) 3
2

= κ(z, v)

(
1− z

ρ̃2(v)

) 3
2

,

with an analytic factor κ(z, v) and some analytic function ρ̃(v). Since the singular manifold
of C ′(k)(s, z, v) is the same as that of C(k)(z, v), that is z = ρ̄(z, v) if and only if z = ρ2(v),
it follows that ρ̃(v) = ρ2(v)

Theorem 4.24. With the same preliminaries as in Proposition 4.20, Xk
n satisfies a central

limit theorem with mean EXk
n = µkn+O(1) and variance Var Xk

n = σ2kn+O(1).

Proof. With the singular expansion in ρ(v) given, the proof of the theorem is now immediate
by Theorem A.5 for systems of equations.

Remark. In the unlabelled case, we cannot expect that µk equals dk, as vertex-rooting
is only possible at fixed points of permutations, and thus in unlabelled graphs ngn 6= g′n.

To calculate µk we can use (A.4). The derivatives give

bFv(ρ,C(ρ, 1), 1) =


E ·

k,∞∑

j=1

k∑

i=1

(B′
j)vi(z,W)yk−i



∣∣∣∣
(ρ,C(ρ,1),1)

,

bFz(ρ,C(ρ, 1), 1) =


E ·

k,∞∑

j=1

(B′
j)z(z,W)



∣∣∣∣
(ρ,C(ρ,1),1)

,

where yk−i denotes the (k − i)-th coordinate of y satisfying y = F(y; z,v), (B′
j )vi is the

derivative of B′
j with respect to vi, and by E the exponential term appearing in C ′

∞. As
the formula includes all partial derivatives of (B′

j), we see that the calculation of µk will be
very involved and it is not equal to dk.

4.3 The degree distribution in selected families of 2-connected
graphs

We have proven in the previous section that a central limit theorem holds for the random
variable Xk

n, counting the number of vertices of given degree in a random graph of size n of
a subcritical family G. No further knowledge on the family and the shape or degree distri-
bution in the blocks is required to obtain this result. It holds in general for all subcritical
families. Due to block-stability and subcriticality, a connected graph C ∈ G is built by a
large number of (almost independant) blocks of asymptotically the same size and shape.
That is, the number of vertices of degree k in C corresponds to a sum of weakly dependant
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Chapter 4. Random Graphs

and identically distributed random variables, which suggests a central limit theorem. For
a 2-connected graph B ∈ G there is no further decomposition into “smaller” components,
therefore it is a priori not clear whether a central limit theorem will hold. Therefore, the
following section is devoted to the study of the degree distribution in 2-connected outer-
planar and series-parallel graphs, and a central limit theorem will be proven for the given
classes.

Theorem 4.25. Let B be the family of 2-connected outerplanar or series-parallel graphs
and let Xk

n be the random variable which counts the number of vertices of degree k in a
randomly chosen member of size n in B. Xk

n satisfies a central limit theorem with expected
value EXk

n = µkn + O(1) and variance VXk
n = σ2kn + O(1), where µk and σk are real

constants.

4.3.1 Outerplanar graphs

As described before, outerplanar graphs are planar graphs which can be embedded in the
plane such that all nodes lie on the outerface. In this section, we will prove Theorem 4.25
for the family of 2-connected unlabelled outerplanar graphs B. As a byproduct, we also
obtain a central limit theorem for the derived family B′:

Theorem 4.26. Let B be the family of random 2-connected unlabelled outerplanar graphs
and B′ be its derived family. Then the random variable that counts the number of vertices
of degree k in a randomly chosen member of B, Xk

n , and the corresponding random variable
X ′k

n for a member of the derived family, satisfy a central limit theorem with expected value
EXk

n ∼ EX ′k
n ∼ µkn and variance VXk

n ∼ VX ′k
n ∼ σ2kn where µk = 2(k − 1)(

√
2 − 1)k and

σ2k is a computable constant.

Proof. The proof is divided into a combinatorial and an analytic part. The goal of the
combinatorial part will be to find representations for the generating functions of the desired
graph class. In fact, we will find a core system of functional equations with suitable prop-
erties for a subfamily of 2-connected outerplanar graphs, which will lead to a local singular
expansion for the bivariate generating function B′(k)(x, v) of derived 2-connected graphs in
the analytic part, where v counts vertices of degree k. Integration will lead to the result for
the unrooted class.

Combinatorial part

Note that a 2-connected outerplanar graph can be interpreted as a dissection of a polygon,
cf Figure 4.2.

We will start by counting outer-edge pointed dissections, i.e. dissections where one edge
of the outer polygon is pointed and its endpoints not counted, from there it will be easy to
count vertex pointed dissections. We first set up a system of functional equations for the
cycle index sums of oriented outer-edge rooted dissections, i.e. the pointed edge is given
an orientation, because the automorphism group of such dissections consists of the identity
only.
An oriented outer-edge rooted dissection Ao can be decomposed in the following way: Con-
sider the (inner) face containing the root edge, which is either a triangle or a k-gon, with
k > 3. An orientation is implied on the edges of this face by the orientation of the root edge
of the dissection. If it is a triangle, the 2 edges other than the root edge can be considered
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4.3. 2-connected degree distribution

b

b

b b

b

b

b

b

bb

b

b

Figure 4.2: A 2-connected outerplanar graph

as root-edges of other oriented outer-edge rooted dissections, if those are not empty. Oth-
erwise they are single edges. If k > 3, we insert a virtual edge connecting the endpoint of
the oriented root edge with the starting point of the edge connecting to the starting point
of the root edge. This imaginary edge is root-edge of another oriented outer-edge rooted
dissection, just as the remaining edge is either root-edge or outer-edge (cf. Figure 4.3).

= +Ao
1 +Ao

1 + Âo
Ao1 + Âo

Figure 4.3: Decomposing an oriented outer-edge rooted dissection - the bottom edge is the
oriented root edge while the other edges of the triangle are root edges of smaller
dissections, denoted by Âo. In all but one cases those dissections might be
empty, denoted by 1.

Translating the above decomposition by the symbolic method, we obtain the following
implicit equation for Ao:

Ao = X × (1 +Ao)2 +X ×Ao × (1 +Ao) (4.12)

We translate this equation to cycle index sums ZAo
i,j
(s1; ū1) of oriented outer-edge rooted

dissections, where the vertices of the root edge have degrees i and j for i, j ∈ {1, . . . , k} and
degree greater than k for i, j =∞ and are not counted.
For brevity, we use the notation. Note that ZAo

1,1
(s1; ū1) = 1, ZAo

1,j
(s1; ū1) = 0 for j 6= 1

and ZAo
i,j
(s1; ū1) = ZAo

j,i
(s1; ū1) for 1 ≤ i, j ≤ k or i, j =∞.

Lemma 4.27. The functions ZAo
i,j
(s1; ū1) fulfill the following strongly connected system of

129



Chapter 4. Random Graphs

equations:

ZAo
i,j
(s1; ū1) =

∑

l1+l2≤k

ul1+l2,1ZAo
i−1,l1

(s1; ū1)ZAo
j−1,l2

(s1; ū1)

+ s1u∞,1


 ∑

l1+l2>k

ZAo
i−1,l1

(s1; ū1)ZAo
j−1,l2

(s1; ū1)




+
∑

l1+l2≤k+1

ul1+l2−1,1ZAo
i−1,l1

(s1; ū1)ZAo
j−1,l2

(s1; ū1)

+ s1u∞,1


 ∑

l1+l2>k+1

ZAo
i−1,l1

(s1; ū1)ZAo
j,l2

(s1; ū1)


 , ∀ 2 ≤ i ≤ j ≤ k + 1.

(4.13)

Proof. A close look at the recursive description depicted in Figure 4.3 together with its
symbolic translation (4.12) leads to this system of equations. Strong connectivity is given
as every equation depends on ZAo∞,∞(s1; ū1) and the equation for ZAo∞,∞(s1; ū1) depends
on all other variables.

From the above system, we deduce generating functions Ao
i,j(z,v), v = (v1, . . . , vk, v∞),

where the variable z counts all vertices while variables vi, i ∈ {1, . . . , k}, count vertices of
degree i and v∞ counts vertices of degree greater than k, by substituting as previously
sℓ = zℓ, ui,ℓ = vℓi . Then, we obtain generating functions Ao(z,v) of oriented outer-edge
rooted dissections of arbitrary root degrees by

Ao(z,v) =
∑

1≤i<j≤∞
vivjA

o
i,j(z,v) +

k,∞∑

i=1

v2iA
o
i,i(z,v).

By counting oriented outer-edge pointed dissections, we count every outer-edge pointed
dissection twice except those whose automorphism group contain a reflection, because then
the root-edge allows only one orientation. So we further have to determine the cycle index
sum of symmetric outer-edge rooted dissections, where the automorphism group contains
the identity and a reflection which fixes the root edge, to be able to count all outer-edge
pointed dissections. Symmetric outer-edge pointed dissections As fulfil the decomposition
given in Figure 4.4, which has the symbolic translation

As = X × (1 +Ao)(2) + X 2 × (1 +Ao)(2) × (1 +As) + X 2 × (1 +Ao)(2) ×As, (4.14)

where (1 +Ao)(2) denotes the choice of two identical copies from (1 +Ao).

Interpreting and refining the decomposition, we obtain the following system of equations
for the cycle index sums ZAs

i,i
(s1; ū1) of reflective dissections, where ZAs+

i,i
(s1; ū1) represents

the identity while ZAs−
i,i
(s1; ū1) represents the reflecting part. For shorter notation, we again

use
∑k,∞

ℓ=1 fℓ =
∑k

ℓ=1 fℓ+f∞. In (srℓ , ū
r
ℓ) every member of the set of variables (sℓ, ūℓ) is taken

to the power r: (srℓ , u
r
1,ℓ, . . . , u

r
∞,ℓ; . . .). Note that indices arising through the constructions

below which are greater than k correspond to index ∞ and that for the summand with
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As =

1
+
A

o 1
+
A
o

1 +As

1

+

Ao

1

+

Ao

As

1

+

Ao

1

+

Ao

+ +

Figure 4.4: The decomposition of a symmetric outer-edge rooted dissections

index i =∞, index ∞− 1 means index ≥ k (that is k and ∞).

ZAs+
i,i
(s1; ū1) = s1

k,∞∑

l=1

(
ZAo

i−1,l
(s21; ū

2
1)u2l;1

)

+ s21

(
k,∞∑

l=1

ZAo
i−1,l

(s21; ū
2
1) ·

(
k,∞∑

l=1

u2l+i;1ZAs+
i,i
(s1; ū1)

))

+ s21

(
k,∞∑

l=1

ZAo
i−1,l

(s21; ū
2
1) ·

(
k,∞∑

i=2

z2l+i−1;1ZAs+
i,i
(s1; ū1)

))
,

ZAs−
i,i
(s1; ū1) = s1

k,∞∑

l=1

(
ZAo

i−1,l
(s2; ū2)u2l;1

)

+ s2

(
k,∞∑

l=1

ZAo
i−1,l

(s2; ū2) ·
(

k,∞∑

l=1

ul+i;2Z
s−
Ai,i

(s1; ū1)

))

+ s2

(
k,∞∑

l=1

ZAo
i−1,l

(s2; ū2) ·
(

k,∞∑

i=2

zl+i−1;2ZAs−
i,i
(s1; ū1)

))
.

(4.15)

Hence, the cycle index sum of symmetric outer-edge pointed dissections is given by

ZAs
i,i
(s1; ū1) =

ZAs+
i,i
(s1; ū1) + ZAs−

i,i
(s1; ū1)

2
.

With the appropriate substitution, we obtain generating functions As
i (z,v).

The cycle index sum ZAi,j of all outer edge rooted dissections with root degree (i, j) is be
given by

ZAi,j (s1, ū1) =
ZAo

i,j
(s1, ū1)

2
for i 6= j,

ZAi,j (s1, ū1) =
ZAo

i,j
(s1, ū1) + ZAs−

i,i
(s1; ū1)

2
for i = j.

Let B′oi denote oriented vertex pointed dissections and B′si denote reflective vertex-pointed
dissections, where the pointed vertex has degree i in both cases. Note that oriented vertex
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pointed dissections are in a one-to-one correspondence with oriented outer-edge pointed
dissections where one of the endpoints of the pointed edge has arbitrary degree,

ZB′o
i
(s1; ū1) = s1

k,∞∑

j=1

uj,1ZAo
ij
(s1; ū1).

Again, by orientation every pointed dissection is counted twice except the symmetric ones.
Counting vertex-pointed symmetric dissections by outer-edge pointed symmetric dissections
is not immediate, but possible with a decomposition similar to the previous ones. We obtain
for the reflecting contribution

ZB′s−
i

(s1; ū1) =





s1

k+1∑

l=1

u2l−1;1ZAo
m,l

(s2; ū2) for i = 2m− 1,

s2

(
k+1∑

l=1

ZAo
m,l

(s2; ū2)·




k+1∑

j=1

ZAs−
j,j
(s1; ū1)uj+l;2

+

k+1∑

j=2

ZAs−
j,j
(s1; ū1)uj+l−1;2




 for i = 2m.

Finally, by above arguments and summing all root degrees, we obtain for the cycle index
sum of pointed unlabelled 2-connected outerplanar graphs

ZB′(s1, ū1) =

k,∞∑

i=1

ui,1
ZB′o

i
(s1; ū1) + ZB′s−

i
(s1; ū1)

2
, (4.16)

and, again by substitution, we obtain a functional equation for the generating function
B′(z,v).

Analytic part

In a first step we analyze the core system (4.13) established in the previous part in terms
of generating functions Ao = F(z,Ao,v), Ao = (Ao

i,j)i,j∈{1,...,k,∞} to obtain information
on the singular behaviour. We obtain a distributional result on the derived family B′ from
there, which we can extend to the unrooted family B by analytic integration.
Note that

k,∞∑

i=1

k,∞∑

j=1

Ao
i,j(z,1) = Ao(z)

is the ordinary generating function of oriented outer-edge rooted dissections with arbitrary
root degree. In [5] it has been shown that Ao(z) has singularity ρB = 3− 2

√
2 and a local

singular expansion of order 1
2 around it: Ao(x) = go(z)− ho(z)

√
1− z

ρB
. As the system of

equations (4.13) is strongly connected and positive, all functions Ao
i,j(z,1) have the same

singularity. The stability property (Lemma 1.18) leads to a local singular expansion of order
1
2 for the generating functions A

o(k)
i,j (z, v) near (ρB(1), 1)), where only vertices of degree k
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are counted:

A
o(k)
i,j (z, v) = Ao

i,j(z, 1, . . . , 1, v, 1)

= gij(z, v) − hij(z, v)
√

1− z

ρ(v)
,

with ρB(1) = 3− 2
√
2. We further know that

k,∞∑

i=1

As
i,i(z,1) = As(z)

has radius of convergence
√
ρB > ρB . After substitution in system (4.15), the functions

Ao
i,j(z,v) only appear in variables zk with exponents k ≥ 2 and by strong connectivity and

positivity the same is true for every function As
i,i(z,1), and thus, also

A
s(k)
i,i (z, v) = As

i,i(z, 1 . . . , 1, v, 1)

has radius of convergence larger than ρB(v) for v sufficiently close to 1. By equation (4.16),
the generating function B′(k)(z, v) = B′(z, 1, . . . , 1, v, 1) is a linear composition of the above
functions and hence has the same singular behaviour.

We are interested in the number of nodes of degree k in a member of B′ chosen uniformly
at random, Xk

n. The probability, that a random graph of size n has m vertices of degree k

is given by [znvm]B′(k)(z,v)
[zn]B′(z) . Thus, Xk

n is of the form

EuX
k
n =

[zn]B′(k)(z, v)
[zn]B′(k)(z, 1)

.

The local singular expansion of B′(k)(z, v) of order 1
2 leads to a central limit theorem for

the derived family B′ by means of Theorem A.5.

To obtain a result on the unrooted family, we will use integration. Therefore we isolate
variable s1 and count vertices of degree k, obtaining a trivariate generating function:

B
′(k)
i (s, z, v) = ZB′

i
(s, 1, . . . , 1, v, 1; z2 , 1, . . . , 1, v2, 1; z3, 1, . . . , 1, v3, 1; . . .).

The functions B′(k)(s, z, v) of rooted 2-connected outerplanar graphs with arbitrary root
degree are then given by

B′(k)(s, z, v) =
k−1∑

i=1

B
′(k)
i (s, z, v) + vB

′(k)
k (s, z, v) +B′(k)

∞ (s, z, v).

As indicated in Section 1, the generating function of unrooted unlabelled 2-connected out-
erplanar graphs is then given by B(z, v) = B(z, z, v), where

B(s, z, v) =

∫ s

0
B′(t, z, v)dt +B(0, z, v). (4.17)

It is important to note that B(0, z, v) has bigger radius of convergence than B′(z, z, v)
and thus has no influence on the asymptotic behaviour of B(s, z, v), see also the remark
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Chapter 4. Random Graphs

on the next page. The corresponding equations are very lengthy and can be found in the
Appendix. With these equations, it can be shown directly that B(0, z, v) is analytic at ρ(v).
Integration of B′(s, z, v) leads to a local singular expansion of order 3

2

B(s, z, v) = g(s, z, v) − h(s, z, v)
(
1− s

ρ(z, v)

) 3
2

.

It remains to prove that B(z, z, v) has a local singular expansion of order 3
2 around its

singularity ρ(v). The function ρ(z, v) is analytic and can hence be represented by a power
series ρ(z, v) =

∑
i≥0 ai(v)z

i with a0(v) = ρB(v). Hence, if we set s = z, the singular term
can be rewritten to

(
1− z

ρ(z, v)

) 3
2

= κ(z, v)

(
1− z

ρ̃B(v)

) 3
2

,

where κ(z, v) and ρ̃B(v) are analytic. Since z = ρ(z, v) if and only if z = ρ̃B(v), it follows
that ρ̃B(v) = ρB(v) and B(z, v) has a local singular expansion of order 3

2 . From this
expansion, the central limit theorem follows.

The expected value EXk
n ∼ EX ′k

n ∼ µkn is asymptotically given by µk = −ρ′B(1)
ρB(1) . Since the

singularity ρB(v) is the same as in the labelled case, we can adopt the result from the labelled
case [15, Chapter 9], where µk = 2(k − 1)(

√
2 − 1)k. This matching of the singularities is

due to the fact that the core system of equations in the labelled and unlabelled case are
exactly the same and thus yield the same singularity. The other terms appearing in the
unlabelled equations are analytic at ρB(v), as seen before, and have no influence on the
asymptotic result.
This result implies that the symmetries arising in 2-connected outerplanar graphs through
unlabelling are very few and hence do not influence the asymptotic result. In the connected
case, this is no longer true, as an exponential number of symmetries appears which alters
the singularity of the generating functions (see the previous section).

Remark. The step of analytic integration could be omitted by using the dissymmetry
theorem on trees and the fact that the dual graph of a dissected polygon is a tree. One
then has to set up functional equations for the generating functions of inner-edge and face
rooted dissections, which can be decomposed combinatorially into oriented and symmetric
outer-edge rooted dissections. In [5] this method is used for counting unlabelled outerplanar
graphs. In the case of multivariate cycle index sums like we use to count vertex degrees,
systems of equations become very large and it is hardly possible to prove that the singu-
larity is of type (1 − z

ρB(v) )
3
2 . Still, to prove that the radius of convergence of B(0, z, v) is

large enough and for comparison, the corresponding systems of equations can be found in
Appendix B.

4.3.2 Series-parallel graphs

Recall that series-parallel graphs are graphs obtained from series-parallel extensions of a
forest. 2-connected series parallel graphs can be interpreted as series-parallel networks
where the poles are connected by an additional edge. Still we will use a different method
to count series-parallel blocks, namely a decompostion presented by Tutte in the 1960’s
[67]. This method also relies on networks, but provides a unique decomposition, while the

134



4.3. 2-connected degree distribution

mapping described above is not bijective. We proceed in a similar manner as in the previous
section and obtain an analogous result for series-parallel graphs, also obtaining a central
limit theorem on the derived family as a byproduct.

Theorem 4.28. Let B be the family of random 2-connected unlabelled series-parallel graphs
and B′ be it’s derived family. Then the random variable that counts the number of vertices
of degree k in a randomly chosen member of B, Xk

n, and the corresponding random variable
X ′k

n for a member of the derived family, satisfy a central limit theorem with expected value
EXk

n ∼ EX ′k
n ∼ µkn and variance VXk

n ∼ VX ′k
n ∼ σ2kn where µk and σk are computable

constants.

Proof. Again, the proof is divided into a combinatorial part, aiming at setting up suitable
systems of equations, and an analytic part where the system and the relating equations are
analyzed.

Combinatorial part

For the sake of brevity, equations in this part are given in terms of ordinary generating
functions. We denote by (zℓ,vℓ) = (zℓ, vℓ1, . . . , v

ℓ
k, v

ℓ
∞).

The subfamily of 2-connected series-parallel graphs, which provides us with a core system
of equations are series-parallel networks. A series-parallel network is obtained via series-
parallel extensions of a single edge, thus it is a series-parallel graph with 2 distinguished
nodes (the endpoints of the original edge), which we call the poles and which we denote by
0 and ∞, cf Figure 4.5.

0 ∞b

b b

b

b

b

b b
b

b

b

b

Figure 4.5: A series-parallel network, and more precicely a series network

Let us denote by D the set of series-parallel networks. We distinguish 2 types: Series
networks S, which have a series decomposition, and parallel networks P, which have a
parallel decomposition. This is equivalent to the fact that the first extension had been a
subdivision or a doubling, respectively. A single edge is also considered a network, which is
neither series nor parallel. Performing the decompositions we obtain the following system
of equations in the symbolic language:

D = e+ P + S
S = S ∗ X ∗ D
P = e ∗ Set≥1(S) + Set≥2(S)

(4.18)

For the generating functions Dij(z,v), Sij(z,v) and Pij(z,v) of networks with pole de-
grees i and j we obtain the following (strongly connected) systems of equations for 1 < i < j
(note that Dij = Dji), by translating the above system (4.18). This systems will be the core
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Chapter 4. Random Graphs

system of the proof, as we will see later. Recall that Zi denotes the cycle index sum of the
full symmetric group Si on i elements and the notation Zi(G(z,v) denotes the substitution
si ← G(zi, vi1, . . . , v

i
k, v

i
∞).

Dij(z,v) = Sij(z,v) + Pij(z,v)

Sij(z,v) = z




k,∞∑

ℓ1=2

k,∞∑

ℓ2=1

vℓ1+ℓ2Piℓ1(z,v)Dℓ2j(z,v)




Pij(z,v) =
∑

ℓ1+2ℓ2+...+iℓi=i




∑

σ∈Si:
P

σ(i)ℓσ(i)=j

i∏

r=1

Zlr

(
Sr,σ(r)(z,v)

)



+
∑

ℓ1+2ℓ2+...+(i−1)ℓi−1=i−1




∑

σ∈Si:
P

σ(i)ℓσ(i)=j

i∏

r=1

Zlr

(
Sr,σ(r)(z,v)

)



−
k,∞∑

i=1

k,∞∑

j=1

Sij(z,v)

(4.19)

For pole-degree i = 1 we get:

D11(z,v) = 1 + S11(z,v),

D1j(z,v) = S1j(z,v) for j > 1

S11(z,v) = zv2 + z2




k,∞∑

ℓ1=1

k,∞∑

ℓ2=1

vℓ1+1vℓ2+1Dℓ1ℓ2(z,v)


 ,

S1j(z,v) = z

(
k,∞∑

ℓ=1

vℓ+1Dℓj(z,v)

)
for j > 1.

Additionally, there are symmetric networks which are invariant under a reflection ex-
changing the poles 0 and ∞. Let us denote by S̄, P̄ and D̄ the families of symmetric series,
parallel or general networks, respectively. Symbolically, they are given by

D̄ = e+ S̄ + P̄
S̄ = D(2) ∗ (X + X 2 ∗ (e+ P̄))
P̄ = e ∗ Set≥1(S(2), S̄) + Set≥2(S(2), S̄),

(4.20)

where D(2) and S(2) denotes the choice of two identical copies from the families D and S,
respectively, and Set(S2, S̄) denotes a set of pairs of arbitrary series networks together with a
set of symmetric networks of odd size. This construction appears because a pair of arbitrary
but identical series networks forms a symmetric parallel network when we connect one 0-
pole with one∞ pole and vice-versa. Hence, the set of symmetric networks is obtained by a
set of pairs of arbitrary networks and symmetric networks. As sets of symmetric networks
of even size are already contained in the set of pairs, we only have to count the sets of
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4.3. 2-connected degree distribution

uneven size.
For the generating functions D̄i(x,v), S̄i(z,v) and P̄i(z,v), counting symmetric networks
with pole-degree i, we obtain the following system:

D̄i(z,v) = S̄i(z,v) + P̄i(z,v)

S̄i(z,v) =

k,∞∑

ℓ=1

(Diℓ(z
2,v2)


zv2ℓ + z2v2ℓ+1 + z

k,∞∑

j=1

v2ℓ+jP̄j(z,v)




P̄i(z,v) =
∑

ℓ1+2ℓ2+...+iℓi=i

(
i∏

r=1

Zlr [s2s−1 ← S̄r(z
2s−1,v2s−1), s2s ← Srr(z

2s,v2s), s ≥ 1]

+
∏

ℓt=ℓt̃
t6=t̃

Zℓt

(
Sℓtℓt̃

(z2,v2)
)




+
∑

ℓ1+2ℓ2+...+(i−1)ℓi−1=i−1

(
i∏

r=1

Zlr [s2s−1 ← S̄r(z
2s−1v2s−1), s2s ← Srr(z

2s,v2s), s ≥ 1]

+
∏

ℓt=ℓt̃
t6=t̃

Zℓt

(
Sℓtℓt̃

(z2,v2)
)


 −

k,∞∑

i=1

S̄i(z,v),

(4.21)

and for pole degree i = 1 we have

D̄1(z,v) = 1 + S̄1(z,v),

S̄1(z,v) = zv2 + z2

(
k,∞∑

ℓ=1

v2ℓ+1D̄i(z,v)

)
.

For 2-connected graphs we use a decomposition into series, parallel and 3-connected
components (which do not exist in our case as K4 is exluded as a minor) which goes back to
Tutte [67] and is described in detail in [10]. This decomposition leads to a coloured bipartite
tree1 with nodes colored R and nodes coloredM, where R denotes cyclic components and
M denotes multi-edge components, both with at least 3 edges. Series-parallel graphs are
then obtained by replacing the edges of those cycle- and multi-edge components by parallel
and series networks, respectively. To obtain equations for those structures, we use the
dissymmetry theorem of trees, described in Chapter 1[Theorem 1.1], which in the case of
bipartite trees simplifies to

T = T • + T ◦ − T •−◦,

where T denotes unrooted trees, T • and T ◦ denote trees rooted at the two kinds of vertices,
and T •−◦ denotes trees rooted at an edge. In our case the two types of nodes are the
components R and M, while R −M denotes a edge rooted tree of the decomposition.

1A bipartite tree is a tree where a colouring of the vertices in two colours, such that adjacent vertices have
different colours, is possible.
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Furthermore we need to use Walsh series, described in Chapter 1.2, of cycle- and multi-
edge structures, to be able to substitute into edges. The Walsh series of cycles is given in
the examples of Walsh series on page 10 in Chapter 1, it can be rewritten to

WR(a1,b1, c1) =


∑

k≥1

φ(k)

2k
log

(
1

1− akbk

)
− a1b1

2
− a

2
1b

2
1

4
− a2b2

4




+

[
a2b2

1− a2b2

(
a2c

2
1

4
+
a21b2
4

+
a1c1
2

)]
.

(4.22)

the Walsh series of a multiedge is given by

WM =
s21
2


exp


∑

k≥1

bk
k


− 1− b1 −

b21
2
− b2

2




+
a2
2


exp


∑

k≥1

b2k
2k

+
c2k−1

2k − 1


− 1− b2

2
− c1 −

c21
2


 ,

(4.23)

where the first part represents the identity while the second term represents reflections.

Tutte’s decomposition applies for the rooted class as well as for the unrooted class, with
the only difference that cycle and multi-edge components are derived (at vertices) or not.
In both cases we obtain systems of equations in terms of the core system on networks.
We proceed as in the outerplanar case and set up systems for the rooted class and use
integration for unrooting. Nevertheless, systems of equations for unrooted unlabelled series-
parallel graphs can be found in Appendix B, as they will be needed for the analytic part.
Applying dissymmetry theorem to the bipartite tree we obtain

B′ = 1 + BR′ + BM′ − BRM, (4.24)

where BR′ = R′ ◦e (D−S) denotes pointed rings whose edges are substituted by non-series
networks D− S, BM′ =M′ ◦e (S) denotes pointed multiedges whose edges are substituted
by series networks S and at most one edge, and BRM = X × P × S denotes an R −M
rooted tree, that is an intersection of a ring and multiedge component. The additional 1
counts the single edge which is also considered a 2-connected component.

Due to equation (4.24) the cycle index sum of rooted 2-connected series parallel graphs
is given by

ZB′(s1, ū1) = s1 + ZBR′ (s1, ū1) + ZBM′ (s1, ū1)− ZBRM(s1, ū1).

and for generating functions:

B′(z,v) = z +BR′(z,v) +BM ′(z,v) −BRM (z,v),

where ZB′(s1, ū1), ZBR′ (s1, ū1), ZBM′ (s1, ū1), ZBRM(s1, ū1); B
′(z,v), BR′ (z,v), BM ′(z,v)

andBRM (z,v) are the cycle index sums and generating functions of the structures appearing
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4.3. 2-connected degree distribution

in equation (4.24). Again we denote by index i the degree of the root, and obtain a system

BR′(z,v) = z
k∞∑

i=1

viBR′
i
(z,v)

BR′
i
(z,v) =

1

2



∑

i1+j1=i

∑

ℓ≥3




∑

i2,i3,...,iℓ
j2,j3,...,jℓ

ℓ−1∏

r=1

(
vir+jr(D − S)irjr+1(z,v)(D − S)iℓj1(z,v)

)



+
∑

m≥1




∑

i1,i2,...,im
j1,j2,...,jm

m−1∏

r=1

v2jr+irv
2
imjm(D − S) i

2
j1
(z2,v2)(D − S)irjr+1(z

2,v2)(D̄ − S̄)im

+ z
∑

i1,i2,...,im
j1,j2,...,jm+1

m∏

r=1

v2jr+irv
2
2jm+1

(D − S) i
2
j1
(z2,v2)(D − S)irjr+1(z

2,v2)







BM ′(z,v) = z

k∞∑

i=1

viBM ′
i
(z,v)

BM ′
i
(z,v) = z


 ∑

ℓ1+2ℓ2+...+iℓi=i


∑

σ∈Si

vPi
r=1 σ(i)ℓσ(i)

i∏

r=1

Slr [Sr,σ(r)(z,v)]




+
∑

ℓ1+2ℓ2+...+(i−1)ℓi−1=i−1


∑

σ∈Si

v1+
Pi

r=1 σ(i)ℓσ(i)

i∏

r=1

Slr [Sr,σ(r)(z,v)]




−
k,∞∑

j=1

Sij(z,v)

BRM (z,v) =
1

2
z




k,∞∑

ℓ1=1

k,∞∑

ℓ2=1

k,∞∑

ℓ3=1

k,∞∑

ℓ4=1

vℓ1+ℓ2vℓ3+ℓ4Sℓ1ℓ3(z,v)Pℓ2ℓ4(z,v)




+
1

2
z




k,∞∑

ℓ1=1

k,∞∑

ℓ2=1

v2ℓ1+ℓ2S̄ℓ1(z,v)P̄ℓ2(z,v)




Analytic part

We can express the core system of equations for networks (4.19) in terms of just one network
type D,S or P. Then we can proceed as in the case of outerplanar graphs and note that∑k,∞

i=1

∑k,∞
j=1 Dij(z,1) = D(z) is the ordinary generating function of unlabelled series-parallel

networks. The same applies for
∑

i

∑
j Sij(z,1) = S(z) and

∑
i

∑
j Pij(z,1) = P (z).

We know from [16] that D(z), S(z) and P (z) have a common singularity 0 < ρB < 1
and a square-root singular expansion around it. Thus, again by the Drmota-Lalley-Woods
Theorem 1.12, all functions Dij(z, v), specialized to count only vertices of degree k, have
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square root singular expansions

Dij(z, v) = Dij(z, 1, . . . , 1, v, 1) = gij(z, v) − hij(z, v)
√

1− z

ρ(v)
,

while D̄i has bigger radius of convergence. B
′(z, v) fulfills functional equations in terms of

Dij and D̄i for i, j ∈ {1, . . . , k,∞}, and thus has a square root expansion around the same
singularity. Again, the random variable Xk

n counting the number of vertices of degree k in
a random unlabelled rooted 2-connected series-parallel graph of size n is of the form:

EuX
′k
n =

[zn]B′(k)(z, v)
[zn]B′(z, 1)

,

and thus Theorem A.5 applies and leads us to a central limit theorem for the derived family
B′ of unlabelled series-parallel graphs.

To obtain the result for the unrooted class, we will again use integration. We have to
isolate variable s1 and obtain trivariate generating functions B′(s, z, v). Then

B(s, z, v) =

∫ s

0
B′(t, z, v)dt +B(0, z, v)

and B(z, v) = B(z, z, v).
We need to check that B(0, z, v) has bigger radius of convergence than B′(z, z, v), which
we do directly by using the equations given in Appendix B. Then Integration of B′(s, z, v)
leads to a local singular expansion of order 3

2 around (B(ρB , 1), ρB(1), 1). By applying
the same arguments as in the case of outerplanar graphs, this expansion translates to a
expansion around (ρB(1), 1) at s = z. Thus, we obtain a central limit theorem for the class
of unrooted unlabelled 2-connected series-parallel graphs again by Theorem A.5.

Remark. In contrary to the outerplanar case, in the series-parallel case, we cannot be
sure that the expected value EXk

n will be the same as in the labelled case, where it is

asymptotically given by ck−
3
2 qk, with constants c, q. The reason for that is the different

core system of equations, where cycle index sums of symmetric groups appear in contrary
to the labelled system. Giving an explicit representation of µk would require numerical
calculation on the singularity ρB(v) of the core system (4.19), which could be done with
e.g. Maple, but will be very involved.

4.4 Cycle rooting

As indicated in the last remark of the previous section, obtaining numerical values for mean
and variance of the degree distribution in the unlabelled case is a difficult question. In the
labelled case, values are quite easily obtained by computing the probability dk that the root
of a derived object has degree k. Then dk immediately gives the probability that a random
vertex has degree k in a graph of size n. This is due to the fact that, in the labelled case,

A′(z) =
d

dz
A(z),
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4.4. Cycle rooting

where A(z) is the generating function of a family and A′(z) is the generating function of
the derived family. Thus the expected number of nodes of degree k is given by dkn.

In the unlabelled case, this is no longer true, as (cf. Chapter 1)

ZA′(s1) =
∂

∂s1
ZA(s1).

We now introduce a new way of rooting unlabelled objects, which was presented by
Bodirsky et. al. in [6], which is cycle pointing. We denote by G◦ the cycle pointed class
of the class G. A cycle pointed object G◦ ∈ G◦ is an representant G ∈ G together with a
cycle of vertices c, such that there exists at least one automorphism of G which contains
the cycle c. The reason to use this technique is the following property.

Lemma 4.29. Let G(z) =
∑
gnmz

n be the generating function of unlabelled graphs of a
family G and G◦(z) =

∑
g◦nmz

n be the generating function of the cycle pointed class. Then
g◦n = ngn, that is

G◦(z) = z
∂

∂z
G(z)

The proof of this Lemma can be found in [6]. As a consequence, to obtain information
on the expected degree of a random vertex in a random graph of size n, we can consider a
vertex of the root cycle of the cycle pointed family (as there is a symmetry containing this
cycle, all vertices in the cycle have the same shape). Then this vertex represents a random
node.

Let ZA(s1, s2, . . .) be the cycle index sum of a family A. Then the cycle index sum of the
cycle-rooted family is given by

ZA◦(s1, t1, s2, t2 . . .) =
∑

ℓ≥1

ℓtℓ
∂

∂sℓ
ZA(s1, s2, . . .) (4.25)

We can set up equations for the generating function G◦(z,w) =
∑

n,m gnmz
nwm, where

the coefficient gnm counts the number of graphs of size n whose root has degree m, to
extract the probability that the root has degree k by

dk =
gnm
gn

.

In Appendix B.3 the equations for the generating functions B◦(z,w) and C◦(z,w) of series-
parallel graphs are listed. We have not extracted numerical values for the expected values
in Theorem 4.24 and Theorem 4.28, but these equations could be used for this purpose due
to the above theory.
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APPENDIX A

Fundamentals

In this part, we will describe in detail the toolbox of analytic combinatorics and singularity
analysis on multivariate generating functions, which we just indicated in the introduction
and which is applied to its full extent only in the last chapter on subcritical graph classes.
All theorems together with their proofs can be found in [15][Chapter 2].

First of all, we state a result, providing information on the singular behaviour of a function
determined by another function with known singularity.

Lemma A.1. Suppose that f(z, v) has a squareroot singular expansion of the form

f(z, v) = g(z, v) − h(z, v)
√

1− z

ρ(v)

and that H(z, v, y) is a function that is analytic at (ρ(1), 1, f(ρ(1), 1)) such that

Hy(ρ(1), 1, f(ρ(1), 1)) 6= 0.

Then
fH(z, v) = H(z, v, f(z, v))

has the same kind of singular expansion, that is

fH(z, v) = g̃(z, v) − h̃(z, v)
√

1− z

ρ(v

for certain analytic functions g̃(z, v) and h̃(z, v).
If ρ(v) 6= 0 and f(z, v) has an analytic continuation to the region |z| ≤ |ρ(v)|+ǫ, arg(z/ρ(v)−
1 6= 0 for some ǫ > 0, and if H(z, v, y) is also analytic for |z| < ρ(1) + ǫ, |v| < 1 + ǫ and
|y| < f(ρ(1), 1) + ǫ, then f(z, v) and fH(z, v) have power series expansions

f(z, v) =
∑

n≥0

an(v)z
n and fH(z, v) =

∑

n≥0

bn(v)z
n,

where an(v) and bn(v) satisfy

lim
n→∞

bn(v)

an(v)
= Hy(ρ(v), v, f(ρ(v), v)).
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Lemma A.2. Let A(z,v) be a generating function with a square root singular expansion
around a dominant positive singularity ρ(v). Then the derivative and the integral have local
singular expansions of the form

Az(z,v) =
g2(z,v)√
1− z

ρ(v)

+ h2(z,v) (A.1)

and ∫ z

0
A(t,v)dt = g3(z,v) + h3(z,v)

(
1− z

ρ(v)

) 3
2

, (A.2)

where g2(z,v), h2(z,v), g3(z,v) and h3(z,v) are analytic near ρ(v) and v = 1.

Systems of equations

We consider a system of equations y = F(z,y,v):

y1 = F1(z, y1, . . . , yN ,v)

...
...

yN = FN (z, y1, . . . , yN ,v)

(A.3)

Recall that the system is strongly connected if the dependancy graph is strongly connected,
cf Definition 1.11, and that we denote by Fy the Jacobian of the system and by I the
N × N -identity matrix. We have the following refinement of the Drmota-Lalley-Woods
theorem (Theorem 1.12).

Theorem A.3. Let y = F(z,y,v) be a nonlinear system of functional equations which is
strongly connected, has only nonnegative Taylor coefficients and which is analytic around
z = 0, y = 0 and v = 0. Further assume that F(0,y,v) = 0, F(z,0,v) 6= 0 and
Fz(z,y,v) 6= 0 and that the region of convergence of F is large enough such that there
exists a complex neighbourhood V of v = 1 where the system

y = F(z,y,v)

0 = det(I− Fy(z,y,v))

has solutions z = ρ(v) and y = y0(v) which are real, positive and minimal for positive real
v ∈ U . Let y = y(z,v) denote the analytic solutions of the system y = F(z,y,v) with
y(0,v) = 0. Then there exists an ǫ > 0 such that all components yj(z, v), j = 1 . . . , N have
a square root singular expansion

yj(z,v) = gj(z,v) − hj(z,v)
√

1− z

ρ(v)
, for i = 1, . . . N,

for v ∈ V , |z − ρ(v)| < ǫ and | arg(z − ρ(v))| 6= 0, with analytic functions gj(z,v) 6= 0 and
hj(z,v) 6= 0 with gj(ρ(v),v) = yj(ρ(v),v) = (y0)j . Furthermore, if [zn]yj(z,1) > 0 for
1 ≤ j ≤ N for sufficiently large n ≥ n0 then z0 = ρ(1) is the only singularity on the radius
of convergence |z| = z0 and all components y can be analytically continued to the region
D = {z ∈ C

∣∣|z| < |ρ(v)| + ǫ, 1− z
ρ(v) /∈ R−} for v in some neighbourhood of 1.

Lemma 1.14 can be refined to
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Lemma A.4. Let y(z,v) = (y1(z.v), . . . , yN (z,v)) be the solution of the system of equations
(A.3) and assume that all assumptions of Theorem A.3 are satisfied. Suppose that G(z,y,v)
is a power series such that the point (z0,y0(z0,1),1) is contained in the interior of the region
of convergence of G(z,y,v) and that Gy(z0,y0(z0,1),1) 6= 0.
Then yG(z,v) := G(z,y(z,v),v) has a representation of the form

yG(z,v) = g(z,v) − h(z,v)
√

1− z

ρ(v)

for v ∈ V and |z − ρ(v)| < ǫ, where g(z,v) 6= 0 and h(z,v) 6= 0 are analytic functions.
Moreover, G(z,y(z,v),v) is analytic in (z,v) for v ∈ V and |z − ρ(v)| ≥ ǫ, but |z| ≤
|ρ(v)| + δ.

Multivariate central limit laws

We present an extension of Theorem 1.20 to solutions of systems of equations and multiple
variables.

Theorem A.5. Suppose that Xn is a sequence of k-dimensional random vectors which are
given by

E(vXn) =
[zn]yG(z,v)

[zn]yG(z,1)
,

where yG(z,v) = G(z,y(z,v),v) is a function given as in Lemma A.4, with y(z,v) being
the solution of a system of equations of the form (A.3), with F satisfying all preliminaries
of Theorem A.3. Then Xn satisfies a central limit theorem of the form

1√
n
(Xn − E(Xn))

d→ N (0,Σ),

with

E(Xn)) = µn+O(1) Cov(Xn)) = Σn+O(1),
where

µ =
1

ρ(1)

bTFv(z,y0,1)

bTFz(z,y0,1)
, (A.4)

where b is (up to scaling) the unique positive left eigenvector of the Jacobian Fy. Σ is a
positive semidefinite matrix computed with the help of second derivatives:

Σ = −ρvv(1)
ρ(1)

+µµT + diag(µ), (A.5)

where ρvv denotes (ρvivj )1≤i,j≤k for v = (v1, . . . , vk).

In many applications b appears to be b = (1, . . . , 1)T , which is due to the special structure
of combinatorial systems of equations. The origin of the above theorems, as we explained
in Chapter 1, is given by the singular expansions of the generating functions and mean
and variance are determined by their singularities. Therefore, as we state in the following
theorem, power series in multiple variables which have singular expansions of order α /∈ N
with a singular term (1 − z

ρ(v)), fulfil a central limit theorem with the same mean and
variance independant of α.
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Theorem A.6. Suppose that a sequence of k-dimensional random vectors Xn satisfies

E(Xn) =
[zn]y(z,v)

[zn]y(z,1)
,

where y(z,v) is a function which has a local singular representation of the form

y(z,v) = g(z,v) − h(z,v)
(
1− z

ρ(v)

)α

,

for some real α /∈ N and functions g(z,v) 6= 0, h(z,v) 6= 0 and ρ(v) 6= 0 which are analytic
around z = z0 > 0 and v = 1. Suppose also that z = ρ(v) is the only singularity of y(z,v)
on the disc |z| ≤ |ρ(v)|, if v is sufficiently close to 1 and that there exists an analytic
continuation of y(z,v) to the region |z| < |ρ(v)| + δ,| arg(z − ρ(v)| > ǫ for some δ > 0 and
ǫ > 0. Then Xn satisfies a central limit theorem

1√
n
(Xn − E(Xn))

d→ N (0,Σ)

with
E(Xn)) = µn+O(1) Cov(Xn)) = Σn+O(1),

where

µ = −ρv(1)
ρ(1)

with ρv = (ρvi)1≤i≤k for v = (v1, . . . , vk) and

Σ = −ρvv(1)
ρ(1)

+ µµT + diag(µ).

Furthermore there exist positive constants c1, c2, c3 such that

P(||Xn − E(Xn)|| ≥ ǫ
√
n) ≤ c1e−c2ǫ2

uniformly for ǫ ≤ c3
√
n.

The above generalizations allow us to deduce that a rooted family and its corresponding
unrooted family fulfill central limit theorems with the same asymptotic mean and variance,
as we do in Chapter 4.
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APPENDIX B

Systems of equations

B.1 Equations to count unrooted 2-connected outerplanar graphs

As mentioned in Remark 1 in Section 4.3.1 the dual graph of a dissection of a polygon
is a tree (cf Figure B.1). Vertex degrees are preserved by this duality, as the degree of a
vertex in the dissection is equivalent to the distance between the two outer dual vertices
neighbouring this vertex.

b b

b

b

b

bb

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

bbb

b

b

b

b

Figure B.1: The dual tree of a dissection

We use the dissymmetry theorem (Theorem 1.1) to set up a system of equations for the
multivariate cycle index sums ZD(s1, ū1) of unrooted unlabelled dissections, where the vari-
ables s1 = (s1, s2, . . .) count cycles of vertices and the variables ū1 = (ui,1, ui,2, . . .)i∈{1,...,k,∞}
count cycles of vertices of degree i for i = 1, . . . , k and vertices of degree greater than k for
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Chapter B. Systems of equations

i =∞. Translating the dissymetry theorem, we obtain

T = D
T◦→◦ = 2Do + 2Di − 2Di(s) +Df(s)

T◦ = Do +Df

T◦−◦ = Do +Di,

where D denotes the family of unrooted dissections, Do dissections rooted at an outer edge,
Di dissections rooted at an inner edge, Di(s) dissections rooted at a symmetry edge, Df

dissections rooted at a face, Df(s) rooted at a face containing a symmetry edge. Thus we
obtain for ZD:

ZD = ZDf − ZDf(s) − ZDi + 2ZDi(s) , (B.1)

In Section 4.3.1 we have set up systems of equations for oriented (4.13) and symmetric
(4.15) outer-edge rooted dissections. We can use them to build systems for all other classes
needed in the above equation.

We use the same notation as in previous chapters and write ZG(s1, ū1) for the cycle index
sum of a structure G with (s1, ū1) being the set of variables (s1, u1,1, . . . , uk,1, u∞,1; s2 . . .)
and

(sℓ, ūℓ) = (sl, u1,ℓ, . . . , uk,ℓ, u∞,ℓ; s2ℓ, u1,2ℓ, . . . , uk,2ℓ, u∞,2ℓ; . . .)

for some ℓ ≥ 2.

Inner edge rooted dissections: Inner edge rooted dissections follow a decomposition
into two outeredge rooted dissections, glued together at their root edge. Taking into account
all symmetries, we obtain four classes of inner-edge rooted dissections, which we denote by
Di

1,Di
2,Di

3 and Di
4(cf. Figure B.2):

Ao

Ão

id
Di

1

AoAo

Di
2

Ao

Ao

	
Di

3 Di
4

As

Ãs

Figure B.2: Decomposition of inner edge rooted dissections

This decomposition translates to the following system in the language of cycle index sums:
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B.1. Equations for outerplanar graphs

ZDi
1
(s1, ū1) = s21

k,∞∑

i1=2

k,∞∑

j1=2

k,∞∑

i2=2

k,∞∑

j2=2

ui1+i2−1;1uj1+j2−1;1ZAo
i1,j1

(s1, ū1)ZAo
i2,j2

(s1, ū1),

ZDi
2
(s1, ū1) = s21

k,∞∑

i=2

k,∞∑

j=2

u2i−1;1u2j−1;1ZAo
i,j
(s2; ū2),

ZDi
3
(s1, ū1) = s2

k,∞∑

i=2

k,∞∑

j=2

ui+j−1;2ZAo
i,j
(s2; ū2),

ZDi
4
(s1, ū1) = s2

k,∞∑

i1=2

k,∞∑

i2=2

ui1+i2−1;2ZAs−
i1,i1

(s1; ū1)ZAs−
i2,i2

(s1; ū1),

ZDi(s1, ū1) =
ZDi

1
(s1, ū1) + ZDi

2
(s1, ū1) + ZDi

3
(s1, ū1) + ZDi

4
(s1, ū1)

4
.

Symmetric inner-edge rooted dissections consist of Di
2,Di

3 and Di
4 only.

Face rooted dissections: Let l ≥ 3 be the size of the root face. Then, face rooted dissec-
tions follow a decomposition into outer-edge rooted dissections, as outer-edge rooted dissec-
tions are attached to the l ≥ 3 edges of the root-face. Cycle index sums for face rooted dissec-
tions fulfill the following system of equations, where ZFo(s1, ū1) denotes oriented face rooted
dissections (only cyclic permutations are allowed here), while ZFm

1
(s1, ū1),ZFm

2
(s1, ū1) and

finally ZFs(s1, ū1) denote face rooted dissections where a reflection is applied.

ZFo(s1, ū1) =

=
∑

l≥3

1

l




∑

d|l
ϕ(d)




∑

i1,i2,...,i l
d

j1,j2,...,j l
d

l
d
−1∏

m=1

(
uim+1+jm,dui l

d
+j1,dZAo

imjm
(sd, ūd)

)
ZAi l

d

j l
d

(s1, ū1)






.

For l = 2m+ 2

ZFm
2
(s1, ū1) = s21




∑

i1,i2,...,im+1
j1,j2,...,jm+1

m∏

t=1

u2i1,1ujt+it+1,2u2jm+1,1ZAo
itjt

(s2, ū2)




ZFm
3
(s1, ū1) =

k,∞∑

i=0

ZAs−
ii
(s1, ū1)

k,∞∑

î=0

ZAs−
î̂i

(s1, ū1)

×




∑

i1,i2,...,im
j1,j2,...,jm

m−1∏

t=1

ui+i1,2ujt+it+1,2ujm+î,2ZAo
itjt

(s2, ū2)


 ,
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for l = 2m+ 1

ZFm
1
(s1, ū1) = s1

k,∞∑

i=0

ZAs−
ii
(s1, ū1)




∑

i1,i2,...,im
j1,j2,...,jm

m−1∏

t=1

ui+i1,2ujt+it+1,2u2jmZAo
itjt

(s2, ū2)


 ,

ZFs(s1, ū1) =
∑

m≥1

ZFm
1
(s1, ū1) + ZFm

2
(s1, ū1) + ZFm

3
(s1, ū1).

B.2 Equations for unrooted unlabelled 2-connected series-parallel
graphs:

The cycle index sum of unrooted 2-connected series parallel graphs is given by a similar
equation to the rooted ones. The only difference is that the ring- and multiedge components
are no longer rooted:

ZB(s1, ū1) = 1 + ZBR(s1, ū1) + ZBM(s1, ū1)− ZBRM(s1, ū1).

Again, the equation can be translated into generating functions:

B(z,v) = 1 +BR(z,v) +BM (z,v) −BRM (z,v),

Also in this part, we will state equations in terms of generating functions. The function
BRM (z,v) is nearly identical to the rooted one, with the only difference that we have to
count the additional vertex:

BRM (z,v) =
1

2
z2




k,∞∑

ℓ1=1

k,∞∑

ℓ2=1

k,∞∑

ℓ3=1

k,∞∑

ℓ4=1

vℓ1+ℓ2vℓ3+ℓ4Sℓ1ℓ3(z,v)Pℓ2ℓ4(z,v)




+
1

2
z2




k,∞∑

ℓ1=1

k,∞∑

ℓ2=1

v2ℓ1+ℓ2S̄ℓ1(z,v)P̄ℓ2(z,v)




The other two generating functions, on the contrary, are more involved. This is due to the
cyclic permutations and reflections that can be applied to the rings and multiedges now
that they are unrooted:

150



B.2. Equations for series-parallel graphs

BR(z,v) =
∑

ℓ≥3

1

ℓ
zℓ
∑

d|ℓ
ϕ(d)




∑

i1,i2,...,i ℓ
d

j1,j2,...,j ℓ
d

ℓ
d
−1∏

r=1

(
vjr+ir+1vj ℓ

d
+i1(D − S)irjr(zd,vd)

)




+
∑

m≥1


z

k,∞∑

i=1

∑

i1,i2,...,im
j1,j2,...,jm

m−1∏

r=1

v2i1v
2
jr+ir+1

u2jr+1(D − S)irjr(z2,v2)(D̄ − S̄)i(z,v)

+

k,∞∑

i=1

k,∞∑

j=1

∑

i1,i2,...,im
j1,j2,...,jm

m−1∏

r=1

v2i+i1v
2
jr+ir+1

v2j+jm(D − S)irjr(z2,v2)(D̄ − S̄)i(D̄ − S̄)j(z,v)

+ z2
∑

i1,i2,...,im+1
j1,j2,...,jm+1

m∏

r=1

v22i1v
2
jr+ir+1

v22jm+1
(D − S)irjr(z2,v2)




BM (z,v) =
∑

i1,i2,...,ik,i∞

∑

σ∈Sk+1

(
(vPk,∞

ℓ=1 ℓiℓ
vPk,∞

ℓ=1 σ(ℓ)jσ(ℓ)
+ vPk,∞

ℓ=1 ℓiℓ+1
vPk,∞

ℓ=1 σ(ℓ)jσ(ℓ)+1
)

×
k,∞∏

r=1

Sℓr [Sr,σ(r)(z,v)]

)
− (v20 + v21)

−
k,∞∑

i=1

k,∞∑

j=1

(vivj + vi+1vj+1)Sij(z,v) −
∑

i1,i2,j1,j2
∈{1,...,k,∞}

vi1+i2vj1+j2

Si1j1(z,v)Si2j2(z,v) + Si1j1(z
2,v2)

2

+
∑

i1,i2,...,ik,i∞

(v2Pk,∞
ℓ=1 ℓiℓ

+ v2Pk,∞
ℓ=1 ℓiℓ+1

)

×
(

i∏

r=1

Slr [s2s−1 ← S̄r(z
2s−1,v2s−1), s2s ← Srr(z

2s,v2s), s ≥ 1]

+
∏

ℓt=ℓt̃
t6=t̃

Sℓt [Sℓtℓt̃(z
2,v2)]




− (v0 + v1)−
k,∞∑

i=1

(v2i + v2i+1)S̄i(z,v) −
∑

i1,i2,j1,j2
∈{1,...,k,∞}

v2i1+i2

S̄i1(z,v)S̄i2(z,v) + Si1i2(z
2,v2)

2
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B.3 Equations for cycle-rooted series parallel graphs

B.3.1 Series-parallel networks

Recall that Series-parallel networks are created by series-parallel extensions of a single edge.
Formally, the following decomposition grammar holds for SP-networks:

D = e+ P + S
S = S ∗ X ∗ D
P = e ∗ Set≥1(S) + Set≥2(S) (B.2)

We will now translate this equations in terms of cycle index sums, with additional count-
ing variables, tracking vertex degrees.

Notation In the following we count by

• w1 the degree of the 0-pole,

• w2 the degree of the ∞-pole,

• w the degree of the root cycle.

As we will need equations for both unrooted and cycle-rooted networks to set up equations
for 2-connected series-parallel graphs, we will have various systems stated in the following.
First we set up a system for unrooted networks ZD(s1;w1, w2) = ZD(s1, s2, . . . ;w1, w2).
Poles are not counted.

ZD(s1;w1, w2) = w1w2 + ZS(s1;w1, w2) + ZP(s1;w1, w2)

ZS(s1;w1, w2) = s1(ZP (s1;w1, 1) + w1)ZD(s1; 1, w2)

ZP(s1;w1, w2) = (1 + w1) exp


∑

k≥1

1

k
ZS(sk;w

k
1 , w

k
2 )




− (1 + w1)− ZS(s1;w1, w2)

Next, we set up a system for cycle rooted networks (where the root cycle does not contain
the poles). We obtain equations by derivation with respect to all si, i ≥ 1 as given in
equation (4.25) and inserting the additional parameters ti, i ≥ 1 and w, which counts the
degree of the root cycle, adequately:

ZD◦(s1, t1;w1, w2, w) = ZS◦(s1, t1;w1, w2, w) + ZP◦(s1, t1;w1, w2, w)

ZS◦(s1, t1;w1, w2, w) = t1(ZP (s1;w1, w) + w1w)ZD(s1;w,w2)

+ s1 (ZP◦(s1, t1;w1, w2, w)ZD(s1; 1, w2)

+ (ZP(s1;w1, 1) + w1)ZD◦(s1, t1;w1, w2, w))

ZP◦(s1, t1;w1, w2, w) = (1 + w1)


∑

k≥1

ZS◦(sk, tk;w
k
1 , w

k
2 , w)


 exp


∑

k≥1

1

k
ZS(sk, w

k
1 , w

k
2 )




− ZS◦(s1, t1;w1, w2, w)

Besides the above equations for networks, we additionaly need equations for symmetric
networks, that is, networks which are invariant under a reflection exchanging the poles 0 and
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B.3. Equations for cycle-rooted series parallel graphs

∞. Recall that D2 and S2 denotes two identical copies of a network D or S, respectively,
and Set(S2, S̄) denotes a set of pairs of arbitrary series networks together with a set of
symmetric networks of odd size. Symmetric networks follow the symbolic description

D̄ = e+ S̄ + P̄
S̄ = D2 ∗ (X + X 2 ∗ (e+ P̄))
P̄ = e ∗ Set≥1(S2, S̄) + Set≥2(S2, S̄) (B.3)

Obviously, in symmetric networks both poles are of the same degree, thus we need just
one counting variable w1. We obtain the following system of equations for the cycle index
sums ZD̄(s1;w1) of unrooted symmetric SP-networks:

ZD̄(s1;w1) = w1 + ZS̄(s1;w1) + ZP̄(s1;w1)

ZS̄(s1;w1) = ZD(s2;w1, 1)(s1 + s2(1 + ZP̄(s1; 1)))

ZP̄ (s1;w1) = (1 + w1) exp


∑

k≥1

(
1

2k
ZS(s2k;w

k
1 , w

k
2) +

1

2k − 1
ZS̄(s2k+1;w

2k+1
1 )

)


− (1 + w1)− ZS̄(s1;w1)

If we cycle-root a symmetric network (where the root cycle does not contain the poles),
that is, we derivate the above system as given in (4.25), we obtain the following system:

ZD̄◦(s1, t1;w1, w) = ZS̄◦(s1, t1;w1, w) + ZP̄◦(s1, t1;w1, w)

ZS̄◦(s1, t1;w1, w) = 2ZD◦(s2, t2;w1, 1, w)(s1 + s2(1 + ZP̄(s1; 1)))

+ ZD(s2;w1, w
2)t1

+ ZD(s2;w1, w)2t2(1 + ZP̄(s1; 1)))

+ ZD(s2;w1, 1)(s2(ZP̄◦(s1, t1; 1, w)

ZP̄◦(s1, t1;w1, w) = (1 + w1)
∑

k≥1

(
ZS◦(s2k, t2k;w

k
1 , w

k
2 , w) + ZS̄◦(s2k+1, t2k+1;w

2k+1
1 , w)

)

× exp


∑

k≥1

(
1

2k
ZS(s2k;w

k
1 , w

k
2 ) +

1

2k − 1
ZS̄(s2k+1;w

2k+1
1 )

)


− ZS̄◦(s1, t1;w1, w)

B.3.2 2-connected SP-graphs

Decomposition

To find equations for cycle-rooted 2-connected SP-graphs, we use Tutte’s decomposition
into cycles, multiedges and substituted networks (cf [67]), introduced in Section 4.3.2. The
components are, as described previously, either ring graphs or multiedges, both with at
least 3 edges, where the edges are replaced by networks such that the decomposition is
unique. That is, edges of ring components are replaced by networks which are not series,
while multiedges are replaced by series networks. To translate this substitution procedure
to cycle index sums, we first need to describe the underlying cycle and multiedge structures.
Therefore we use Walsh series.
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Chapter B. Systems of equations

The symmetry group of rings R is determined by the dyhedral group (rotations and re-
flections), while the symmetry group of multiedgesM is determined by the full symmetric
groups on the edges and the remaining symmetries which include exchanging the root
vertices. The Walsh series are given in Equations (4.22) and (4.23). Recall that in the
decomposition mentioned above, cycle and multiedge components form a bipartide tree,
and thus we use dissimetry theorem on trees (Theorem 1.1).

We will denote by W (a1,b1, c1) ◦e [s1, ZA(s1), ZB(s1)] the substitution ai ← si, bi ←
ZA(si), ci ← ZB(si) for all i ≥ 1.

To set up equations for cycle-rooted 2-connected SP-graphs, we distinguish whether the
root cycle has length 1 or greater than 1, that is, whether the root is a fixed point or a “real
cycle”. For the cycle index sum of 2-connected cycle-rooted SP-graphs we then obtain

ZB◦(s1, t1;w) = ZB̂(s1, t1;w) + ZB•(s1, t1;w),

where B̂ denotes the family of vertex rooted 2-connected SP-graphs and B• the family of
2-connected SP-graphs rooted at a cycle of length ℓ ≥ 2.

Vertex rooted 2-connected SP-graphs

We know that

B̂ = BR̂ + BM̂ − BRM,

where the family BR̂ consists of vertex rooted ring components R̂, where every edge may
be replaced by a parallel network, and the family BM̂ consists of multiple edges rooted at

one of the end vertices M̂, where every but one edge is replaced by a series network and
the last edge can be replaced by a series network or not. The family RM represents the
edges in the dissymetry theorem and is given by the intersection of a ring and a multiedge,
that is a series and a parallel network. This relation translates to

ZB̂(s1;w) = ZBR̂(s1;w) + ZBM̂(s1;w) − ZBRM(s1;w),

in terms of cycle index sums and

B̂(x,w) = BR̂(x,w) +BM̂ (x,w) −BRM (x,w),

in terms of generating functions. The generating functions of the families appearing in the
above equation are given by the substitutions

ZB̂(s1) =WR̂ ◦e [s1, ZD−S(s1), ZD̄−S̄(s1)] BR̂(x) =WR̂ ◦e [x, (D − S)(x), (D̄ − S̄)(x)]
ZBM̂(s1) =WM̂ ◦e [s1, ZS(s1), ZS̄(s1)] BM̂ (x) =WM̂ ◦e [x, S(x), S̄(x)]
ZBRM(s1) = s1ZP(s1)ZS(s1) BRM (x) = xP (x)S(x),

where the substitution on WM̂ is performed on all or one but all edges. To obtain exact
equations, containing the new variable w, we first determine WR̂(a1,b1, c1). Rooting a
ring graph at a vertex, possible symmetries are either the identity or reflections fixing the
root vertex, rotations are eliminated. The Walsh series of rooted ring components can be
obtained from the unrooted version by derivating with respect to all fixed points a1, and is
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B.3. Equations for cycle-rooted series parallel graphs

given by

WR̂(a1,b1, c1) =
1

2

(
a21b

3
1

1− a1b1
+

a2b2
1− a2b2

(a1b2 + c1)

)

=
1

2
a21b

2
1


∑

k≥0

(a1b1)
k


 b1

︸ ︷︷ ︸m1
+

1

2
a2b2


∑

k≥0

(a2b2)
k


 (a1b2 + c1)

︸ ︷︷ ︸m2
where the first term ( m1 ) represents the identity and the second term ( m2 ) represents reflec-
tions fixing the root vertex. In both terms the tupel a21b

2
1 and a2b2, respectively, represent

the edges and according endpoints neighboring the root vertices and thus contributing to
the root degree. By substituting, we obtain

ZBR̂(s1;w) =
1

2
s21(ZD−S(s1;w, 1))

2 ZD−S(s1; 1, 1)
1− s1(ZD−S(s1; 1, 1))

+
1

2
s2(ZD−S(s2;w

2, 1))
s1(ZD−S(s2; 1, 1)) + 1 + ZP̄(s1; 1)

1− s2(ZD−S(s2; 1, 1))
(B.4)

In terms of generating functions, we obtain

BR̂(x,w) =
1

2
x2((D − S)(x,w, 1))2 (D − S)(x, 1, 1)

1− x((D − S)(x, 1, 1))

+
1

2
x2((D − S)(x2, w2, 1))

x((D − S)(x, 1, 1)) + 1 + P̄ (x, 1)

1− x2((D − S)(x2, 1, 1))
The Walsh series of a rooted multiedge consisting of at least 3 edges is given by

WM̂(a1,b1, c1) = a1


exp


∑

k≥1

bk
k


− 1− b1 −

1

2
(b21 + b2)




For a multiedge of size ≥ 2 the last term −1
2(b

2
1+b2) dissappears. In our case, the multiedge

components are either of size ≥ 2, where the edges are substituted with series networks,
and there is one “real” edge connecting the 2 endpoints, or it is a multiedge of size ≥ 3,
where the edges are series networks. Therefore, we obtain

ZBM̂(s1;w) = s1


(1 + w)


exp


∑

k≥1

ZS(sk;wk, 1)

k


− 1− ZS(s1;w, 1)




− 1

2
(ZS(s1;w, 1)

2 + ZS(s2;w
2, 1))

)
(B.5)

BM̂ (x,w) = x


(1 + w)


exp


∑

k≥1

S(xk, wk, 1)

k


− 1− S(x,w, 1)




− 1

2
(S(x,w, 1)2 + S(x2, w2, 1))

)

Last, for the family BRM we obtain equations

ZBRM(s1;w) = s1ZP(s1;w, 1)ZS (s1;w, 1) (B.6)

BRM (x,w) = xP (x,w, 1)S(x,w, 1)

as both networks intersect at the root vertex and thus both degrees contribute.
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Chapter B. Systems of equations

Symmetric 2-connected SP-graphs

Let us call 2-connected graphs, rooted at a cycle of length ℓ ≥ 2 symmetric. This is a
natural term, as containing a cycle of length ℓ ≥ 2 implies that the graph as well as it’s
underlying R−M tree are symmetric. Counting symmetric bipartide trees we do not need
dissymetry theorem anymore, as there is a unique symmetry node, which represents either
aM or a R component, which we can use as a base for counting. We distinguish 2 cases
in counting symmetric 2-connected Sp-graphs. The first case appears if the root cycle of
the graph is entirely contained in the central component of the restriced R −M tree, thus
it implies an “ordinary” vertex root at the symmetry node of the underlying tree. We call
this case the case of being rooted at a “central” cycle, and denote the according family by
Bc. The second possible case is that the root cycle of the graph implies a “real” root cycle,
that is a cycle of length ℓ ≥ 2, on the vertices of the underlying R −M tree. We call this
second case the case of being rooted at a “noncentral” cycle, and denote the family by Bn.
Obviously,

ZB•(s1, t1, w) = ZBc(s1, t1, w)+ZBn(s1, t1, w) and B•(x,w) = Bc(x,w)+Bn(x,w)

• rooted at a central cycle The root cycle coincides with a vertex-cycle in the central
component of the R −M -tree of the graph, that is, all vertices of the root cycle are
contained in the same basic component. Therefore the cycle index sums ZBc(s1, w)
is determined by a cycle rooted object of type R or M, where the edges are again
substituted by networks. Of course, the root cycle still is of length ℓ ≥ 2. That is,

ZBc(s1, w) =WR•(a1, t1,b1, c1) ◦e [s1, t1, ZD−S(s1, w), ZD̄−S̄(s1, w)]

+WM•(a1, t1,b1, c1) ◦e [s1, t1, ZS(s1, w), ZS̄ (s1, w)]

=: ZBc
R(s1, t1, w) + ZBc

M(s1, t1, w),

or, in terms of generating functions

Bc(x,w) =WR•(a1, t1,b1, c1) ◦e [x, x, (D − S)(x,w), (D̄ − S̄)(x,w)]
+WM•(a1, t1,b1, c1) ◦e [x, x, S(x,w), S̄(x,w)]

=: Bc
R(x,w) +Bc

M (x,w).

To obtain the Walsh series of cycle rooted rings, we have to derivate the Walsh series
with respect to all ai, i ≥ 2 and introduce marking variables ti. We obtain

WR•(a1, t1,b1, c1) =


∑

k≥2

ϕ(k)

2

tkbk
1− akbk

− t2b2
2




+
2t2b2

(1− a2b2)2
(
a2c

2
1

4
+
a21b2
4

+
a1c1
2

)
+

a2b2
1− a2b2

t2c
2
1

2

=
∑

k≥2

ϕ(k)

2
tkbk(1 +

∑

ℓ≥1

(akbk)
ℓ)− t2b2

2
︸ ︷︷ ︸m1
+ 2t2




∑

ℓ1≥0

(a2b2)
ℓ1


b2


∑

ℓ2≥0

(a2b2)
ℓ2



(
a2c

2
1

4
+
a21b2
4

+
a1c1
2

)
+

a2b2
1− a2b2

t2c
2
1

2

︸ ︷︷ ︸m2
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B.3. Equations for cycle-rooted series parallel graphs

where the first term ( m1 ) again represents rotations, i.e., one circle of length k ≥ 2
is marked. This circle either contains all vertices of the ring, or just some of them.
In the first case, the cycle has to be of length at least 3, whis is secured by the term
− t2b2

2 , and the degree of both poles 0 and ∞ contribute to our new parameter w.
In the second case all other nodes and edges form cycles of equal length k, and the
exponent of w is determined by both networks neighboring the root-vertices, with one

pole-type each. The second term ( m2 ) represents reflections, where, naturally, the
root cycle has length exactly 2. Every reflection fixes either 2 vertices, or 2 edges,
which change orientation, or it fixes 1 vertex and 1 edge. Rooting at a cycle of a
reflection, there is the possibility to root in the “middle” of the reflection, which is

represented by the first part in m2 , or at the “edge” of the reflection, that is, at the
endpoints of an edge which is fixed under the reflection but changes it’s orientation.
Substitution leads to

ZBc
R(s1, t1, w) =

∑

k≥2

ϕ(k)

2
tk

[
ZD−S(sk, w,w) + ZD−S(sk, w, 1) ·

skZD−S(sk, 1, w)
1− skZD−S(sk, 1, 1)

]

− 1

2
t2ZD−S(s2, w,w)

+ 2t2

(
ZD−S(s2, w, 1)

1

1 − s2ZD−S(s2, 1, 1)

×
[

ZD−S(s2, 1, w)
1− s2ZD−S(s2, 1, 1)

(
s2ZD̄−S̄(s1, 1)

2

4
+
s2ZD−S(s2, 1, 1)

4
+
s1ZD̄−S̄(s1, 1)

2

)

+

(
s2ZD̄−S̄(s1, w)ZD̄−S̄(s1, 1)

4
+
s2ZD−S(s2, 1, w)

2
+
s1ZD̄−S̄(s1, w)

2

)]

+
s2ZD−S(s2, w, 1)

1− s2ZD−S(s2, 1, 1)
ZD̄−S̄(s1, w)ZD̄−S̄(s1, 1)

4

)

and further to

Bc
R(x,w) =

∑

k≥2

ϕ(k)

2
xk
[
(D − S)(xk, w,w) + (D − S)(xk, w, 1) · xk(D − S)(xk, 1, w)

1− xk(D − S)(xk, 1, 1)

]

− 1

2
x2(D − S)(x2, w,w)

+ 2x2
(
(D − S)(x2, w, 1) 1

1 − x2(D − S)(x2, 1, 1)

×
[

(D − S)(x2, 1, w)
1− x2(D − S)(x2, 1, 1)

(
x2(D̄ − S̄)(x, 1)2

4
+
x2(D − S)(x2, 1, 1)

4
+
x(D̄ − S̄)(x, 1)

2

)

+

(
x2(D̄ − S̄)(x,w)(D̄ − S̄)(x, 1)

4
+
x2(D − S)(x2, 1, w)

2
+
x(D̄ − S̄)(x,w)

2

)]

+
x2(D − S)(x2, w, 1)

1− x2(D − S)(x2, 1, 1)
(D̄ − S̄)(x,w)(D̄ − S̄)(x, 1)

4

)

The Walsh series of multiedges are also obtained by derivation, the only possible root
cycle is part of a symmetry exchanging the endpoints of the multiedge.

WM•(a1, t1,b1, c1) = t2


exp


∑

k≥1

(
b2k
2k

+
c2k−1

2k − 1

)
− 1− b2

2
− c1 −

c21
2



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Substitution, either for all or for all but one edges lead to

ZBc
M(s1, w) = t2


(1 + w) exp


∑

k≥1

(
ZS(s2k, wk, wk)

2k
+
ZS̄(s2k−1, w

2k−1)

2k − 1

)


− (1 +w)(1 − ZS̄(s1, w)) −
ZS(s2, w,w)

2
− ZS̄(s1, w)

2

2

]

Bc
M (x,w) = x2


(1 + w) exp


∑

k≥1

(
S(x2k, wk, wk)

2k
+
S̄(x2k−1, w2k−1)

2k − 1

)


− (1 +w)(1 − S̄(x,w)) − S(x2, w,w)

2
− S̄(x,w)2

2

]

• rooted at a noncentral cycle The root cycle does not coincide with a cycle in
the central component of the R −M -tree of the graph. Therefore we count R −M
trees, which are rooted at a symmetry node. The vertices of the root cycle are either
part of ring or multiedge components. Those are parts of networks which have been
substituted to the edges of the symmetry node of the R −M tree, thus the graph is
rooted at a cycle of edges of length ≥ 2 of the central component of the tree, which
are then substituted with networks rooted at cycles not containing the poles (the
root cycle of the network could have length 1). The length of the root cycle is the
product of the length of the two root cycles, as described in [5]. The remaining edges
of the symmetry component are substituted by non rooted networks. Thus, Bn(x,w)
is given by

ZBn(s1, t1, w) =WR•e ⊙e [ZD◦−S◦(s1, t1, w), ZD̄◦−S̄◦(s1, t1, w), s1, ZD−S(s1), ZD̄−S̄(s1)]

+WM•e ⊙e [ZD◦−S◦(s1, t1, w), ZD̄◦−S̄◦(s1, t1, w), s1, ZD−S(s1), ZD̄−S̄(s1)]

=: ZBn
R(s1, w) + ZBn

M(s1, w)

where WR•e (t1, t̄1,a1,b1, c1) denotes the Walsh series of ring components rooted
at an edge cycle which is counted by tl for “ordinary” edges and t̄l for cycles of
edges which change their orientation. ⊙e denotes the substitution described above,
that is tℓ ← ZD◦−S◦(sℓ, tℓ, w), t̄ℓ ← ZD̄◦−S̄◦(sℓ, tℓ, w), aℓ ← sℓ, bℓ ← ZD−S(sℓ) and
cℓ ← ZD̄−S̄(sℓ). The Walsh series of edge rooted components is obtained by derivation
with respect to all variables bℓ and cℓ for
ell ≥ 2, that is

WR•e (t1, t̄1,a1,b1, c1) =
∑

ℓ≥2

ℓtℓ
∂

∂bℓ
WR(a1,b1, c1) + ℓt̄ℓ

∂

∂cℓ
WR(a1,b1, c1)

Doing so, for ring components we obtain

WR•e (t1, t̄1,a1,b1, c1) =
∑

k≥2

(
ϕ(k)

2

aktk
1− akbk

)
− a2t2

2
︸ ︷︷ ︸m1
+

a2t2
(1− a2b2)2

(
a2c

2
1

2
+
a21b2
2

+ a1c1

)
+

a2b2
1− a2b2

(
a21t2
2

)

︸ ︷︷ ︸m2
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where again, m1 represents rotations and m2 reflections. The series can be interpreted
analogously to the vertex-rooted case, but as we substitute cycle rooted networks, the
root degree w is now counted directly by the generating functions of the networks.
We obtain for ZBn

R(s1, w)

ZBn
R(s1, t1, w) =

∑

k≥2

(
ϕ(k)

2

sk(ZD◦−S◦)(sk, tk, 1, 1, w)

1− skZD−S(s1, 1, 1)

)
− s2ZD◦−S◦(s2, t2, 1, 1, w)

2

+
s2ZD◦−S◦(s2, t2, 1, 1, w)

(1− ZD−S(s1, 1, 1))2

(
s2(ZD̄−S̄(s1, 1)

2

2
+
s2ZD−S(s2, 1, 1)

2
+ s1ZD̄−S̄(s1, 1)

)

+
s2ZD−S(s2, 1, 1)

1− skZD−S(s1, 1, 1)

(
s2ZD◦−S◦(s2, t2, 1, 1, w)

2

)
,

and for Bn
R(x,w)

Bn
R(x,w) =

∑

k≥2

(
ϕ(k)

2

xk(D◦ − S◦)(xk, 1, 1, w)
1− xk(D − S)(x, 1, 1)

)
− x2(D◦ − S◦)(x2, 1, 1, w)

2

+
x2(D◦ − S◦)(x2, 1, 1, w)
(1− xk(D − S)(x, 1, 1))2

(
x2(D̄ − S̄)(x, 1)2

2
+
x2(D − S)(x2, 1, 1)

2
+ x(D̄ − S̄)(x, 1)

)

+
x2(D − S)(x2, 1, 1)

1− xk(D − S)(x, 1, 1)

(
x2(D◦ − S◦)(x2, 1, 1, w)

2

)
.

The Walsh series of edge-rooted multiedges is given by

WM•e (t1, t̄1,a1,b1, c1) =
a21
2


∑

k≥2

tk exp


∑

ℓ≥1

bℓ
ℓ


− t2




+
a2
2


∑

k≥1

(t2k + t̄2k+1) exp


∑

ℓ≥1

b2ℓ
2ℓ

+
c2ℓ−1

2ℓ− 1


− t2




The root degree is given by the root cycle of the substituted network again, a simple
edge cannot have a root cycle not containing the poles, thus to count those multiedges
where all edges are subsituted plus those where one is still an edge, we can take the
above twice.

ZBn
M(s1, t1, w) = s2


∑

k≥2

ZS◦(sk, tk, 1, 1, w) exp


∑

ℓ≥1

ZS(s1, 1, 1)
ℓ






+s2


∑

k≥1

(ZS◦(s2k, t2k, 1, 1, w)+ZS̄◦(s2k+1, t2k+1, 1, 1, w))

× exp


∑

ℓ≥1

ZS(s2ℓ, 1, 1
2ℓ

+
ZS̄(s2ℓ−1, 1, 1)

2ℓ− 1




− s2

2
ZS◦(s2, t2, 1, 1, w)
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Bn
M (x,w) = x2


∑

k≥2

S◦(xk, 1, 1, w) exp


∑

ℓ≥1

S(x, 1, 1)

ℓ






+ x2


∑

k≥1

(
S◦(x2k, 1, 1, w) + S̄◦(x2k+1, 1, 1, w)

)
exp


∑

ℓ≥1

S(x2ℓ, 1, 1

2ℓ
+
S̄(x2ℓ−1, 1, 1)

2ℓ− 1






− x2

2
S◦(x2, 1, 1, w)

Now, combining all equations obtained in this chapter, that is

ZB◦(s1, t1, w) = t1ZB̂(s1, w) + ZB•(s1, t1, w)

= t1

(
ZBR̂(s1;w) + ZBM̂(s1;w) − ZBRM(s1;w)

)
+ ZBc(s1, t1, w) + ZBn(s1, t1, w)

= t1

(
ZBR̂(s1;w) + ZBM̂(s1;w) − ZBRM(s1;w)

)

+ ZBc
R(s1, t1, w) + ZBc

M(s1, t1, w) + ZBn
R(s1, t1, w) + ZBn

M(s1, t1, w),

we obtain one equation for ZB◦(s1, t1, w) in terms of series-parallel networks.

B.3.3 Connected series-parallel graphs

Let C◦ denote all cycle rooted series-parallel graphs, Ĉ connected series-parallel graphs
rooted at a cycle of length 1 (i.e. at a vertex), Ĉs connected SP-graphs rooted at a
non-separating vertex, and C• those rooted at a cycle of length at least 2. Further let
C◦(x,w), Ĉ(x,w), Ĉs(x,w) and C•(x,w) denote the according generating functions. Of
course,

C◦(x,w) = xĈ(x,w) + C•(x,w).

To set up the system of equations for C◦(x,w) we will need the cycle index sum ZB◦(s1;w),
which are given in the previous section.

Vertex-rooted connected SP-graphs

Recall the decomposition of connected graphs into 2-connected ones, given in (4.1). For our
new variable w, the root degree of every 2-connected graph attached to the root contributes
additively, which leads to

Ĉ(x,w) = exp


∑

ℓ≥1

1

l
ZB̂(x

ℓĈ(xℓ, 1), x2ℓĈ(x2ℓ, 1), . . . ;wℓ)


 (B.7)

= exp


∑

ℓ≥1

1

l
Ĉs(x

ℓ, wℓ)


 ,

in our notation, as we substituted every si by x
iĈ(xi, 1) in

exp


∑

ℓ≥1

1

l
ZB̂(sℓ;w

ℓ)


 .

160



B.3. Equations for cycle-rooted series parallel graphs

As only the term xĈ(x, 1) will contribute asymptotically by methods of singularity analysis,
we isolate the variable s1, that is, we substitute s1 ← s and si ← xiĈ(xi, 1) for i ≥ 2. Thus
we obtain a trivariate generating function Ĉ(s, x,w) given by

Ĉ(s, z, w) =

= exp


ZB̂(s, z

2Ĉ(z2, 1), z3Ĉ(z3, 1), . . . ;w) +
∑

ℓ≥2

1

l
ZB̂(x

ℓĈ(xℓ, 1), x2ℓĈ(x2ℓ, 1), . . .;wℓ)




= exp
(
B̂(s, z, w) + h(z,w)

)
,

where h(z,w) is some function not depending on the isolated variable s.

Symmetric cycle rooted 2-connected SP-graphs

When rooting a connected SP-graph at a cycle, the graph is definitely symmetric, with the

center of the symmetry being either a single vertex (marked in the equation by m1 ) or a

symmetric block (labelled by m2 ). Let l ≥ 2 be the length of the root cycle.
If the center is a vertex, then the root cycle is part of several members of Ĉs, that is it implies
a root cycle of length at least 2 ≤ ls ≤ l on the set of structures attached to this vertex,
where every vertex of the cycle is replaced by a connected graph rooted at a non-separating
vertex with an additional cycle of length lc = l

ls
≥ 1 ∈ N marked, (Ĉs)◦, and every other

vertex of the set is replaced by an “ordinary” member of Ĉs.
If the center of symmetry is a block, then there is a cycle of length 2 ≤ lb ≤ l marked in
this block, where every vertex of the root cycle is replaced by a rooted connected graph
with either the root itself marked (if l = lb) or an additional cycle of length lc =

l
lb
≥ 1 ∈ N

different from the root marked. This procedure corresponds to the symbolic equation

(X ∗ Ĉ)◦ = Ĉ + X ∗ Ĉ◦,

as described in more detail in [5]. In the first case the degree of w is given by both the
degree of the vertex in the block and the degree as a root of a connected graph, in the
second case the degree of the substituted vertex in the block does not matter.
Finally, we obtain for C•(x,w):

C•(x,w) = xZSet•(si ← Ĉs(x
i, 1), ti ← Ĉ◦

s (x
i, w))︸ ︷︷ ︸m1

+ ZB• [si ← xiĈ(xi, 1), ti ← xiĈ(xi, w);w] + ZB• [si ← xiĈ(xi, 1), ti ← xiĈ◦(xi, w); 1]︸ ︷︷ ︸m2
= exp


∑

ℓ≥1

Ĉs(x
ℓ, 1)

ℓ




∑

k≥2

Ĉ◦
s (x

k, w)




+ ZB• [si ← xiĈ(xi, 1), ti ← xiĈ(xi, w);w] + ZB• [si ← xiĈ(xi, 1), ti ← xiĈ◦(xi, w); 1]

To finish, we need equations for Ĉ◦
s (x,w) and Ĉ◦(x,w), where the same ideas as above

are used.
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Chapter B. Systems of equations

Ĉ◦(x,w) =
∑

ℓ≥1

Ĉ◦
s (x

ℓ, w) exp


∑

ℓ≥1

1

ℓ
Ĉs(x

ℓ, 1)




Ĉ◦
s (x,w) = ZB̂◦(si ← xiĈ(xi, 1), ti ← xiĈ(xi, w);w)

+ ZB̂◦(si ← xiĈ(xi, 1), ti ← xiĈ◦(xi, w); 1)
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[30] O. Giménez and M. Noy. Asymptotic enumeration and limit laws of planar graphs. J.
Amer. Math. Soc., 22:309–329, 2009.
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