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Abstract

A family of permutations of the symmetric group Sn is called k-scrambling if for any
sequence of pairwise distinct positions (p1, . . . , pk) there exists a permutation whose
evaluation in p1 is minimal among the remaining evaluations in pj . Moreover, the more
special property of being completely k-scrambling requires that the successive evaluations
in p1, . . . , pk form a monotonically increasing sequence. Families satisfying additional
sharpenings of the latter two properties are k-restricted min-wise independent or, in the
second, stronger case coincide (up to isomorphic identification) with perfect sequence
covering arrays (PSCAs) of strength k. Determining permutation families that satisfy
these differently strong properties and have small (or even minimal possible) cardinality
is non-trivial and of great importance for other mathematical branches (order theory,
geometry, graph theory, etc.) as well as for a variety of practical applications such as
automated testing of software and fast similarity estimation of documents for web search
engines. We analyze the asymptotic behavior of these smallest possible cardinalities and
also address algorithmic approaches to construct such families explicitly. Here we succeed
in answering positively an open question of R. Yuster on the polynomial boundedness of
the cardinalities of PSCAs [Yus20]; we also obtain improved asymptotic lower bounds
and for k = 3 and k = 4 improved asymptotic upper bounds. Even in the non-asymptotic
range – i.e., for concrete, small values of n – we achieve some improvements for k = 3 and
k = 4 (up to a factor of 7.5 compared to the currently available state of the art in the
literature). Finally, we propose a new class of permutation families that satisfy a certain
reflection symmetry, and use it to restrict the search space that needs to be scanned in
order to computationally seek PSCAs systematically via backtracking. This class could
potentially be useful to achieve further improvements in the non-asymptotic range in the
future with sufficient computational power.
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Kurzfassung

Eine Familie von Permutationen der symmetrischen Gruppe Sn heißt k-scrambling, falls
zu jeder beliebigen Abfolge paarweise verschiedenener Positionen (p1, . . . , pk) eine Per-
mutation existiert, deren Auswertung in p1 minimal unter den restlichen Auswertungen
in pj ist. Die speziellere Eigenschaft vollständig k-scrambling zu sein, erfordert darüber
hinaus, dass die sukzessiven Auswertungen in p1, . . . , pk eine monoton steigende Folge
bilden. Familien, die zusätzlichen Verschärfungen letzterer beider Eigenschaften genügen,
nennt man k-restricted min-wise independent bzw. stimmen im zweiteren, stärkeren Fall
(bis auf isomorphe Identifikation) mit Perfect Sequence Covering Arrays (PSCAs) der
Stärke k überein. Die Bestimmung von Permutationsfamilien, die diesen unterschied-
lich starken Eigenschaften genügen und möglichst kleine (oder gar minimal mögliche)
Kardinalität besitzen, ist nicht-trivial und von großer Bedeutung für andere mathema-
tische Richtungen (Ordnungstheorie, Geometrie, Graphentheorie etc.) sowie für eine
Vielzahl praktischer Anwendungen wie etwa automatisiertes Testing von Software und
schnelle Ähnlichkeitsschätzung von Dokumenten für Suchmaschinen. Wir analysieren
das asymptotische Verhalten dieser kleinstmöglichen Kardinalitäten und befassen uns
auch mit algorithmischen Zugängen, um solche Familien explizit zu konstruieren. Hierbei
gelingt es uns eine offene Frage von R. Yuster nach der polynomialen Beschränktheit der
Größen von PSCAs [Yus20] positiv zu beantworten; wir erhalten außerdem verbesserte
asymptotische untere Schranken sowie für k = 3 und k = 4 verbesserte asymptotische
obere Schranken. Auch im nicht-asymptotischen Bereich – also für konkrete, kleine Werte
von n – erreichen wir für k = 3 und k = 4 einige Verbesserungen (bis zu Faktor 7.5
im Vergleich zum derzeit verfügbaren State of the art in der Literatur). Abschließend
schlagen wir eine neue Klasse von Permutationsfamilien vor, die einer gewissen Spiege-
lungssymmetrie genügen, und nutzen sie zur Ausdünnung des Suchraumes, der überprüft
werden muss, um PSCAs computergestützt systematisch via Backtracking zu suchen.
Diese Klasse könnte womöglich nützlich sein, um mit ausreichend Rechenleistung künftig
weitere Verbesserungen im nicht-asymptotischen Bereich zu erzielen.

xi





Contents

Abstract ix

Kurzfassung xi

Contents xiii

1 Introduction 1
1.1 Historical development and motivation . . . . . . . . . . . . . . . . . . 1
1.2 Goals and contributions of this thesis . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Basic concepts 5
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Terminology and concepts . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Related combinatorial structures . . . . . . . . . . . . . . . . . . . . . 11

3 Methods 19
3.1 The probabilistic method . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Information theory for extremal combinatorics . . . . . . . . . . . . . 20
3.3 Deletion correcting codes . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Asymptotics 27
4.1 k-scrambling permutations . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Completely k-scrambling permutations . . . . . . . . . . . . . . . . . . 31
4.3 k-restricted min-wise independent permutations . . . . . . . . . . . . . 42
4.4 PSCAs and rankwise independent permutations . . . . . . . . . . . . . 45
4.5 Comparison of bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Constructions of completely scrambling families 51
5.1 Deterministic polynomial time construction keeping asymptotic bounds 51
5.2 Tarui’s construction for strength three . . . . . . . . . . . . . . . . . . 55
5.3 Generation of k-scrambling permutations: further approaches . . . . . 57

6 Constructions of Perfect Sequence Covering Arrays 59

xiii



6.1 Construction via Varshamov-Tenengolts codes . . . . . . . . . . . . . . 59
6.2 Computational constructions for PSCAs . . . . . . . . . . . . . . . . . 61
6.3 Feasible embeddings of m-sequences . . . . . . . . . . . . . . . . . . . 62
6.4 General search with pre-determined distributions . . . . . . . . . . . . 69

7 Applications 73
7.1 Order theory, combinatorial geometry and related areas . . . . . . . . 73
7.2 Combinatorial software testing . . . . . . . . . . . . . . . . . . . . . . 74
7.3 Min-wise hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8 Conclusion 79
8.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.2 Open questions and further work . . . . . . . . . . . . . . . . . . . . . 80

List of Figures 83

List of Tables 85

List of Algorithms 87

Bibliography 89



CHAPTER 1
Introduction

1.1 Historical development and motivation

The property of k-scramblingness was originally introduced under the naming ”k-
suitability“ by B. Dushnik in the 1950s shortly after he had come up with the notion
of the dimension of a partial order [DM41]. Twenty years later, a work of J. Spencer,
[Spe71], setting an emphasis on the minimum size of such families, attributed interest
on its own to the concept. It seems that the interest on how small such families can be
kept was initially driven by the minimality sought-after in the context of the dimension
of partial orders. Later, seeking small upper bounds for such families became an inde-
pendent central research question, especially for fixed, small values of k. In addition,
Spencer highlighted a special case, which he called completely k-scrambling permutations
[Spe71], that subsequently became of major interest and which still leaves, as we will
see, some unresolved questions. Spencer’s view on the structure is an order theoretic
one: Completely scrambling families represent large enough collections of linear orders
on {1, . . . ,n}, such that each subset of k elements {i1, . . . , ik} forms an ascending chain
with respect to at least one of the linear orders – the family scrambles an arbitrary order
on the set {i1, . . . , ik} in all possible k! ways.

In the 1990s, during the exponential growth of the World Wide Web [BCFM00] and the
need to efficiently determine the similarity of a large number of documents, the class of
k-restricted min-wise independent families was introduced by Broder et al. in [BCFM00]
(in their most general form such families follow an arbitrary probability distribution). It
turns out to be a special case of scrambling permutations under specific circumstances.

A class being isomorphic to the class of completely k-scrambling families was independently
proposed for the purpose of event sequence testing in [KHL+12] and termed sequence
covering array of strength k. It considers permutations as strings of (distinct) characters
in {1, . . . ,n} which collectively ensure to host (as subsequence) any string of length k
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1. Introduction

(composed of distinct symbols). This has subsequently launched a renaissance of interest
in the base idea of (complete) k-scramblingness. In particular, a focus on the explicit
computation of such families (of reduced/minimum size) has crystallized, and when the
enormous computational effort even for small n was noticed (cf. [BTI12, BEI+12]), the
interest shifted to the search for efficient approximation algorithms [KHL+12, BEI+12,
CCHZ13], as well as to the further development of constructions that were initially
conceived for the estimation of asymptotic bounds of these minimal sizes of families (cf.
[CCHZ13, Tar08]).

Finally, the aforementioned renaissance also led to the study of directed designs from
the viewpoint of SCAs possessing the property of perfectness (which enforce a much
more regular and particular structure) [Yus20]. The naming seems to be inspired by
a connection to perfect codes from coding theory [Lev91]. Directed designs, which are
objects residing in the area of combinatorial design theory, although having been studied
earlier (see e.g. [Lev91, MvT99]), seemed however not to have been examined in full
generality and not with great attention for asymptotic growth. This question is addressed
in the work [Yus20], which besides has asked for and successfully launched some interesting
developments to the explicit construction of PSCAs [Na21, GW22, NJL22]. The work
[Yus20] comes up with asymptotic polynomial lower bounds and asks about the existence
of polynomial upper bounds for the size of PSCAs; so far only super-exponential (trivial)
bounds are known.

Scrambling permutations (and derivatives) are a good example of a combinatorial structure
whose development has benefited significantly from a constant interplay between abstract
exploration of the structure and the use/modification of the structure to solve practical
problems.

1.2 Goals and contributions of this thesis
Goals. Firstly, the manifold approaches in the literature (often dealing with isomorphic
or similar concepts) to the topic are to be presented in an as far as possible harmonized
manner. The relevance for further research areas and especially for applications shall
also be made clear. One main focus is to give a good insight into the state of the art of
available asymptotic bounds. Greater attention is dedicated to the analysis, comparison,
evaluation, and potential for optimization of these bounds. Recent developments especially
concerning constructive and computer-aided approaches shall be discussed as well.

Contributions. We come up with a detailed comparison of the many structures arisen
in the context of scrambling permutations. As a result, we obtain the insight that the
theory of combinatorial (directed) designs and the younger theory concerning min-wise
independent families can successfully be combined – this seems to be unnoticed so
far, and leads to the settlement of polynomial boundedness for PSCAs, which was an
open question posed by R. Yuster in 2020 [Yus20]. Moreover, we show that bounds for
PSCAs/rankwise independent and min-wise independent families can be slightly improved.
Recent developments concerning computational constructions of PSCAs [Na21, NJL22]
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are enriched by the proposal to incorporate an additional symmetry requirement into the
search of PSCAs.

1.3 Thesis structure
Chapter 2 introduces and illustrates the main concepts, and clarifies some relationships
between them. Chapter 3 collects results from information and coding theory, which
will be needed to prove asymptotic or constructive results. Chapter 4 concerns the
asymptotic behavior of the minimum possible cardinality of k-scrambling families: It
gradually proceeds from the most general form of k-scramblingness to the most specific.
In particular, the chapter contains the answer to R. Yuster’s question on the boundedness
of the size of PSCAs together with further optimizations. In Chapter 5 the focus is set on
explaining algorithmic constructions of completely k-scrambling families and on giving
an overview over recently pursued approaches. Chapter 6 deals with the problem of
constructing PSCAs; it explains the connection to a branch of coding theory, addresses
the discussion of very recent computer-aided approaches/heuristics and illustrates the
proposal to search for PSCAs within a new class of permutation families satisfying
a particular symmetry property. Fields of application connected to acquisitions for
scrambling permutations and derivatives are to be illustrated in Chapter 7. Lastly,
the conclusion in Chapter 8 highlights the insights gained and provides an outlook on
questions arising from them, which seem interesting for further research.
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CHAPTER 2
Basic concepts

2.1 Notation
We denote the set of integers as Z and the non-negative integers (respectively positive
integers) as N (respectively N×). We use the abbreviation [n] := {1, . . . ,n}. For a set A,
by |A| we refer to its cardinality and by 2A to its power set. The indicator function of A
is denoted by 1A. If A is a finite subset of Z and contains the element a, the rank of a
in A is defined as rank(a,A) := |{b ∈ A : b ≤ a}|. We use the abbreviation (unordered)
k-set to refer to a set of cardinality k ∈ N. Analogously, we use the expressions (ordered)
k-tuple, or equivalently ordered k-set, to speak about tuples consisting of precisely k
entries.

It will be convenient to denote permutations in tuple notation, i.e., given a permutation
π : [n]→ [n], enlist the ordered evaluations in a tuple (π(1), . . . ,π(n)) ∈ [n]n. Speaking
set theoretically these tuples are precisely the bijective functions on [n], i.e., members
of the symmetric group Sn. As there are further notations of permutations (such as
the cyclic notation) we emphasize that throughout the thesis we consistently use the
aforementioned tuple notation. The permutation (1, . . . ,n) ∈ Sn is abbreviated as id.

We define the set

Sn,k :=
{

(a1, . . . , ak) ∈ [n]k : i ̸= j ⇒ ai ̸= aj
}
⊆ [n]k, (2.1)

as the set of all k-tuples consisting of pairwise distinct entries.

We write
([n]
k

)
for the set of all k-subsets of [n]; its cardinality is determined by the

binomial coefficient
(n
k

)
. We denote by n! the factorial and by

!n := n!
n∑
j=0

(−1)j/j! (2.2)

the subfactorial of n.

5



2. Basic concepts

For a group G and a subgroup H of G we express this relation by writing H ≤ G.
For g ∈ G, by ⟨g⟩ we mean the subgroup of G generated by g. If a is a divisor of
b we write a|b. The greatest common divisor (respectively least common multiple)
of a set of natural numbers M is denoted as gcdM (respectively lcmM). For a real
number x, ⌈x⌉ (respectively ⌈x⌉) determine the numbers min {z ∈ Z : x ≤ z} (respectively
max {z ∈ Z : z ≤ x}).

We use the Landau notation f(n) = O(g(n)) for expressing boundedness of f by g up to
a constant factor (for sufficiently large n). Similarly, f(n) = Ω(g(n)) if g(n) = O(f(n)),
and f(n) = Θ(g(n)) if f(n) = O(g(n)) ∧ f(n) = Ω(g(n)). If f asymptotically dominates
g, we denote this relation by f(n) = o(g(n)).

Our main objects will be families indexed by [d] (d ∈ N×) containing d not necessarily
distinct permutations (abbreviated as d-family). For convenience, when displaying
explicitly such a d-family F , we often tacitly print/identify it as d× n matrix such that
the i-th row contains at column index j the entry πi(j), where πi is the i-th permutation
of F , i.e., F is printed as π1(1), . . . , π1(n)

... . . . ,
...

πd(1), . . . , πd(n)

 ∈ [n]d×n.

In this context, we use AT to denote the transposed of a matrix A.

2.2 Terminology and concepts
In the following we review certain collections of permutations satisfying a variety of
special constraints regarding monotony specifications (they are illustrated by concrete
instances in the subsequent Example 2.2.4). Some authors (cf. [BCG+16]) say that these
families have certain separation properties.

Definition 2.2.1 ([Dus50, Für96]). A family P = {π1, . . . ,πd} ⊆ Sn is said to be
k-scrambling (k ∈ [n]) if for any tuple (p1, . . . , pk) ∈ Sn,k, there is π ∈ P such that
π(p1) < π(pj), for j = 2, . . . , k. The minimum cardinality d, for which a k-scrambling
d-family of permutations of [n] exists, is denoted as N(n, k).

To check if a family is k-scrambling, we can check if for every unordered k-set q =
{q1, . . . , qk} ∈

([n]
k

)
of ”positions“ the following condition is fulfilled: After picking a

distinguished element q∗ from q, there is a permutation of the family which, evaluated
in q∗, is minimal among all evaluations of the permutation in the positions in q. The
previous property can be strengthened as follows.

Definition 2.2.2 ([Spe71, Für96]). A family P = {π1, . . . ,πd} ⊆ Sn is called completely
k-scrambling (k ∈ [n]) if for every k-tuple (p1, . . . , pk) ∈ Sn,k, there exists an element
π ∈P such that (π(pj))kj=1 forms an ascending chain, i.e. π(p1) < π(p2) < . . . < π(pk).

6



2.2. Terminology and concepts

The minimum cardinality d, for which a completely k-scrambling d-family of permutations
of [n] exists, is denoted as N∗(n, k).

In view of the last definition, it will be convenient to denote for a position selection
p = (p1, . . . , pk) ∈ Sn,k, by ASCp the set of all permutations π ∈ Sn such that π(p1) <
π(p2) < . . . < π(pk). If the value of k is needed to be passed as additional information,
we write ASC [k]

p . Moreover let us say that permutations in ASCp are ascending along p.

In [Für96], Füredi analyzes the property of being 3-mixing. We state it in a more general
form and call it the property of being k-mixing (k ≥ 3). Without attributing a name
to this concept appears in a proof in [Rad03]. In this thesis it is used exclusively as
auxiliary property.

Definition 2.2.3. For n ≥ k ≥ 3, we say that a family P = {π1, . . . ,πd} ⊆ Sn is
k-mixing if for every k-tuple (p1, p2, . . . , pk−2, pk−1, pk) ∈ Sn,k, there exists a permutation
π ∈ P such that π(p2) < π(p3) < . . . < π(pk−2) < π(pk−1) and, moreover, either
π(p1) < π(p2) ∧ π(pk−1) < π(pk) or π(pk) < π(p2) ∧ π(pk−1) < π(p1). We denote by
Nmix(n, k) the smallest cardinality a family of k-mixing permutations of [n] can possess.

As in [CCHZ13] let us term the parameter k specifying completely k-scrambling permuta-
tions as strength, and let us use this notion also in the less specific setting of scrambling
and mixing families of permutations. Moreover, let us say that families having minimal
possible cardinality are optimal.

In the following we provide illustrative instances of permutation families, which demon-
strate how laborious it is to verify the aforementioned properties already for n = 4 and
k = 3.

Example 2.2.4. Let n = 4, k = 3 and consider the following families of permutations:

O =

1 3 2 4
3 1 2 4
4 3 2 1


P =


2 1 3 4
2 4 1 3
4 2 3 1
4 3 1 2
4 3 2 1

 Q =



2 3 1 4
1 4 2 3
4 1 2 3
2 3 4 1
2 1 4 3
4 3 2 1


.

The family O is an instance of a 3-scrambling 3-family of permutations (for n = 4,
the smallest possible cardinality still permitting 3-scramblingness is indeed d = 3, cf.
Proposition 2.2.6). We can see that all monotonicity specifications are satisfied: For
each (p1, p2, p3) ∈ S4,3 with p1 ∈ {1, 2, 4}, there exists π ∈ O attaining the value 1 at
position p1. If p1 = 3, then π(p1) = 2 for all π ∈ O, and for each set of positions

7



2. Basic concepts

{p2, p3} ∈
({1,2,4}

2
)

we find π ∈ O such that {π(p2),π(p3)} = {3, 4} being minorized by
π(p1).

We notice that P is 3-mixing as all monotonicity requirements are met (cf. Table 2.1).
Moreover, by examining every family consisting of just 4 permutations in S4 one con-
sistently obtains the violation of at least one condition in Definition 2.2.3 and, as a
consequence, for n = 4, P has minimal cardinality among all families being 3-mixing.

The last collection Q is completely 3-scrambling (all monotonicity constraints are satisfied,
as we show in Table 2.2) and |Q| = N∗(4, 3) = 3!, i.e., Q is of minimal possible
cardinality (cf. Proposition 2.2.6).

(p1, p2, p3) = (a1, ∗, a2) {i : πi ∈ ASC(p1,p2,p3) ∪ASC(p3,p2,p1)}
(a1, 1, a2), (a1, a2) = (2, 3) → {1, 2}

(a1, a2) = (2, 4) → {1}
(a1, a2) = (3, 4) → {2}

(a1, 2, a2), (a1, a2) = (1, 3) → {4, 5}
(a1, a2) = (1, 4) → {3, 4, 5}
(a1, a2) = (3, 4) → {3}

(a1, 3, a2), (a1, a2) = (1, 2) → {3}
(a1, a2) = (1, 4) → {1, 3, 5}
(a1, a2) = (2, 4) → {1, 5}

(a1, 4, a2), (a1, a2) = (1, 2) → {2}
(a1, a2) = (1, 3) → {4}
(a1, a2) = (2, 3) → {2, 4}

Table 2.1: Explicit verification of the property of being 3-mixing for P = (π1, . . . ,π5) of
Example 2.2.4.

(p1, p2, p3) {i : πi ∈ ASC(p1,p2,p3)}
(1, 2, 3) {4}
(1, 2, 4) {1}
(1, 3, 2) {2}
(1, 3, 4) {2}
(1, 4, 2) {2}
(1, 4, 3) {5}
(2, 1, 3) {5}
(2, 1, 4) {5}
(2, 3, 1) {3}
(2, 3, 4) {3}
(2, 4, 1) {3}
(2, 4, 3) {5}

(p1, p2, p3) {i : πi ∈ ASC(p1,p2,p3)}
(3, 1, 2) {1}
(3, 1, 4) {1}
(3, 2, 1) {6}
(3, 2, 4) {1}
(3, 4, 1) {3}
(3, 4, 2) {2}
(4, 1, 2) {4}
(4, 1, 3) {4}
(4, 2, 1) {6}
(4, 2, 3) {4}
(4, 3, 1) {6}
(4, 3, 2) {6}

Table 2.2: Explicit verification of the property of being completely 3-scrambling for
Q = (π1, . . . ,π6) of Example 2.2.4.

8



2.2. Terminology and concepts

Remark 2.2.5. The property of being completely k-scrambling implies the property of
being k-mixing. Moreover, notice that Nmix(n, k) + 1 ≤ N∗(n, k): In fact, when consider-
ing an optimal family of completely k-scrambling permutations and dropping an arbitrary
permutation, it is still guaranteed that every herewith lost ascending sequence (p1, . . . , pk)
is nevertheless represented at least by its alternative counterpart (pk, p2, . . . , pk−1, p1) in
another permutation of the family.

The next two propositions resemble easily derivable, useful properties of scrambling
families. They can be found in the works [Dus50, Spe71, CCHZ13, BEI+12, Na21].

Proposition 2.2.6. Let n ≥ k ≥ 2. Then, following assertions hold (P is a (completely)
k-scrambling d-family of permutations of [n]).

(i) Every family P ′ being a reordering of the elements of P is (completely) k-
scrambling.

(ii) For each q ∈ Sn, also the family Pq := {π ◦ q : π ∈P} is (completely) k-scrambling.
(Pq results from subjecting the domain of the permutations in P to a relabeling.)

(iii) Let ρ ∈ Sn denote the reversing permutation, i.e., ρ(i) := n−i+1. Then, the family
{ρ ◦ π : π ∈P} resulting from relabeling symbols via ρ, is (completely) k-scrambling,
too.

(iv) If F is completely k-scrambling, it is as well k-scrambling. Therefore, the relation
N(n, k) ≤ N∗(n, k) is generally valid.

(v) N(n, 2) = N∗(n, 2) = 2, as P = (π,π ◦ ρ) is always completely 2-scrambling (ρ
defined as in (iii)).

(vi) The bounds k ≤ N(n, k) ≤ n and k! ≤ N∗(n, k) ≤
(n
k

)
k! apply.

The previous result permits to assume (without loss of generality) that the first permuta-
tion is always the identity of Sn.

Proposition 2.2.7 (Monotonicity, [Dus50]). Let P ⊆ Sn be (completely) k-scrambling
and let 1 ≤ ℓ ≤ k and k ≤ m ≤ n. Then, the following assertions are true. They imply
that N(n, k) and N∗(n, k) both increase monotonically in n as well as in k.

(i) The family P ↾[m] := {(rank(π(i),π([m])))mi=1 : π ∈P} ⊆ Sm is (completely) k-
scrambling.

(ii) P is in particular (completely) ℓ-scrambling.

We now focus on the class of Sequence Covering Arrays (SCAs), which was introduced in
[KHL+12] without pointing out a connection to scrambling permutations. The following
definition is later illustrated (see Example 2.3.7).

9



2. Basic concepts

Definition 2.2.8. A d-family A ⊆ Sn is called sequence covering array over the alphabet
[n] of strength k, if for every (s1, . . . , sk) ∈ Sn,k there is one permutation π ∈ A such
that

π−1(s1) < π−1(s2) < . . . < π−1(sk). (2.3)
Abbreviating, we say that A appertains to the class SCA(d,n, k), or less specifically, if
the cardinality is not of interest, to the class SCA(n, k). Every permutation of A , in
which a fixed s ∈ Sn,k fulfills (2.3) is said to cover s; less specifically we also say that A
covers s, provided a covering permutation exists.

Regarding a family of permutations as matrix, the latter definition means that every
string of length k (containing no duplicates) is locatable in at least one row of the matrix
as subsequence.

The following basic observation is crucial. It translates properties of monotonicity to
properties of localizability of subsequence patterns.

Lemma 2.2.9 ([CCHZ13]). Let n ≥ k ≥ 2 be fixed. Let ι : Sn → Sn, π 7→ π−1. For
every completely k-scrambling d-family F ⊆ Sn, the family {ι(π) : π ∈ F} appertains to
SCA(d,n, k). Conversely, the image of every A of type SCA(d,n, k) under the map ι
constitutes a completely k-scrambling d-family.

Proof. First, we show that monotonicity implies containment as subsequence: If π(x1) <
. . . < π(xk), then ι(π) = (π−1(1), . . . ,π−1(n)) in particular contains

(π−1(π(x1)),π−1(π(x2)), . . . ,π−1(π(xk)) = (x1, . . . ,xk)

as subsequence.

For the other proof direction, if π does not satisfy π(x1) < π(x2) < . . . < π(xk), then
there must be ψ ∈ Sk \{id} such that π(xψ(1)) < . . . < π(xψ(k)), which implies (as before)
that ι(π) contains (xψ(1), . . . ,xψ(k)) as subsequence. Consequently (x1, . . . ,xk) is not a
subsequence of ι(π).

Remark 2.2.10. When introducing completely scrambling permutations in [Spe71],
Spencer presented them in a subtly different fashion: He considered them as families of
linear orders on the set [n] such that any selection (p1, . . . , pk) ∈ Sn,k forms a monotoni-
cally increasing sequence with respect to at least one order of the family. He examined
(non-completely) scrambling families from that point of view, too.

Due to the isomorphism in Lemma 2.2.9, the quantity N∗(n, k) coincides with the so-
called sequence covering array number (being the minimum possible cardinality for which
the class SCA(d,n, k) is non-empty, cf. [BEI+12]).

Remark 2.2.11 ([CCHZ13]). Notice that simply taking the permutations of a completely
k-scrambling family does not provide a sequence covering array. The instance Q in
Example 2.2.4, not containing the subsequence (3, 4, 2), demonstrates this.

10



2.3. Related combinatorial structures

2.3 Related combinatorial structures

2.3.1 Covering arrays

We fix the terminology for covering arrays (abbreviated as CAs) as they are related to
SCAs in a ”broader sense“. It seems they were responsible for the terming of SCAs in
[KHL+12] (we will return to this when discussing applications in Chapter 7). On the
other hand, there are some interconnections of theoretical nature between CAs and SCAs
(cf. Lemma 4.2.17).

Definition 2.3.1 (Covering Array, [Slo93]). Let d,n, k, q ∈ N× with k ≤ n and consider
the alphabet Bq = {0, 1, . . . , q − 1}. A covering array with configuration (n, k, q) is a
d× n matrix A over the alphabet Bq, such that in each d× k submatrix,1 any possible
k-tuple in Bk

q is present as at least one row. The parameter k is hereby called strength
and q the level. For q = 2, we speak about binary covering arrays.

Example 2.3.2. The subsequent determines a binary covering array with n = 4, k = 3
on d = 8 rows. We obtain this example by pasting as rows the the words in {0, 1}3 into
the lefter-most 8× 3 submatrix and afterwards populating the last column exhaustively
until no violation of Definition 2.3.1 occurs. After deletion of any column, any binary
word of length three is present among the rows of the resulted matrix.



0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1


Definition 2.3.3 (Covering Array Number). For given n, k, q, the minimum cardinality
d for which a d × n covering array of strength k and level q exists is called covering
array number and we write CAN(n, k, q). For q = 2 we denote the latter number by
CANbin(n, k).

Remark 2.3.4. Foundational work related to binary CAs can be found in [Mar48] in
the context of measure theory (the notion of independence of sets is introduced) and in
[Nec65] for problems related to gating circuits. The n columns of a d× n binary CA can
be interpreted as n indicator functions [d] → {0, 1}, i.e., as n subsets of [d]. Letting
U1, . . . ,Un be these subsets, the analogue of strength k, called k-independence (following
[KS73]), requires to satisfy the following condition: For any k-set I ⊆ [n], for any of its

1Submatrix is understood as a not necessarily contiguous submatrix determined by column indices
j1 < . . . < jk.
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2. Basic concepts

subsets A ⊆ I, ⋂
i∈A

Ui ∩
⋂

j∈I\A
([d] \ Uj) ̸= ∅.

2.3.2 Imposing regularity constraints

We discuss a regularized variant, first of completely scrambling families, then of scrambling
families. Ignoring the fact that several structures were introduced again in different
contexts, in different terminology, and in isomorphic forms, our following discourse shall
reflect as much as possible the chronological order of when these families were first
considered.

First we consider a particular class of block designs from design theory. According to
[GG94], the first outlines2 of this theory date back to the 19th century and are due to
the Swiss geometer Jacob Steiner. In the course of the last century, this theory has
experienced massive growth and was enriched by numerous facets. This is manifested in
numerous publications (we refer here to the textbook [BJL99] and references therein),
which combine various branches of mathematics, e.g. projective/affine geometry among
many others. For the purposes of this thesis it seems most convenient to use the
terminology of the recent paper [Yus20], with the subtle difference that, for consistency,
we consider its objects as families of permutations (and not as multisets of permutations).

We now define perfect sequence covering arrays (PSCAs) being a particular block design
of major interest for us.

Definition 2.3.5 (PSCA, [Yus20]). Let λ ∈ N×. By PSCA(n, k,λ) we refer to the class
consisting of all families A ∈ SCA(n, k) such that furthermore each subsequence s ∈ Sn,k
is covered by exactly λ permutations of A . The parameter λ is hereby called multiplicity.
Less specifically we refer to the class

PSCA(n, k) :=
⋃

λ∈N×

PSCA(n, k,λ).

PSCAs are therefore nothing else than SCAs covering all s ∈ Sn,k equally often – they
are more regular than arbitrary SCAs. PSCAs do not exist for all choices of (n, k,λ) as
will be clarified soon.

Remark 2.3.6. An immediate property of PSCAs is that their cardinality must necessarily
be equal to λk!; this is why in the expression PSCA(n, k,λ) we do not provide an additional
parameter specifying the cardinality. Moreover, the property of being a SCA(n, k) counting
k! permutations is equivalent to being a PSCA(n, k, 1) (cf. [CCHZ13]) – per permutation,
namely,

(n
k

)
subsequences are covered (in total

(n
k

)
k! = |Sn,k| subsequences have to be

covered once).
2These outlines can be found in the work [Ste53] of 1853.
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2.3. Related combinatorial structures

Example 2.3.7. In the following, the left matrix determines a PSCA(4, 3, 1), in par-
ticular an optimal SCA(4, 3). Swapping the third and fourth column makes the tuple
(1, 4, 2) ∈ S4,3 uncovered, consequently destroys the SCA-property – in particular perfect-
ness. Generally, violation of perfectness can be testified more easily, as just one sequence
covered more often than allowed (λ times) has to be indicated. Below, indication of e.g.
s = (1, 2, 4), covered twice, suffices to deny perfectness.

1 2 3 4
2 1 4 3
3 1 4 2
3 2 4 1
4 1 3 2
4 2 3 1


column swap (3↔4)
−−−−−−−−−−−−−→



1 2 4 3
2 1 3 4
3 1 2 4
3 2 1 4
4 1 2 3
4 2 1 3


The following is the analogue to Proposition 2.2.6 (i)-(iii).

Lemma 2.3.8 (adapted from [Na21]). The class PSCA(n, k,λ) is closed under the
following operations:

(i) Rearranging the elements of the family.

(ii) Relabeling of symbols: Every permutation π of the family is replaced by q ◦ π, where
q ∈ Sn is fixed. In matrix notation this means that the symbols x ∈ [n] are subjected
to a simultaneous (throughout the entire matrix) substitution x 7→ q(x).

(iii) Reversing the order of positions: Every permutation π of the family is replaced
by π ◦ ρ (ρ is the reversing permutation defined in Proposition 2.2.6). In matrix
notation this corresponds to reversing the order of columns.

Definition 2.3.9. [Na21] Two instances of PSCA(n, k,λ) are equivalent if the first can
be transformed to the second by application of the operations (i)-(iii) from Lemma 2.3.8.

The next observation follows readily by induction. It quantifies the increase of multiplicity
for a PSCA when it is interpreted as a PSCA of lower strength.

Lemma 2.3.10 (Nesting property, [Yus20]). Let S be a PSCA(n, k,λ). Then, S is
automatically a PSCA(n, ℓ,λk!

ℓ! ) for every strength ℓ ∈ [k].

Remark 2.3.11. Historically, even before PSCAs have become trendy, see e.g. [Yus20,
Na21, GW22]), the focus was on the study of directed packings, directed coverings, and
directed designs (cf. [Lev91, MvT99, CCHZ13]). Except for notational differences, given
n,w, k,λ ∈ N×, these represent matrices whose rows consist of tuples of Sn,w such that
each s ∈ Sn,k is covered by at least (covering), by at most (packing), or by exactly (design)
λ rows. For λ = 1, a directed design is often termed Steiner system.
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2. Basic concepts

Let us also discuss how regularity was indirectly imposed on the isomorphic structure
of completely scrambling families of permutations. We provide the original definition,3
and show that it does nothing else than imposing regularity on completely scrambling
permutations as we have already seen it in the setting of SCAs. We rely on the notion of
the rank defined in Section 2.1.

Definition 2.3.12 ([ITT00, TIT03]). A non-empty family F ⊆ Sn is called k-rankwise
independent, if for each k-set X = {x1, . . . ,xk} and k distinct values r1, . . . , rk ∈ [k], we
have

Pr
[
k∧
i=1

rank(π(xi), {π(x1), . . . ,π(xk)}) = ri

]
= 1
k! , (2.4)

when π is drawn uniformly at random from F .

The condition (2.4) can be paraphrased by the following:

Pr [π(x1) < π(x2) < . . . < π(xk)] = 1
k! (2.5)

The following observation better illuminates rankwise independence (it is a regularized
variant of Lemma 2.2.9).

Lemma 2.3.13 (cf. also [Iur22]). A family F ⊆ Sn is k-rankwise independent iff ι(F )
is a PSCA of strength k (ι : Sn → Sn, π 7→ π−1).

Proof. Let F be a k-rankwise independent d-family. Then, for an arbitrary position
selection p ∈ Sn,k, there must exist precisely λ := d/k! permutations in F being ascending
along p. Consequently, by Lemma 2.2.9, there will be exactly λ permutations of ι(F )
covering the tuple p. As p ∈ Sn,k was arbitrary, ι(F ) lies in PSCA(n, k,λ). The converse
proof direction is shown analogously.

The following observation tells us that a nesting property (analogous to the one for
PSCAs, cf. Lemma 2.3.10) applies for k-rankwise independent families. Its validity was
directly noticed in [TIT03] without pointing to design theory.

Corollary 2.3.14. A k-rankwise independent family P ⊆ Sn is automatically ℓ-rankwise
independent for 1 ≤ ℓ ≤ k.

Proof. Convert P to a PSCA(n, k) via Lemma 2.3.13, use the nesting property of
PSCAs Lemma 2.3.10, and map the structure interpreted as a PSCA(n, ℓ) back via
Lemma 2.3.13(ii) to a ℓ-rankwise independent family.

3It should not baffle, that the definition is in probabilistic language, being a special case of restricted
min-wise independence introduced in [BCFM00] in the context of randomness. We return to restricted
min-wise independence later.
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Let us now look at k-restricted min-wise independence, being older4 than k-rankwise
independence, and also being more general.5 It was introduced without linking to
scrambling permutations by [BCFM00]. It will turn out that it is de facto another kind
of regularization of scrambling permutations.

A direct regularization of k-scrambling permutations leads to the following concept (the
subsequent curly brackets are set intentionally to distinguish from Definition 2.3.16). We
emphasize that in many works (cf. e.g. [BCFM00]) an arbitrary probability distribution
on the family of permutations is considered. Our focus will be on the special case of
uniform distribution, which is also the case getting the most attention in many works (cf.
e.g. [BCFM00, ITT00, ITT03, TIT03]).

Definition 2.3.15 ({k}-restricted min-wise independence, [MS03]). A non-empty family
F ⊆ Sn is called {k}-restricted min-wise independent, if for a position selection p ∈ Sn,k,
whenever a permutation from the family is randomly drawn (with uniform probability),
we have

Pr

π ∈ k⋂
j=2

ASC(p1,pj)

 = Pr [π(p1) = min {π(pj) : j = 1, . . . , k}] = 1
k

. (2.6)

The probability of 1/k indicates that for given p = (p1, . . . , pk) the left hand side of (2.6)
remains invariant under a single swap of p1 and pj , j = 1, . . . , k (there are k swaps).
Here we obtained a balancing property, which is a pre-stage of the sought-after and even
more regular property stated below in Definition 2.3.16. We now state the special case of
higher regularity (it allows to select up to k elements, instead of precisely k elements).

Definition 2.3.16 (k-restricted min-wise independence,[BCFM00]). A non-empty family
P ⊆ Sn is k-restricted min-wise independent, if for an arbitrary set X ⊆ [n] with |X| ≤ k
and an arbitrarily distinguished x ∈ X, the following condition is fulfilled: Whenever π is
chosen uniformly at random from P, we have

Pr [min(π(X)) = π(x)] = 1
|X|

. (2.7)

In case n = k, we abbreviate n-restricted min-wise independence just by min-wise
independence (as there is in fact no more restriction on X).

It is immediate that the latter property satisfies a nesting property analogous to the one
for k-rankwise independent permutations: If F is k-restricted min-wise independent,
then it is as well ℓ-restricted min-wise independent, for ℓ ∈ [k].

The following observation tells us that the notion of restricted min-wise independence
and rankwise independence (see Definitions 2.3.12 and 2.3.16) collapses for k = 3. The
assertion was mentioned in [ITT00]; we add a short proof.

4Introduced in 1998 in [BCFM00]. However, according to [Ind01] it independently appears earlier in
1994 in the book [Mul94] for the purpose of randomness in computational geometry.

5Introduced in 2000 in [ITT00].
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Lemma 2.3.17. Let P ⊆ Sn be 3-restricted min-wise independent. Then, P is also
3-rankwise independent (and therefore isomorphic to a PSCA of strength 3).

Proof. Set d = |P|. Assume 3-restricted min-wise independence for P and that there
exists (p1, p2, p3) ∈ Sn,3 such that ASC(p1,p2,p3) is underrepresented among the members
of P in the sense of (2.5), i.e., |P∩ASC(p1,p2,p3)| < d/3!. Let us replace the permutations
of P by their restrictions to {p1, p2, p3}, and convert these restricted functions in an
order preserving manner to permutations of {1, 2, 3} (cf. Proposition 2.2.7). The end
product will necessarily be a 3-restricted min-wise independent family Q of permutations
in S3 with under-representation of, say, ASC(1,2,3) (without loss of generality). Moreover,
by min-wise independence, up to reordering of elements,

P = (α1, . . . ,αd/3,β1, . . . ,βd/3, γ1, . . . , γd/3), (2.8)

where for j = 1, . . . , d/3, we have αj(1) = 1, βj(2) = 1, and γj(3) = 1. The un-
derrepresentation of ASC(1,2,3) implies an underrepresentation of ASC(2,3), meaning
|P ∩ASC(2,3)| < d/2. This follows immediately from the fact that |(βj)j ∩ASC(2,3)|+
|(γj)j∩ASC(2,3)| = d/3+0. We obtain a contradiction, as for being min-wise independent,
it is a necessity to have a balanced representation of ASC(2,3) and ASC(3,2).

Min-wise independence has been studied also in a form tolerating a relative error.

Definition 2.3.18 ([BCFM00]). Let ε ≥ 0. A non-empty family F ⊆ Sn is called
ε-approximately k-restricted min-wise independent, if for any X ⊆ [n] with |X| ≤ k, any
choice of x ∈ X implies ∣∣∣∣Pr [π(x) = min π(X)]− 1

|X|

∣∣∣∣ ≤ ε

|X|
,

for a random choice of π ∈ F that follows the uniform probability distribution on F . If
k = n, we omit the infix ”k-restricted“.

Let us conclude the chapter with the categorization and an overview of the fallen concepts.
The notation and approach of the chapter was chosen to accomplish this (e.g. we do
not consider sets of permutations as some authors do). From Figure 2.1 we can read
off which properties on permutation families are implied by other properties. At first,
one might be tempted to suspect that some properties are so strong that, especially
when combined with others, they could potentiate to even stronger properties. It turns
out, as we will clarify, that these first intuitions cannot be confirmed in general (observe
the non-vanishing intersections and differences in the Venn diagram of Figure 2.1 and
consider the counterexamples in Remark 2.3.19).
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k-scrambling

completely k-scrambling
(∼= SCAs)

{k}-restricted min-wise
independent

k-restricted
min-wise

independent

k-rankwise independent
(∼= PSCAs)

Figure 2.1: Venn diagram classifying the various properties of permutation families (with
fixed n and k, both of general character).

Remark 2.3.19. The permutation family O = {(1, 2, 3, 4), (3, 2, 1, 4), (3, 2, 4, 1)} serves
as an example of a {3}-restricted min-wise independent while simultaneously not {2}-
restricted min-wise independent family.6 Hence, in contrast to k-rankwise independent
families, for which the nesting (for decreasing k) is automatically implied, here, nesting
can only be ensured by explicitly enforcing it. This enforcement leads to the notion of
k-restricted min-wise independence.

Restricted min-wise independent families additionally being completely scrambling are
not necessarily rankwise independent, as can be seen by inspecting a family of d = 36
permutations (with strength k = n = 4) comprising the entire group S4 and additionally
the elements from

{
π ∈ S4 : π−1(2) < π−1(3)

}
(incorporated as duplicates).

6We can namely observe |O ∩ ASC(1,2)| = 1 and |O ∩ ASC(2,1)| = 2. Even faster, this can be seen by
lcm({1, 2, 3}) ∤ |O|.
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CHAPTER 3
Methods

3.1 The probabilistic method

We emphasize in advance that several existence proofs appearing in this thesis are
based on a method which allows to formulate proofs for the existence of a combinatorial
structure in a very concise and elegant way. The basic idea is that we endow a finite set of
combinatorial structures with a suitable probability distribution (usually with the uniform
distribution) and afterwards we try to show that a random variable sampled according
to the distribution corresponds with positive probability to one of those structures with
the desired properties. If we can show positivity, we automatically can conclude that at
least one such structure must exist. We observe that this method can yield existence of a
desired structure but is not capable of providing a witnessing instance. This philosophy
of proving is often called the probabilistic method [AS00]. According to [AS00] this
argumentation technique should be attributed to Erdős, as frequently employed by him.

The method seems to be useful especially for the so-called branch of extremal combinatorics.
To clarify what is here meant by extremal, we refer to the description given in [Alo03]:

”Extremal combinatorics deals with the problem of determining or estimating
the maximum or minimum possible cardinality of a collection of finite objects
that satisfies certain requirements. Such problems are often related to other
areas including computer science, information theory, number theory and
geometry. This branch of combinatorics has developed spectacularly over the
last few decades [...].“

For an arbitrary probability space U , let A = {a1, . . . , aN} ⊆ U collect events with
associated probabilities p1, . . . , pN . For a function f : A → R we sometimes use, for
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referring to the conditional expectation E [f(x)|x ∈ A], the notation

E
a∈A

[f(a)] = 1∑
a∈A Pr [a]

∑
a∈A

Pr [a] f(a). (3.1)

For some proofs relying on the probabilistic method, it will be sufficient to employ
the brute union bound of probability, also known as Boole’s inequality/subadditivity for
(probability) measures, which affirms that (I ⊆ N)

Pr
[⋃
i∈I

Ai

]
≤
∑
i∈I

Pr [Ai] .

We will also fall back on the following bound that quantifies a relative error.

Theorem 3.1.1 (Binomial version of Chernoff bound, [AS00, p. 268]). Let X1, . . . ,XN

independent random variables attaining the value 1 with probability pi and attaining the
value 0 with probability 1− pi, i = 1, . . . ,N . Let Y = ∑N

i=1Xi and µ = E [Y ]. For any
ε > 0, there is a constant cε > 0, depending only on ε, such that

Pr [|Y − µ| > εµ] < 2e−cεµ. (3.2)

The value in (3.2) for cε can be chosen (cf. [AS00]) as

cε = min
(
− ln(eε(1 + ε)−(1+ε)), ε2/2

)
≥ ε2/3,

which leads to the explicit, weakened form of (3.2),

Pr [|Y − µ| > εµ] ≤ 2e−ε2µ/3. (3.3)

3.2 Information theory for extremal combinatorics

In this section we resemble some important properties of the (Shannon) entropy. We
follow the presentation of the textbook [CT06]. Entropy methods have proven to be
a powerful tool also in combinatorics, however, more classical application domains are
coding/communication/quantum information theory, data compression, cryptography,
statistics, thermodynamics, and computational molecular biology (cf. [CT06] and refer-
ences therein). Katona’s paper [Kat66] is an early work applying entropy methods in the
context of combinatorics (it seems, by the way, to be the first work of this kind [Für96]).1
In [Alo03] a selection of problems from extremal combinatorics solved with such entropy
methods is given.

1Katona used the entropy to provide a lower bound for so-called separating systems of sets [Kat66].
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3.2.1 Information theory

We now discuss main concepts of the Shannon entropy, following the presentation of
[CT06] – for a more extensive treatment of the topic, we point to the latter work.

In the subsequent we consider exclusively discrete random variables, i.e., possessing finite
range. We denote the probability mass function of a random variable X by

pX : range(X)→ [0, 1], x 7→ Pr [X = x] .

Definition 3.2.1. The (binary) entropy of a random variable X is defined as

H[X] := −
∑

x∈range(X)
pX(x)>0

pX(x) log2 (pX(x)) . (3.4)

Values of the range occurring with zero probability do not have an impact on the entropy
(in principle the range can be extended by arbitrarily many new elements occurring with
zero probability without affecting the entropy). For brevity we will denote the sum in
(3.4) without the restriction pX(x) > 0 using just the convention 0 · log2 (0) = 0. The
convention also permits to interpret the entropy of X as the expectation of the random
variable − log2 (pX).

Intuitively, we think of the entropy as the expected number of bits needed to describe an
object randomly drawn from a collection.

Example 3.2.2. If a random variable attains precisely two values, say range(X) = {0, 1},
by setting p = pX(1), the identity (3.4) simplifies to

H[X] = H(p) := −p log2 (p)− (1− p) log2 (1− p) . (3.5)

The function H(p), defined on the interval [0, 1] (with the aforementioned continuity
convention at the boundary point 0), will appear in multiple contexts. It is concave and its
graph possesses the symmetry axis

{
(1

2 , y) : y ∈ R
}

. The entropy of X is hence maximized
for p = 1

2 , i.e., if pX corresponds to the uniform distribution.

The following assertion is also a consequence of the concavity of the logarithm.

Lemma 3.2.3. Let X be a random variable with |range(X)| = n. Then, H[X] ≤ log2 (n)
and equality holds iff pX is the uniform distribution.

Entropy can also be considered for a vector of discrete random variables (technically being
nothing else than a single random variable possessing as attainable values all elements of
the Cartesian product of ranges of the variables comprised by the vector).
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Definition 3.2.4 (Joint entropy). Let X1, . . . Xk be discrete random variables. Their
joint entropy is defined as

H[X1, . . . ,Xk] =
∑

(x1,...,xk)∈range(X1)×···×range(Xk)
p(x1, . . . ,xk) log2 (p(x1, . . . ,xk)) , (3.6)

with p(x1, . . . ,xk) = Pr [X1 = x1 ∧ . . . ∧Xk = xk] denoting the joint probability mass
function.

Definition 3.2.5 (Conditional entropy). Let X,Y be discrete random variables and
assume that (X,Y ) has joint probability mass function p(x, y). The quantity

H[Y |X] :=
∑

x∈range(X)
p(x)H[Y |X = x] = −

∑
x∈range(X)

p(x)
∑

y∈range(Y )
p(y|x) log2 (p(y|x))

(3.7)

is called the entropy of Y conditioned to X.

Conditional and joint entropy obey the following law.

Theorem 3.2.6 (Chain rule). For discrete random variables X,Y ,Z the following rules
apply.

(i) H[X,Y ] = H[X] +H[Y |X].

(ii) H[X,Y |Z] = H[X|Z] +H[Y |X,Z].

Combining both asserts in Theorem 3.2.6 permits to derive a k-ary chain rule for the
joint entropy of random variables.

Corollary 3.2.7. For discrete random variables X1, . . . ,Xk we have

H[X1, . . . ,Xk] =
k∑
i=1

H[Xi|Xi−1,Xi−2, . . . ,X1] (3.8)

Corollary 3.2.8 (Independence bound on entropy). Let X1, . . . Xk be discrete random
variables with joint probability mass function p(x1, . . . ,xn). Then,

H[X1, . . . ,Xk] ≤
k∑
i=1

H[Xi]. (3.9)
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3.3. Deletion correcting codes

3.3 Deletion correcting codes
In this section we resemble the terminology for deletion correcting codes and focus on
useful aspects of the Varshamov-Tenengolts codes (introduced in [VT65], later analyzed
among others in [Lev91]). These codes form an interesting instance of single deletion
correcting codes. In the subsequent, we follow the terminology of [Lev91].

Definition 3.3.1. For q ∈ N×, consider the alphabet Bq := {0, . . . , q − 1}. A t-tuple
w = (w1, . . . ,wt) ∈ Bt

q is called a word (of length t). The Kleene closure of Bq is denoted
by B∗

q = ⋃
t≥0B

t
q.

Definition 3.3.2. For a word w ∈ Bt
q let ∥w∥ := ∑t

j=1wj (corresponding for q = 2 to
the Hamming distance between w and the zero tuple of Bt

q.). Moreover, let us define its
position-weighted variant W (w) := ∑t

j=1 jwj.

Definition 3.3.3. Under a code C we understand a subset of B∗
q . Its elements are called

codewords. For s ∈ N× and a length-t word w, denote the set of all words resulting from
w after s deletions by

dels(w) :=
{
x ∈ Bt−s

q : x is a subsequence of w
}

.

For a set of words W, define dels(W) := {dels(w) : w ∈W}. A code C ⊆W ⊆ B∗
q is said

to be an s-covering from below of M if dels(C) = dels(W).

The following definition could be posed more generally to deal as well with insertion
correcting codes (cf. [Lev91]).

Definition 3.3.4 ([Lev91]). Let C ⊆W ⊆ Bn
q (containing only equally long words). C

is called a W-perfect code capable of correcting s deletions if C is a s-covering from
below of W.

Definition 3.3.5 (Varshamov–Tenengolts codes, [VT65]). For ℓ,m ∈ N× there is a
unique decomposition ℓ = ms+ r with s ∈ Z and r ∈ {0, . . . ,m− 1}; denote that residual
r by rm(ℓ). Define the Varshamov–Tenengolts codes as the n+ 1 codes given by

VTn,a := {w ∈ Bn
2 : rn+1(W (w)) = a} , a = 0, . . . ,n. (3.10)

Example 3.3.6. The space of words B4
2 contains the 16 words (denoted as strings)

0000,0001,. . . ,1110,1111. In Figure 3.1 the 5 Varshamov-Tenengolts codes partition-
ing the set of these words are displayed.

Theorem 3.3.7 ([Lev91]). Consider Bn
2 for n ∈ N×. Then, all Varshamov-Tenengolts

codes VTn,a, a = 0, . . . ,n, are Bn
2 -perfect codes capable of correcting one deletion.

Proof. Fix n and a ∈ {0, . . . ,n}. The following will to be shown: For each u =
(u1, . . . ,un−1) ∈ Bn−1

2 , there is a word w(n, a,u) ∈ VTn,a ⊆ Bn
2 satisfying u ∈ del1(w).
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3. Methods

a = 0 a = 1 a = 2 a = 3 a = 4
0000 0101 0011 0010 0001
0110 1000 0100 1011 0111
1001 1110 1101 1100 1010
1111

Figure 3.1: The codes VT4,a, a = 0, . . . , 4 partitioning {0, 1}4.

The latter appertainance holds iff it is always possible to determine an appropriate index
position i ∈ [n] and a value v ∈ B2 such that

w = (u1, . . . ,ui−1, v,ui, . . . ,un−1) ∈ VTn,a . (3.11)

The latter requirement is satisfied iff there exists an appropriate scalar k ∈ Z such that

k(n+ 1) + a = W (w) =
i−1∑
j=1

juj + iv +
n−1∑
j=i

(j + 1)uj (3.12)

= W (u) + iv +
n−1∑
j=i

uj . (3.13)

Rearranging, we obtain

k(n+ 1) + a−W (u) =
n−1∑
j=i

uj + iv ∈
{

{∥u∥+ 1, . . . ,n} , iff v = 1
{0, . . . , ∥u∥} , iff v = 0

. (3.14)

where the equality can only hold when

v = 1 ⇐⇒ r := rn+1(a−W (u)) ∈ {∥u∥+ 1, . . . ,n} . (3.15)

Consequently, given the information u, regardless of the position of insertion i, it is
clear how the letter v must necessarily be defined to satisfy (3.11). We now argue why
there always exists a suitable position choice for i, meaning that the following equality is
satisfiable

n−1∑
j=i

uj + iv = rn+1(a−W (u)) ∈ {0, . . . ,n} . (3.16)

From (3.16) it becomes clear what necessary choices for i are: For definiteness, let us
take the largest index among the feasible indices for i and define

i(n, a,u) :=

max
{
i ∈ [n] : ∑n−1

j=i uj = rn+1(a−W (u))
}

, r ∈ {0, . . . , ∥u∥}
max

{
i ∈ [n] : ∑n−1

j=i uj = rn+1(a−W (u)− i)
}

, r ∈ {∥u∥+ 1, . . . ,n}
.

(3.17)
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3.3. Deletion correcting codes

The maxima are well-defined, as taken over non-empty sets: Indeed, in case of v = 0, as
the involved sum attains for i = 1, i = n the values ∥u∥, 0 respectively, there is at least
one choice for i such that the sum attains any value r ∈ {0, . . . , ∥u∥}. In case of v = 1, the
sum attains the same range of values as before, while contemporarily rn+1(a−W (u)− i),
i = 1, . . . ,n, traverses in reversed order the same range of numbers; this implies existence
of a collision value i, for which equality holds. The proof is completed, as for u ∈ Bn−1

2 ,
the composed word

w := (u1, . . . ,ui(n,a,u)−1, v(n, a,u),ui(n,a,u), . . . ,un), (3.18)

where v(n, a,u) ∈ {0, 1} with v(n, a,u) = 1 iff rn+1(a−W (u)) ∈ {∥u∥+ 1, . . . ,n}, is a
member of VTn,a.

Corollary 3.3.8 ([Lev91]). Given fixed numbers 0 ≤ a ≤ n, each word in w ∈ Bn−1
2 has

a unique ”correcting“ codeword c ∈ VTn,a, i.e., w ∈ del1(c). Moreover, the codes VTn,a

form a partition of Bn
2 .

Proof. The partitioning property is clear (subdivision in congruence classes). For unique-
ness, recalling the previous proof of Theorem 3.3.7, the only thing left to prove is that
the feasible values for i, i.e., those over which the maximum is taken in (3.17) lead to
the same composition in (3.18).

Depending on its inserted value in (3.18), we make a case distinction and first consider
v(n, a,u) = 0: Let i < l such that

n−1∑
j=i

uj =
n−1∑
j=l

uj = rn+1(a−W (u)).

Consequently, ui, . . . ,ul−1 must be zeros and it is indifferent for the composition before
which of the positions i, . . . , l the novel zero is placed.

The remaining case v(n, a,u) = 1 meets an analogous indifference.

Remark 3.3.9. Let us briefly explain the naming, i.e., point out in which sense these
VTn,a-codes have the ability to correct deletions: Suppose a message M residing in a set
of messages {M1, . . . ,Mm} has to be transmitted from device A to device B (the set is
known for A and B). Furthermore, assume that the communication channel between A
and B is only prone to the following type of disturbance: The potential loss of one bit of
information during transmission of ℓ bits, where the position of the lost bit is unknown.

In advance, we can choose n large enough such that a suitable a ∈ {0, . . . ,n} exists, for
which {M1, . . . ,Mm} is injectively embeddedable in VTn,a (as before, n and a are known
values for A and B).

Device A sends as an encoding of M its identifying codeword w ∈ VTn,a. After com-
munication, if B has received a n-bits word, B can just map it back to the message
space. Otherwise, i.e., if n − 1 bits have arrived, before this conversion, the uniquely
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3. Methods

reconstructable n-bits word in VTn,a has to be built by B in an intermediate, correcting
step.

The cardinalities |VTn,a|, a = 0, . . . ,n, might vary (cf. Figure 3.1). For given n, this
raises the question about the pattern of the sequences (|VTn,a|)na=0, which are cataloged
as entry A053633 in [SI22b].

Indeed, there is a remarkable representation as sum for |VTn,a| due to [Gin67] implying
furthermore that among the values |VTn,a|, a = 0, . . . ,n, the largest cardinality is
obtained for a = 0, whereas the smallest for a = 1 (cf. also Figure 3.1).

In [Slo08] a similar representation formula is derived. With φ denoting Euler’s totient
function and µ the Möbius function, it reads as follows.

Theorem 3.3.10 ([Slo08]). Let n ∈ N×. For each a = 0, . . . ,n, the cardinality of VTn,a

can be determined by the formula

|VTn,a| = 1
2(n+ 1)

∑
2 ∤ d | (n+1)

φ(d)
µ
(

d
gcd(d,a)

)
φ
(

d
gcd(d,a)

)2(n+1)/d.
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CHAPTER 4
Asymptotics

We discuss asymptotic bounds for (completely) scrambling permutations as well as for
their regularizations. Not all bounds provide a way to actually construct such permutation
families – this task is deferred to the next chapter.

4.1 k-scrambling permutations
In [Spe71] the following bounds are obtained.

Theorem 4.1.1 (Hajnal-Spencer). Let n ≥ k ≥ 3. We have (k fixed, n→∞)

log2 log2 n ≤ N(n, 3) (4.1)
≤ N(n, k) ≤ k2k(1 + on(1)) log2 log2 n. (4.2)

Before proving the bounds (4.1) and (4.2), we provide some preparatory observations.

Lemma 4.1.2 (Erdős-Szekeres, variant). For m ∈ N× and two permutations π,σ ∈
Sm2+1, there exists a selection of m+ 1 positions (p1, . . . , pm+1) ∈ Sm2+1,m+1 such that
π(p1), . . . ,π(pm+1) and σ(p1), . . . ,σ(pm+1) form monotone sequences.

Proof. The classical Erdős-Szekeres theorem (see [ES35, p. 467]) affirms that any sequence
of length m2 + 1 possesses a monotone subsequence of length m+ 1. We can therefore
identify x1 < . . . < xm+1 such that π(σ−1(x1)) ≺ π(σ−1(x2)) ≺ . . . ≺ π(σ−1(xm+1))
with ≺∈ {<, >}. Set p1 := σ−1(x1), . . . ,σ−1(xm+1). As a consequence, π(p1) ≺ π(p2) ≺
. . . ≺ π(pm+1) and σ(p1) < σ(p2) < . . . < σ(pm+1), i.e., π and σ are monotone along
p1, . . . , pm+1.

Corollary 4.1.3. For a family F consisting of s+ 1 permutations of [22s + 1] ⊆ N×,
there exist (p1, p2, p3) ∈ S22s +1,3 such that π(p1),π(p2),π(p3) is a monotone sequence for
every π ∈ F .

27



4. Asymptotics

Proof sketch. We note that 22s + 1 =
(
22s−1

)2
+ 1. Therefore with m := 22s−1 we face a

family of s+1 permutations each having length m2 +1. Consequently, by Lemma 4.1.2 the
first two permutations will share a subsequence of positions of length m+1 =

(
22s−2

)2
+1

along which both permutations are monotonic. All the family’s permutations can now be
restricted to the indices of the subsequence. After the shrinkage one has to identify all
these s+ 1 shrunken tuples in an order preserving manner with tuples in Sm+1,m+1, such
that we deal with a (s+ 1)-family of permutations of [m+ 1] =

[(
22s−2

)2
+ 1

]
.

Then, the outlined process can be repeated in order to obtain a selection of indices along
which the first three permutations of the family are monotone. This can be iterated
further such that after in total s iterations one ends up with a triple of position indices
along which all the s+ 1 members of the family constitute monotone sequences.

Proof of the lower bound (4.1) in Theorem 4.1.1. The following simple scenario immedi-
ately negates the property of being 3-scrambling: If one can individuate a position selection
(p1, p2, p3) ∈ Sn,3 such that, for all members π of a permutation family, monotonicity is
fulfilled along (p1, p2, p3), i.e., either π(p1) < π(p2) < π(p3) or π(p1) > π(p2) > π(p3),
then the family cannot be 3-scrambling, as it is impossible to find a permutation π
satisfying π(p2) < min(π(p1),π(p3)).

Assume by contradiction that there exists a 3-scrambling family of permutations of [n]
consisting of c := 2 + ⌊log2 log2 (n− 1)⌋ members. Let now s ∈ N× be chosen such that

22s−1 + 1 ≤ n < 22s + 1. (4.3)

By monotonicity (see Proposition 2.2.7), there must hence exist a 3-scrambling c-family
F consisting of permutations of [22s−1 + 1]. By the choice of s, the bound c ≤ s+ 1 holds.
By Corollary 4.1.3 we can find three index positions along which all permutations of F
are monotone. This contradicts the property of being 3-scrambling. Lastly, c majorizes
log2 log2 n for n ≥ 3.

Turning our attention now on the upper bound, we need an auxiliary result concerning
the boundedness of CANbin(·) and being of independent interest. We emphasize that
there have been many successful efforts to quantify predominantly the upper bound of
CANbin. We refer to [Slo93, LKL+11] for extended discussions and comparisons of results
on related upper bounds in literature (cf. [Rou87] for a construction yielding the best
bound for k = 3). We now provide a known bound being valid for arbitrary k. Hereby,
we will notice a structural similarity (k! gets replaced with 2k) to Spencer’s upper bound
for completely k-scrambling permutations (see Proposition 4.2.1).

Theorem 4.1.4 ([KS73]). Let n ≥ k. Then as n→∞, for fixed k,

CANbin(n, k) ≤ k

log2
2k

2k−1
(1 + on(1)) log2 n. (4.4)
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4.1. k-scrambling permutations

Proof. We make use of the probabilistic method. Populate a d× n matrix with values
drawn from {0, 1} independently and uniformly at random. For the sampled matrix, the
probability to fail to be a binary covering array is given by the following consideration:
The probability that at least one requirement is violated, is majorized by summed
probabilities of violations encountered at any constellation of an arbitrary binary word
w ∈ {0, 1}k coupled with an arbitrary position selection p ∈

([n]
k

)
. Hence, there are 2k

(n
k

)
constellations where each respective probability of violation is

(
1− 1

2k

)d
. Therefore,

individuating a large enough value for d such that

T (d,n, k) := 2k
(
n

k

)(
1− 1

2k
)d

< 1, (4.5)

proves the bound (4.4).

Remark 4.1.5. For the dual problem, asking for d ∈ N× to determine1

CAKbin(d, k) := max
{
n ∈ N× : A d× n binary CA of strength k exists

}
, (4.6)

we obtain that each small enough n satisfying (4.5) certainly implies n ≤ CAKbin(d, k).
In particular, the values for n even granting T approx := (2en/k)ke−d2−k < 1, imply
n ≤ CAKbin(d, k) (as by estimation2 T < T approx). The latter sharper restriction on n

means that n < k
2ee

d2−kk−1, consequently

CAKbin(d, k) ≥
⌊
k

2ee
d2−kk−1

⌋
> k

2ee
d2−kk−1 − 1. (4.7)

We are now ready for deriving the upper bound. It relies on a creative idea of Hajnal
discussed in [Spe71, SW20], whose argumentation we take up. To be in line with other
proofs appearing in this thesis, in the subsequent proof, however, a link to binary CAs of
strength (k − 1) is preferred over a link to (k − 1)-independent sets (cf. Remark 2.3.4).

Proof of the upper bound (4.2) in Theorem 4.1.1. Let

s := min
{
s̃ ∈ N× : 2CAKbin(s̃,k−1) ≥ n

}
(4.8)

and save the quantity M := CAKbin(s, k−1). This guarantees that there exist M column
vectors u1, . . . ,uM ∈ {0, 1}s forming a binary CA U of strength k − 1, and that there
exist at least n distinct subsets Q1, . . . ,Qn ∈ 2[M ], each containing a set of column indices.
Let us access the i-th entry of the column vector uj via functional notation uj(i). The
trick is now to introduce s linear orders <i, i = 1, . . . , s, on [n], which rely on these
subsets and are defined as (a ̸= b)

a <i b :⇔
(
uj(a,b)(i) = 1 ∧ j(a, b) ∈ Qa

)
∨
(
uj(a,b)(i) = 0 ∧ j(a, b) ∈ Qb

)
. (4.9)

1The naming appears e.g. in [LKL+11].
2Indeed, 2k

(
n
k

)
(1 − 1

2k )d < 2k
(

ne
k

)k (1 − 1
2k )d < 2k

(
ne
k

)k
(

e−2−k
)d

.
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Hereby, j(a, b) := min(Qa∆Qb), with ∆ denoting the symmetric difference.

We claim now that jointly these orders are k-scrambling (the orders possess equivalent
scrambling permutations, see Remark 2.2.10). Let (a, b1, . . . , bk−1) ∈ Sn,k. Among the de-
fined orders we have to spot one with respect to which all sequences (a, b1), . . . , (a, bk−1) ∈
[n]2 are increasing. Define P := {min(Qa∆Qbℓ

) : ℓ = 1, . . . , k − 1} ⊆ [M ], having cardi-
nality |P | ≤ k − 1. Let P be enlisted by the sequence of numbers p1 < . . . < p|P |. Build
now the binary word w ∈ {0, 1}|P | with letters defined as

wj :=
{

1, pj ∈ Qa
0, otherwise

, j = 1, . . . , |P |. (4.10)

The sought order is now chosen as <i, where i is one of the (for sure existing) row indices
of U having (up1(i), . . . ,up|P |(i)) = w.

In a case distinction, we assure ourselves that <i meets the desired requirements. Let
b ∈ {b1, . . . , bk−1} and consider j(a, b) = min(Qa∆Qb) corresponding to, say, the ℓ-th
member of the chain p1 < . . . < p|P |.

Case j(a, b) ∈ Qa: We observe that also pℓ ∈ Qa, and therefore uj(a,b)(i) = upℓ
(i) =

wℓ = 1. We obtain a <i b.

Case j(a, b) ̸∈ Qa: The equalities uj(a,b)(i) = upℓ
(i) = wℓ = 0 apply. We also necessarily

have j(a, b) ∈ Qb and therefore conclude a <i b.

It remains to estimate s by n and k. By the minimality in (4.8) and by the previous
remark (see (4.7)),

log2 n > CAKbin(s− 1, k − 1) ≥ k − 1
2e e(s−1)2−k+1(k−1)−1 − 1. (4.11)

Solving for s, finally shows s ≤ k2k(1 + on(1)) log2 log2 n, which concludes the proof.

Special cases and optimizations

In [MS03] a slight improvement of the lower bound (4.1) in Theorem 4.1.1 is pointed out
(stated below as Theorem 4.1.7). The following basic observation is employed for that
purpose. It permits to compare (by iterated substitution) N(n, k) to N(n, 3) in a more
accurate manner than in (4.1)-(4.2).

Lemma 4.1.6 ([MS03]). For n ≥ k ≥ 2 we can conclude N(n, k) ≥ N(n− 1, k − 1) + 1.

Theorem 4.1.7 ([MS03]). If n ≥ k ≥ 2, then N(n, k) ≥ log2 log2 (n− k + 2) + k − 2.

After introducing k-scrambling permutations, Dushnik provided an explicit formula (see
(4.12)), for N(n, k) for large values of k compared to n, i.e., k ≥ 2

√
n−2. For application
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4.2. Completely k-scrambling permutations

purposes, we will see that it is, however, of higher relevance when k is a (small) fixed
value.

Theorem 4.1.8 ([Dus50]). Let k ∈ N× be a given strength, and let α ∈ {1, 2}. If the
permutation length n is parametrized as n = k2 + αk, then

N(n− 1, 2k + α− 2) = N(n, 2k + α− 2) = n− k. (4.12)

For the special case of k = 3, Hajnal noticed that further reduction of the bound can be
obtained: The explicitly known number CANbin (n, 2) (derivable via the Erdős-Ko-Rado
theorem proved in [EKR61], cf. [KS73]) can be used in the proof of Theorem 4.1.1, on
page 29. In [Raj18] it is recognized that a result in [HM99] leads to a lower bound being
tight with respect to the upper bound of Hajnal for k = 3. We state the bounds together,
they yield an explicit expression for N(n, 3) for almost all n.

Theorem 4.1.9. We have b(n) + on(1) ≤ N(n, 3) ≤ b(n) + 1 + on(1), where

b(n) := log2 log2 n+ 1
2 log2 log2 log2 n+ 1

2 log2 π. (4.13)

4.2 Completely k-scrambling permutations
We discuss upper and lower bounds. It will turn out that the additional requirement
of completeness enforces logarithmic (upper and lower) bounds in contrast to log2 log2-
bounds of the previous section. We explain how to quickly find a logarithmic upper bound
using a probabilistic argument due to Spencer [Spe71]. Afterwards, for the derivation of
logarithmic lower bounds, we discuss a method first employed by Füredi [Für96] to settle
the case k = 3 via entropy methods for extremal combinatorics. We then depict how this
method was perfected by Radhakrishnan [Rad03] to settle the general case k ≥ 3.

4.2.1 Upper bounds

We first discuss how to obtain an upper bound for general k and compare it with a
sharpened bound for the special case k = 3.

We start with the following basic observation of Spencer [Spe71] which was stated in the
context of an analysis families of linear orders. For general k, we will later see that only
minor improvements are obtainable by constructive approaches ensuring the maintenance
of this probabilistic bound, cf. Chapter 5).

Proposition 4.2.1. Let n ≥ k ≥ 3. The following upper bound applies (k fixed, n→∞).

N∗(n, k) ≤ k

log2
k!
k!−1

log2 n+ 1 = k

log2
k!
k!−1

(1 + on(1)) · log2 n. (4.14)
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Proof. For (p1, . . . , pk) ∈ Sn,k, we have |ASC(p1,...,pk)| = n!/k!. Among all permutations
in Sn, the proportion of those ones not appertaining to ASC(p1,...,pk) is therefore 1− 1

k! .

In total there are
(n
k

)
k! position selections (p1, . . . , pk) ∈ Sn,k for which potentially there

exists no i ∈ [d] such that πi(p1) < . . . < πi(pk).

Let now P = {π1, . . . ,πd} ⊆ Sn contain permutations which are randomly sampled from
Sn (independently and with uniform probability).

For a fixed (p1, . . . , pk) ∈ Sn,k, the probability that none of the elements in P is contained
in ASC(p1,...,pk) is given by (1− 1

k!)d. Now, whenever

1 >
∑

(p1,...,pk)∈Sn,k

Pr
[
For each π ∈ F : π ̸∈ ASC(p1,...,pk)

]

≥ Pr

 ∨
(p1,...,pk)∈Sn,k

[For each π ∈ F : π ̸∈ ASC(p1,...,pk)]

 ,

we encounter for sure (positive counter-probability) the possibility that a sampled family
violates no monotonicity requirement. This occurs when d is so large that(

n

k

)
k!(1− 1

k! )
d < 1, (4.15)

meaning that d > log2 (n!/(n−k)!)
log2 (k!/(k!−1)) . Consequently,

N∗(n, k) ≤


log2

n!
(n−k)!

log2
k!
k!−1

 ≤
log2

n!
(n−k)!

log2
k!
k!−1

+ 1 < k

log2
k!
k!−1

log2 n+ 1.

Remark 4.2.2. The existence result in Proposition 4.2.1 is non-constructive and leaves
open how to actually find a family of permutations testifying the bound.

For the special case of k = 3, the bound (4.14) is asymptotically equal to C log2 n with
C ≈ 11.405. Tarui, in [Tar08], due to his explicit construction of completely 3-scrambling
permutations, improved considerably the coefficient of the logarithm to C = 2. We state
this improvement below (more details are discussed in Theorem 5.2.1 and Algorithm 2 of
Chapter 5).

Theorem 4.2.3 ([Tar08]). For n ≥ 3, we have

N∗(n, 3) ≤ 2 log2 n+ (1 + on(1)) log2 log2 n.
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4.2.2 Lower bounds for strength three

In this section we explain how a lower bound for N∗(n, 3) can be obtained by an approach
due to Füredi [Für96]. His first key observation is that a result of [KSS81] regarding the
entropy of hypergraphs is extendable to the more general structure of multihypergraphs.
Moreover, Füredi’s original proof was addressed to simultaneously solve a problem in
combinatorial geometry closely related to the estimation of N∗(n, 3) (cf. Chapter 7 and
cf. also [Ish95]).

Definition 4.2.4 (Multihypergraph). A pair (V ,F), where V is a finite set of vertices
and F =

{
F1, . . . ,F|F |

}
is a finite multiset of subsets of V with specified multiplicities

ν1, . . . , ν|F | ∈ N×, is called multihypergraph. Each set Fi ∈ F is called multihyperedge.
Set ∥F∥ := ∑|F |

i=1 νi and call this quantity the weight of F .

Let us state and prove the aforementioned result regarding the entropy of multihyper-
graphs.

Theorem 4.2.5 ([Für96], cf. also [KSS81]). Consider a multihypergraph (V ,F) whose
multihyperedges F1, . . . ,F|F | have multiplicities ν1, . . . , ν|F | and maximum multiplicity
µmax = maxi=1,...,|F | νi. For v ∈ V denote by

αv := 1
∥F∥

|F |∑
i=1

1Fi(v)νi

the proportion (weighted according to multiplicities) of elements in F containing v. If S
is a random variable attaining values in F and has associated probability mass function
pS(Fi) = νi

∥F∥ , then

log2

( ∥F∥
µmax

)
≤ H[S] ≤

∑
v∈V

H(αv) . (4.16)

Proof. Noticing

log2

( ∥F∥
µmax

)
=

|F |∑
i=1

νi
∥F∥ log2

( ∥F∥
µmax

)
(4.17)

≤
|F |∑
i=1

νi
∥F∥ log2

(∥F∥
νi

)
= H[S], (4.18)

the left inequality is shown.

For the right inequality we proceed as follows. Identify V without loss of generality with
{1, . . . , |V |} ⊆ N. Then, an element F ∈ F ⊆ 2{1,...,|V |} can be encoded by an indicator
tuple whose entries attain values in {0, 1}: The i-th entry attains the value 1 iff i ∈ F ,
i ∈ {1, . . . , |V |}. As the encoding is bijective the entropy remains invariant under the
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4. Asymptotics

proposed transformation (we assume the probability mass function is inherited via the
bijection).

Let S now be a random variable attaining values in F with probability mass function
pS(Fi) = νi

∥F∥ . Furthermore, consider the random variables Ci(S) attaining values in
{0, 1}, i = 1, . . . , |V |, that return 1 iff i ∈ S. The entropy of S can be expressed as joint
entropy, i.e., H(S) = H[C1(S), . . . ,C|V |(S)] (recall the previous bijective conversion to
an indicator tuple). By the independence bound (see Corollary 3.2.8), the joint entropy
can be bounded by

H[C1(S), . . . ,C|V |(S)] ≤
|V |∑
i=1

H[Ci(S)] =
|V |∑
i=1

H(αi) . (4.19)

We need to introduce a few auxiliary sets/quantities.

Definition 4.2.6. For a given d-family P ⊆ Sn and fixed ε ∈ {−1, 1}d, set

L(v, ε, P) := {w ∈ [n] \ {v} : εi = −1⇔ πi(w) < πi(v) for all i = 1, . . . , d} , (4.20)

ℓ(P) := max
{
|L(v, ε, P)| : (v, ε) ∈ [n]× {−1, 1}d

}
, (4.21)

and
ℓ(n, d) := min {ℓ(P) : P ⊆ Sn has cardinality d} . (4.22)

Lemma 4.2.7. Fix d ∈ N×. If there exists a 3-mixing family F ⊆ Sn consisting of d
permutations, then necessarily ℓ(n, d) ≤ 1.

Proof. Let P be a 3-mixing family of d permutations of [n]. Seeking a contradiction,
assume now ℓ(n, d) ≥ 2. In particular, ℓ(P) ≥ 2 and therefore for P the following
must be true: There exist v ∈ [n] and ε ∈ {−1,−1}d such that L(v, ε, P) contains two
different elements w1,w2 ∈ [n] \ {v}.

We consider now the position triple (v,w1,w2). As P is 3-mixing, we can find an index
i ∈ [d] such that without loss of generality

πi(w1) < πi(v) < πi(w2).

The latter chain always contradicts the property

sgn (πi(w1)− πi(v)) = sgn (εi) = sgn (πi(w2)− πi(v)) ,

which, however, must hold due to the appertainance w1,w2 ∈ L(v, ε, P).

Theorem 4.2.8 ([Für96, Theorem 1.2]). For n, d ≥ 3 we have

ℓ(n, d) > (n− 1)e− d
2

n−1
n . (4.23)
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4.2. Completely k-scrambling permutations

Proof. Assume P = {π1, . . . ,πd} ⊆ Sn. Furthermore, suppose P is a minimizer of
ℓ(·, ·) in (4.22), i.e., ℓ(n, d) = ℓ(P). Given x, y ∈ [n], consider their induced subset
F (y,x) ⊆ [d] given by

F (y,x) := {i ∈ [d] : πi(y) < πi(x)} . (4.24)

Fix x ∈ [n] and consider the multihypergraph (V ,F(x)) formed by V := [n] and

F(x) := {F (y,x) : y ∈ [n] \ {x}} , (4.25)

where we keep the multiplicities for the latter system of sets. Let s = |F(x)| and let
us denote by B1, . . . ,Bs the pairwise distinct sets composing F(x) (with corresponding
multiplicities ν1, . . . , νs satisfying ∑s

i=1 νj = ∥F(x)∥ = n− 1).

We remark that no multiplicity νj , j = 1, . . . , s, can exceed the upper bound ℓ(P):
Fix νj elements z1, . . . , zνj satisfying Bj = F (z1,x) = . . . = F (zνj ,x). For i ∈
[d] \ Bj we have πi(zr) > πi(x), r = 1, . . . νj . Define ε ∈ {−1, 1}d with εi = −1 iff
i ∈

{
z1, . . . , zνj

}
. Then, νj corresponds to |L(x, ε, P)| which cannot exceed ℓ(P) =

max
{
|L(v, ε, P)| : (v, ε) ∈ [n]× {−1, 1}d

}
. By arbitrariness of νj we have additionally

shown µmax(F(x)) ≤ ℓ(P).

Using the inequality concerning the entropy of a multihypergraph, see Theorem 4.2.5,
we can estimate (we notice that the element i appears in the members of F(x) exactly
πi(x)− 1 times)

log2

(
n− 1
ℓ(P)

)
≤ log2

(
n− 1

µmax(F(x))

)
≤

d∑
i=1

H
(
πi(x)− 1
n− 1

)
. (4.26)

By arbitrariness of x, this applies also when averaging over x ∈ [n], i.e.,

log2

(
n− 1
ℓ(P)

)
≤ 1
n

n∑
x=1

d∑
i=1

H
(
πi(x)− 1
n− 1

)
= d

n

n−1∑
j=0

H
(

j

n− 1

)
(4.27)

< (n− 1)d
n

∫ 1

0
H(ξ) d ξ (4.28)

= −dn− 1
n

∫ 1

0
(ξ log2 (ξ) + (1− ξ) log2 (1− ξ)) d ξ (4.29)

= d
n− 1
n

log2 (e)
2 . (4.30)

Hereby (4.28) follows from concavity of H(ξ) and the fact that ξ = 1
2 is its symmetry

axis. Comparison of first and last member in (4.27)-(4.30) yields

ℓ(P) > (n− 1)e− d
2

n−1
n .

35



4. Asymptotics

A combination of the previous results shows the –according to the state of the art– best
lower bound for completely 3-scrambling permutations.

Corollary 4.2.9 (Füredi’s lower bound). For all n ≥ 4, we have

2 ln(2) log2 n+ 1 < N∗(n, 3) . (4.31)

Proof. Consider a fixed n ≥ 3. Choose d ∈ N× large enough such that a 3-mixing d-family
P of permutations of [n] exists. From (4.23) combined with Lemma 4.2.7 we obtain that
(n− 1)e− d

2
n−1

n < 1 allowing to conclude d > 2 ln(2) n
n−1 log2 (n− 1). Provided n ≥ 4, we

therefore have

2 ln(2) log2 n < 2 ln(2) n

n− 1 log2 (n− 1) ≤ Nmix(n, 3) ≤ N∗(n, 3)− 1. (4.32)

The weakened bound on the left of (4.32) can be used as simpler bound. The relation
between Nmix and N∗ was already observed in Remark 2.2.5.

Remark 4.2.10. In [Rad03] it is claimed that for k = 3 Füredi’s bound is improved by
a factor of ”approximately 2/ log2 (e)“. However, we have discussed Füredi’s proof in
great detail and in some parts renounced to use generous estimates (being applied in the
original work); we arrived at the same bound as in [Rad03] (consult the bound for k = 3
in the subsequent Theorem 4.2.15).

4.2.3 Lower bounds for arbitrary strength

We will fall back on the Fredman-Komlós bound. It first appears in [FK84] where the
authors studied colorings of graphs with colors being d dimensional vectors over a finite
alphabet including a wildcard symbol. They examined a particular subclass of those
colorings leading to their notion of the content of a bipartite graph and a lower bound for
it. Below we make use of a simpler proof strategy due to [Rad01] allowing furthermore
to relax the requirement of being bipartite.3

We recall that a proper coloring of a graph is a mapping from its vertex set to a finite set
of colors such that each two adjacent vertices are mapped to different colors – a partition
(in whose entropy one is interested) of the vertices in color classes is hereby induced.

Definition 4.2.11 (Content of a graph, [Rad01, FK84]). Let G = (V ,E) be a graph.
Denote by V isol the subset of isolated4 vertices and by V nonisol its complementary vertices.
Let χ̂ be a proper coloring of the vertices in V nonisol such that H[Z] is minimal (where
Z ∈ V nonisol is a vertex drawn uniformly at random). Define as the content of G the
quantity

content(G) := |V nonisol|
|V | H[χ̂(Z)]. (4.33)

3Moreover, this bound is a weaker form of the closely related subadditivity property of the so-called
(Körner) entropy of a graph (extensive discussion of graph entropy (including properties, equivalent
formulations, etc.) can be found in [Kör73, Rad01]).

4A vertex is isolated if it does not possess any incident edges.
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4.2. Completely k-scrambling permutations

Lemma 4.2.12 (Fredman-Komlós bound [Rad01, FK84]). Let G = (V ,E), G1 =
(V ,E1),. . . ,Gt = (V ,Et) be undirected graphs and assume ⋃ti=1Gi = G (in terms of edge
sets). Then, with α(G) denoting the maximum size of an independent set of G, we have

t∑
i=1

content(Gi) ≥ log2

(
n

α(G)

)
. (4.34)

Proof. Consider for each Gi a fixed proper coloring χi : V → N. The key idea is to use
the following fact: For an unknown vertex X ∈ [n], knowing inside each Gi only the
color class of X disturbed by some ”noise“ arising from the isolated vertices in V isol

i still
permits to recover valuable information about how many potential values X might have
attained. In fact, the cardinality of

M =
(
χ−1

1 ({χ1(X)}) ∪ V isol
1

)
∩ . . . ∩

(
χ−1
t ({χt(X)}) ∪ V isol

t

)
⊇ {X} (4.35)

cannot exceed α(G): If there was a subset of α(G) + 1 vertices being contained in each
intersectand of M (each intersectand being the union of a color class with a set of
isolated points is automatically an independent set) this would together with the covering
condition G = ⋃

Gi contradict maximality of α(G).

Assume now X is a (with uniform probability chosen) random vertex of V and that Z(X)
is an independently of X randomly chosen vertex of V nonisol (again uniform probability
of choice). Define now the random variables

Yi :=
{
χi(X), X ∈ V nonisol

χi(Z(X)), otherwise
, i = 1, . . . , t.

By the previous observation concerning M , we can now bound from above the entropy of
X conditioned to (Y1, . . . ,Yt) and hereby derive (by the chain rule and the independence
bound, cf. Section 3.2)

log2 α(G) ≥ H[X|Y1, . . . ,Yt] (4.36)
= H[X,Y1, . . . ,Yt]−H[Y1, . . . ,Yt] (4.37)
= H[X] +H[Y1, . . . ,Yt|X]−H[Y1, . . . ,Yt] (4.38)

≥ log2 |V |+H[Y1, . . . ,Yt|X]−
t∑
i=1

H[Yi]. (4.39)

By construction, Y1|X, . . . ,Yt|X are independent random variables. We use this fact to
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rewrite the middle summand in (4.39) and conclude

log2 α(G) ≥ log2 |V |+
t∑
i=1

H[Yi|X]−
t∑
i=1

H[Yi] (4.40)

= log2 |V |+
t∑
i=1

(
1− V nonisol

i

|V |

)
H[Yi]−

t∑
i=1

H[Yi] (4.41)

= log2 |V | −
t∑
i=1

V nonisol
i

|V |
H[Yi]. (4.42)

By Definition 4.2.11 we finally obtain

t∑
i=1

content(Gi) ≥ log2
|V |
α(G) .

Example 4.2.13. The complete graph Kn on the vertex set [n] has only singletons as
independent sets. Hence, log2 n is the respective lower bound in (4.34) for Kn.

For a tuple q ∈ Sn,k−2, we recall the notation

ASC [k−2]
q := {π : π ∈ Sn with π(q1) < π(q2) < . . . < π(qk−2)} , (4.43)

which contains a fraction of 1
(k−2)! permutations of the entire group Sn. We provide in

advance the following auxiliary estimate resulting from a calculation in [Rad03] (its proof
is suppressed an depends as in the previously handled case k = 3 on the symmetry and
concavity of the binary entropy function).

Lemma 4.2.14 ([Rad03]). For each combination of a permutation π ∈ Sn and a sequence
q ∈ Sn,k−2, consider the graph Gq(π) possessing the set of vertices V := [n]\{q1, . . . , qk−2}
and the set of edges

E = {{i, j} : π(i) < π(q1) < π(q2) < . . . < π(qk−2) < πj} . (4.44)

If π ∈ Sn is fixed, then, for the conditional expectation, we have

E
q∈Sn,k−2

[
content(Gq(π)) |π ∈ ASC [k−2]

q

]
≤ log2 e

2
2n− k + 1
n(k − 1) . (4.45)

The latter result is useful for obtaining the following estimate.
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4.2. Completely k-scrambling permutations

Theorem 4.2.15 ([Rad03]). Let n > k ≥ 3. We can estimate

N∗(n, k) > 2
log2 e

n(k − 1)!
2n− k + 1 log2 (n− k + 2) + 1, (4.46)

such that, for fixed k and n→∞,

N∗(n, k) ≥ (k − 1)!
log2 e

(1 + on(1)) log2 n. (4.47)

Proof. We use the fact that N∗(n, k)− 1 ≥ Nmix(n, k) and bound from below the latter
quantity. Let F be a k-mixing d-family of permutations of [n]. We make use of the
graph Gq(π) of Lemma 4.2.14 which is bipartite and potentially has empty edge set (in
case π ̸∈ ASC [k−2]

q ). For arbitrary but fixed q ∈ Sn,k−2, the union over all π ∈ F of all
Gq(π) is (by k-mixingness) equal to the complete graph on the vertex set V .

When π ∈ ASC [k−2]
q , then π(q1) − 1 (respectively n − π(q2)) quantifies the number of

vertices being non-isolated and contained in the ”left“ (respectively ”right“) side of the
bipartite graph (see (4.44)). Consequently, the content of such a bipartite graph given by

content(Gq(π)) = n− π(qk−2) + π(q1)− 1
n− k + 2 H

(
πq1 − 1

n− π(qk−2) + π(q1)− 1

)
,

where we apply the convention that the second factor vanishes if its argument’s denomi-
nator does.

The prerequisites for Fredman-Komlós estimate (4.34) are satisfied and hence, together
with the arbitrariness of q ∈ Sn,k−2, the estimate implies

∑
π∈F

E
q∈Sn,k−2

[content(Gq(π))] = E
q∈Sn,k−2

∑
π∈F

content(Gq(π))

 ≥ log2 (n− k + 2) .

(4.48)
Hereby, all permutations q̃ satisfying π ̸∈ ASC [k−2]

q̃ do not contribute to the members
of the left sum in (4.48). It can therefore be rewritten and estimated with help of
Lemma 4.2.14:∑
π∈F

E
q∈Sn,k−2

[content(Gq(π))] =
∑
π∈F

1
(k − 2)! E

q∈Sn,k−2

[
content(Gq(π)) |π ∈ ASC [k−2]

q

]
≤
∑
π∈F

1
(k − 2)!

log2 e

2
2n− k + 1
n(k − 1)

= d
1

(k − 2)!
log2 e

2
2n− k + 1
n(k − 1) . (4.49)

The assertion ensues, as (4.49) bounds (4.48) from above.
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4.2.4 An alternative lower bound for arbitrary k

We show how to derive an alternative lower bound for the cardinality of completely
k-scrambling families of permutations (or equivalently for the cardinality of sequence
covering arrays of strength k). We will show, however, that this bound cannot compete
with the one achieved by the approach of Füredi-Radhakrishnan, cf. (4.47). For this
purpose, we adapt a ”symbiosis“ of SCAs and binary CAs pointed out in [KHL+12] for
strength three and generalize it to arbitrary strength k.

Let us denote the asymptotic coefficient (independent of n) of the logarithmic term in
(4.47) by cFR(k) := (k− 1)!/ log2 e. We will derive a different lower bound asymptotically
corresponding as well to a constant multiple of the logarithm (for n→∞ and k fixed).
Afterwards we analyze the quality of this alternative coefficient by comparing it with
cFR(k).

Theorem 4.2.16. Let k ≥ 4 and let ϑ(k) := (k − 2)
(
H
(
21−k

)
− 22−k

)−1
with H(·)

denoting the binary entropy function. Then, there is a minorant of N∗(n, k) having
asymptotic growth cKS(k) log2 n where cKS(k) := ϑ(k − 1).

To prove the latter theorem, the following result is essential. It states that a completely
k-scrambling d-family allows to constructively derive from it a binary covering array of
strength k − 1 on d rows.

Lemma 4.2.17. Let n ≥ k ≥ 3 and let P = {π1, . . . ,πd} ⊆ Sn be a completely
k-scrambling family. Then, the matrix B = (bij)i,j ∈ {0, 1}d×(n−1) with entries

bi,j−1 :=
{

1, πi(1) < πi(j)
0, otherwise

, j = 2, . . . ,n, (4.50)

is a d× (n− 1) covering array over the alphabet {0, 1} with strength parameter k − 1.

Proof. Consider a (k − 1)-tuple of increasing indices 1 ≤ j1 < . . . < jk−1 ≤ n − 1. We
aim to show that it is possible to spot an arbitrary binary word w ∈ {0, 1}k−1 among
the rows of the submatrix of B consisting of the d shrunken rows (bi,jℓ)k−1

ℓ=1 , i = 1, . . . , d.

Let m be the count of zeros in w. Denote by zj , j = 1, . . . ,m, the position (within) w of
the j-th zero. Similarly, the positions of the ones are enlisted as uj , j = 1, . . . , k − 1−m.
This means that

{zj : j ∈ [m]} ∪ {uj : j ∈ [k − 1−m]} = [k − 1].

For π ∈P, consider now the ((zj), 1, (uj))-induced ”traversal“ of π, i.e., the sequence

π(jz1),π(jz2), . . . ,π(jzm),π(1),π(ju1),π(ju2), . . . ,π(juk−1−m
),
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4.2. Completely k-scrambling permutations

which is (as P is completely k-scrambling) monotonically increasing for suitable π̂ ∈P.
Therefore, the row-vector resulting from π̂ via the construction (4.50) will have zeros,
ones at the positions jzℓ

, juℓ
, respectively. It hence corresponds to w. This completes

the proof.

Directly from Lemma 4.2.17 we obtain the following result.

Theorem 4.2.18. For n ≥ k ≥ 2, we have N∗(n, k) ≥ CANbin(n, k − 1).

Kleitman and Spencer have obtained the subsequent lower bound for binary covering
arrays.

Theorem 4.2.19 ([KS73]). With fixed k ≥ 3 and ϑ(k) defined as in Theorem 4.2.16 we
have (k fixed, n→∞)

CANbin(n, k) ≥ (ϑ(k) + on(1)) log2 n. (4.51)

Finally, we obtain the sought-after assertion.

Proof of Theorem 4.2.16. Combining Theorem 4.2.18 with Theorem 4.2.19 yields the
claim.

In Figure 4.1 we compare the values of cFR and cKS: While the trend for large k is clear,
the plot attests better performance to cFR as well for small values of k. In particular, we
get a numeric impression of how costly even tiny increases in k impact on the size of the
permutation families.

Also for the case k = 3, which is not included in Theorem 4.2.16, we cannot obtain
an improvement to Füredi’s lower bound (4.2.9) via the above argumentation. To see
this, we refer to the fact that the N∗(n, 3)-minorizing quantity CANbin(n, 2) can even
be determined explicitly (as already mentioned in Section 4.1). The coefficient of the
(dominating) logarithmic term is hereby exactly one, being less than Füredi’s asymptotic
coefficient (cFR(3) ≈ 1.386).

In the following sections, we turn our attention to the regularized forms of the discussed
concepts.
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Figure 4.1: A comparison of lower bound coefficients c(k) ∈ {cFR(k), cKS(k)} (for small
values of k) asymptotically satisfying N∗(n, k) ≥ c(k) log2 n.

4.3 k-restricted min-wise independent permutations
Due to the fact that k-restricted min-wise independent permutations are {j}-restricted
min-wise independent (recall Definition 2.3.15), for j = 1, . . . , k, it is elementary that the
bound |F | ≥ lcm {k, k − 1, . . . , 2, 1} = ek−o(k) applies (cf. [BCFM00]). An alternative
bound from [ITT00] can be employed attesting that |F | ≥ n − 1 – depending hence
(exclusively) on n and obtained from consideration of the special case k = 3. We state a
more recent bound improving on the latter two bounds.

Theorem 4.3.1 ([ITT03]). For a k-restricted min-wise independent family F ⊆ Sn, we
have |F | ≥

( n−1
⌊k/2⌋

)
(1 + on(1)) ≥ 1+on(1)

⌊k/2⌋⌊k/2⌋n
⌊k/2⌋, more precisely

|F | ≥
{∑h

i=0
(n−1

i

)
, if k = 2h+ 1 (h ∈ N)∑h

i=0
(n−1

i

)
+
(n−2
h

)
, else, if k = 2h (h ∈ N)

.

Theorem 4.3.2 ([ITT00, Theorem 3.3]). There exists a k-restricted min-wise independent
family F ⊆ Sn which is of size polynomial in n and satisfies more precisely

|F | ≤ 2k((k − 1)!)k nk.
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4.3. k-restricted min-wise independent permutations

For the approximate concept we obtain the following analogous result.

Theorem 4.3.3 ([BCFM00]). A ε-approximately k-restricted min-wise independent
family F ⊆ Sn of at most cardinality O(k2 ln (n/k)/ε2) exists. In particular, there exists
a ε-approximately min-wise independent family F ⊆ Sn of cardinality |F | ≤ O(n2/ε2).

Proof. We will employ the probabilistic method. Consider ℓ ≤ k and a fixed ℓ-subset
X ⊆ [n] with a distinguished element x ∈ X. Suppose we sample (with replacement)
d permutations from Sn uniformly at random. For each sampled permutation π ∈ Sn,
we can check if π is contained in the set C(X,x) containing all permutations σ ∈ Sn
satisfying σ(x) = min σ(X). We can regard the sampling process as a Bernoulli process
with d trials and success probability p := Pr [π ∈ C(X,x)] = 1/ℓ. The mean (expected
count of successes) is determined by pd. The probability that the output of the process
differs from the mean more than ε times the mean can be bounded by the Chernoff
bound (3.3) of Section 3.1 as follows:

Pr
[∣∣∣∣∣

d∑
i=1

1C(X,x)(π)− pd
∣∣∣∣∣ > εpd

]
≤ 2e−pdε2/3 ≤ 2e−d/kε2/3. (4.52)

For a constellation (X,x), the probability that at least one choice of (X,x) leads to a
relative error larger than εpd in (4.52) is majorized by the union bound

∑
(X,x)

2ke−d/kε2/3 =
k∑
ℓ=1

(
n

ℓ

)
ℓ2e−d/kε2/3 ≤

(
n+ k + 1

k

)
2e−d/kε2/3. (4.53)

For the choice of the smallest d such that

d > 3k
ε2 ln

(
n+ k + 1

k

)
+ ln 2, (4.54)

the right hand side of (4.53) strictly minorizes 1. This means that after d trials there
is the chance that

∣∣∣∑d
i=1 1C(X,x)(π)− pd

∣∣∣ ≤ εpd for any constellation of (X,x). The
existence of a ε-approximately k-restricted min-wise independent family of cardinality
d = O(n2/ ln(n/k)) is hence granted.

Remark 4.3.4. We also tried to use the probabilistic argument in Theorem 4.3.3 for
deriving an upper bound for PSCAs/rankwise independent families. The approach was
inconclusive. Similarly, we also noticed that other versions of the Chernoff bound
estimating the absolute distance from the mean seem not to be helpful for this purpose.

We now turn to upper bounds, in particular their magnitude for special values like k = n
and k ∈ {3, 4}.

Itoh et al. [ITT00] have shown that for (n-restricted) min-wise independence the above
discussed exponential lower bound lcm {n,n− 1, . . . , 1} is perfectly tight.
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4. Asymptotics

Theorem 4.3.5 ([ITT00]). There exists a construction to obtain a min-wise independent
family F ⊆ Sn that has cardinality |F | = lcm {n,n− 1, . . . , 1}.

Let us consider the following auxiliary, recursive sequence introduced in [TIT03].

Definition 4.3.6 (Lq). Let g : {2τ : τ ∈ N×}→ N×,

2τ = s 7→
{√

s, if 2|τ√
2s, otherwise

. (4.55)

Let q ∈
{
22τ : τ ∈ N×} be fixed. Consider the sequence Lq := (qℓ, qℓ−1, . . . , q2, q1) which

is obtained by initially setting qℓ := q, and qℓ−1 = g(q), qℓ−2 = g ◦ g(q), . . . , q1 = 4 (ℓ is
determined implicitly here).

As we will fall back on concrete evaluations of the sequences Lq, for convenience, we
prepare its values.

Example 4.3.7 (Lookup table for Lq sequences).

q τ Lq
4 1 (4)
16 2 (16, 8, 4)
64 3 (64, 8, 4)
256 4 (256, 16, 4)

Remark 4.3.8. Tarui et al. [TIT03] come up with a recursive construction for 4-
restricted min-wise independent families. We state (a slight improvement of) their result
in Theorem 4.3.9 (their leading constant coefficient is easily improvable by a factor of 2
as we show). The cardinalities of the families returned by the recursive construction obey
as well a recursion which is homogeneous in the cardinality of the family employed as
base case of the recursion (the latter family can be any 4-restricted min-wise independent
family F ⊆ S4). In [TIT03], Tarui et al. choose as base case F = S4. This can be
improved by picking a base case of smaller cardinality (12 permutations are sufficient –
this is postponed in Example 4.3.10) and leads to the result stated next.

Theorem 4.3.9 ([TIT03, Theorem 4] sharpened by factor 2). Let n ≥ 4. There exists a 4-
restricted min-wise independent family F ⊆ Sn such that |F | ≤ 6

√
e(1+on(1))·n(log2 n)3.

Example 4.3.10. The general construction provided in [ITT00] and establishing Theo-
rem 4.3.5 allows to construct a (4-restricted) min-wise independent 12-family of permuta-
tions in S4. It is rather involved and so we prefer to construct such a family directly: For
this, we take the family of type PSCA(4, 3, 1) from Example 2.3.7, call it A , and subject
it to the substitution of symbols {1↔ 3, 2↔ 4}. The result Ã = {γ ◦ π : π ∈ A } (with

44



4.4. PSCAs and rankwise independent permutations

γ = (3, 4, 1, 2) ∈ Sn) will as well be of type PSCA(4, 3, 1) such that A ∪ Ã yields a rep-
resentative of PSCA(4, 3, 2). We can map A ∪ Ã via the isomorphism ι of Lemma 2.2.9
to a 3-rankwise independent family of permutations in S4, which we call F . We state F
explicitly below and notice that, for every i ∈ {1, . . . , 4}, there are always 3 permutations
π ∈ F for which π(i) = 1. Combining both observations on F , we therefore obtain that
F is 4-restricted min-wise independent and has cardinality 12.

F = { (1, 2, 4, 3),
(2, 1, 4, 3),
(2, 4, 1, 3),
(4, 2, 1, 3),
(2, 4, 3, 1),
(4, 2, 3, 1),

(3, 4, 1, 2),
(4, 3, 2, 1),
(1, 3, 2, 4),
(1, 3, 4, 2),
(3, 1, 2, 4),
(3, 1, 4, 3) } .

Remark 4.3.11. The following estimate will be automatically valid also for 3-rankwise
independent families (as they are 3-restricted min-wise independent, recall Lemma 2.3.17).
It relies again on a recursive construction obtained in [TIT03]. We state it in slightly
optimized form exploiting the fact that an argumentation similar to Remark 4.3.8 is
applicable also this time (for the base case of recursion F , employ the 3-restricted min-
wise independent 6-family Q of Example 2.2.4 instead of the choice F = S4 in [TIT03]).
Indeed a 3-restricted min-wise independent family F ⊆ Sqℓ−1 allows to construct a 3-
restricted min-wise independent family F ′ ⊆ Sqℓ

. The accompanying recursion for the
cardinalities reads C(qℓ) = 2(qℓ−1 + 1) · C(qℓ−1).

Theorem 4.3.12 ([TIT03, Theorem 3] sharpened by factor 4). Let n ≥ 4. There exists
a 3-restricted min-wise independent family F ⊆ Sn such that |F | ≤ 3

√
e(1 + on(1)) ·

n(log2 n)2.

4.4 PSCAs and rankwise independent permutations
In this section we remark some recent results (of 2020 by [Yus20]) regarding the asymp-
totics of PSCAs and their isomorphic representation by rankwise independent families.
We also state an open question posed in [Yus20] which we can later answer by using a
respective result of [ITT00] for rankwise independent families. Afterwards we show how
to improve upper bounds by comparison and combination of asymptotic/constructive
results on PSCAs and rankwise independent families.

One can be interested in finding a PSCA(n, k,λ) having minimum multiplicity parameter
λ – this automatically means that one is interested in minimizing the number of rows
which is given by λk! (as previously discussed for SCAs in form of completely scrambling
permutations).

Definition 4.4.1 (PSCA number). Let n, k ∈ N× with n ≥ k. The smallest multiplicity
λ ∈ N× such that there exists a PSCA over the alphabet [n] of strength k and with
multiplicity λ is denoted as g(n, k).
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4. Asymptotics

The quantity g is well-defined because the trivial choice of the entire symmetric group
Sn as family will cover each k-subpermutation equally often (the resulting multiplicity of
coverage is determined by Lemma 2.3.10).

For arbitrary strength k, Yuster was recently able to show the following lower bound.

Theorem 4.4.2 ([Yus20]). If k/2 is a prime, then for all n ≥ k we have

g(n, k) ≥
( n
k/2
)
−
( n
k/2−1

)
k! .

For arbitrary k, provided n is sufficiently large in comparison to k, the bound g(n, k) >
nk/2−ok(1) applies.

For the special case of strength k = 3 an upper bound (subquadratic in n) has been
found. Moreover, a simple linear lower bound could be established.

Theorem 4.4.3 ([Yus20]). Let n ≥ 3. There exists a constant C > 0 such that

n

6 ≤ g(n, 3) ≤ Cn(log2 n)log2 7. (4.56)

Problem 4.4.4. In [Yus20], the following question is raised: ”[...] g(n, k) is lower
bounded by a polynomial in n whose exponent grows with k. While it is not difficult to
slightly improve upon the trivial upper bound g(n, k) ≤ n!/k!, it would be interesting to
obtain polynomial upper bounds for g(n, k).“

We will indeed answer the question positively simply by pointing to a construction of
polynomial size for rankwise independent permutations. That will give a better insight in
the asymptotics of PSCAs, and in particular, will lead to an improved upper bound for
g(n, 3) (following the asymptotic C(1 + on(1)) · n log2 (n)2) in (4.56). In turn, classical
results from design theory concerning PSCAs will be beneficial for the asymptotics of
rankwise independent families.

We notice that the isomorphism in Lemma 2.3.13 allows to transfer bounds for the
minimum cardinality of rankwise independent families to bounds for the minimum
cardinalities of PSCAs (and hence we obtain bounds for the value g(n, k) automatically).5
We will state all subsequent results jointly with its implications for the bound of g(n, k).

First, we point out the currently best known lower bound for PSCAs/rankwise independent
families.

5Recall (see Lemma 2.3.13), that a d-family A ∈ PSCA(n, k) has multiplicity λ = d/k!. Hence,
renormalizing lower/upper bounds by a factor of k! yields lower/upper bounds for g(n, k).
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4.4. PSCAs and rankwise independent permutations

Theorem 4.4.5 ([Bar04]). Let F ⊆ Sn be a k-rankwise independent family. Then, with
!(·) denoting the subfactorial (recall Section 2.1) we have

g(n, k)k! ≥ |F | ≥
{∑h

i=0!i
(n
i

)
, if k = 2h∑h

i=0!i
(n
i

)
+!(h+ 1)

(n−1
h

)
, if k = 2h+ 1

. (4.57)

Consequently, |F | ≥ !h
h!n

h(1 + on(1)) if k = 2h, otherwise, if k = 2h + 1, |F | ≥
!h+!(h+1)

h! nh(1 + on(1)).

Theorem 4.4.6 ([ITT00], cf. also [Iur22]). Let p ≥ n ≥ k such that p is a prime
and n ≥ (k − 1)!. Furthermore, let p1 < . . . < pm be the sequence of all primes not
exceeding k − 1, i.e., pm ≤ k − 1. Let (e1, . . . , em) ∈ (N \ {0})m be a minimizer of
Q = ∏m

i=1 p
ei
i under the side constraints that (k − 1)! divides Q, and pei

i > p, for
i = 1, . . . ,m. Then, there exists a k-rankwise independent family P of permutations
of [p] such that |P| ≤ (pk − p)Q⌊k/2⌋. Consequently,6 there exists a family P ′ ⊆ Sn
satisfying

g(n, k)k! ≤ |P ′| = |P| = nO(k2/ ln k). (4.58)

Remark 4.4.7. The proof of Theorem 4.4.6 is constructive (the authors call it a ”tie
breaking scheme“). In case that (k−1)! > n, it is established that a k-rankwise independent
family with cardinality of order eO(k3) exists [ITT00].

Example 4.4.8. Let k = 4 and p = n = 19. The primes not exceeding 6 are 2, 3, 5.
We can choose, minimally, (e1, e2, e3) = (5, 3, 2), which ensures 6|253352 = 21 600 and
min

{
25, 33, 52} > 19. Then, Theorem 4.4.6 implies existence of a 4-rankwise independent

family P with |P| = (194 − 19) · 21 6002 = 60 793 701 120 000. We will refer in the
following to a construction that is capable of generating much smaller families for the
specific case of strength 4 (cf. Example 4.4.12 which shows the existence of a family of
considerably smaller cardinality 24 · 3 139 584 for n = 19).

As in [TIT03] consider for Lq = (qℓ, . . . , q1) (q is a fixed value), the sequence C(·), whose
members are indexed by q1 + 1, q2 + 1, . . . , qℓ + 1, each index attaining a cardinality in
N× and given recursively by

C(qℓ + 1) = 8(q2
ℓ−1 + qℓ−1 + 1)qℓ−1C(qℓ−1 + 1). (4.59)

By considering special projective plains in finite geometry, the following result is obtained.

Lemma 4.4.9 ([TIT03, Theorem 5]). Let Lq = (qℓ, . . . , q1) and C(·) be as before.
Then, for i ∈ {2, . . . , ℓ}, the existence of a 4-rankwise independent C(qi−1 + 1)-family of
permutations of [qi−1+1] implies the existence of a 4-rankwise independent C(qi+1)-family
of permutations of [qi + 1].

6Cf. Proposition 2.2.7.
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Remark 4.4.10 (cf. also [Iur22]). The following optimization is similar to Remark 4.3.11.
Tarui et al. [TIT03] make use of the previous Lemma 4.4.9 to build 4-rankwise independent
families employing as base case the 120-family S5 (trivially satisfying the requirement),
and afterwards to obtain by estimation an upper bound. We observe, however, that
by Levenshtein’s construction we can come up with a PSCA(5, 4, 1) and map it via
Lemma 2.3.13 to a 4-rankwise independent family of just 24 permutations. As the
recursion for C(·) is homogeneous in the cardinality of the family employed as base case,
we automatically obtain a bound sharpened by a factor of 5.

Theorem 4.4.11 (Estimate of [TIT03] sharpened by factor 5). Let n ≥ 4. Then, there
exists a 4-rankwise independent family F ⊆ Sn, with cardinality

g(n, 4) · 4! ≤ |F | ≤ 3e(1 + on(1))n3(log2 n)6. (4.60)

For transparency, in the following Example 4.4.12, we enclose the straightforward deriva-
tion of g(n, 4)-values for small range of n; successively the same procedure is repeated for
the g(n, 3)-values obtainable from the recursion in Remark 4.3.11 of the previous section.

Example 4.4.12 (Small scale evaluation of recursion for 4-rankwise independent families).
By Remark 4.4.10, we have g(5, 4) = 1. Consider L16 = (q3, q2, q1) = (16, 8, 4), i.e.,
ℓ = 3. Then, using (4.59), C(q2 + 1) = C(9) = 8(q2

1 + q1 + 1)q1C(q1 + 1) = 672 · 24.
Lastly, we obtain C(q3 + 1) = C(17) = 8(q2

2 + q2 + 1)q2C(q2 + 1) = 3139584 · 24.
Alternatively, consider L64 such that, as before C(9) = 672 ·24, and consequently C(65) =
8 · (82 + 8 + 1)(8)C(9) = 3 139 584 · 24. Consider also as last alternative the sequence
L256, for which C(17) = 672 ·C(5) = 672 · 24, and consequently C(257) = 23 482 368 · 24.

Example 4.4.13 (Small scale evaluation of recursion for 3-restricted min-wise inde-
pendent families). We can rely on the base case C(4) = 6 by Remark 4.3.11. For
L16 = (q3, q2, q1) = (16, 8, 4), applying the recursion for the cardinalities pointed out
in Remark 4.3.11 implies C(q2) = C(8) = 2(q1 + 1)C(q1) = 10 · 6, and consequently
C(16) = 2 · (8 + 1) ·10 ·6 = 180 ·6. Employing the alternative sequence L64 = (64, 8, 4), we
get C(64) = 2 · (8 + 1) · 60 = 180 · 6. Finally, when choosing L256 we obtain C(16) = 10 · 6
and therefore C(256) = 340 · 6.

In the previous examples, for each number n, there is an optimal choice for Lq leading
to the smallest family obtainable via the recursive constructions (hereby we use the
monotonicity of PSCAs, see Lemma 2.3.10, to obtain bounds for smaller and more
general n). Smallest herewith obtainable upper bounds for the resulting g(n, 4)-values
are assembled in Table 4.1. To get an impression of the quality of these bounds, these
are stated jointly with other values established in the literature. In Table 4.1 we can
observe that the considerations in Remark 4.4.10 lead to an improvement of the number
g(n, 4) obtained in [GW22] for five values. Hereby, the bounds are reduced by a factor of
up to 7.5. Afterwards we assemble in Table 4.2 the values obtained for bounds of g(n, k).
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n Bound in [GW22]
(best known)

Bound by optimized recursive
construction in Remark 4.4.10

5 1 1
6 1 672
7 2 672

8–12 18 –
13 234 –

14–17 5040 672
18–21 5040 3 139 584

22 18 480 –
23 425 040 –
24 10 200 960 3 139 584

25-65 / 3 139 584
66-257 / 23 482 368

Table 4.1: Upper bounds for g(n, 4) (cf. [Iur22]). Entries beating best-known values are
in bold print.

n Best known bound
(with reference)

Bound by optimized recursive
construction in Remark 4.3.11

4 1 1
5–7 [Yus20];[NJL22, GW22] 2 10

8 [GW22] 3 _
9 [NJL22] 4 _

10–12 [GW22] 6 _
13–14 [GW22] 7 _
15–16 [GW22] 16 10
17–19 [GW22] 19 180
20–32 [GW22] 96 180
33–64 / 180

65–256 / 340

Table 4.2: Upper bounds for g(n, 3). Entries beating best-known values are in bold print.

Remark 4.4.14. Lastly, for completing the discussion on asymptotics, we anticipate
some considerations on the Levenshtein construction in Chapter 6: We remark that
g(n,n− 1) = 1; in other words, the super-exponential amount of (n− 1)! permutations is
enough to host an optimal PSCA of strength n− 1 (of multiplicity 1).
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4.5 Comparison of bounds
We collect in Table 4.3 best bounds encountered in the present chapter for differently
strong ”forms of k-scramblingness“ that families of permutations can satisfy. It should
be noticed that the bounds are asymptotically sharp, i.e., Θ(log2 log2 n) (respectively
Θ(log2 n)) for (completely) k-scrambling permutations, whereas for sizes of PSCAs/min-
wise independent families with fixed parameter k there is an asymptotic gap of polynomial
magnitude.

Property Lower bound Upper bound
k-scrambling (1 + on(1)) log2 log2 n k2k(1 + on(1)) log2 log2 n

3-scrambling (1 + on(1)) log2 log2 n (1 + on(1)) log2 log2 n

completely k-scrambling (k−1)!
log2 e

(1 + on(1)) log2 n
k

log2
k!

k!−1
(1 + on(1)) log2 n

completely 3-scrambling 2 ln (2)(1 + on(1)) log2 n 2(1 + on(1)) log2 n

k-restr. min-wise independ. 1+on(1)
⌊k/2⌋⌊k/2⌋n

⌊k/2⌋ 2k((k − 1)!)k nk

3-restr. min-wise independ. ——– 3
√
e(1 + on(1)) · n(log2 n)2

4-restr. min-wise independ. ——– 6
√
e(1 + on(1)) · n(log2 n)3

min-wise independ. en−on(1) en−on(1)

strength-k PSCA (size) !⌊k/2⌋
⌊k/2⌋!(1 + on(1))n⌊k/2⌋ nO(k2/ ln k)

strength-3 PSCA (size) ——– 3
√
e(1 + on(1)) · n(log2 n)2

strength-4 PSCA (size) ——– 3e(1 + on(1))n3(log2 n)6

strength-(n− 1) PSCA (size) (n− 1)! (n− 1)!

Table 4.3: Summary of bounds encountered in this chapter. Dashes indicate that
the more general bound (arbitrary k) should be consulted. Coefficients in bold print
highlight improvements pointed out. The results stated for PSCAs are valid for rankwise
independent families, too.
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CHAPTER 5
Constructions of completely

scrambling families

In the present chapter, we focus on construction algorithms aiming to generate completely
scrambling families of permutations small cardinality. It is convenient to describe some
of the constructions in the language of SCAs. The development of constructions for the
regularized case is discussed in the language of PSCAs in the next chapter. A dedicated
section discusses a particularly convenient and elegant construction technique due to
Tarui [Tar08] for the special case of strength three. The chapter is concluded with a brief
summary of other approaches proposed throughout the literature.

5.1 Deterministic polynomial time construction keeping
asymptotic bounds

This section deals with a construction method due to Chee et al. [CCHZ13] which
provides a deterministic polynomial time algorithm for generating actual instances of
completely k-scrambling families (hereby Spencer’s asymptotic upper bound (4.14) will
not be exceeded). In fact, the upper bound derived via the probabilistic method in
Chapter 4 does not provide information on how to come up with completely k-scrambling
families. We make explicit some argumentation steps which are kept short in [CCHZ13].

Some auxiliary results will be first explained. We make use of the set

COVq := {π ∈ Sn : q is contained as subsequence in π} . (5.1)

Lemma 5.1.1. Consider A ⊆ Sn,k. The expected number of members of A, which are
contained as subsequence by a permutation π ∈ Sn chosen uniformly at random, equals
|A|/k!.
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5. Constructions of completely scrambling families

Proof. Formally, this can be seen by

E
π∈Sn

∑
q∈A

1COVq (π)

 =
∑
q∈A

E
π∈Sn

[
1COVq (π)

]
=
∑
q∈A

1
k! = |A|

k! . (5.2)

Let A ⊆ Sn,k be fixed. For m ≤ n and r ∈ Sn,m, consider the quantity

EC(r) := E
π∈Sn∩COVr

[∑
u∈A

1COVu(π)
]

, (5.3)

which captures the expected number of sequences in A that are contained as subsequence
by a permutation randomly drawn from COVr (with uniform probability).

Lemma 5.1.2. Let u = (u1, . . . ,uk) ∈ Sn,k, r = (r1, . . . , rm) ∈ Sn,m. Let α1, . . . ,αℓ be
pairwise distinct symbols satisfying firstly,

{α1, . . . ,αℓ} = {u1, . . . ,uk} ∩ {r1, . . . , rm} (5.4)

and secondly, that (α1, . . . ,αℓ) is a subsequence of u. Then,

E
π∈Sn∩COVr

[1COVu(π)] =
{
ℓ!
k! , if (α1, . . . ,αℓ) is subsequence of r
0, otherwise

. (5.5)

Proof. If u and r place the αi in a different order, then clearly COVu ∩COVr = ∅ and the
expectation vanishes. Otherwise, the expectation is taken over permutations containing
r as subsequence, and consequently containing (α1, . . . ,αℓ) as subsequence. In order
to contribute to the expectation, the remaining symbols of u have to occur between
suitable αj ’s and in the correct order among themselves; this occurs with probability

1
(ℓ+1)(ℓ+2)···(ℓ+k−ℓ) = ℓ!/k!.

Theorem 5.1.3. Let A ⊆ Sn,k. There exists a sequence Q1, . . . ,Qn whose members lie
in ⋃i≥1 Sn,i and satisfy the following requirements.

(i) Qi ∈ Si,i ⊆ Sn,i, i = 1, . . . ,n.

(ii) Qi is a subsequence of Qi+1, i = 1, . . . ,n− 1.

(iii) EC(Qi) ≤ EC(Qi+1), i = 1, . . . ,n− 1.

Proof. Q1 is forced to be the singleton tuple (1). Suppose we have Qi ∈ Si,i. We wish to
find Qi+1 ∈ Si+1,i+1 satisfying (iii). Therefore, it remains to figure out which are feasible
index positions j, j = 0, . . . ,n, after which the symbol i+ 1 can be inserted in Qi in order
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5.1. Deterministic polynomial time construction keeping asymptotic bounds

to obtain a candidate for Qi+1. Denote by {C0, . . . ,Ci} ⊆ Si+1,i+1 the corresponding set
of candidates. We show that any choice

Qi+1 ∈ argmaxC∈{C0,...,Ci} EC(C) (5.6)

meets the requirement (iii). In fact,

EC(Qi) = E
π∈Sn∩COVQi

[∑
u∈A

1COVu(π)
]

= i!
n!

 ∑
(π,u)∈COVC0 ×A

1COVu(π) + . . .+
∑

(π,u)∈COVCi
×A

1COVu(π)


= i!

(i+ 1)!

(i+ 1)!
n!

∑
(π,U)∈COVC0 ×A

1COVu(π) + . . .

+(i+ 1)!
n!

∑
(π,u)∈COVCi

×A
1COVu(π)


= 1
i+ 1

i∑
j=0

EC(Cj).

This means that there must exist an index (especially a maximizing index) j such that
EC(Qi) ≤ EC(Cj).

Corollary 5.1.4. For A ⊆ Sn,k it is possible to find in polynomial time (polynomial in
n) a permutation π ∈ Sn covering a fraction of at least 1

k! members of A.

Proof. Executing the steps in the proof of Theorem 5.1.3 leads to the element Qn ∈
Sn,n which by transitivity satisfies EC(Qn) ≥ EC(Q1) ≥ 1

k! |A| (the lowest bound is a
consequence of evaluating (5.3) for r = (1) ∈ Sn,1, cf. also (5.2)). It remains to show how
the calculation of the values EC(Cj) can be done efficiently, in order to find a maximizer
(5.6) in polynomial time. This can, however, be achieved by noticing that

EC(Cj) = E
π∈Sn∩COVCj

[∑
u∈A

1COVu(π)
]

=
∑
u∈A

E
π∈Sn∩COVCj

[1COVU
(π)] (5.7)

is a sum of |A| ≤ n!
(n−k)! ≤ n

k summands each of which can be determined in linear time
by employing the identity (5.5) per summand. Such a sum has to be calculated at most
for n candidate permutations Cj .

At this point, all preparatory steps for an efficient construction have been concluded. We
now put them together.

53



5. Constructions of completely scrambling families

Theorem 5.1.5 ([CCHZ13]). Let n ≥ k, where k is fixed. There exists a polynomial time
(polynomial in n) algorithm to construct a d-family in SCA(n, k)1 such that Spencer’s
upper bound is maintained, i.e., d ≤ k/ log2

k!
k!−1 · log2 n+ 1.

Proof. The procedure is given in Algorithm 1. It remains just to check its run time:
The auxiliary routine FindBestCandidate runs in polynomial time by Corollary 5.1.4.
The size of the output family will depend on the number of iterations in the while loop
of the algorithm. We show that the latter number is only logarithmic in n: After the
ℓ-th iteration, by Corollary 5.1.4, it will be granted |A| ≤

(
k!−1
k!

)ℓ
|Sn,k|, which is strictly

smaller than 1 certainly as soon as ℓ > log2

(
n!

(n−k)!

)
/ log2

(
k!
k!−1

)
. The returned family

will possess cardinality d ≤ ⌈log2 (n!/(n− k)!) / log2 (k!/(k!− 1))⌉. Therefore, Spencer’s
bound is maintainable deterministically within polynomial overall run time.

Remark 5.1.6. We emphasize that in the previous proof the incorporation of the fact
that |A| is integral by iteration leads to slightly sharpened bounds (cf. [CCHZ13]). As
experiments in [CCHZ13] show, typically, maximizers slightly exceeding the expectations
are found within the iterations and therefore, in praxis, even lower bounds result from the
entire constructive procedure.

Another observation due to [CCHZ13] is that ”iterations with reversals“ asymptotically
lead to a slight improvement. Hereby, one would replace line 6 of Algorithm 1 by
F ← F ∪{π,π ◦ ρ} (with the reversing permutation ρ(i) = n− i+1). The successive line
in the algorithm would be adapted accordingly in order to add to D also the k-sequences
covered by π ◦ ρ. The idea goes back to [KHL+12] and exploits the fact that reversion
allows to obtain per iteration a second maximizer without additional computational costs.
Surprisingly, an empirical study due to [CCHZ13] shows that for actual construction
purposes, when k = 3, n ≤ 90, this supposed improvement actually produces families of
larger sizes. For k ∈ {4, 5}, n ≤ 90, on the other hand, a profit in size reduction seems
almost consistently to emerge – the gain, however, seems of negligible magnitude. It is
still unsolved what underlying mechanisms this paradoxical behavior for small n is due
to (cf. [CCHZ13]). The adaptation of Theorem 5.1.5 incorporating reversals leads to the
following bound.

Theorem 5.1.7 ([CCHZ13]). Let n ≥ k, where k is fixed. There is an algorithm,
whose runtime is polynomial in n, to generate a d-family of completely k-scrambling
permutations with

N∗(n, k) ≤ d ≤ 2 log2

(
n!

(n− k)!

)
/ log2

(
k!

k!− 2

)
.

1By Lemma 2.2.9 we can easily (linear time) convert it to a completely k-scrambling family.
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5.2. Tarui’s construction for strength three

Algorithm 1 Deterministically keeping Spencer’s bound
Input: Permutation length n ∈ N×, strength k ≤ n
Output: SCA of strength k over the symbol set [n]

1: procedure DerandomizedSpencer(n, k)
2: F ← ∅
3: A← Sn,k
4: while A ̸= ∅ do
5: π ← FindBestCandidate(A)
6: F ← F ∪ {π}
7: D ← {x ∈ Sn,k : x is contained as subsequence in π}
8: A← A \D
9: return F

10: procedure FindBestCandidate(A)
11: w = (1) ▷ (tuple of length 1)
12: for i = 2, . . . ,n do
13: for j = 0, 1, . . . , i do
14: Let Cj , be the word resulting from w by inserting symbol i in w

directly after position j.
15: Evaluate EC(Cj), according to (5.7) using simplification (5.5)
16: w ← argmaxC∈{C0,...,Ci} EC(C) ▷ Pick first (or an arbitrary) maximizer
17: return w

5.2 Tarui’s construction for strength three

Despite the fact that (completely) k-scrambling permutations and their properties were
already analyzed in the 1950s (cf. [Dus50]) respectively 1970s (cf. [Spe71]), it is rather
surprising that the following construction technique for k = 3 due to J. Tarui was only
discovered in 2005. For higher values of k no comparable constructive approaches seem
to be available and it is an open question to find such ones.

Theorem 5.2.1 (Tarui, [Tar08]). For fixed q ∈ N×, let f(q) denote the maximum value
attainable by n such that there exists a completely 3-scrambling q-family of permutations
of [n]. Then, f(q) ≥

(⌊q/2⌋
⌊q/4⌋

)
.

Proof. Let r := ⌊q/2⌋ and choose U = {A1, . . . ,Am} ∈ 2{1,...,r} to be an m-set satisfying
the antichain property with respect to set inclusion. By choosing U :=

( [r]
⌊r/2⌋

)
we assure

ourselves that U can be chosen at least of size
( r

⌊r/2⌋
)
. In the following we introduce

2r strict linear orders on the set U : The first group of strict linear orders, <x, for
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5. Constructions of completely scrambling families

x = 1, . . . , r, is determined by

Ai <x Aj :⇔


(x ∈ Ai ∧ x ̸∈ Aj)

∨ (x ∈ Ai ∩Aj ∧ i < j) ,
∨ (x ̸∈ Ai ∪Aj ∧ i < j)

(5.8)

whereas the second group, ≺x, for x = 1, . . . , r, is given by

Ai ≺x Aj :⇔


(x ∈ Ai ∧ x ̸∈ Aj)

∨ (x ∈ Ai ∩Aj ∧ i > j) .
∨ (x ̸∈ Ai ∪Aj ∧ i > j)

(5.9)

The only difference within the defining logical disjunctions for <x and ≺x is the orientation
of the ”<“ sign appearing in the second and third operand. By their nature, <x and ≺x
are strict linear orders.

The claim is now that <x and≺x, read as permutations of U , collectively form a completely
3-scrambling (2r)-family of permutations of [m]. This is equivalent to showing that there
is a linear ordering ρ among <1, <2, . . . , <r,≺1,≺2, . . . ,≺r such that Ai ρ Aj ρ Ak applies
for an arbitrary index selection (i, j, k) ∈ Sm,3. This fulfillment of the latter claim is
shown as follows: By the antichain property, the existence of an element x ∈ Ai \ Ak
is granted. We claim that either according to <x, or according to ≺x, the sequence
(Ai,Aj ,Ak) forms an ascending chain. Indeed, if x ∈ Aj , we have that (Aj ,Ak) is
ascending for both orders. However, to obtain that also (Ai,Aj) is ascending, we have to
pick <x iff i < j.

The remaining case x ̸∈ Aj is handled accordingly and the assertion ensues.

Remark 5.2.2. We observe that Tarui’s construction cannot be optimized by individuation
of a longer antichain in the previous proof: Indeed, Sperner’s theorem (see [And87,
Theorem 1.2.1]) affirms that any antichain of [n] (with respect to set inclusion) of
maximum cardinality corresponds to

( [n]
⌊n/2⌋

)
or
( [n]

⌈n/2⌉
)
.

From Theorem 5.2.1, compare [Tar08], we get the improved logarithmic upper bound for
completely 3-scrambling families of permutations already mentioned in Theorem 4.2.3.
Moreover, Tarui was able to prove the following fact (where, however, the value of the
limit is still unknown).

Theorem 5.2.3 ([Tar08]). The limit limn→∞
N∗(n,3)
log2 (n) exists.

In Algorithm 2 we provide a procedure useful to actually generate scrambling permutations
following the strategy presented in the proof of Theorem 5.2.1.
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5.3. Generation of k-scrambling permutations: further approaches

Algorithm 2 Generating 3-scrambling permutations via Tarui’s construction
Input: Permutation length n ∈ N×

Output: Completely 3-scrambling family of permutations of [n]
1: procedure Tarui(n)
2: q ← min

{
q ∈ N :

(⌊q/2⌋
⌊q/4⌋

)
≥ n

}
▷ Determine the size of the output family

3: r ← ⌊q/2⌋
4: S ← {c ∈ [q] : c > n} ▷ Keep track of superfluous symbols

5: ▷ Construct the ”universe“, a set on which we want to consider permutations

6: U ← {A ⊆ [r] : |A| = ⌊r/2⌋} ⊆ 2[r] ▷ Technically, consider U as ordered list
[A1, . . . ,Aℓ] with ℓ =

( r
⌊r/2⌋

)
, where the

listed items are lexicographically ordered

7: L← {} ▷ Initialize empty list of permutations
8: for x = 1, . . . , r do
9: Bx ← [i : x ∈ Ai, i = 1, . . . , ℓ] ▷ (ordered list)

10: Cx ← [i : x ̸∈ Ai, i = 1, . . . , ℓ] ▷ (ordered list)

▷(Standard concatenation of lists and the reversal of a list is used below)
11: Dx ← Concat(Bx,Cx)
12: D′

x ← Concat(Rev(Bx),Rev(Cx))
13: L← L ∪ {Dx,D′

x}
14: Eliminate from each of the elements of L the occurrences of c ∈ S

15: return
{
π−1 : π ∈ L

}
▷ If the output is preferred as SCA,

16: then inversion has to be omitted here.

5.3 Generation of k-scrambling permutations: further
approaches

In this section, we collect approaches having already been pursued in the literature to
provide a way to generate completely k-scrambling permutations. As the interest has
shifted from completely scrambling permutations to sequence covering arrays due to
their practical applicability, most recent construction techniques are tailored to the latter
concept.

In [BTI12, BEI+12] permutations are handled as linear orders and processed via their
incidence matrices. On these matrices of Boolean entries, Boolean constraints determining
a strict linear order are imposed (irreflexibility, asymmetry, and transitivity). When com-
paring any two symbols x, y ∈ [n], the order relation has hereby the function to determine
which is the lefter-most element in the notation of the represented permutation as tuple.
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5. Constructions of completely scrambling families

Within this framework a fixed amount of initially kept indeterminate permutations, i.e.,
incidence structures can be provided as initial guess. Answer set programs additionally
incorporating constraints enforcing (here in the language of SCAs) the coverage of each
s ∈ Sn,k by at least one of the incidence structures are designed and passed to suitable
solving software. When no solution is found during the solving process, the amount of
initially guessed incidence structures is successively increased. This approach is mixed
with a greedy strategy in [BEI+12].

A couple of bio-inspired heuristic algorithms have been applied (heuristics here address
the problem how to promisingly choose the next permutation within a ”one permutation
at a time“ procedure as Algorithm 1): A search via a ”bees algorithm“ in [MKR12], a
”fish swarm algorithm“ is presented in [RSK+20], and a ”elitist-flower pollination“-based
strategy in [NZAA18]. Apart from these works it seems that methods dealing with
strength five (or higher strengths) are rarely represented in literature.

An interesting finding is a product construction due to [CCHZ13]: For strength k = 3, if
one has a so-called properly signed d-family of completely 3-scrambling permutations of
[n] and a second properly signed d̃-family of completely 3-scrambling permutations of [ñ],
then a (d+ d̃)-family of completely 3-scrambling permutations of [nñ] can be constructed
from them (being properly signed as well). Starting from small exemplars, this approach
can be used to generate larger instances outperforming in terms of optimality of cardinality
all methods described in the current section [CCHZ13]. Even Tarui’s construction being
highly efficient could be beaten as soon as n ≥ 40.

Remark 5.3.1. It seems to be hard to find optimal SCAs, i.e., on N∗ rows. In [BEI+12]
a variant of the problem formulation is considered (called ”generalized event sequence
testing problem“) and shown to be NP-complete. In [CCHZ13], variations of the problem
requiring the satisfaction of additional side constraints, such as prohibiting coverage of
certain pattern of subsequences are classified as difficult to solve by pointing e.g. to the
NP-complete betweenness problem (cf. [Yan82]).
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CHAPTER 6
Constructions of Perfect Sequence

Covering Arrays

6.1 Construction via Varshamov-Tenengolts codes

Investigating the consequences of his study of the Varshamov-Tenengolts codes in [Lev91],
Levenshtein noted connections to existence assertions for objects in design theory (such
as directed and undirected Steiner systems). We rely here on the presentation in [Na21],
which contains Levenshtein’s conclusions restricted and tailored to the setting of PSCAs.

As special case of so-called double order relations appearing in [Lev91], in [Na21] the
following notion is introduced.

Definition 6.1.1. Let σ = (σ1, . . . ,σn) ∈ Sn. Let us write F (σ) = (f1, . . . , fn−1) ∈ Bn−1
2

for the (n− 1)-tuple of Boolean values fj, answering if (σj ,σj+1) is a falling sequence,
i.e.,

fj =
{

1, sj > σj+1

0, sj < σj+1
.

We note that, in general, F (σ) does not reveal σ, as simple counterexamples can be
found. However, the following elementary properties hold.

Lemma 6.1.2. Consider σ, τ ∈ Sn and r ∈ Sn,n−1 such that r is a subsequence of σ.
The following assertions are valid.

(i) F (σ) ̸= F (τ) implies σ ̸= τ .

(ii) F (r) ∈ {0, 1}n−2 is a subsequence of F (σ) ∈ {0, 1}n−1.
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6. Constructions of Perfect Sequence Covering Arrays

Proof. (i) is clear. For (ii), if r arises from σ by deletion of one entry, say the one at
position i, we have

σ = (σ1, . . . ,σi−1,σi,σi+1, . . . ,σn) and r = (σ1, . . . ,σi−1,σi+1, . . . ,σn) (6.1)

with corresponding F -values (c ∈ {0, 1})

F (σ) = (f1, . . . , fi−1, fi, fi+1, . . . , fn−1) and F (r) = (f1, . . . , fi−2, c, fi+1, . . . , fn−1).
(6.2)

We make a short case distinction on the monotony of the sequence (σi−1,σi,σi+1):

In case (σi−1,σi,σi+1) is monotonic, by transitivity, it will as well be (σi−1,σi+1). There-
fore, c = fi−1 = fi and F (σ) covers F (r).

For the remaining non-monotonic cases, {fi−1, fi} = {0, 1} and therefore, regardless
which value c ∈ {0, 1} attains, again coverage of F (r) by F (σ) ensues.

Theorem 6.1.3. Consider the partition of the symmetric group Sn given by the parts

Ua :=
{
σ ∈ Sn : F (σ) ∈ VTn−1,a

}
, a = 0, . . . ,n− 1. (6.3)

Then, for arbitrary a, the elements of Ua form an instance of PSCA(n,n− 1, 1).

Proof. Let n and a be fixed. First, we observe that no element s ∈ Sn,n−1 is covered
more than once: Seeking a contradiction, assume two distinct y, z ∈ Ua ⊆ Sn,n both cover
the tuple s. Then, by Lemma 6.1.2, F (s) is a subsequence of F (y) and of F (z) (forming
two different binary words). This is impossible, as F (y),F (z) ∈ VTn−1,a ⊆ Bn−1

2 and
VTn−1,a is a Bn−2

2 -perfect code correcting single deletions (see Theorem 3.3.7).

Each u ∈ Ua will cover n subsequences s ∈ Cu ⊆ Sn,n−1. Moreover, the sets of covered
subsequences Cu, Cũ are mutually disjoint for differing u, ũ. Consequently, the members
of Ua cover a proportion of |Ua|n

n! of the subsequences in Sn,n−1. To show the claim it
remains to prove |Ua| = (n− 1)!.

The proof of the latter relies on the collective behavior of Ua, for all a = 0, . . . ,n− 1. By
contradiction, if there was ã ∈ {0, . . . ,n− 1} such that |Uã| < (n−1)!, then the following
conflict would arise:

n! =
n−1∑
a=0
|Ua| = |Uã|+

∑
a̸=ã
|Ua| (6.4)

< (n− 1)! +
∑
a̸=ã
|Ua|

≤ (n− 1)! + (n− 1)(n− 1)! = n!. (6.5)

Hereby, in (6.4) we used the partitioning property of VTn−1,a, and in (6.5) the fact that,
by the injectivity shown in the first part of the proof, |Ua| ≤ (n− 1)! .

60



6.2. Computational constructions for PSCAs

Remark 6.1.4. According to [MvT99], in the 1990s, Levenshtein conjectured (originally
referring to Steiner systems, see Section 2.3) that a PSCA(n, k, 1) exists iff n ∈ {k, k + 1}
(k ≥ 3). In [MvT99] the conjecture was computationally falsified by constructing a
counterexample with n = k + 2 = 6.

Example 6.1.5. The condition (6.3) of the previous theorem provides a precise instruction
on how to construct a PSCA. We can take the Varshamov-Tenengolts code VT4,0 from
Example 3.3.6 which yields the subsequent PSCA(5, 4, 1). The set of all permutations from
S5 whose F -sequence (f1, . . . , f4) coincides with the first codeword 0000 ∈ VT4,0 is given
by {(1, 2, 3, 4, 5)} and is reflected in the first row in the below matrix; the remaining three
codewords are represented by the groups of rows with index scope 2-12, 13-23, respectively
24-24.


1 1 1 1 2 2 2 3 3 3 4 4 2 2 3 3 3 4 4 4 5 5 5 5
2 4 5 5 4 5 5 4 5 5 5 5 1 1 1 1 2 1 1 2 1 1 2 4
3 3 3 4 3 3 4 2 2 4 2 3 3 4 2 4 4 2 3 3 2 3 3 3
4 2 2 2 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 4 4 4 2
5 5 4 3 5 4 3 5 4 2 3 2 4 3 4 2 1 3 2 1 3 2 1 1


T

6.2 Computational constructions for PSCAs

As the previous chapter discussed only PSCAs for the case k = n− 1, we now turn to the
more general case, for which –according to the current state of knowledge– optimal PSCAs
can only be found by expensive computational backtracking approaches. In [MvT99]
Mathon and van Trung, relying on a backtracking algorithm of [Mat97], computed
various combinatorial designs including PSCA(n, k,λ) with λ = 1. In particular, two
non-equivalent examples of a PSCA(6, 4, 1) are found by this approach – moreover, they
figured out that for those parameters (n, k,λ) = (6, 4, 1) only PSCAs equivalent to one
the two found examples exist. The basic framework of their algorithm is quite simple:
As for some of the seen approaches for the generation of scrambling permutations, it is
tried to build the PSCA permutation by permutation. For this, whenever a permutation
is added, it is checked, for each of the

(n
k

)
sequences s ∈ Sn,k hereby getting covered, if

the coverage is novel. If the answer is affirmative, the check is passed and, recursively, all
candidates for the next rows are processed accordingly.

It is immediate how the algorithm can be generalized to search for PSCA(n, k,λ), λ ≥ 1;
this is presented in [Na21] with an extensive discussion and some details among which e.g.
an appropriate way to keep track of the coverage of subsequences via incidence vectors.

The most striking aspect in [MvT99] is the tentative to perform the search with an
imposed group structure: More precisely, it is assumed that there is a subgroup H of the
symmetric group Sn such that the elements of the sought-after PSCA can be partitioned
in a number of equally sized selections of permutations, each of which corresponds to a
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6. Constructions of Perfect Sequence Covering Arrays

left/right coset1 of H ≤ Sn. This incorporation of structure of course potentially prevents
the algorithm from finding all types of PSCA(n, k, 1) (or PSCA(n, k,λ), λ ≥ 1 in [Na21]).
In particular, the assumption is in general not suitable for showing non-existence results.
However, the assumption proves to be extremely useful in both [MvT99] and [Na21].
In the latter, novel exemplars, i.e., n = 6, 7, of the type PSCA(n, 3, 2) are herewith
calculated, partially settling Yuster’s [Yus20] question about the existence of PSCAs with
alphabet size n > 5 and (k,λ) = (3, 2). Notice, that the previously mentioned subgroup
H must, in order to allow a packing of permutations into (equally large) cosets, possess a
group order being a divisor of λk!. Moreover, instead of examining the feasibility of each
subgroup H ≤ Sn for such a construction, it is enough to check just one representative
per each conjugacy class of subgroups of Sn (cf. [Na21]).

A recent work [GW22] performs an exhaustive search by trying to store all PSCAs over
n symbols (one representative per equivalence class) and to keep track of all possible
PSCAs over n+ 1 symbols obtainable by inserting the symbol n+ 1 into the rows. For
strength k = 3, they reached as extremal case (λ,n) = (3, 8), afterwards the search
exceeded computation capabilities.

Example 6.2.1. In [Na21, p. 42], the following representative A of type PSCA(7, 3, 2)
is found. It is the union of four right cosets of the subgroup

H := ⟨(3, 2, 7, 5, 6, 4, 1)⟩ = {(1, 2, 3, 4, 5, 6), (3, 2, 7, 5, 6, 4, 1), (7, 2, 1, 6, 4, 5, 3)} ≤ S7.

Consider α = id ∈ S7, β = (1, 5, 7, 3, 4, 2, 6), γ = (4, 2, 6, 1, 7, 3, 5), and δ = (4, 7, 5, 6, 1, 2, 3)
which induce the four right cosets of H,

Hα = {(1, 2, 3, 4, 5, 6, 7), (3, 2, 7, 5, 6, 4, 1), (7, 2, 1, 6, 4, 5, 3)} ,
Hβ = {(1, 5, 7, 3, 4, 2, 6), (3, 6, 1, 7, 5, 2, 4), (7, 4, 3, 1, 6, 2, 5)} ,
Hγ = {(4, 2, 6, 1, 7, 3, 5), (5, 2, 4, 3, 1, 7, 6), (6, 2, 5, 7, 3, 1, 4)} ,
Hδ = {(4, 7, 5, 6, 1, 2, 3), (5, 1, 6, 4, 3, 2, 7), (6, 3, 4, 5, 7, 2, 1)} .

We set A := Hα ∪Hβ ∪Hγ ∪Hδ and observe that every sequence in S7,3 is covered
twice.

6.3 Feasible embeddings of m-sequences
Let us denote the set of all ordered partitions of the number i consisting of j non-negative
integer parts by Nj(i) ∈ Nj , e.g., N2(4) = {(0, 4), (4, 0), (1, 3), (3, 1), (2, 2)}.

In the following, we study a certain collective behavior resulting from insertion of k −m
symbols into a sequence s ∈ Sn,m considered as base case to obtain tuples in Sn,k (mainly
m ≤ k − 1 will be of interest; nevertheless we pose the following definition generally.

1The selections are either all left cosets of H or all right cosets of H. We clarify that the left H-coset
represented by a is given by aH := {a(h(·)) : h ∈ H} ≤ Sn. In contrast, the right H-coset represented by
a is given by Ha := {h(a(·)) : h ∈ H}.
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6.3. Feasible embeddings of m-sequences

Definition 6.3.1 (Gap-lengths describing vector). For a permutation π ∈ Sn containing
s = (s1, . . . , sm) ∈ Sn,m as subsequence, we consider, for j = 1, . . . ,m, the count of
symbols in π occurring between the appearances of sj, sj+1. Collecting all such ”gap
lengths“ we obtain the gap-lengths describing vector given by

gdv[s,π]
j :=


π−1(sj+1)− π−1(sj)− 1, j = 1, . . . ,m− 1
π−1(s1)− 1, j = 0
n− π−1(sm), j = m

.

By its nature, gdv[s,π] is a member of Nm+1(n−m).

Example 6.3.2. Let s = (4, 1), π = (2, 4, 1, 3, 5) ≈ "∗4 1∗∗". Then, gdv[s,π] = (1, 0, 2).

Definition 6.3.3 (Bag of gap-length describing vectors, BGDV). Let n ≥ m and
A ⊆ Sn be a d-family. Consider s = (s1, . . . , sm) ∈ Sn,m and enlist the permutations of
A containing s as subsequence by π1, . . . ,πℓ. We define the bag of gap-length describing
vectors of the pattern s with respect to A , denoted as BGDV(s, A ), as the multiset{

gdv[s,πi] : i = 1, . . . , ℓ
}

. Formally, BGDV(s, A ) associates to each u ∈ Nm+1(n−m) a
multiplicity µ(u, BGDV(s, A )) ∈ {0, . . . , d}.

Lemma 6.3.4. Let n ≥ k and m ≤ k − 1. Assume that A ∈ PSCA(n, k,λ) and that
s = (s1, . . . , sm) ∈ Sn,m is fixed. Then, BGDV(s, A ) satisfies the equations

∑
u∈Nm+1(n−m)

µ(u, BGDV(s, A ))
m+1∏
ℓ=1

(
uℓ
vℓ

)
= λ

(n−m)!
(n− k)! ∀v ∈ Nm+1(k −m). (6.6)

Proof. In string notation,2 each subsequence w ∈ Sn,k containing s as subsequence
can be written as w = {∗}v1 s1 {∗}v2 · · · {∗}vm sm {∗}vm+1 , for an appropriate choice
v = (v1, . . . , vm+1) ∈ Nm+1(k −m). The sum in (6.6) does nothing else than counting,
for a fixed such ”type“ v, the supersequences of s of that type covered by A . It is easy to
see that in Sn,k there are precisely (n−m)(n−m− 1) · · · (n− k+ 1) = (n−m)!/(n− k)!
such ”type-v supersequences“ being covered λ times by A , explaining the right hand
side of (6.6). The equality is fulfilled for an arbitrary partition v ∈ Nm+1(k −m) such
that we arrive at a large number of equations, whose satisfaction is necessary for being a
PSCA.

Assume we want to search for PSCAs A ⊆ Sn counting λk! permutations. In principle,
we can make use of the previous lemma: Pre-calculate (without loss of generality) for
the tuple s = (1, . . . ,m) ∈ Sn,k all solutions for BGDV(s, A ) of (6.6), and store these
in a collection B. Now, the design of a backtracking algorithm using the information
of B is conceivable. In principle it works as follows: It adds one permutation at the

2We use ∗ as wildcard symbol and {∗}ℓ for denoting the string composed of ℓ wildcards.
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6. Constructions of Perfect Sequence Covering Arrays

time and prunes branches of the search tree immediately when already the conclusion
BGDV(s, A ) ̸∈ B can be verified for a single (s1, . . . , sm) ∈ Sn,m (in general, this will
happen before the λ permutations, that cover s, have been added to the current branch
of recursion).

However, an efficient implementation of such an algorithm poses a lot of difficulties and
requires a sophisticated memory management (we expect a huge set B). Furthermore, it
remains questionable if it really could improve on algorithms of simpler design (cf. the
backtracking algorithm in [Na21, NJL22]). For the rest of the section, we limit ourselves
to use this concept to force a simplification of the problem, i.e., incorporation of an
invariance assumption. The assumption is inspired by the search via cosets [Na21, NJL22]
where the enforcement of more structure demonstrates to be a successful speed up for
the search.

We analyze the special case that BGDV(s, A ) is invariant under permutations of s, i.e.,

BGDV(s, A ) = BGDV((sψ(1), . . . , sψ(m)), A ) ∀ψ ∈ Sm. (6.7)

We will see, that this requirement permits to search for PSCAs only in case they satisfy
particular constraints concerning their dimensions. Examples with small n = 5, k = 4,
and m = 3 let us suspect that (6.7) is an unnaturally strong requirement for m > 2
(probably enforcing the entire symmetric group) – therefore we restrict ourselves to the
case m = 2.

Lemma 6.3.5. Let n ≥ k ≥ 3 and let A ∈ [n]λk!×n represent A ∈ PSCA(n, k,λ).
Assume that the gap-length describing vector for any s = (s1, s2) is invariant under the
flipping ψ : (s1, s2) 7→ (s2, s1) (i.e., (6.7) is satisfied for m = 2). Then, each column of
A has uniform distribution of the symbols in [n] (cf. also Definition 6.4.1). Moreover, it
follows that λk! is a divisor of n.

Proof. When the BGDV(·, A )-values for (s1, s2) and (s2, s1) are coincident, we have that
if the number of rows of A containing (s1, s2) as subsequence at index positions (p1, p2),
(p1 < p2), is given by ℓ, then the number of rows containing the reversed subsequence
again at positions (p1, p2) is given by ℓ, too. Now, consider the first column of A. If a
symbol in [n] is not contained in that column, then it cannot be contained in any column:
In fact, if it was contained in a such, by reversion it would be present already in the
first. The reversion also ensures that the distribution of symbols of the first column
is ”transferred“ to all successive columns. Hence, if one symbol is underrepresented it
will be as well in the entire matrix A, contradicting the property of A to contain every
symbol equally often. Consequently, also the divisibility condition ensues.

Note that the property assumed in the previous lemma can be paraphrased as follows.

Definition 6.3.6 (Reflection symmetry). For n being a divisor of d and m ≤ n, call a
matrix A ∈ [n]d×m with no duplicate symbols per row3 reflection symmetric, and write

3This means that the rows can be regarded as elements of Sn,m.
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6.3. Feasible embeddings of m-sequences

A ∈ Rd,m, if the following condition holds: For any column indices j1 < j2, the (j1, j2)-
submatrix of A satisfies that if h rows coincide with (a, b) ∈ [n]2, then also h rows coincide
with (b, a). The class of all R ∈ Rd,m, which put their rows in lexicographical order, is
denoted as Rlex

d,m, and we say that such an element R is lex-ordered.

Remark 6.3.7. We used this terming because of the following geometric construction:
Pick two arbitrary columns from a reflection symmetric matrix A, and draw them as
d× 2 table of 2 · d squares in the plane. Identify [n] with a n-set of distinct colors, and
color the cells according to their entries ai,j. Then, there will be a suitable reordering
of the table’s rows such that the resulting drawing is point symmetric with respect to its
barycenter (see Figure 6.1 for an illustration).

Lex-ordering constitutes a canonical form for the elements from Rd,n and allows to define
a bijection to multisets of permutations (which is a common representation of PSCAs, cf.
[Yus20, NJL22, GW22]).

In particular, the previous assumption implies that the focus is directed to the search
within the class of matrices with columnwise equal distribution of the symbols. Let us
abbreviate this class by Ed,n (with n|d). What if we reject reflection symmetry and search
within this larger class? In fact, for selected values such a search has been conducted by
[GW22], where the search for k = 3 was inconclusive already when encountering n = 9.

Before we continue our discussion on the search of PSCAs within Rd,n ⊆ Ed,n, let us add
a brief comment on this class Ed,n.

Remark 6.3.8. Let θ := d/n ∈ N. First let us remark that Ed,n corresponds to the
class of exact (p, q,x;n)-Latin rectangles [AH80], for the choice of parameters x = 1
(single-valued matrix entries), q = 1 and p = θ (p, q determine the vertical, respectively
horizontal, frequency per symbol). These matrices allow multi-valued matrix entries for
x > 1; for (x, p, q) = (1, 1, 1) they correspond to classical n×n Latin squares (cf. [vLW01]
and references therein). Note that the class Ed,n contains at least all matrices resulting
from interweaving the rows of θ exemplars of n × n Latin squares. The growth of the
count L(n) of n× n Latin squares has been subject to many studies4 (cf. e.g. [vLW01])
and is known to be asymptotically equal to

L(n) =
(

(1 + on(1)) n
e2

)n2

.

This suggests that already searching for PSCAs being the composition of collocated Latin
squares might become extremely costly.

In the following, in Algorithm 3, we show how to search recursively for the elements
in R2n,n. For this particular choice of parameters, we can come up with a concise

4However, no closed formula for the count of Latin squares is available for now. The precise count is
known only for n ≤ 11 (see [SI22a]).
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1 2 3 4
1 3 4 2
1 4 3 2
2 1 4 3
2 3 4 1
2 4 3 1
3 1 2 4
3 2 1 4
3 4 1 2
4 1 2 3
4 2 1 3
4 3 2 1





1 2 3 4 5 6
1 4 3 2 6 5
2 1 6 5 4 3
2 5 6 1 3 4
3 5 1 6 2 4
3 6 1 5 4 2
4 1 5 6 3 2
4 6 5 1 2 3
5 2 4 3 6 1
5 3 4 2 1 6
6 3 2 4 5 1
6 4 2 3 1 5



1 2 3 4 5 6
1 4 3 2 6 5
2 5 6 1 3 4
3 5 1 6 2 4
3 6 1 5 4 2
4 6 5 1 2 3
6 4 2 3 1 5
6 3 2 4 5 1
5 3 4 2 1 6
5 2 4 3 6 1
4 1 5 6 3 2
2 1 6 5 4 3

Figure 6.1: Representative of a reflection symmetric PSCA(4, 3, 2) (left), respectively of
a reflection symmetric PSCA(6, 3, 2) (right). The latter PSCA is printed twice, where
the second print illustrates the reflection symmetry with colors for the (1, 2)-submatrix –
after a suitable reordering of rows (see Remark 6.3.7).

n k λ # PSCA(n, k,λ) ∩Rlex
λk!,n

3 3 2 1
6 3 2 26 (after 0.7 secs of computation)
9 3 3 ? (0 after 20h of computation)
4 4 1 1
6 4 1 ≥ 1 (cf. [Na21, Proposition 2.22])
8 4 2 0 (by g(8, 4) > 2, cf. [GW22])
8 4 3 ?

Table 6.1: Count of reflection symmetric PSCAs for different parameter constellations.
The count/non-emptiness is unknown for (n, k,λ) ∈ {(9, 3, 3), (8, 4, 3)}. The experiment
was conducted for k = 3 via a C++ implementation of Algorithm 3 on a laptop equipped
with a AMD Ryzen 5 5500U and 16 gigabytes of RAM running Ubuntu 22.04. Successively
duplicates with respect to lex-ordering were removed. The result for (n, k,λ) = (6, 4, 1)
follows from the fact that there are only 2 non-equivalent PSCAs [MvT99], one of which
is in Rlex

24,6.
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6.3. Feasible embeddings of m-sequences

algorithmic formulation. We note, however, that for every general constellation of
parameters d,n, k,λ (with d = λk! and n|d), the search within the class Rlex

λk!,n can be
tackled (up to computational limits) by a more flexibly designed backtracking algorithm.
In Table 6.1 we inspect the count of PSCAs satisfying reflection symmetry. Finding
a direct construction for such PSCAs, or a strategy to deny existence of such seems
challenging.

Remark 6.3.9. Even if n ∤ λk!, sometimes it is possible to slightly increase n until
divisibility holds. It could then be tried to perform the search for this enlarged alphabet
size, and if solutions are found, we get PSCAs for the original value n by dropping each
symbol not contained in [n]. Divisibility can alternatively be ensured by increasing λ.

We now show how to seek for reflection symmetric PSCAs in R2n,n via systematic
backtracking.

Algorithm 3 Horizontally searching reflection symmetric instances of PSCA(n, k, 2n/k!)
Input: Alphabet size n ∈ N×, strength k ≥ 3, multiplicity λ such that λk!/n = 2
Output: (Empty) list of members in R2n,n ∩ PSCA(n, k, 2n/k!)

1: procedure HorizontalReflectionConstruction(n)
2: Initialize 2n× n matrix A = (aij)ij with blank entries (2n = λk!).
3: Populate first row with (1, 2 . . . ,n)
4: Populate first column with c∗ := (1, 1, 2, 2, . . . ,n,n).

▷ Form the sets of ”allowed positions“ Qi per symbol i, telling in which rows
i can potentially be inserted:

5: Let Qi ← {ℓ ∈ [λk!] : aℓ,1 ̸= i} \ {1} for each i = 1, . . . ,n.

▷Update dictionary of coverage:
6: Let C[x] := 1 for x ∈ {(i1, . . . , ik) : 1 ≤ i1 < i2 < . . . < ik ≤ n}.

7: Recurse(A, t = 2, (Qi)ni=1, C)
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8: procedure Recurse(A, t, Q, C)
9: ▷ A: 2n× n matrix (aij)ij having no blank entries within the first t− 1 columns

10: ▷ t: depth of recursion
11: ▷Q: A n-tuple of subsets in 2[2n] – one subset per symbol in [n]
12: ▷ C: Dictionary updating for each x ∈ Sn,k the multiplicity of coverage

13: ▷ Call u ∈ [2n]n row-partitioning if it selects n row indices u1, . . . ,un
14: guaranteeing (au1,1, . . . , aun,1) = (1, . . . ,n)
15: U ← {u ∈ [2n]n : u is row-partitioning}

16: for u ∈ U do
17: V ←

{
r = (r1, . . . , rn) ∈ Sn : r1 = t = a1,t and uj ∈ Qrj

}
18: for r ∈ V do
19: r̄ ← CompleteColumn(r, u, t, A)
20: Ã← (⃗a1| . . . |⃗at−1|r̄) ∈ [n]2n×t, where a⃗j = (ai,j)ni=1 ∈ [n]2n×1

21: C̃ ← C ▷ Make copy of coverage information

22: if t ≥ k − 1 then
23: Update in C̃ all yet-untracked coverages observable in Ã

24: if
∧t−1
j=2 [(⃗aj |r̄) ∈ R2n,2] then

25: if t = n then
26: if C̃ attests perfectness then
27: L← L ∪

{
Ã
}

▷ PSCA found

28: else
29: ▷ Check for excess coverage
30: if ̸ ∃x : C̃[x] > λ then
31: Q̃i ← Qi \ {j ∈ [2n] : r̄j = i} for each i = 1, . . . ,n.
32: Recurse(Ã, t+ 1, (Q̃i)ni=1, C̃)
33: return L

34: procedure CompleteColumn(r, u, t, A)
35: Find the unique vector r ∈ [2n]n, whose entries

– constitute a reordering of c∗,
– extend r, i.e., r̄u1 = r1, . . . , r̄un = rn, and
– guarantee that the (2n)× 2 matrix ((au(i),t)i∈[n]|r) ∈ R2n,2.

36: return r̄
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6.4. General search with pre-determined distributions

6.4 General search with pre-determined distributions
Columnwise distribution of symbols for PSCAs has been analyzed very recently in [GW22].
In the following we sketch a search based on an assumed columnwise distribution of
symbols (of arbitrary shape). Afterwards, we remark some observations due to [GW22].

Setting m = 1 in Lemma 6.3.4 we obtain as special case the following Lemma 6.4.2
already observed in [GW22].

Definition 6.4.1. Let A = {π1, . . . ,πr} ⊆ Sn. For a symbol x ∈ [n], the (columnwise)
distribution vector of x, denoted d[x], is defined by

d
[x]
j := |{i ∈ [r] : πi(j) = x}|, j = 1, . . . ,n.

Lemma 6.4.2. If A = {π1, . . . ,πλk!} ⊆ Sn lies in PSCA(n, k,λ), then for each symbol
x ∈ [n], the distribution vector must satisfy the equations

n∑
j=1

d
[x]
j

(
j

κ

)(
n− 1− j
k − 1− κ

)
= λ

(n− 1)!
(n− k)! for all κ = 0, . . . , k − 1, (6.8)

n∑
j=1

d
[x]
j = λk!, with d[x] ∈ {0, 1, . . . ,λk!}n . (6.9)

Remark 6.4.3. If (ν1, . . . , νn) ∈ Nn is a solution for d[x] in (6.8), then it is as well its
reversal (νn, νn−1, . . . , ν1). This behavior is expectable due to the invariance of PSCAs
under reversion of all rows (cf. Lemma 2.3.8).

Remark 6.4.4 (A general horizontal construction approach). If for any symbol x ∈ [n]
its frequency per column is fixed, this leads to an idea on how to seek horizontally, i.e.,
column by column, for a PSCA: The first column can be an arbitrary (e.g. lexicographically
ordered) vector respecting the pre-imposed frequencies of symbols. The second column
can be sampled according to its associated distribution, but has furthermore to satisfy the
condition that its entries differ from their left predecessors. In a backtracking approach
columns are recursively added with the goal to reach, in principle, all the distribution
respecting matrices [n]λk!×n corresponding to the leaves in the search tree. The more
columns are already present (depth of the backtracking), the less possibilities (if even any
exist) for the successive column are available. Moreover, to ensure that perfect coverage
is never violated during the transition of the search tree, the information of covered
k-sequences in Sn,k should be carried over and updated, and branches leading to excess
coverage (> λ) should be immediately pruned.

The following lemma shows that determining how to combine distributions is again
a ”packing problem“ describable by a linear equation system to be solved over a high
dimensional orthant of a Cartesian power of N.

69



6. Constructions of Perfect Sequence Covering Arrays

Lemma 6.4.5. Let A be a PSCA(n, k,λ) and let D ⊆ Nn, enumerated by d1, . . . , d|D|,
contain the columnwise distributions obtainable from solving the corresponding system
(6.8)-(6.9). Consider γ1, . . . , γ|D| ∈ N, where γi stands for the count of symbols in [n]
following the column-distribution di. Then,

|D|∑
i=1

γidi = λk!

1
...
1

 ∈ (N×)n, (6.10)

|D|∑
i=1

γi = n. (6.11)

Remark 6.4.6. We notice that finding (all) solutions for (6.10)-(6.11) could be achieved
by finding (all) integral points in the convex polytope formed by the points of Rn satisfying
each of the involved equations/inequalities. Alternatively, a systematic backtracking
approach seems conceivable. Also making use of a CSP5 solver could be a viable option.
In the literature (cf. [HLS10]), we found a hard, closely related (optimization) problem
appertaining to the class of knapsack problems: It is known as multidimensional multiple
choice knapsack problem.

Example 6.4.7. Let n = 5, k = 3, and λ = 2. Searching all points in Nn satisfying the
system (6.8)-(6.9), we obtain that there are only 8 possible columnwise distributions for
any symbol x ∈ [n], more precisely we have

d[x] =


ν1
ν2
ν3
ν4
ν5

 ∈



0
8
0
0
4

 ,


1
6
0
2
3

 ,


2
4
0
4
2

 ,


2
3
3
1
3

 ,


3
2
0
6
1

 ,


3
1
3
3
2

 ,


3
0
6
0
3

 ,


4
0
0
8
0




=: D. (6.12)

We conducted the search by passing the respective equation system via Python to the solver
OrTools6 (version 9.4.1874) able to handle integer linear problems among others. The
size of the solution set is in line with the results in [GW22].

We continue on Example 6.4.7.

Example 6.4.8. Let d1, . . . , d8 enlist the vectors in (6.12). It turns out that the solution
set of the corresponding system (6.10)-(6.11) is given by the following 17 vectors in

5Constraint Satisfiability Program.
6https://pypi.org/project/ortools/
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N8 (displayed as columns). Again the results are provided by the solver OrTools (cf.
Example 6.4.7).

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 1 1 0 1 2 0 0 0 0 0
1 2 3 0 1 0 1 0 1 0 0 0 0 0 0 0 1
2 1 0 3 2 1 0 1 0 4 2 0 0 0 0 1 0
0 0 0 1 1 0 0 1 1 0 0 0 0 1 2 0 0
2 1 0 1 0 3 2 1 0 0 0 0 4 2 0 1 0
0 1 2 0 1 0 1 1 2 0 1 2 0 1 2 1 2
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1

Example 6.4.9. A C++ prototype implementation of the backtracking procedure sketched
in Remark 6.4.4 fed with the legit combinations of distribution vectors from Examples 6.4.7
and 6.4.8 yields that a PSCA(5, 3, 2) exists for the combination vectors in the table of
Example 6.4.8 with column indices in {1, 2, 3, 10, 13, 16} ⊆ [17]. We display the very first
PSCA found with this backtracking approach (hereby, we have d[1] = d3, d[2] = d[3] = d4,
and d[4] = d[5] = d6):



1 2 4 5 3
1 3 4 5 2
2 1 5 4 3
2 3 4 1 5
3 1 5 4 2
3 2 5 1 4
4 1 3 2 5
4 2 3 5 1
4 5 2 1 3
5 1 2 3 4
5 3 2 4 1
5 4 3 1 2



In some circumstances, the search of legit columnwise distributions can be accomplished
by solving linear systems of congruences (see (6.13)). The derivation of such a system of
congruences is based on the following more general result.

Theorem 6.4.10 ([GW22]). Let n ≥ k ≥ 2, λ ≥ 1, and A ∈ PSCA(n, k,λ) with
columnwise distributions of symbols d[·]. For any symbol x ∈ [n] and any κ ∈ [k − 1], we
have

1
λk!

n−1∑
j=0

jκd
[x]
j+1 = 1

n

n−1∑
i=0

iκ.
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Theorem 6.4.11 ([GW22]). Let n ≥ p ≥ 3 for a prime p. Suppose that n ̸≡ 0 (mod p).
Consider A ∈ PSCA(n, p,λ) with columnwise distributions of symbols d[·]. Moreover, let
x ∈ [n] be a fixed symbol and r ∈ {0, . . . , p− 1} a residue. Then,∑

j∈{0,...,n−1}: j≡r (mod p)
d

[x]
j+1 ≡ 0 (mod p). (6.13)

Moreover, in [GW22, Theorem 2.7] a strategy to rule out some columnwise distributions
for PSCA(n, k,λ) by exploiting an interconnection to distributions for PSCA(n− 1, k,λ)
is derived. Interestingly, empirical results in [GW22, Table 3] show that the fraction of
herewith ruled out distributions seems to converge to zero with increasing n.
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CHAPTER 7
Applications

In the following we provide a selection of application fields showing that the analysis and
study of scrambling permutations (including many of its analogues and spin-offs) have
launched some useful findings of a theoretical and also practical nature.

7.1 Order theory, combinatorial geometry and related
areas

When introducing k-scrambling permutations, Dushnik noticed that N(n, k) could be
used to describe the dimension dim(1, k;n) of a specific class of partial orders (1- and
k-subsets of [n] are hereby ordered by inclusion, see [Dus50] for details). The concept
of dimension referred to here, in fact, was coined earlier by the latter together with
Miller in [DM41], and is defined for a partial order P to be the least number of linear
extensions of P whose intersection is P . In contrast to Dushnik, Trotter later considered
also dim(1, k;n) when k is small (cf. [Tro78]).

In [HM99], the authors relied on scrambling permutations for analyzing when particular
simplicial polytopes form a Scarf complex. In [Für00], Füredi used scrambling permuta-
tions to obtain a simple proof for the boundedness of the Prague dimension of Kneser
graphs. The number N(n, k) is also characteristic in the context of a convex geometries
for the concept of the convex dimension [ES88, BM14]. More recently, in [SW20] again
the upper bound (4.2) for N(n, k) is utilized in order to establish an upper bound for the
boxicity of a graph depending on the maximal degree of the latter. An alternative bound
for the boxicity depending on the Euler genus of the graph is obtained as well via (4.2).

From the motivation to improve bounds for containment problems in high-dimensional
space, direct or indirect contributions to the sharpening of bounds for completely scram-
bling permutations were obtained. Indeed, in [Für96] Füredi improved the bound for
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the following problem by exploiting the equivalence to the estimation of N∗(n, 3) (the
equivalence was already known to Ishigami in [Ish95]).

Problem 7.1.1. For the Euclidean space Rd find the maximal number n such that there
exists a selection of distinct points x1, . . . ,xn ∈ Rd fulfilling the following condition: For
i = 1, . . . ,n, inside any possible axis-parallel (topologically closed) orthant anchored at xi
there lies at most one additional point xj (j ̸= i).

In [BCG+16] the 3-mixing property (recall Definition 2.2.3) is used to relate the separation
dimension of a graph to its so-called acyclic chromatic number. Radhakrishnan’s idea for
bounding N∗(n, k) from below was utilized in the latter work in order to analyze lower
bounds for the separation dimension of hypergraphs.

7.2 Combinatorial software testing
In the following we point out a selection of practical aspects of sequence covering
arrays for the purpose of event sequence testing. We start by giving below a minimalist
example scenario useful for automatically finding potential failures in the realization of
an operating system (hereby the selected application scenario is fictive and based on
analogous considerations illustrated in the literature [KHL+12, BEI+12]).

Example 7.2.1. Assume the operating system is tested after having successfully booted
and that following events could be actuated by a user:

• EIUSB – Establish internet connection via USB port

• CWLAN – Connect to a WLAN

• CWCAM – Connect peripheral device webcam

• ENBLU – Enable Bluetooth connectivity

• CMOUS – Connect peripheral device mouse

• LOGOI – Logout and successively login

• SUSWU – Suspend and wakeup

If the operating system as well as all involved components are free of bugs, then executing
all of the above seven events (each event only once) in any chronological order should
trigger no error/failure of the system. Therefore, for ensuring such a well-behavior
a number of tests super-exponential in the count of events (here for our illustration
7! = 5040) have to be carried out. If each single test is interpreted as one row of a SCA,
then this test scenario would correspond to a SCA with alphabet size 7 and strength
7. One might be interested in examining only event sequences corresponding to a SCA
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Performed test Error triggered?
EIUSB CWLAN CWCAM ENBLU CMOUS LOGOI SUSWU /
ENBLU CWCAM CWLAN EIUSB SUSWU LOGOI CMOUS /
EIUSB CMOUS LOGOI SUSWU CWLAN CWCAM ENBLU /
SUSWU LOGOI CMOUS EIUSB ENBLU CWCAM CWLAN /
CWLAN CMOUS EIUSB CWCAM ENBLU LOGOI SUSWU /
CMOUS CWLAN SUSWU LOGOI ENBLU CWCAM EIUSB Yes
CWCAM LOGOI EIUSB CWLAN ENBLU CMOUS SUSWU /
LOGOI CWCAM SUSWU CMOUS ENBLU CWLAN EIUSB Yes
ENBLU SUSWU EIUSB CWLAN CWCAM CMOUS LOGOI /
SUSWU ENBLU LOGOI CMOUS CWCAM CWLAN EIUSB Yes

Figure 7.1: Usage of a SCA for error detection. Each row corresponds to a test of seven
chronologically actuated actions. It is the output of Tarui’s construction of Section 5.2
with parameters (n, k) = (7, 3).

with same alphabet size but with lower strength parameter. A motivation for this
weaker requirement is that one might perform the testing under the assumption that
an error-triggering event does not depend on all but only on a small number of events
chronologically happening before. Following this approach, a test suite corresponding
to a respective SCA of strength 3 could be enough for detecting failures (e.g. the one
displayed in Figure 7.1 which lets suspect that there is a misconfiguration of the system
causing a failure occurring when SUSWU, ENBLU, EIUSB appear (chronologically) in
succession). Optimally, each test can be executed with the same starting conditions (in
our example this could be achieved by testing the system in a virtual machine). From the
logarithmic bound for fixed strength (see Proposition 4.2.1), or from Figure 7.1, we can
notice a drastic reduction of tests to be carried out. If for the previous example use-case
a SCA of strength 4 is employed as test suite, the number of tests can be reduced to 38
(this value is the actually lowest available and obtained in [BTI12]) instead of 5040.

The methodology’s impact gets particularly significant if large sets of events are taken in
consideration (such that testing every permutation gets impracticable). On the other
hand also for small event sets, if performing a test is highly expensive in terms of time or
(e.g. logistic or monetary) costs, the method qualifies for being a viable measure.

Indeed, the legitimacy of such assumptions is justifiable by referring to a similar assump-
tion in the closely related field of combinatorial testing with covering arrays: Here, for a
selection of application domains, in [KKL12] empirical results providing strong evidence
for the plausibility of such assumptions are presented.

It becomes clear that for many applications additional precautions have to be taken into
account, e.g., certain undesirable sequences have to be excluded during the generation of
a test suite (they could, e.g., damage the system under test, or such a behavior of the
system can never occur/is not of interest). In order to fulfill such additional conditions,
in [KHL+12] it is outlined how this can be accomplished by semi-supervised expansion
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of smaller test suites. A realization of test suites with highly flexible constraints via
answer set programming is explained in [BEI+12]. It should be noted that sequences
in which the same event occurs (chronologically) several times in succession cannot be
handled directly in the setting of SCAs. However, a way out of this is conceivable, e.g.
by carrying out the generation of a SCA and retrospectively identifying a certain number
of originally different alphabet symbols.

The principles of the above described methodology are reflected e.g. in the design of test
suites for testing the graphical user interface of applications [YCM07, MGB+16, ANPB18],
or the construction of navigation graphs for dynamic web applications [WLS+09]. Hereby,
some of these constructions fall back not exclusively on the concept of SCAs but also take
up some useful aspects of CAs, which have been studied for much longer. CAs, in fact,
are an even more widespread, popular concept and are applied for detecting erroneous
(but also malicious) behavior of software/hardware systems (among the numerous works
addressing these topics cf. e.g. [Har05, CFT14, HWKK20]).

In [GHLS93] CAs are also used to quantify the fault tolerance of hypercube computers
(a parallel computer possessing 2n processors and a specific network topology), and
in [Har05] they are applied to the so-called ”minimax rendezvous time problem for k
distinguishable robots on a line“.

7.3 Min-wise hashing

This section briefly discusses the applications of min-wise independent permutations.
Before we come to them, we discuss the role of ε-approximately min-wise independence
and afterwards the notion of so-called linear permutations.

As min-wise independent families are exponentially large (in n), for applications where
n is typically of magnitude 264 (cf. [BCFM00]), the trick of using ε-approximately
min-wise independence as compromise is applied. In fact, for this approximate variant
of min-wise independence families of quadratic size can be found. For ε-approximately
k-restricted min-wise independence, even families of logarithmic size are obtainable (see
Theorem 4.3.3). Moreover, note that in praxis only approximations of the uniform
probability distribution can be achieved computationally (cf. [BCFM00]) such that
the study of permutation families endowed with not necessarily uniform probability
distributions is of high importance.

We now present a subclass of permutation families which excel in simplicity. Consider the
finite field Zp, for a prime p. Affine maps pa,b : Zp → Zp, x 7→ ax+ b (a ̸= 0) appertain to
the symmetric group S{0,...,p−1} ⊆ ZZp

p . Consequently, by natural identification of Zp with
[p], the notion of affinity can be lifted to Sp. We define Affp := {π ∈ Sp : π is affine} ⊆ Sp
and call its members linear permutations [BCFM00]. The quality of linear families (i.e.,
consisting of linear permutations) are discussed by the inventors of min-wise independent
families in [BCFM00]: The following result shows that for large values of p and k, linear
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families are k-restricted min-wise independent up to an on average small approximation
error.

Theorem 7.3.1 ([BCF00]). Assume that the set of all X ⊆ [p] with |X| = k is endowed
with uniform probability distribution. Then, for p, k → ∞, when π is a permutation
chosen uniformly at random from Affp, we have

E
X:|X|=k

[
max
x∈X

{Pr [π(x) = min π(X)]}
]

= 1
k

+O

(
(ln k)3

k3/2

)
.

Broder et al. [BCFM00] introduced min-wise independent permutations for the purpose
of detecting near-duplicate documents on the internet. The concept is reflected in a
practically operable algorithm of the AltaVista web index software (cf. [BCFM00] for
further details). Initially, a set is associated to each document by the so-called w-shingling
technique [Bro97]; here w ∈ N is a small value. The main idea is the following: The set
of all w-shingles, i.e., all w-tuples consisting of w consecutive words in the document,
is stored as document-characterizing set (or multiset – for higher precision). Let us
assume that the w-shingles are replaced by natural numbers, such that documents are
characterized by subsets of [n] for (large) n. If A and B determine these sets for two
documents a and b, the resemblance1 of A and B can be used to measure similarity
between a and b. It is defined as

r(A,B) := |A ∩B|
|A ∪B|

∈ [0, 1].

According to [Bro97] this measure seems to be well suited to represent the notion of
”roughly the same“, when r(A,B) ≈ 1. Moreover, δ(A,B) := 1 − r(A,B) is a metric
[Bro97]. It has been noticed in [Bro97] that if π is drawn (with uniform probability) from
a min-wise independent family F of permutations, then

Pr [min π(A) = min π(B)] = r(A,B). (7.1)

In [BCFM00] the observation (7.1) is used for introducing, for a document a, the so-called
sketch (A ⊆ [n] denotes the set of w-shinglings of a) given by

SA := (min π1(A), min π2(A), . . . , min πL(A)), (7.2)

where π1, . . . ,πL are L randomly drawn, and henceforth fixed, permutations from F .
Given two sketches SA and SB for two documents a and b, the resemblance r(A,B)
can be estimated by the fraction of coincident elements of SA and SB. In praxis, this
principle is used for (ε-approximately) k-restricted min-wise independent families. For
a large amount of documents this method of comparison reduces computational costs

1Also known as Jaccard similarity [LK11].
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as only the sketches (small-sized in comparison to the entire document size) have to be
compared. For a performance analysis of the Min-wise hashing algorithm (MinHash)
on real-world data, we point to a study conducted in [Hen06], where the algorithm is
classified as ”state-of-the-art“ and its relevance for ”successful web search engines“ is
emphasized.

Since their introduction, min-wise independent permutations have found use in several
application areas, which include content matching for online advertising, detection of
Web spam and redundancy in file systems, etc. (cf. [LK11] and references therein). In
[CM10] Min-hashing has been employed for ”fast detection of pairs of images with spatial
overlap“. Further applications of Min-wise hashing address dimensionality reduction
for machine learning (cf. e.g. [ZMA16]), derandomization of algorithms [BCM98], and
computational geometry [Mul94].
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CHAPTER 8
Conclusion

8.1 Discussion

We inspected scrambling permutations and surveyed related structures (some of which
turned out to be isomorphic circumscriptions). The encountered combinatorial struc-
tures satisfy a number of interacting/concurring conditions, which rapidly grows in the
parameters n and k. A priori, this gives the impression that questions about minimal
representatives can only be determined brute-force – except for special cases, this is indeed
the case according to the current state of knowledge. Nevertheless, so far, approaches
have been achieved that allow relatively well to narrow down the orders of magnitude
of optimal families (where the quality depends on the type of the family). For many
insights, an interplay of diverse mathematical branches is indispensable, among others,
combinatorics, probability theory, information theory, coding theory and finite geometry.
Moreover, the gained insights have a great impact on a wide variety of applications.

For the derivation of lower bounds it is necessary to find suitable relaxed and more
easily manageable structures. On the other hand, (practicable) constructions – and
consequently upper bounds – are obtained by derandomization of initially asymptotically
formulated results. Here, the probabilistic method is a recurrent tool to find in a first
step upper bounds for various structures. According to current knowledge, the bounds
found in this way can be improved only rarely and to a small extent. Depending on the
concept or special case, we have explained approaches (Hajnal’s or Tarui’s construction)
which, on the other hand, are based on a different principle: a set system is introduced
in a clever way, which is then used to specify collections of linear orderings on it which
satisfy the required scrambling conditions.

For optimal families of (completely) scrambling permutations, the question of asymptotic
growth of their cardinality is essentially solved: It is of order Θ(log2 log2 n) (respectively
Θ(log2 n)). We have pointed out that lower bounds for completely scrambling permuta-
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tions obtained by using a relation to binary CAs cannot be used to improve the bounds
of Füredi–Radhakrishnan relying on entropy methods.

In contrast, the growth of the corresponding regularized families is confined only up to a
certain degree of accuracy (polynomials of different degree for lower and upper bounds of
PSCAs/min-wise independent families). For the growth of PSCAs, even for the special
case k = 3, it is still unclear by which factor the bounds can be tightened: We pointed
out that the upper bound for PSCAs given in [Yus20] can be improved by a factor of
approximately (log2 n)0.81 in any case, so that the growth of g(n, 3) is at least linear in n
and at most O(n(log2 n)2). For the more general case, we were able to answer an open
question of R. Yuster: There always exist PSCAs of polynomial size. Moreover, we have
improved g(n, k)-values for a selection of explicit parameter constellations (n, k) of small
magnitude.

The task of constructing such regularized structures has proven to be particularly
challenging (in particular, since one has to stick to exact structure sizes in a dedicated
way, i.e. approximative algorithms for the non-regular case do not bear fruit). In this
context, the following questions immediately arose: leaving aside exorbitantly large
collections of permutations (such as the entire symmetric group), are there any ”small“
such collections at all? Knowing that lower bounds apply, there is always a jump point
for which this optimal packing of subpermutations of Sn succeeds, but not for Sn+1; the
question of the underlying mechanism causing this impossibility always resonates.

Given the challenging construction of optimal PSCAs for small parameters n, k, and
λ, a current trend is to seek/construct PSCAs that have a particular group-theoretic
structure (cf. [Na21, NJL22]) leading to not necessarily optimal instances. We have given
insights into this trend and finally joined it with the proposal to search PSCAs in a space
of matrices with a certain refection symmetry property. The idea for this came from
considering a generalization of the columnwise frequency vectors analyzed in [GW22].

8.2 Open questions and further work

Problem 8.2.1 (cf. [BEI+12, CCHZ13]). Establish the right complexity class of the
problem to calculate the exact value of N∗(n, k) and to calculate the exact value of g(n, k).

Problem 8.2.2. Verify/falsify the revisited Levenshtein conjecture (see [MvT99]), stating
that for k ̸∈ {1, 2, 4}, the estimate g(k + 2, k) > 1 applies. It is known to be true for
k ∈ {3, 5, 6} and is unresolved for k ≥ 7.

Problem 8.2.3 (cf. [Tar08]). Find a direct construction (comparable to the one of Tarui)
to generate completely k-scrambling families of small size, for k = 4 or for other values
k ≥ 4.

The following problem is due to C. Colbourn [NJL22] .
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Problem 8.2.4. Instead of g(n, k), the minimum value λ for which PSCA(n, k,λ) is
non-empty, find the minimum value λ∗ for which PSCA(n, k,λ) is nonempty for all
λ ≥ λ∗.

Problem 8.2.5 ([GW22, NJL22]). Determine the exact value of g(9, 3) ∈ {3, 4}.

Problem 8.2.6. Verify/falsify the following conjecture: g(n, 3) = Θ(n log2 n).

Our observations in Section 6.3 raise the following questions: Under the assumption n|λk!,
it would be interesting to answer the following question (or to come up with explicit
counterexamples): Does existence of A ∈ PSCA(n, k,λ) automatically imply existence
of an exemplar Ā ∈ PSCA(n, k,λ) ∩ Eλk!,n, i.e., such that Ā has columnwise uniform
distribution of symbols? If the answer is affirmative this leads to another question: Could
it be that the PSCAs of class PSCA(n, k,λ)∩ Eλk!,n are the ones that are the ”easiest“ to
find? We proposed to search PSCAs within PSCA(n, k,λ)∩Rλk!,n and hit computational
limitations already for k = 3 and n = 9. Another question concerns the rarity of the
class Rλk!,n itself: Is it possible to find bounds/exact numbers for the count of (λk!)× n
matrices in that class?

For small values of n, it would be interesting to analyze if k-restricted min-wise indepen-
dent families can be efficiently found by systematically searching within unions of cosets
of Sn (in Example 4.3.10 we encountered a manually constructed representative of such
a nature). Such an analysis would lift the approaches pursued in [Na21, NJL22] to a
more general (up to isomorphic identification) combinatorial structure and could provide
some insights about the right order of magnitude of cardinalities of optimal k-restricted
min-wise independent families.

The concept of approximateness for min-wise independent families could be lifted to
PSCAs (or rankwise independent permutations). In sense we could term this property
as ε-perfectness: For fixed k ∈ N, a d-family A ⊆ Sn fulfills ε-perfectness iff for a
permutation π drawn uniformly at random from A , we have∣∣∣∣Pr [π covers (x1, . . . ,xk)]−

1
k!

∣∣∣∣ ≤ ε

k! , for each (x1, . . . ,xk) ∈ Sn,k.

Denoting by φ(x1,...,xk) the count (with multiplicity) of permutations in A which cover
(x1, . . . ,xk), the latter relative error means that for all (x1, . . . ,xk) ∈ Sn,k,⌈

d

k! −
εd

k!

⌉
≤ φ(x1,...,xk) ≤

⌊
d

k! + εd

k!

⌋
. (8.1)

As already for the question whether there is a PSCA for given strength k and fixed
number of rows d, one could ask the following (now, d is not necessarily a multiple of k!):
If we additionally fix a relative error tolerance ε, is there a d-family A ⊆ Sn satisfying
(8.1) for the frequencies φ(x1,...,xk) for all (x1, . . . ,xk) ∈ Sn,k? It would be interesting
to (computationally) determine/estimate for given d and k the smallest possible value
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for ε still satisfying the bound (8.1). This might be helpful to get better insights why
some parameter constellations of strength and multiplicity do not permit existence
of PSCAs. We notice that instead of keeping small in (8.1) the margin of φ(x1,...,xk)
with respect to the maximum norm, it might also be interesting how small the margin
can be tightened in terms of other metrics such as the L1 norm. An easily noticeable
property of PSCAs is that, among all d-families of permutations, they minimize the
cardinality of range(φ) =

{
φ(x1,...,xj) : (x1, . . . ,xk) ∈ Sn,k

}
(as the latter coincides with

the singleton {λ} for PSCAs). To get an alternative weakened concept of perfectness, in
contrast to keeping the margin of error tolerance small (like in (8.1)), we could require
the minimization of the cardinality of range(φ). Having components with a small palette
of frequencies, could perhaps make it more manageable to combine the components to a
larger, ordinary PSCA.

We keep the arisen questions for further investigation.
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