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Fig. 1. Design of Weingarten surfaces. Top row: B-spline surface 𝑆 , corresponding isolines of Gaussian curvature 𝐾 (red) and mean curvature 𝐻 (blue), and
the associated curvature diagram in the (𝐻,𝐾)-plane. Bottom row: Result of optimization of 𝑆 towards a Weingarten surface. Curvature isolines become
aligned and the curvature diagram assumes a curve-like shape. Colors show corresponding points on the surface and in the (𝐻,𝐾)-plane. Potential areas of
application of Weingarten surfaces include the computation of cost efficient paneling solutions on architectural freeform skins.

In this paper we study Weingarten surfaces and explore their potential for

fabrication-aware design in freeform architecture. Weingarten surfaces are

characterized by a functional relation between their principal curvatures

that implicitly defines approximate local congruences on the surface. These

symmetries can be exploited to simplify surface paneling of double-curved

architectural skins through mold re-use.

We present an optimization approach to find a Weingarten surface that is

close to a given input design. Leveraging insights from differential geometry,

our method aligns curvature isolines of the surface in order to contract

the curvature diagram from a 2D region into a 1D curve. The unknown

functional curvature relation then emerges as the result of the optimization.

We show how a robust and efficient numerical shape approximation method

can be implemented using a guided projection approach on a high-order

B-spline representation. This algorithm is applied in several design studies

to illustrate how Weingarten surfaces define a versatile shape space for

fabrication-aware exploration in freeform architecture. Our optimization
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algorithm provides the first practical tool to compute general Weingarten

surfaces with arbitrary curvature relation, thus enabling new investigations

into a rich, but as of yet largely unexplored class of surfaces.
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1 INTRODUCTION
Freeform surfaces play a prominent role in contemporary archi-

tecture. While digital modeling tools have simplified their design,

construction remains highly challenging. Architectural designs are

typically only built once and at large scale, which impedes cost

reduction measures common for mass-produced freeform surfaces,

such as cars or consumer products.

Constructing doubly curved architectural skins within a reason-

able budget requires the freeform design surface to be segmented

into panels that are pre-fabricated and mounted on site. A smooth

global appearance can often only be achieved with doubly curved

panels, which usually requires the fabrication of molds. Paneling
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Fig. 2. Surface approximation with W-surfaces. The reference surface shown in (a) is optimized towards a Weingarten surface through curvature isolines
alignment (b). The same shape is approximated also with Weingarten surfaces constrained to a B-spline (c), and a linear (d) curvature relation in the
(𝐻,𝐾)-plane. The corresponding curvature diagrams are shown on the right. Below, surface colors indicate the deviation from the reference shape, expressed
as percentage of its bounding box diagonal. We observe that without constraining the curvature relation 𝑔 (𝐻,𝐾) , we achieve a better shape approximation.

algorithms therefore aim at computing panel layouts with high sur-

face quality, while using as few and as simple molds as possible to

reduce cost. The state of the art in this field is the post-rationalization

method of [Eigensatz et al. 2010], which exploits tolerances at the

panel seams (small gaps, kink angles) and controlled deviations from

the target geometry to keep the production cost as low as possible

within the chosen tolerances. This approach has been applied in

various architectural projects (see [Pottmann et al. 2015]).

Clearly, symmetries can significantly reduce the number of re-

quired molds. For example, rotational and helical surfaces, which

can continuously move in themselves, can be covered with con-

gruent panels along the circular or helical paths of the generating

motion. Panel congruence facilitates mold re-use and thus simplifies

fabrication, yet such restricted classes of surfaces are in general too

limited for freeform design.

Recently, a different class of "repetitive" surfaces, so-called Wein-
garten surfaces (W-surfaces), have received interest in the present

context [Pellis et al. 2020a,b]. These surfaces are characterized by a

relation between their principal curvatures 𝜅1, 𝜅2 or between their

Gaussian curvature 𝐾 and mean curvature 𝐻 :

𝑓 (𝜅1, 𝜅2) = 0 or 𝑔(𝐻,𝐾) = 0. (1)

They are named in appreciation of the work of Julius Weingarten

[1861], who studied them first
1
. He obtained the following remark-

able result: The focal surface (set of principal curvature centers) of a

W-surface is isometric to a rotational surface, which is determined

only by the curvature relation 𝑓 (𝜅1, 𝜅2) = 0. Hence, the focal surface

of a W-surface is intrinsically repetitive.

A smooth surface can be approximated locally up to second order

by the osculating paraboloid, which can be considered a locally well

fitting panel. In an adapted local frame, its equation is 2𝑧 = 𝜅1𝑥
2 +

𝜅2𝑦
2
. Since aW-surface has only a one-parameter family of different

1
In the very same paper, the shape operator (also called Weingarten map) appears for

the first time.

osculating paraboloids, we can expect a significant reduction in

the number of needed molds for paneling compared to a general

freeform surface. Roughly speaking, a design with 𝑁 × 𝑁 panels

should only require 𝑁 different molds, assuming the panels are

sufficiently small compared to the variation of curvature in the

design surface. [Pellis et al. 2020a,b] verify this expectation for

some known Weingarten surfaces with simple prescribed curvature

relations.

However, little is known about the possible shapes of Weingarten

surfaces for arbitrary curvature relations. This raises the hope that

they define a sufficiently rich shape space for freeform design, while

offering crucial benefits for architectural surface paneling.

Essentially, we are faced with the problem of approximating a
given freeform surface by a Weingarten surface. Here, a general func-
tional relation 𝑓 (𝜅1, 𝜅2) = 0 is not given a priori, but discovered as

the result of an optimization. In the present paper we show how to

solve this challenging problem.

For a general surface, the curvature pairs (𝜅1, 𝜅2) form a region

in the plane that contracts to a curve 𝛾 for a W-surface (see Fig. 1).

This contraction restricts the shape much less than the contraction

of the Gauss image (formed by the unit normal vectors of a surface)

to a curve. There, one obtains developable surfaces (𝐾 = 0), which

are of course also W-surfaces, but strongly shape restricted and

immediately recognizable as such.

Making a surface more "Weingarten" through optimization raises

numerous questions and opens up possibilities which go far beyond

the motivating architectural application. Which shape effects can

be seen in a surface when (𝜅1, 𝜅2) form a curve 𝛾 instead of a 2D-

region? Which connections between a surface 𝑆 and its curvature

diagram 𝛾 can one observe? How many W-surfaces, if any, are close

to a given shape? If we perturb a W-surface, does optimization

return to it or lead to another nearby W-surface? These are just a

few of many questions, some of which are touched in the present
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paper. They include deep mathematical problems on the shape space

of W-surfaces which hopefully will receive interest in the future.

1.1 Contributions and Overview
In this paper, we study general Weingarten surfaces with a focus on

applications in freeform paneling. Our main technical contribution

is a guided projection algorithm to approximate a given freeform

surface with aW-surface by aligning the isolines of𝐻,𝐾 or 𝜅1, 𝜅2. In

this way, a general functional relationship in Eq. 1 emerges automat-

ically during the optimization. We found that fourth-order B-splines

are well suited to formulate this optimization, since they simplify

the evaluation of higher-order derivatives required to characterize

W-surfaces to an unknown curvature relation. We show how to

incorporate additional regularization to ensure that curvature iso-

lines are close to geodesic parallels. This improves the performance

of a subsequent curvature clustering algorithm that computes the

mold shapes for paneling. Our experiments confirm that general

Weingarten surfaces offer a rich space for freeform design, while

significantly reducing paneling complexity.

After a brief discussion of related work, we first introduce the key

geometric concepts required for our work (Sec. 2). We then present

our main algorithm for approximating a given freeform surface by a

Weingarten surface (Sec. 3). In Sec. 4 we present and discuss results.

We conclude with a summary and an outlook of future research.

1.2 Related work
The literature on general Weingarten surfaces is not particularly

rich, and explicit examples are known only for very simple curvature

relations. An overview of results and references which are relevant

in the present context can be found in [van Brunt and Grant 1996]:

We mention that all ruled W-surfaces have been classified. It is

also known that a channel W-surface (envelope of a one-parameter

family of spheres with non-constant radius) is a rotational surface.

S. Lie proved that the principal curvature lines on a W-surface can

be computed by quadratures. Although [van Brunt and Grant 1996]

has applications in the title, these concern just simplifications in

curvature-based shape interrogation.

Umbilics (points with 𝜅1 = 𝜅2) on W-surfaces have been stud-

ied by several authors, e.g. by H. Hopf [1951]. Analyzing umbilics,

K. Voss [1959] proved that a closed analytic W-surface of sphere

topology is a rotational surface. Since the result is no longer true if

analyticity is dropped, it is not an essential shape restriction in the

present setting.

Umbilics are the singularities in the network of principal cur-

vature lines. [van Brunt and Grant 1994] showed that on those

W-surfaces that are locally solutions of 2nd order hyperbolic PDEs,

characterized by (𝜕𝑓 /𝜕𝜅1) (𝜕𝑓 /𝜕𝜅2) < 0, the umbilics are also singu-

larities in the net of characteristics. If, in addition, there is a linear

relation 𝑎𝐻 +𝑏𝐾 = 𝑐 between curvatures, the characteristics form a

Chebyshev net.

These linear W-surfaces to 𝑎𝐻 +𝑏𝐾 = 𝑐 are still an active topic of

research (see e.g. [Pámpano 2020]). A variational approach to their

computation has recently been proposed by [Tellier 2020; Tellier

et al. 2019], motivated by structural advantages in membrane, shell

and gridshell design.

Linear W-surfaces contain the familiar special cases of constant

mean curvature (CMC) surfaces (𝐻 = 𝑐), in particular minimal sur-

faces (𝐻 = 0), and surfaces of constant Gaussian curvature (𝐾 = 𝑐)

including developable surfaces (𝐾 = 0). It would lead too far to

discuss the rich literature on these surfaces. From a computational

viewpoint, contributions from discrete differential geometry are

probably the most interesting ones. For the discrete theory based

on quad meshes we refer to [Bobenko and Suris 2008]. An efficient

computation of CMC surfaces using triangle meshes has been pro-

posed by [Pan et al. 2012]. Let us also mention the pioneering paper

[Pinkall and Polthier 1993] on discrete minimal surfaces and the

software package "Surface Evolver" by K. Brakke [1992]. Typically,

triangle mesh approaches are well suited when boundaries are pre-

scribed, while the quad mesh approaches are preferred when the

combinatorics of special parameterizations is given. For example,

[Bobenko et al. 2006] determine discrete minimal surfaces from the

combinatorics of the principal curvature net. Since we use B-spline

surfaces to approximate W-surfaces, we also point to a few contri-

butions on spline representations of minimal or CMC surfaces. [Xu

and Wang 2010; Xu et al. 2015] investigate polynomial minimal sur-

faces, which constitute a small class of surfaces within all minimal

surfaces. In [Monterde 2004; Pan and Xu 2011], B-spline surfaces

or subdivision surfaces are used for approximation of minimal or

CMC surfaces.

There is another type of "linear" W-surfaces, namely to a relation

𝑎𝜅1 + 𝑏𝜅2 = 𝑐 . They include CMC surfaces (𝑎 = 𝑏), and thus the

main interest is on the case 𝑎 ≠ 𝑏. On surfaces with a constant ratio

of principal curvatures, i.e., 𝜅1 − 𝑏𝜅2 = 0 all curvature elements

(osculating paraboloids) are scaled versions of each other. For 𝑏 < 0,

the surfaces are negatively curved and their asymptotic directions

form a constant angle. This property is useful for realizations as as-

ymptotic gridshells [Schling 2018], which possess a curved support

structure consisting of bent rectangular strips that are orthogonal

to the surface. The structure follows the network of asymptotic

curves (see [Jimenez et al. 2020], [Schling et al. 2018]). Surfaces of

type 𝑎𝜅1 + 𝑏𝜅2 = 𝑐 have recently been derived via special princi-

pal symmetric meshes [Pellis et al. 2020b], demonstrating also the

advantages in paneling.

Paneling is an important topic where Geometry and Geometry

Processing can contribute to architecture. Without any further as-

sumptions on shape and fabrication technology, the algorithm of

choice is [Eigensatz et al. 2010]. This post-rationalization method

is computationally very involved, however, making it less suitable

for design exploration. Our approach aims at fabrication-aware

design, where a suitable shape space (W-surfaces) is explored to

simplify down-stream rationalization tasks and avoid costly design

iterations.

Very recently, [Gavriil et al. 2020] developed a design system

for glass facades where cold bent glass panels are used wherever

possible. The judgement whether a panel can be produced via cold

bending comes from a neural network that has been trained on a

large number of simulation results. Some results from discrete dif-

ferential geometry offer possibilities for paneling surfaces smoothly

with simple patches: Based on a quad patch layout along princi-

pal curvature lines, one can use Dupin cyclide patches [Bo et al.

2011; Bobenko and Huhnen-Venedey 2012]. If the panel boundary
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Fig. 3. Linear Weingarten surfaces designed with our method. From left to right: A developable surface, a minimal surface, two CMC surfaces of increasing
mean curvature. The surfaces are obtained from the same B-spline surface where we use a high penalty term to prevent the boundary curve from moving. The
corresponding curvature diagrams in the (𝜅1, 𝜅2)-plane are shown on the right.

layout follows asymptotic curves on a negatively curved surface,

ruled quadric panels are sufficient to smoothly cover the surface

[Huhnen-Venedey and Rörig 2014]. This does not reduce the number

of molds, but depending on the material to be used, may yield a cost

reduction in the fabrication of panels.

[Eigensatz et al. 2008] presented a mesh-based algorithm for

curvature-domain shape processing. Their method allows explicitly

prescribing principal curvature values on a surface and solves for

the corresponding vertex positions using a non-linear least-squares

optimization. While effective for certain shape filtering tasks such as

smoothing or feature enhancement, this approach is not sufficiently

robust to optimize for general Weingarten surfaces. In our approach,

we do not prescribe curvature directly, but implicitly optimize for

an unknown functional curvature relation. In general we found that

a mesh-based approach is less suited to our problem, since we are

dealing with surface derivatives of up to fourth order. This motivates

our preference for higher order B-splines over polygonal surface

representations.

2 WEINGARTEN SURFACES
In this section we collect the main concepts needed in our imple-

mentation. As we use B-spline surfaces in our algorithm, we can

base everything on the standard parametric representation s(𝑢, 𝑣)
of a surface.

Writing partial derivatives as lower indices preceded by a comma,

(s,𝑢 := 𝜕s/𝜕𝑢, ...), the coefficients 𝐸, 𝐹,𝐺 of the first fundamental

form 𝐸𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 +𝐺𝑑𝑣2
are defined as

𝐸 = ⟨s,𝑢 , s,𝑢⟩, 𝐹 = ⟨s,𝑢 , s,𝑣⟩, 𝐺 = ⟨s,𝑣, s,𝑣⟩. (2)

Using the determinant Δ = 𝐸𝐺 − 𝐹 2
, and the (non normalized)

normal vector field n(𝑢, 𝑣) = s,𝑢 × s,𝑣 , the coefficients 𝐿,𝑀, 𝑁 of the

second fundamental form are

𝐿 =
⟨s,𝑢𝑢 , n⟩√

Δ
, 𝑀 =

⟨s,𝑢𝑣, n⟩√
Δ

, 𝑁 =
⟨s,𝑣𝑣, n⟩√

Δ
. (3)

This yields Gaussian curvature 𝐾 and mean curvature 𝐻 ,

𝐾 =
𝐿𝑁 −𝑀2

Δ
, 𝐻 =

𝐿𝐺 − 2𝑀𝐹 + 𝑁𝐸
2Δ

. (4)

For a W-surface, since principal curvatures are in functional re-

lation, the constancy of one curvature entails the constancy of the

other one
2
. This implies that an isoline (level set) of the function

𝜅1 (𝑢, 𝑣) is also an isoline of 𝜅2 (𝑢, 𝑣), 𝐻 (𝑢, 𝑣) and 𝐾 (𝑢, 𝑣). Hence, a
W-surface has only one family of curvature isolines. This can be

used to characterize a W-surface as one where the 𝐾-isolines and

𝐻 -isolines are aligned. The preimages of these curves in the param-

eter domain are orthogonal to the gradients ∇𝐾 = (𝐾,𝑢 , 𝐾,𝑣)𝑇 and

∇𝐻 = (𝐻,𝑢 , 𝐻,𝑣)𝑇 , respectively. Thus, isoline alignment is expressed

by linear dependence of these vectors, leading to the well-known

characterization of W-surfaces via

𝐻,𝑢𝐾,𝑣 − 𝐻,𝑣𝐾,𝑢 = 0. (5)

It is important to note that this characterization also holds for the

most widely knownW-surfaces, namely those with constant𝐻 or 𝐾 .

There, the 𝐻 - or 𝐾-isolines are not well defined, but (5) is satisfied

due to vanishing ∇𝐻 or ∇𝐾 .

2.1 Geodesic parallel isolines
In order to control the spacing between curvature isolines, we need

the intrinsic gradients ∇𝑠𝐻,∇𝑠𝐾 . Recall that the intrinsic gradient
∇𝑠𝜓 of a function 𝜓 (𝑢, 𝑣) defined on a surface s(𝑢, 𝑣) is a tangent
vector 𝜆𝑢s,𝑢 +𝜆𝑣s,𝑣 that is orthogonal to the isoline and points in the

direction of the steepest ascent, with its norm equal to that steepest

ascent. Using the inverse I−1
of the matrix I of the first fundamental

form,

I−1 =
1

Δ

(
𝐺 −𝐹
−𝐹 𝐸

)
,

the intrinsic gradient ∇𝑠𝜓 follows from ∇𝜓 = (𝜓,𝑢 ,𝜓,𝑣)𝑇 via

∇𝑠𝜓 = 𝜆𝑢s,𝑢 + 𝜆𝑣s,𝑣 with (𝜆𝑢 , 𝜆𝑣)𝑇 = I−1∇𝜓, (6)

and its squared norm is given by

∥∇𝑠𝜓 ∥2 = ∇𝜓𝑇 · I−1 · ∇𝜓 . (7)

For our application, it is advantageous if the curvature isolines do

not diverge too much. Ideally, they should be geodesically parallel.

In that case, the curves orthogonal to the isolines are geodesics. We

base our work on the following lemma, whose proof is given in the

Appendix.

2
In regions where one of the two principal curvatures is constant and the other is not,

the condition is entailed by the constancy of the latter only.
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Fig. 4. Geodesic parallel curvature isolines. (a) A reference surface close to
a helical surface. (b) The reference surface optimized for curvature isolines
alignment. (c) The reference surface optimized also for geodesic parallel
curvature isolines. On the bottom, surface colors display the deviation of
the surface from a helical one. Deviation is expressed as percentage of
the corresponding helical surface radius. (d) Surface points projected on a
half-plane trough helical motion along the surface.

Lemma 2.1. The isolines of a function 𝜓 (𝑢, 𝑣) on a surface s are
geodesic parallels (geodesic offsets of each other), if and only if ∥∇𝑠𝜓 ∥2

is constant along each isoline.

A well-known special case is that of a distance function𝜓 , char-

acterized by the eikonal equation ∥∇𝑠𝜓 ∥2 = 1. However, being a

distance function is not necessary for geodesic parallel isolines.

We will later regularize our optimization with a term expressing

geodesic parallel curvature isolines. For that we have to align the

isolines of the functions ∥∇𝑠𝐻 ∥2
or ∥∇𝑠𝐾 ∥2

with the curvature

isolines, which can be expressed as

(∥∇𝑠𝐻 ∥2),𝑢𝐻,𝑣 − (∥∇𝑠𝐻 ∥2),𝑣𝐻,𝑢 = 0, (8)

or analogously using𝐾 . Note that these conditions involve 4th order

derivatives of s, which is a strong argument for avoiding meshes

and working with splines of sufficiently high degree.

Kinematic surfaces, i.e. helical surfaces, rotational surfaces and

general cylinder surfaces, are examples of W-surfaces with geodesic

parallel curvature isolines (helices, circles, rulings, respectively).

Our numerical experiments (see Figure 4 and Sec. 4) lead to the

conjecture that these are the only examples. As this does not play a

major role in the present paper, we leave a complete classification

of W-surfaces with parallel curvature isolines for future research.

3 OPTIMIZATION ALGORITHM
To model W-surfaces, we start from a given generic input surface.

We then optimize this surface by aligning the isolines of mean

curvature 𝐻 and Gaussian curvature 𝐾 according to Eq. 5, while

staying as close as possible to the input surface. We implement

this optimization using the guided projection algorithm of [Tang

et al. 2014]. This method is a Gauss-Newton variant that works

best for constraints formulated as polynomials of degree two in the

unknowns. Higher order constraints are reformulated as quadratic

polynomials through the introduction of auxiliary variables and

additional constraints. In the following, we describe this approach

for the computation of W-surfaces.

3.1 Variables and constraints
3.1.1 Surface representation. The surface s(𝑢, 𝑣) is represented as

a tensor product B-spline

s(𝑢, 𝑣) =
∑
𝑖

∑
𝑗

𝑁
𝑑𝑢
𝑖

(𝑢)𝑁𝑑𝑣
𝑗
(𝑣) c𝑖 𝑗 , (9)

where c𝑖 𝑗 are the control points that shall form a regular quadri-

lateral mesh, 𝑁𝑑
𝑖
are the B-spline basis functions of degree 𝑑 , and

𝑑𝑢 , 𝑑𝑣 are the degrees in 𝑢 and 𝑣 direction respectively. The main

variables of the problem are then the positions c𝑖 𝑗 of the control
points. The target function and the auxiliary variables are estimated

at sample points s(𝑢, 𝑣), where 𝑢 and 𝑣 are obtained by homoge-

neous subdivision of the 𝑢 and 𝑣 domains respectively (see Figure

5). The bi-degree (𝑑𝑢 , 𝑑𝑣) of the B-spline surface and the density of

the samples can be set by the user.

c𝑖 𝑗c𝑖 𝑗c𝑖 𝑗c𝑖 𝑗c𝑖 𝑗c𝑖 𝑗c𝑖 𝑗c𝑖 𝑗c𝑖 𝑗c𝑖 𝑗c𝑖 𝑗c𝑖 𝑗c𝑖 𝑗c𝑖 𝑗c𝑖 𝑗c𝑖 𝑗c𝑖 𝑗

s(𝑢, 𝑣)s(𝑢, 𝑣)s(𝑢, 𝑣)s(𝑢, 𝑣)s(𝑢, 𝑣)s(𝑢, 𝑣)s(𝑢, 𝑣)s(𝑢, 𝑣)s(𝑢, 𝑣)s(𝑢, 𝑣)s(𝑢, 𝑣)s(𝑢, 𝑣)s(𝑢, 𝑣)s(𝑢, 𝑣)s(𝑢, 𝑣)s(𝑢, 𝑣)s(𝑢, 𝑣)

𝐾

𝐻

Fig. 5. Surface representation. On the left: a B-spline surface and its control
mesh. In color, sampling points s(𝑢, 𝑣) are shown. On the right: Curvature
diagram computed at sampling points, shown with the same colors.

3.1.2 Auxiliary variables and constraints. To express Eq. 5 as a qua-

dratic constraint, we add the following auxiliary variables and con-

straints at each sample point s(𝑢, 𝑣):
• The non unitized normal vector n = s,𝑢 × s,𝑣
• The coefficients of the first fundamental form 𝐸, 𝐹 and 𝐺 ,

defined by Eq. 2.

• The determinant of the first fundamental form, given by Δ =

𝐸𝐺 − 𝐹 2
.

• The coefficients of the second fundamental form 𝐿,𝑀 and 𝑁 ,

defined by Eq. 3, where we use the value of Δ taken from the

previous iteration.

• The Gaussian curvature 𝐾 and the mean curvature 𝐻 , given

by Eq. 4.

Note that the surface derivatives s,𝑢 , s,𝑣, s,𝑢𝑢 , s,𝑢𝑣 , and s,𝑣𝑣 can be

computed analytically from Eq. 9 and depend linearly on the control

points c𝑖 𝑗 . For details, see [Prautzsch et al. 2002].

3.1.3 Curvature isolines alignment. Eq. 5 can now be expressed as a

quadratic function of the unknowns 𝐾 and 𝐻 . Partial derivatives of

scalar functions𝜓 (𝑢, 𝑣) are computed through central differences:

𝜓,𝑢 (𝑢, 𝑣) =
𝜓 (𝑢+, 𝑣) −𝜓 (𝑢−, 𝑣)

𝑢+ − 𝑢−
,

𝜓,𝑣 (𝑢, 𝑣) =
𝜓 (𝑢, 𝑣+) −𝜓 (𝑢, 𝑣−)

𝑣+ − 𝑣−
,

(10)
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where𝑢− and𝑢+ denote the𝑢 value of the previous and next sample

point of 𝑢, respectively. 𝑣− and 𝑣+ are defined analogously.

3.1.4 Shape preservation and closeness to the reference surface. Let
c0

𝑖 𝑗
be the control points of the initial reference geometry. The close-

ness to the reference surface is implemented by adding the soft

constraint c𝑖 𝑗 − c0

𝑖 𝑗
= 0. We also add a shape preservation term

through the soft constraint 𝑙𝑖 − 𝑙0𝑖 = 0, where 𝑙𝑖 are the lengths of

edges and face diagonals of the control mesh, and 𝑙0
𝑖
the correspond-

ing lengths in the reference shape. To constrain the boundary, we let

the boundary control points glide along a curve 𝛽 that interpolates

the boundary control points of the reference geometry. To this end,

boundary control points are projected at each iteration onto the

curve 𝛽 and constrained to its tangent line.

3.2 Additional variables and constraints
3.2.1 Geodesic parallel curvature isolines. To optimize for geodesic

parallel curvature isolines, we impose Eq. 8 for 𝐻 and 𝐾 in addition

to Eq. 5. For that, we introduce the following additional auxiliary

variables and constraints:

• The products of the derivatives of 𝐾 and 𝐻 , 𝐾2

,𝑢 , 𝐾,𝑢𝐾,𝑣 , 𝐾
2

,𝑣

and 𝐻2

,𝑢 , 𝐻,𝑢𝐻,𝑣 , 𝐻
2

,𝑣 .

• The norm of intrinsic gradients from Eq. 7:

∥∇𝑠𝐾 ∥2 =
𝐸𝐾2

,𝑢 − 2𝐹𝐾,𝑢𝐾,𝑣 +𝐺𝐾2

,𝑣√
Δ𝑘

,

∥∇𝑠𝐻 ∥2 =
𝐸𝐻2

,𝑢 − 2𝐹𝐻,𝑢𝐻,𝑣 +𝐺𝐻2

,𝑣√
Δ𝑘

.

Here, derivatives of 𝐻 and 𝐾 are computed through central differ-

ences with Eq. 10, and Δ𝑘 is the first fundamental form determi-

nant Δ taken from the previous iteration 𝑘 . With the new variables

introduced, Eq. 8 can be formulated as a quadratic constraint by

expressing again derivatives with Eq. 10.

3.2.2 Linear Weingarten surfaces. A relation of the form 𝑔(𝐻,𝐾) =
0 as in Eq. 1 is discovered as a side effect during optimization. Since

𝐻 and 𝐾 are directly available as variables we can influence this

relationship directly. In the case of linear Weingarten surfaces we

add a constraint of the form 𝑎𝐻 + 𝑏𝐾 + 𝑐 = 0. The coefficients 𝑎,

𝑏, and 𝑐 are computed at each iteration by linear regression to the

values of 𝐻 and 𝐾 taken from the previous iteration. Alternatively,

the coefficients can be set by the user. See Figures 3 and 2d for

results.

3.2.3 B-spline curvature relation. We can also optimize a surface

to have a (𝐻,𝐾)-curvature diagram that follows a B-spline curve 𝛾 ,

see Figure 2c. At each iteration, each (𝐻,𝐾)-point is constrained on
the tangent line through the closest point of 𝛾 . The B-spline curve

can be initialized and eventually updated at each iteration through

minimization of the sum of squared distances to each (𝐻,𝐾)-point.

3.3 Numerical solver
Each constraint of Sec. 3.1 and 3.2 can be written as a quadratic

function

𝜙𝑖 (𝑥) =
1

2

𝑥𝑇𝐴𝑖𝑥 + 𝑏𝑖𝑥 + 𝑐𝑖 = 0,

where𝑥 ∈ R𝑁×1
collects the unknowns, and𝐴𝑖 ∈ R𝑁×𝑁

,𝑏𝑖 ∈ R1×𝑁

and 𝑐𝑖 ∈ R collect, respectively, the quadratic, linear and constant

coefficients. At each iteration𝑘+1, with current unknowns vector 𝑥𝑘 ,

the constraints are approximated with a first order Taylor expansion:

𝜙𝑖 (𝑥) ≈ 𝜙𝑖 (𝑥𝑘 ) + ∇𝜙𝑖 (𝑥𝑘 ) (𝑥 − 𝑥𝑘 ),

where∇𝜙𝑖 (𝑥𝑘 ) = 𝐴𝑖𝑥𝑘+𝑏𝑖 . The linearized constraints are multiplied

by weights 𝜔𝑖 and then rearranged as a system of linear equations

𝐶𝑥 = 𝑟 . To stabilize the solution, we add a fairness energy 𝐸𝑓 to the

control mesh polylines that at each control point c𝑖 𝑗 is given by

𝐸𝑓 (c𝑖 𝑗 ) =
 c𝑖 𝑗 − c𝑖 𝑗−1 + c𝑖 𝑗+1

2

2

+
 c𝑖 𝑗 − c𝑖−1𝑗 + c𝑖+1𝑗

2

2

.

The total energy can be written in matrix form as ∥𝑃𝑥 ∥2
. The linear

system is then solved in least squares, where the fairness energy,

together with a closeness term to the current variables 𝑥𝑘 , act as a

regularizer:

∥𝐶𝑥 − 𝑟 ∥2 + 𝜔2

𝑓
∥𝑃𝑥 ∥2 + 𝜀2∥𝑥 − 𝑥𝑘 ∥2 → min. (11)

Here 𝜔 𝑓 and 𝜀 are weights set by the user. The resulting linear

system is solved by Cholesky factorization.

4 RESULTS AND APPLICATIONS

4.1 Design of W-surfaces
Our main goal is to provide an algorithm that makes Weingarten

surfaces accessible for shape modeling and shape processing. In the

following, we evaluate our algorithm and its performance on some

common design tasks. Run times and computation settings for the

presented examples are listed in Tables 1 and 2.

4.1.1 Workflow. Our design workflow of W-surfaces starts from a

given B-spline surface. The starting B-spline can act as a reference

geometry or serve just as a starting point for shape design. In the

former case, during the optimization the surface is kept close to

the reference shape by enabling the constraints of Sec. 3.1.4. In the

latter case, the user can edit the B-spline surface by moving its

control points; the edited surface is then used as a target geometry

aaaaaaaaaaaaaaaaa b c d e

𝐾

𝐻

Fig. 6. Multiresolution modeling. A given B-spline surface shown in (a) is
optimized towards a Weingarten surface through an iterative procedure. At
each step, the control mesh is refined and the surface is re-optimized for
alignment of curvature isolines. From (b) to (e), four steps of this procedure
with corresponding curvature diagrams are shown. We observe that, as
we increase the number of control points, the optimized B-spline surface
converges to a Weingarten surface.
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for some iterations of our optimization. This process can be applied

repeatedly as an interactive design tool. For a broad preservation of

the input shape during the modeling session, the shape preservation

constraints of Sec. 3.1.4 can be enabled with a low weight.

To achieve a W-surface that is close to some reference geometry,

it is necessary to work with B-splines that have a sufficiently dense

control mesh, since the number of control points corresponds to the

degrees of freedom available for optimization. For this purpose, we

found it advantageous to use a multiresolution approach where, at

each step, the control mesh is refined and the surface is optimized

again until convergence. This procedure is illustrated in Figure 6. In

our implementation, the refinement of the control mesh is performed

by computing a new B-spline surface with the desired number of

control points through least squares fitting. For shape design, it is

preferable to work with a B-spline with a coarse control mesh until

a desired shape is approximately reached. One can then proceed

with a multiresolution refinement. Sample shapes designed with

this procedure are shown in Figures 10 and 11.

4.1.2 Shape approximation. For effective shape approximationwith

Weingarten surfaces we expect the space of Weingarten surfaces to

be dense, i.e., for a given target shape there should be a Weingarten

surface sufficiently close to it. We do not have a mathematical proof

of this, but our examples provide strong numerical evidence that the

shape space of Weingarten surfaces is dense enough as we generally

observe rather small shape changes during the alignment of curva-

ture isolines, as shown in Figures 1, 8, 9, and 13. Figure 2 shows the

approximation of the target shape also withW-surfaces to a B-spline

and a linear curvature relation, through constraints described in

Sec. 3.2.3 and 3.2.2. We observe that we can achieve a better ap-

proximation of the target shape by optimizing for the alignment of

curvature isolines alone, that is without constraining the curvature

function 𝑔(𝐻,𝐾). In Figure 7, we explore the neighborhood of a

W-surface trough perturbation and re-optimization. Results suggest

the existence of a dense neighborhood of W-surfaces, but we leave

further investigation as future research.

4.1.3 Fairing curvature isolines. In our procedure, we can also in-

tervene on the layout of curvature isolines. In fact, a smoother and

fair layout can be beneficial in applications where curvature isolines

are used to subdivide the surface into regions, as for instance in

architectural paneling.

Since curvature functions involve second order derivatives on the

surface, smooth curvature isolines can be achieved only for surfaces

with a sufficiently high degree of continuity. This property can be

easily fulfilled with B-spline surfaces. Figure 8 shows a comparison

of curvature isolines alignment using a B-spline surface of bi-degree

(4, 4) against a standard cubic B-spline.

Furthermore, to obtain more evenly spaced isolines, we can ask

for geodesic parallel curvature isolines as described in Sec. 3.2.1.

Obtaining truly geodesic parallel curvature isolines is not possible

for a generalWeingarten surface, however we can use this constraint

as a fairness term during the optimization. The effect of this fairness

on the isolines layout is shown in Figure 9.

Figure 4 shows the effect of geodesic parallel isolines as a hard

constraint. In this test, we start from a B-spline close to a helical

surface. After optimization for aligned and geodesic parallel isolines,

a b c

𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines

𝐻 isolines

deviation

0% 10%

Fig. 7. Shape exploration. On top: A reference W-surface designed with our
method with corresponding curvature isolines shown on the right. (a) The
reference surface is perturbed by moving a control point. From top to bottom,
increasing perturbations are shown. (b, c) The perturbed shape on the left is
optimized for alignment of curvature isolines. Surface colors indicate the
deviation from the reference shape, expressed as percentage of its bounding
box diagonal. Results suggest the existence of a rich space of W-surfaces.

we observe the shape converging to a helical surface. If we optimize

the same shape only for curvature isolines alignment, this effect

does not occur. These results suggest that W-surfaces with geodesic

parallel curvature isolines are kinematic surfaces.

4.2 Paneling architectural surfaces
Weingarten surfaces maximize repetitivity of curvature elements,

i.e., the osculating paraboloid at one location is congruent to the

osculating paraboloids at many other points on the design surface.
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(3, 3)(3, 3)(3, 3)(3, 3)(3, 3)(3, 3)(3, 3)(3, 3)(3, 3)(3, 3)(3, 3)(3, 3)(3, 3)(3, 3)(3, 3)(3, 3)(3, 3) (4, 4)(4, 4)(4, 4)(4, 4)(4, 4)(4, 4)(4, 4)(4, 4)(4, 4)(4, 4)(4, 4)(4, 4)(4, 4)(4, 4)(4, 4)(4, 4)(4, 4)
𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines

𝐻 isolines

Fig. 8. Influence of B-spline degree. The reference shape shown in (a) is
optimized for curvature isolines alignment with a B-spline surface of bi-
degree (3, 3) , and with one of bi-degree (4, 4) . On surfaces of higher degree,
we achieve smoother curvature isolines.

a b c

𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines

𝐻 isolines

Fig. 9. Geodesic parallel curvature isolines as fairness energy. (a) Reference
surface. (b) The reference surface optimized for alignment of curvature
isolines. (c) The reference surface optimized for alignment of curvature iso-
lines with geodesic parallel curvature isolines constraints used as a fairness
energy. We can observe that curvature isolines are more regularly spaced.
This property can be advantageous for architectural panelization.

This indicates that congruent panels can be used in those regions,

all of which can be manufactured with the same mold or tool con-

figuration. Such regions form clusters in the curvature diagram.

The widely adopted post-rationalization design loop that tries

to maximize repetitivity on a generic surface involves costly and

time consuming iterations between designers and engineers [Eigen-

satz et al. 2010]. Applying our method in an architectural context

can be seen as pre-rationalization, i.e., the surfaces designed with

our algorithm have repetitivity already ‘baked in’ as an essential

property.

The main ingredients for paneling are a subdivision of the design

surface into segments by a network of seam curves and an assign-

ment of molds to faces of the seam network. Each face of the seam

network corresponds to a panel. We generate the layout of seams by

overlaying the parameter domain of the designed B-spline surface

with a quad mesh (or any other desired pattern) and then map this

mesh to the surface.

Theoretically, one should be able to approximate a Weingarten

surface that has been subdivided into 𝑁 panels reasonably well

by

√
𝑁 unique molds if the panel dimensions are not too large.

In practice, panel dimension are often fixed and cannot be freely

chosen. To account for this we allow more clusters; specifically we

used 𝑘
√
𝑁 clusters with 𝑘 = 2, 3.

Clustering is performed in the (𝐻,
√
𝐾)-plane instead of (𝐻,𝐾)

to obtain the same scale on each axis. To this end, we overlay the

plane with a uniform grid obtained by homogeneous subdivision of

each axis. We increase iteratively the density of the grid until we

reach a subdivision such that all (𝐻,
√
𝐾) pairs fall into a prescribed

numbers of cells. The pairs inside such cells define a cluster whose

panels are assigned the same mold.

Figures 1, 11, and 13 show results obtained in this way. Figure

13 shows an evaluation of reflection lines, gaps and kink angles,

as well as a comparison with [Eigensatz et al. 2010]. Their method

aims to minimize manufacturing cost, while we aim to minimize the

number of molds. To enable a comparison, we restrict the output

of [Eigensatz et al. 2010] to cubic panels which effectively turns

the cost-based formulation into a formulation based on the number

of molds, since panels of the same type amount to the same cost.

In all examples we used cubics instead of paraboloids for practical

reasons; paraboloids often require rather small panel sizes to achieve

the desired thresholds on gaps and kink angles.

4.3 Limitations and future work
As Figure 12 illustrates, our algorithm is not always successful in

aligning the curvature isolines. Here the optimization is stuck in a lo-

cal minimum before sufficiently contracting the curvature diagram.

However, we observe that making a surface "more Weingarten",

even if not achieving a clear curvature relation, improves the per-

formance of subsequent paneling algorithms. The computed local

minima depend on the weights chosen in Eq. 11, which we cur-

rently choose through experimentation. Further investigations are

needed to better understand the dependency of the result on these

parameters.

The curvature relation of a Weingarten surface has a global in-

fluence on the shape. While we found that reasonably complex

freeform shapes can often be well approximated with a W-surface,

a

b

c

𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines

𝐻 isolines

𝐾

𝐻

Fig. 10. W-surfaces designed with our method (left). On the right, the corre-
sponding curvature diagram is shown.
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Fig. 11. Architectural panelizations of the shapes shown in Figure 10a and
b (cf. Sec. 4.2). We used 3

√
𝑁 molds to generate all 𝑁 panels. As we can

observe, the cladded surfaces show good visual smoothness.

other shapes like a model of a person or the Stanford bunny are

not suitable for approximation with a single Weingarten surface. To

broaden applicability, future work could investigate how to decom-

pose more complex surfaces into smaller components for which an

approximation with a W-surface is adequate.

The curve-like curvature diagrams that we obtain through opti-

mization come in many different forms. Beyond linear W-surfaces

which are well understood, it is unclear what other functional rela-

tions can be linked to which geometric properties of the surface.

More broadly, we do not yet have a good understanding of the

shape space of W-surfaces. For example, it is unclear if there exists a

continuous path between twoW-surfaces in the space of W-surfaces.

This poses interesting questions for future research, both in terms of

new mathematical theory and for the design of practical geometry

processing tools.

A related topic is direct manipulation of the functional curvature

relation. For example, if we represent the curvature relation with

a B-spline curve as in Figure 2, we could edit the corresponding

control polygon and continuously update the underlying W-surface.

It will be interesting to study whether this form of indirect modeling

facilitates intuitive shape exploration.

5 CONCLUSIONS
General Weingarten surfaces offer a new means for freeform shape

design. We show that for a large variety of input designs, we can find

𝐾

𝐻

𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines𝐾 isolines

𝐻 isolines

Fig. 12. Limitations. The surface on the left is optimized for curvature iso-
lines alignment (center). In this case, further optimization steps do not
improve the result. The curvature diagrams before and after optimization
are shown on the right.

a close-by Weingarten surface through optimization. These surfaces

lead to significant improvements for subsequent panelization.

Optimizing in curvature space is generally challenging, as the re-

quired higher-order derivatives are numerically very sensitive. Con-

sequently, our initial attempts failed to formulate such an optimiza-

tion using polygonal meshes. We found, however, that higher-order

B-splines in combination with a guided projection approach are ide-

ally suited to address this challenging problem. Themain advantages

of B-splines over meshes are intrinsic smoothness, low number of

parameters, and analytical higher-order derivatives. Guided projec-

tion allows re-formulating the optimization objective as a quadratic

function using a suitable defined cascading set of auxiliary variables.

The resulting algorithm makes the general class of Weingarten sur-

faces accessible for shape exploration, which will hopefully trigger

further investigations and lead to new theoretical and practical

advances.
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Fig. 𝜔𝑎𝑙 𝜔𝑏𝑠 𝜔𝑙𝑛 𝜔𝑔𝑝 𝜔∗
𝑐𝑙

𝜔∗
𝑠ℎ

1,7,8,12,13 0.1 0 0 0 0.1 0

2b/c/d 0.1/0/0 0/10/0 0/0/1 0 0.1 0

3 0 0 1 0 0.001 0.001

4b/c 0.1 0 0 0/0.2 0.001 0.01

9b/c 0.1 0 0 0/0.05 0.1 0

10 0.1 0 0 0.01 0.05 0.001

Table 1. Weights 𝜔 of target functions used for the optimization of the
presented examples. From the left: 𝜔𝑎𝑙 = isolines alignment of Eq. 5, 𝜔𝑙𝑛 =

linear curvature relation of Sec. 3.2.2, 𝜔𝑏𝑠 = B-spline curvature relation
of Sec. 3.2.3, 𝜔𝑔𝑝 = geodesic parallel isolines of Eq. 8, 𝜔𝑐𝑙 = closeness to
reference control points of Sec. 3.1.4, 𝜔𝑠ℎ = shape preservation of Sec. 3.1.4.
Weights marked with an asterisk can slightly change during an interactive
procedure and can be used as design parameters. As for the regularization
terms of Eq. 11, we set the weight of the fairness energy 𝜔 𝑓 to 0.2 and
the weight of closeness to the previous iteration 𝜀 to 0.001 for all examples.
Before optimization, the input B-splines are scaled so that the average of
the absolute principal curvatures at sample points is equal to 5.
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Fig. 13. Architectural paneling with Weingarten surfaces. (a) The surface on top is optimized towards a Weingarten surface. The resulting shape, with its
curvature isolines, is shown below. (b) We subdivide both surfaces into panels and group them into the same number of clusters, as described in Sec 4.2. Panels
belonging to the same cluster are shown with the same color. (c) To each cluster, we fit panels belonging to the same cubic surface, while minimizing kinks and
gaps along the seams between panels. A zebra striping of the panels is shown where smoother strips indicate a better surface continuity. (d) On top, the
curvature diagrams of the starting shape and the optimized one. On the bottom, colors show the deviation of the optimized surface from the starting one,
expressed as percentage of the diagonal of the bounding box. (e) The histograms show the distribution of kinks and gaps between panels. In red, we also show
the results obtained with [Eigensatz et al. 2010] on the non-optimized surface, using the same number of clusters. Histograms shifted to the left indicate better
continuity of the cladding. These results show that, with our optimization, with a rather small shape change, we can achieve smoother panelizations with the
same number of molds.
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A APPENDIX
Proof of Lemma 2.1: Since intrinsic gradients are independent of the
parameterization, we can adapt the parameterization s(𝑢, 𝑣) to the

isolines of the given function. We assume that the isolines of𝜓 are

the 𝑣-lines on s and that the 𝑢-lines are orthogonal to them. Hence,

we have 𝐹 = 0 and by equations (6) and (7),

∇𝑠𝜓 =
𝜓,𝑢

𝐸
s𝑢 +

𝜓,𝑣

𝐺
s𝑣, ∥∇𝑠𝜓 ∥2 =

1

𝐸
𝜓2

,𝑢 + 1

𝐺
𝜓2

,𝑣 .

Alignment of the𝜓 -isolines with 𝑣-lines is possible exactly if ∇𝑠𝜓
is tangent to the 𝑢-lines. This requires𝜓,𝑣 = 0 and thus𝜓 is just a

function of 𝑢, and

∥∇𝑠𝜓 ∥2 =
1

𝐸
𝜓2

,𝑢 .

Therefore, ∥∇𝑠𝜓 ∥2
is constant along the isolines, i.e. ∥∇𝑠𝜓 ∥2

de-

pends on 𝑢 only if and only if 𝐸 depends just on 𝑢. This is precisely

the condition for the parameterization s(𝑢, 𝑣) to represent geodesic

parallel coordinates [Kühnel 2003, p. 110]. There, the 𝑣-lines form

a family of geodesic parallel curves and the 𝑢-lines are geodesics.
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