
Chapter 6
Vertex normals and face curvatures
of triangle meshes

Xiang Sun, Caigui Jiang, Johannes Wallner, and Helmut Pottmann

This study contributes to the discrete differential geometry of triangle meshes, in
combination with a study of discrete line congruences associated with such meshes.
In particular we discuss when a congruence defined by linear interpolation of vertex
normals deserves to be called a ‘normal’ congruence. Our main results are a dis-
cussion of various definitions of normality, a detailed study of the geometry of such
congruences, and a concept of curvatures and shape operators associated with the
faces of a triangle mesh. These curvatures are compatible with both normal congru-
ences and the Steiner formula.

6.1 Introduction

The system of lines orthogonal to a surface (called the normal congruence of that
surface) has close relations to the surface’s curvatures and is a well studied object
of classical differential geometry, see e.g. [14]. It is quite surprising that this natural
correspondence has not been extensively exploited in discrete differential geometry:
most notions of discrete curvature are constructed in a way not involving normals, or
involving normals only implicitly. There are however applications such as support
structures and shading/lighting systems in architectural geometry where line con-
gruences, and in particular normal congruences, come into play [21]. We continue
this study, elaborate on discrete normal congruences in more depth and present a
novel discrete curvature theory for triangle meshes which is based on discrete line
congruences.

Contributions and overview. We organize our presentation as as follows. Sec-
tion 6.2 summarizes properties of smooth congruences and elaborates on an im-
portant example arising in the context of linear interpolation of surface normals.

Section 6.3 first recalls discrete congruences following the work of Wang et
al. [21] and then focuses on the interesting geometry of a new version of discrete
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normal congruences (defined over triangle meshes). We shed new light onto the be-
havior of linearly interpolated surface normals and discuss the problem of choosing
vertex normals.

In Section 6.4, discrete normal congruences lead to a curvature theory for trian-
gle meshes which has many analogies to the classical smooth setting. Unlike most
other concepts of discrete curvature, it assigns values of the curvatures (principal,
mean, Gaussian) to the faces of a triangle mesh. We discuss internal consistency of
this theory and show by examples (Section 6.5), that it is well suited for curvature
estimation and other applications.

Previous work. Smooth line congruences represent a classical subject. An intro-
duction may be found in the monograph by Pottmann and Wallner [16]. Discrete
congruences have appeared both in discrete differential geometry and geometry pro-
cessing. Let us first mention contributions which study congruences based on trian-
gle meshes: A computational framework for normal congruences and for estimating
focal surfaces of meshes with known or estimated normals has been presented by
Yu et al. [22]. The paper by Wang et al. [21] is described in more detail below.

Congruences associated with quad meshes are discrete versions of parametrized
congruences associated with parametrized surfaces. In particular, the so-called torsal
parametrizations are discussed from the integrable systems perspective by Bobenko
and Suris [3]. An earlier contribution in this direction is due to Doliwa et al. [6].
These special parametrizations also occur as node axes in torsion-free support struc-
tures in architectural geometry [12, 15, 17].

Curvatures of triangle meshes are a well studied subject. One may distinguish
between numerical approximation schemes (such as the jet fitting approach [4] or
integral invariants [18]) on the one hand, and extensive studies from the discrete
differential geometry perspective on the other hand. Without going into any detail
we mention that these include discrete exterior calculus [5], the geometry of offset-
like sets and distance functions [13], or various ways of defining shape operators
[8, 9]. Naturally, also Yu et al. [22] address this topic when studying discrete normal
congruences and focal surfaces. We present here yet another definition of curvatures
for triangle meshes which is based on discrete normal congruences, and which is at
the same time motivated by the Steiner formula (which also plays an important role
in [13] and [15, 2]).

6.2 Smooth line congruences

The introduction into line congruences in this section follows the paper by Wang et
al. [21]. A line congruence L is a smooth 2D manifold of lines described locally by
lines L(u,v) which connect corresponding points a(u,v) and b(u,v) of two surfaces.
With e(u,v) = b(u,v)− a(u,v) indicating the direction of the line L(u,v) (see Fig.
6.1), we employ the volumetric parametrization
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a(u,v) = x(u,v,0)
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(a) (b)
Fig. 6.1 (a) A line congruence L is described by a surface a(u,v), and direction vectors e(u,v).
(b) Developables R1, R2 contained in L . The set of all regression curves ci of these developables
makes up the focal sheets F1, F2 of the congruence (here only F1 is shown). The tangent planes of
R1, R2 along the common line are the torsal planes or focal planes of that line. These images are
taken from [21].

x(u,v,λ ) = a(u,v)+λe(u,v) = (1−λ )a(u,v)+λb(u,v).

Any 1-parameter family R (t) = L(u(t),v(t)) of lines results in a ruled surface
r(t,λ ) = x(u(t),v(t),λ ) contained in the congruence. We are particularly interested
in developable ruled surfaces: The developability condition reads

u2
t [eu,au,e]+utvt([eu,av,e]+ [ev,au,e])+ v2

t [ev,av,e]

= (ut ,vt)

(
[eu,au,e] [eu,av,e]+ [ev,au,e]
symm. [ev,av,e]

)(
vt
ut

)
= 0, (6.1)

if we use subscripts to indicate differentiation and square brackets for the determi-
nant. Equation (6.1) tells us that for any (u,v) there are up to two so-called torsal
directions ut : vt which belong to developable surfaces. This behaviour is quite anal-
ogous to the fact that for any point in a smooth surface there are two principal
tangent directions which belong to principal curvature lines. By integrating the tor-
sal directions one creates ruled surfaces which are developable, which is analogous
to finding principal curvature lines by integrating principal directions.

Normal Congruences.

The normals of a surface constitute the normal congruence of that surface. For such
congruences the analogy between torsal directions and principal directions men-
tioned above is actually an equality: The surface normals along a curve form a de-
velopable surface if and only if that curve is a principal curvature line [14].

The reference surface a(u,v) might be the base surface the lines of L are orthog-
onal to, but this does not have to be the case. The congruence does not change if
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the reference surface is changed to a∗(u,v) = a(u,v)+ λ (u,v)e(u,v), so deciding
whether or not L is a normal congruence depends on existence of an alternative
reference surface a∗ orthogonal to the lines of L , i.e., 〈e,a∗u〉= 〈e,a∗v〉= 0. Assum-
ing without loss of generality that ‖e(u,v)‖ = 1 and using 〈e,eu〉 = 〈e,ev〉 = 0 the
orthogonality condition reduces to λu = −〈au,e〉, λv = −〈av,e〉. This PDE for the
function λ has a solution if and only if the integrability condition λuv = λvu holds.
It is easy to see that this is equivalent to

〈au,ev〉= 〈av,eu〉. (6.2)

It is not difficult to see that (6.2) is equivalent to the condition that developables
contained in L intersect at right angles.

Focal surfaces and focal planes.

Loosely speaking, an intersection point of a line in L with an infinitesimally neigh-
bouring line produces a focal point of the congruence L . The rigorous definition of
focal point is a point x(u,v,λ ) where the derivatives of x are not linearely indepen-
dent: One gets the condition

[xu,xv,xλ ] = [eu,ev,e]λ 2 +
(
[au,ev,e]+ [eu,av,e]

)
λ +[au,av,e] = 0, (6.3)

i.e., up to two focal points per line. It is not difficult to see that such singularities are
exactly the singularities of developables contained in L , see Figure 6.1b. For this
reason, the tangent planes of developables contained in L are called focal planes as
well as torsal planes. Such a focal plane/torsal plane is spanned by a line L(u,v)
together with a torsal direction.

For normal congruences, the focal points are precisely the principal centers of
curvature; they exist always unless one of the principal curvatures is zero. In each
point of the surface, the focal plane (i.e., torsal plane) is spanned by the surface
normal and a principal tangent.

Example: Congruences defined by linear interpolation.

Congruences of the special form

x(u,v,λ ) = (1−λ )
(
a0 +a10u+a20v

)
+λ

(
b0 +b10u+b20v

)
(6.4)

=
(
a0 +a10u+a20v

)
+λ

(
e0 + e10u+ e20v

)
play an important role, both for us and in other places: for example, the set of lines
described by such a congruence is the one generated by Phong shading, when one
linearly interpolates vertex normals in a triangle.

We consider the planes “Pα ” which are defined as the set of all points x(u,v,α),
and we study the affine mappings
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Fig. 6.2 Congruences defined by a “linear” volumetric parametrization x(u,v,λ ) turn out to be
useful for linear interpolation of triangle meshes, but they have counter-intuitive properties. (a)
Planes Pλ defined by λ = const. are visualized as triangles. Interestingly, all of these triangles
contain a planar developable Rλ ⊂ L with a parabola rλ as curve of regression. In particular the
red triangle Pλ1 represents a torsal plane for the blue line L( 1

3 ,
1
3 ) which connects the barycenters

of triangles Pλ . The image further shows many lines Pλ1 ∩Pβ , of the planar developable Rλ1 . (b)
The focal surface F of L agrees with the envelope of the family of planes Pλ . It is in general the
tangent surface of a cubic polynomial curve r. We show in red and yellow the two sheets of this
tangent surface F which are separated by the regression curve r. We also indicate the point of
tangency Tλ where Pλ touches r. The hyperbolic congruence lines (those which are contained in
two focal planes) are bitangents of the focal surface, i.e., they touch F in two points. The regression
parabolas rλ are contained in F and are obtained by intersecting F with one of its tangent planes
Pλ .

φαβ : Pα → Pβ , x(u,v,α) 7→ x(u,v,β ).

The lines L(u,v) of the congruence are precisely the lines which connect points
x(u,v,α) ∈ Pα and x(u,v,β ) ∈ Pβ . These congruences are studied e.g. in [16, Ex.
7.1.2]. Let us summarize some of their properties, which are illustrated by Figure
6.2.

1. Each intersection line L = Pα ∩Pβ of two planes in the family Pλ is contained
in the congruence L . This follows from the fact that L is spanned by the points
X = φ

−1
αβ

(L)∩L and φαβ (X) = L∩φαβ (L).
2. The lines Pα ∩Pβ with α fixed, constitute a developable surface Rα ⊂ L which

is planar and contained in Pα (in general, it is the tangent surface of a parabola
rα ).

3. For properties of the focal surface, see Figure 6.2.
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Fig. 6.3 A piecewise-linear correspondence between meshes A and B defines a piecewise-smooth
congruence L . (a) Integrating torsal directions yields corresponding polylines in meshes A and B.
(b) Connecting corresponding points of those two polylines yields a piecewise-flat developable
R ⊂ L . These images are taken from [21].

6.3 Discrete Normal Congruences

Wang et al. [21] define discrete congruences by means of correspondences between
combinatorially equivalent triangle meshes A, B with vertices {ai} and {bi}. Each
pair of corresponding triangles aia jak and bib jbk defines, via linear interpolation, a
piece of a smooth line congruence of the kind described by Equation (6.4):

x(u,v,λ ) = a(u,v)+λe(u,v), (6.5)
a(u,v) = ai +ua ji + vaki, e(u,v) = ei +ue ji + veki, where
ei = bi−ai, ai j = ai−a j, ei j = ei− e j.

If the domain is restricted to u ≥ 0, v ≥ 0, u + v ≤ 1, then the correspondence
x(u,v,0) 7−→ x(u,v,1) is precisely the affine mapping of triangle aia jak to triangle
bib jbk. Equations (6.1) and (6.3) serve to compute torsal directions and focal points
of this congruence, and also to trace the developables contained in this congruence
(see Fig. 6.3).

Discrete normal congruences — Version 1.

It is not straightforward to define which correspondence between triangle meshes
defines a normal congruence. Firstly this is because congruences of the form (6.4)
are never normal except for degenerate cases. Secondly such a normal congruence
would automatically lead to a good definition of constant-distance offset mesh of a
triangle mesh which is lacking so far.

We discuss two suitable definitions of “normal congruence” and start with a
version already published. Wang et al. [21] require normality to hold only in the
barycenters of faces (i.e., they require that Equation (6.2) holds for barycenters of
faces), see Figure 6.4. Figure 6.5 shows an example demonstrating the efficiency of
this definition. Proposition 1 below gives an equivalent analytic condition.
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Fig. 6.4 (a) Congruences defined by the piecewise-affine correspondence of meshes A,B can be
called discrete-normal, if the normality condition is fulfilled for barycenters of faces. This figure
also illustrates the auxiliary projection used by Equation (6.7). This normality condition is called
‘version 1 normality’ here (image taken from [21]).

Proposition 1. Consider two combinatorially equivalent triangle meshes and the
line congruence L defined by the piecewise-linear corresondence of faces. For each
pair a1a2a3, b1b2b3 of corresponding faces perform orthogonal projection in di-
rection of the line which connects their respective barycenters, yielding triangles
ā1ā2ā3, b̄1b̄2b̄3. Then L is normal in the barycenters of the two faces if and only if
the following analogue of (6.2) holds:

〈ā j− āi, b̄k− b̄i〉= 〈āk− āi, b̄ j− b̄i〉, or equivalently, (6.6)
〈ā j− āi, ēk− ēi〉= 〈āk− āi, ē j− ēi〉, where ei = bi−ai. (6.7)

It is sufficient that these conditions hold for at least one choice of indices i, j,k ∈
{1,2,3}, i 6= j 6= k.

Discrete normal congruences — Version 2.

There is an obvious analogy between conditions (6.2) and (6.7): they express nor-
mality in the smooth and discrete cases respectively. However Equation (6.7) is
not entirely satisfying as a definition since it involves a projection operator. It is
therefore natural to define discrete-normality by the following two equations which
replace Equations (6.6), (6.7):

〈a j−ai,bk−bi〉= 〈ak−ai,b j−bi〉 or, equivalently, (6.6∗)
〈a j−ai,ek− ei〉= 〈ak−ai,e j− ei〉. (6.7∗)

We will show that theses conditions are suitable to define normality of discrete con-
gruences defined by a correspondence of triangle meshes. Besides numerical exper-
iments (see later), we show geometric properties of congruences which fulfill these
conditions. The first property is a discrete version of the following two facts (i) A
normal congruence L has a 1-parameter family of surfaces orthogonal to it, and (ii)
for any point in such a surface there are 3 mutually orthogonal planes spanned by
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aiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiai

a∗i
Fig. 6.5 We demonstrate that Equation (6.7) is a working definition of normality: Given a triangle
mesh {ai} (white), we find unit vectors ei by optimizing for shading effects according to Wang et
al. [21] under the normality constraint (6.7). Subsequently we check if a triangle mesh {a∗i } orthog-
onal to the congruence can be found. We let a∗i = ai +λiei and solve for λi such that the faces of
the new mesh are orthogonal to the congruence in their barycenters. The result of this computation
yields a mesh {a∗i } (yellow) where face normals and congruence lines (in face barycenters) differ
by an angle β , which assumes a maximum of 4.1◦, a mean of 0.9◦, and a median of 0.8◦. Instead
of the mesh computed here, any constant-distance offset would have been a solution as well. We
chose one which lies at a small distance from the original mesh.

the normal and the two principal directions. We show that in the discrete-normal
case, there are analogous principal trihedra:

Proposition 2. Consider two combinatorially equivalent triangle meshes and the
line congruence L defined by the piecewise-affine corresondence of faces, and con-
sider in particular one such pair a1a2a3, b1b2b3 of corresponding faces. In the
generic case, the normality condition (6.6∗) implies the following property:

For each plane Pλ spanned by the vertices (1−λ )ai +λbi there is a congruence
line Nλ = L(uλ ,vλ ) such that the two focal planes of that line together with Pλ form
a trihedron of mutually orthogonal planes.

The meaning of “generic” is discussed in the proof.

Proof. Generically, vectors ei = bi−ai are linearly independent, so we can express a
normal vector n of the triangle a1a2a3 (which spans P0) as a linear combination n =

∑
3
i=1 αiei. Generically, ∑αi 6= 0, so by multiplying n with a factor we can achieve

∑αi = 1 and by relabeling the coefficients αi we get n = (1−u− v)e1 +ue2 + ve3.
Then Equation (6.5) shows that the line L(u,v) is orthogonal to P0.

Consider the affine correspondence of triangles a1a2a3 and b1b2b3 followed by
orthogonal projection onto P0. A vertex ai is mapped to b̄i = bi + λin. There is a
linear mapping α with α(ai − a j) = b̄i − b̄ j. It is clear from Figure 6.3 that the
eigenvectors of α indicate the directions of torsal planes through the line L(u,v).
Conditions (6.6∗), (6.7∗) imply
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Fig. 6.6 The “principal” trihedra mentioned in Proposition 2, when moved to the origin, lie tangent
to a so-called Monge cone. Since these planes rotate about an entire cone as the interpolation
parameter λ varies, one cannot without restrictions interpret these principal trihedra as tangent
planes plus principal planes of an offset family of surfaces. Such an interpretation is valid only for
small λ .

〈a j−ai, b̄k− b̄i〉−〈ak−ai, b̄ j− b̄i〉
= 〈a j−ai,bk +λkn−bi−λin〉−〈ak−ai,b j +λ jn−bi−λin〉
= 〈a j−ai,bk−bi〉−〈ak−ai,b j−bi〉= 0,

i.e., symmetry of α and orthogonality of eigenvectors of α . This shows orthogonal-
ity of torsal planes and verifies the statement for the case λ = 0. The case λ = 1 is
analogous, since condition (6.6∗) is invariant if we replace ai by bi and vice versa.
For all other values λ 6= 1 we note that replacing vertices bi by vertices ai +λei in-
flicts the change ei→ λei without changing ai, which does not affect the normality
condition (6.7∗).

As illustrated by Figure 6.2, congruences defined by the affine correspondence
of triangles have counter-intuitive properties: The planes Pλ generated by linear
interpolation of the defining triangles at the same time are the focal planes of L
(and vice versa) since any Pλ carries the developable surface generated by the lines
{Pλ ∩Pα}α∈R. The torsal planes Pλ are tangent to the focal surface F of L . It is
known that F is the tangent surface of a cubic polynomial curve, cf. [16, Ex. 7.1.2].
Proposition 2 now tells us that this curve has infinitely many triples of mutually or-
thogonal tangent planes. Translating these planes (the principal trihedra) through the
origin, they become tangent planes of the directing cone of F , which is a quadratic
cone. This cone is quadratic and must likewise have infinitely many orthogonal cir-
cumscribed trihedra. It is therefore a so-called Monge cone, see Figure 6.6.

There is a phenomenon in geometry, called porism, cf. [7]. It refers to situations
where existence of one object of a certain kind implies existence of an entire 1-
parameter family of such objects. Monge cones are an instance of a porism: If a
quadratic cone has one circumscribed orthogonal trihedron, then one can move this
trihedron around the cone while it remains tangential. This fact is classical knowl-
edge in projective geometry, see e.e. [1, pp. 33-34].
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The same porism is hidden in the proof of Proposition 2: The normality condition
(6.6∗) was equivalent to existence of the principal trihedron associated with P0, but
it also implied existence of the trihedron for all Pλ .

Details on principal trihedra in discrete-normal congruences.

We wish to interpret the three mutually orthogonal planes referred to by Proposition
2 as the tangent plane and principal planes of a surface. In particular the normal
vector nλ of Pλ shall be the normal vector, and the line Nλ shall be the surface
normal, while the torsal planes should represent the principal directions. In order
to understand better the behaviour of the objects involved, we study the volumetric
parametrization according to Equation (6.4) in an adapted cordinate system: the
plane P0 is the xy plane, and the two torsal planes associated with it shall be the
xz and zy planes. Since the affine correspondence between planes P0,P1 may be
defined by any pair of corresponding triangles, we choose a1 = o, a2 = (1,0,0),
a3 = (0,1,0). We may still change the plane P1 without changing the congruence,
so we choose b1 = (0,0,1) . The vertices b2,b3 must lie in the xy and xz planes
because of our assumption on the torsal planes. Thus we get

x(u,v,λ ) =

u
v
0

+λ

 −κ1u
−κ2v

au+bv+1

 (6.8)

=⇒ nλ =
∂x
∂u
× ∂x

∂v
=

 aλ (κ2λ −1)
bλ (κ1λ −1)

(κ1λ −1)(κ2λ −1)

 .

We will later interpret κ1,κ2 as principal curvatures and vectors (1,0,0) and (0,1,0)
as principal directions. Obviously, they are eigenvectors of the linear map α which
occurs in the proof of Proposition 2. The plane Pλ is given as

n1,λ x1 +n2,λ x2 +n3,λ x3−n0,λ = aλ (κ2λ −1)x1 +bλ (κ1λ −1)x2

+(κ1λ −1)(κ2λ −1)x3−λ (κ1λ −1)(κ2λ −1) = 0.

This is a cubic family of planes. Translating them through the origin yields the
planes n1,λ x1 + n2,λ x2 + n3,λ x3 = 0, which are tangent planes of the tangent cone
illustrated in Figure 6.6. Since the plane coefficients satisfy the quadratic equation
(κ1−κ2)n1n2−an2n3 +bn1n3 = 0, it is indeed a quadratic cone.1

We now look for a line L(uλ ,vλ ) orthogonal to Pλ . The direction of L(u,v) can
be read off (6.8), so the condition L(uλ ,vλ ) ‖ nλ reads

1 The vector of coefficients (n1,n2,n3) of the equation of a plane is a normal vector of that plane.
This shows that the orthogonal polar cone of the Monge cone fulfills the equation (κ1−κ2)x1x2−
ax2x3 + bx1x3 = 0. Since the Monge cone had many circumscribed orthogonal trihedra, its polar
cone has many inscribed orthogonal frames. These frames are generated by translating the frames
seen in Figure 6.7b through the origin.
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(a) (b)
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N0
Nλ

Nλ ′

Nλ ′′

Fig. 6.7 Behaviour of the principal trihedron and the normal Nλ of planes Pλ in a congruence
defined by the affine correspondence between two triangles. (a) The normals Nλ (green) intersect
the plane P0 in the points c(uλ ,vλ ,0) of a conic (red). (b) As λ changes, the apex cλ = x(uλ ,vλ ,λ )
of the principal trihedron (yellow) moves along a straight straight line (blue). The ruled surfaces
traced out by the edges of the trihedron are shown; their union forms one algebraic ruled surface
of degree four.

κ1uλ

κ2vλ

=
a(κ2λ −1)
b(κ1λ −1)

,
κ1uλ

auλ +bvλ +1
=

aλ

1−κ1λ
(6.9)

=⇒ uλ =
aλκ2(1−κ2λ )

νλ

, vλ =
bλκ1(1−κ1λ )

νλ

,

where νλ = κ1κ2(κ1λ −1)(κ2λ −1)+a2
κ2λ (κ2λ −1)+b2

κ1λ (κ1λ −1).

In particular we see that the curve x(uλ ,vλ ,0), consisting of all points Nλ ∩P0, is a
conic. In fact, for every α , the curve {Nλ ∩Pα}λ∈R is a conic it corresponds to the
curve Nλ ∩P0 under the affine mapping φ0α : x(u,v,0) 7→ (u,v,α), see Figure 6.7a.
The surface of all Nλ ’s is then algebraic of degree four.

Let us now compute the “apex” cλ = Nλ ∩ Pλ = x(uλ ,vλ ,λ ) of the principal
trihedron: From

cλ =
λ (1−κ1λ )(1−κ2λ )

νλ

 κ2a
κ1b
κ1κ2

 (6.10)

we see that cλ moves on a straight line, but the parametrization of this line is cubic.
Since the planes Pλ and the torsal planes stem from the same 1-parameter family
of planes, any torsal plane will play the role of Pλ ′ for another value λ ′; in total
each orthogonal trihedron will occur three times, and each of the three edges of the
trihedron will play the role of Nλ three times (see Figure 6.7b). We summarize:

Proposition 3. If a congruence is defined by the affine correspondence between two
triangles a1a2a3 and b1b2b3 and satisfies the normality condition (6.6∗), then its
focal surface has a 1-parameter family of circumscribed ‘principal’ orthogonal tri-
hedra whose apex moves on a straight line and whose edges form an algebraic
surface of degree 4 which contains that line as a triple line.

The complicated geometry of these congruences reflects the difficulties in defin-
ing offset pairs of triangle meshes.
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normality
condition (6.6),
βmax = 4.1◦,
βavg = 0.8◦,
βmed = 0.7◦

normality
condition (6.6∗),
βmax = 2.8◦,
βavg = 0.8◦,
βmed = 0.7◦

normality
condition (6.11),
βmax = 3.4◦,
βavg = 0.8◦,
βmed = 0.7◦

Fig. 6.8 Optimization of normal congruences. For a given mesh with vertices ai, a discrete-normal
congruence, defined by unit vectors ei, has been found by global optimization such that one of the
normality conditions considered here is fulfilled. Each of these conditions is linear, so optimization
was done by least squares. It turns out that there is no substantial difference between Equations
(6.6∗) and Equations (6.11). Faces are colored according to the angle β enclosed between the
congruence line at the barycenter and the face’s normal there. We also give statistics on β for each
figure.

Discrete normal congruences — Version 3.

An elementary computation shows that either of the two conditions (6.6∗), (6.7∗) is
implied by the stronger condition

〈a j−ai,e j + ei〉= 0, (6.11)

when imposed on all three edges of a triangle. This third version of normality is a
more direct expression of the orthogonality between triangle mesh and congruence:
the edges aia j of the mesh are required to be orthogonal to the arithmetic mean of
normal vectors ei,e j at either endpoint of the edge.

Comparison of definitions.

The various definitions of discrete normal congruences have different advantages.
When one wants to design a normal congruence (as in Wang et al. [21]), version
1 may be better because it ensures orthogonality of focal planes in the part of the
line congruence which is actually realized. Using version 2, orthogonal focal planes
may occur outside the realized part. On the other hand, when using the normal con-
gruence of a given surface, version 2 has the advantage that one plane of a principal
frame contains the base mesh triangle; moreover discrete principal directions are
orthogonal and lie in the plane of the triangle. Version 3 normality is not used here
except for Figure 6.8 where we show that imposing version 3 normality leads to re-
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sults comparable to version 2. Since the weaker condition of version 2 is sufficient
to achieve the same results, it is not necessary to impose version 3 normality.

6.4 Curvatures of faces of triangle meshes

Recall that a smooth normal congruence L possesses a surface A orthogonal to the
lines of L . Then automatically all offsets At also lie orthgonal to L . We assume
labeling of offsets such that surfaces At , As are at constant distance |t − s| from
each other. Then corresponding infinitesimal surface area elements “dAt(u,v)” obey
Steiner’s formula

dAt(u,v)
dA0(u,v)

= 1−2tH(u,v)+ t2K(u,v), (6.12)

where H and K denote mean and Gaussian curvature of the surface A0, respectively.
The sign of H depends on the unit normal vector field; in our case the unit normal
vector field points from A0 to the surfaces At with t > 0.

We now return to a discrete congruence L defined by the piecewise-linear corre-
spondence between triangle meshes A,B. Assuming A,B approximate an offset pair
of surfaces at distance 1, we consider corresponding faces a1a2a3 and b1b2b3. We
write bi = ai +ei, where the vectors ei approximate unit normal vectors of the mesh
A. An offset mesh at distance approximately t then has vertices and faces

at
i = ai + tei ∆

t = at
1at

2at
3.

We further assume that the congruence L is a normal congruence (which we have
defined in two different ways).

• If L is normal in the sense of Equations (6.6) and (6.7), then we apply the pro-
jection mentioned in Proposition 1, resulting in vertices ā1ā2ā3, b̄1b̄2b̄3. The
projection is in the direction of a certain unit vector n.

• As an alternative, the congruence may be normal in the sense of Equations (6.6∗),
(6.7∗). Here we consider orthogonal projection onto the plane P0 which contains
a1a2a3. This projection results in vertices āi = ai and b̄i. The projection is in
direction of the unit normal vector n = n0 of the plane P0.

We now study the behaviour of the area of the face ∆ t as t changes. We do not mea-
sure the actual area, but apply the projection just mentioned. The area of projected
triangles is measured via a determinant in the plane:

p-area(x1x2x3) =
1
2
[x̄2− x̄1, x̄3− x̄1] =

1
2
[n, x̄2− x̄1, x̄3− x̄1] =

1
2
[n,x2−x1,x3−x1]

With the notation āi j = āi− ā j, b̄i j = b̄i− b̄ j, ēi j = b̄i j− āi j we get
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H K H K

version 1

version 2

jet fit

Fig. 6.9 Computing mean curvature H and Gaussian curvature K by means of normal congruences:
“version 1” and “version 2” refer to normality defined by Equations (6.6) and (6.6∗), respectively.
Estimated normals are optimized so as to become a normal congruence which allows us to compute
curvatures in faces. For comparison, curvatures computed by a 3rd order jet fit have been used, cf.
[4]. The color scale is the same for each kind of curvature and each model, throughout the 3
methods of computation. One can hardly see any difference. For each mesh, normal congruences
have been computed in the way employed for Figure 6.8.

p-area(4t)

p-area(40)
=

1
2 [ā12 + t ē12, ā13 + t ē13]

1
2 [ā12, ā13]

= 1+ t
[ā12, ē13]+ [ē12, ā13]

[ā12, ā13]
+ t2 [ē12, ē13]

[ā12, ā13]
.

Discrete curvatures and shape operator.

The obvious similarity of this relation with (6.12) immediately leads to a defini-
tion of the mean curvature H and the Gauss curvature K of the face a1a2a3 under
consideration:

K =
[n,e12,e13]

[n,a12,a13]
, 2H =− [n,a12,e13]+ [e12,a13]

[n,a12,a13]
. (6.13)

Principal curvatures κ1,κ2 are defined by the relations

κ1 +κ2 = 2H, κ1κ2 = K.
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Completing the analogy with the smooth case, we define a shape operator Λ as the
linear mapping which maps

āi− ā j
Λ7−→ −(ēi− ē j), for all i, j ∈ {1,2,3}.

Recall that the bar indicates projection (which in turn depends on which version
of “normality” we employ). In analogy to the smooth case, principal directions are
given by the focal planes of the congruence L . All these notions fit together:

Proposition 4. The eigenvalues of the shape operator Λ are the principal curva-
tures κ1,κ2, and its trace and determinant are given by 2H and K, respectively.
Eigenvectors of Λ indicate the principal directions.

Proof. We first show the statement for ‘version 2’ normality. Recall the linear map-
ping α in the proof of Proposition 2 which maps āi− ā j

α7−→ (āi + ēi)− (ā j + ē j).
Since by construction, Λ = id− α , Λ has the same eigenvectors as α , i.e., the
torsal directions. The statement about trΛ and detΛ follows from the relations
detΛ = det(Λ(x),Λ(y))

det(x,y) and trΛ = det(Λ(x),y)+det(x,Λ(y))
det(x,y) which generally hold for linear

mappings of R2. The statement about eigenvalues follows immediately.
For version 1 normality the proof is the same, only the bars have a different

meaning. The mapping α is also referred to in the proof of Proposition 1 in [21].

Since we have defined principal curvatures κ1,κ2 implicitly via mean curvature
H and Gauss curvature K, their relation to focal geometry is still unclear. In the
smooth case, points at distance 1/κi from the surface are focal points of the nor-
mal congruence. This property holds in the discrete case too, if we use version 2
normality:

Proposition 5. Consider a congruence with parametric representation x(u,v,λ )
which is defined by the correspondence of two triangles a1a2a3 and b1b2b3. As-
sume that it is normal in the sense of Equation (6.6∗), and consider (in the notation
of Proposition 2) the plane P0 which contains a1a2a3 and the corresponding normal
L(u0,v0). Then the focal points of that line lie at distance 1/κ1, 1/κ2 from the plane
P0, with κi as the principal curvatures, i.e., the focal points are precisely the points
x(u0,v0,1/κi).

Proof. We consider the parametrization (6.8) which is with respect to an adapted
coordinate system, so that u0 = 0 and v0 = 0. It is easy to see that the values κ1,κ2
ocurring there are indeed the principal curvatures. A simple computation shows that
for the special case u = v = 0, the determinant of partial derivatives of x(u,v,λ )
specializes to [xu,xv,xλ ] = (1−λκ1)(1−λκ2). Thus we have a singularity if λ =
1/κi.

Special cases.

An umbilic point is characterized by equality of principal curvatures, i.e., κ1 = κ2 =
κ . In this case some of the geometric objects discussed above simplify. E.g. the



16 Xiang Sun, Caigui Jiang, Johannes Wallner, and Helmut Pottmann

above-mentioned cubic family of planes becomes the set of tangent planes of a
quadratic cone with vertex (0,0,1/κ). Such an umbilic occurs every time two cor-
responding triangles a1a2a3 and b1b2b3 are in homothetic position, but the converse
is not true.

A parabolic point is characterized by one principal curvature, say κ1, being zero.
In this case, Equation (6.8) immediately shows that the congruence vectors e1,e2,e3
associated with vertices a1,a2,a3 are not linearly independent, so Proposition 2 does
not apply. Along the x axis, the lines of the congruence are parallel to each other,
which is in accordance with the fact that the focal point (0,0,1/κ1) has moved to
infinity. The above-mentioned cubic family of planes is quadratic (in fact, it is the
family of tangent planes of a parabolic cylinder).

Remark 1. We should mention that the approach to curvatures presented here car-
ries over to relative differential geometry where the image of the Gauss map is not
a sphere but a general convex body [19]. Another straightforward extension is to
curvatures at vertices, which however does not lead to a shape operator in such a
natural manner.

6.5 Results and discussion

Numerical examples.

Vertex normals of a mesh can be estimated (e.g. as area-weighted averages of face
normals). Any such collection of sensible normals is not far away from being a “nor-
mal” congruence in our sense. By applying optimization, we can make it as normal
as possible, meaning that (6.6) is fulfilled in the least-squares sense. Numerical ex-

jet fit normal cycle version 1 version 2

asymp-
totic
lines

prin-
cipal
cur-
vature
lines

Fig. 6.10 We compute asymptotic lines and principal curvature lines of meshs by various means.
For the figures of the first column, we have used the 3rd order jet fit method of [4]. For the second
column, we used the method of normal cycles (see e.g. [20]). The 3rd and 4th column are computed
using our the shape operators, where version 1 and version 2 refer to normality w.r.t. Equation (6.6)
or Equation (6.6∗), respectively. In both cases the normal congruence needed for defining the shape
operator was obtained in the same way as for Figure 6.8.
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sphere torus disk w/ holes, see Fig. 6.10
fixed vertices fixed vertices moving vertices fixed vertices moving vertices

c n c n c n c n c n
v. 1 7.8 ·10−3 0 7.7 ·10 0 0 – – 1.5 ·10 0 0 – –
v. 2 9.7 ·10−5 0 9.6 ·10−1 0 6.9 ·10−5 8.1 ·10−7 1.9 ·10−2 0 4.0 ·10−5 2.2 ·10−9

v. 3 9.0 ·10−2 0 1.3 ·10−1 0 6.9 ·10−4 6.3 ·10−4 2.4 ·10−1 0 9.6 ·10−5 9.5 ·10−10

Table 6.1 Comparison of residuals regarding normalcy of the congruence (“c”) and unit vectors
being normalized (“n”) when optimizing congruences. All meshes are normalized for unit average
edge length, and a zero means a zero up to machine precision. The rows in this table correspond to
versions 1, 2, 3 of the normalcy condition for congruences. One can see that zero residual happens
only for sphere topology.

periments show that this improves the quality of the normal field (even if there are
not enough d.o.f. to satisfy (6.6) fully if the vertices of the mesh are kept fixed).
Since curvatures and the distribution of normals are inseparable, it makes sense to
study curvatures not only as quantities derived from a mesh, but as quantities which
arise naturally from the the result of the optimization procedure just mentioned. In
this way the natural sensitivity of curvatures with respect to noise is moderated.

The basic task is, of course, the computation of a normal congruence for a given
mesh. This is done via a standard optimization procedure, which is initialized from
estimated vertex normals. We express the validity of the normality condition in
terms of least squares, and minimize subject to the constraints that (in the termi-
nology of previous sections), vectors ei are of unit length. Figure 6.8 shows an ex-
ample. In particular one can see that normality according to Equation (6.6) (“version
1”) behaves differently from normality according to Equation (6.6∗) (“version 2”),
while there is hardly any difference between conditions (6.6∗) and (6.11).

Degrees of freedom and topology. When optimizing a normal congruence of a mesh
with v vertices, e edges and f faces, we count 3v variables for the normals and f +v
constraints. If a number b of boundary vertices is present, we fix the normals at the
boundary, resulting in 3(v−b) variables and f +(v−b) constraints, i.e., 2v− f −2b
d.o.f. Elementary manipulations show that

d.o.f. = 2χ−b,

with χ = f +v−e as the Euler characteristic. We see for meshes of sphere topology
we can expect a unique solution, but topological features diminish the available
degrees of freedom. If boundary normals are kept fixed, long boundaries diminish
this freedom even more. By allowing vertices to move during optimization, we can
achieve zero residual again, but of course a compromise has to be found between
the quality of the normal congruence and the deviation of the mesh from its previous
shape. Table 6.1 shows some numerical experiments.

Computing Curvatures. Once a normal congruence is availabe, we can compute cur-
vatures (see Figure 6.9) and we can integrate the field of principal curvature direc-
tions as well as the field of asymptotic directions (see Figure 6.10 for an example). It
must be said, however, that we do not want to compete with the many other methods
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(a) (b) (c)

Fig. 6.11 Computing normals and principal curvature lines for noisy data. Subfigure (a) shows a
triangulated cylinder and some of its principal curvature lines. In (b) the jet fit method has been
used to obtain principal curves for data where noise has been added to both vertex coordinates and
normals. Subfigure (c) shows the result of optimization applied to (b), which results in a smooth
mesh equpped with a normal congruence. For (c) we again show the principal curvature lines
computed by our method.

for computing curvatures, and we do not regard the ability to compute curvatures a
main result of this study.

Robustness by using normals. Figure 6.11 demonstrates that considering a mesh
and its normal congruence together allows us to handle optimization/smoothing in
a stable way. After a mesh and its normals have been perturbed (Figure 6.11b), an
optimization procedure attempts to restore both. We use a target functional com-
posed of a sum of least squares expressing condition (6.6∗) and also the property
of vectors ei having length 1 (weight 1), proximity to the input data (weight 1/4),
Laplacian fairing for the mesh (weight 10−6), Laplacian fairing for the normal vec-
tors (weight 10−4) and comptabibility between normal and mesh by penalizing de-
viation from orthogonality between congruence lines in mesh barycenters and face
(weight 10−4). Figure 6.11c shows the repaired mesh.

Relevance for discrete differential geometry.

The idea of employing the Steiner formula for defining curvatures has proved very
helpful in bringing together various different notions of curvature, and indeed, vari-
ous different notions of discrete surfaces (like discrete minimal surfaces and discrete
cmc surfaces) which were defined in a way not involving curvature directly but by
other means like Christoffel duality. We refer to [2] and [3] for more details. The
theory presented in [2] is restricted to offset-like pairs of polyhedral surfaces where
corresponding edges and faces are parallel. There are ongoing efforts to extend this
theory to more general situations (we point to recent work on quad meshes [10]
and on isothermic triangle meshes of constant mean curvature [11]). It is therefore
remarkable that at least for the situation described here, triangle meshes allow an
approach to curvatures and even a shape operator which is likewise guided by the
Steiner formula, but without the rather restrictive property of parallelity (which for
triangle meshes would be even more restrictive).
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Future Research.

As to discrete differential geometry, it is still unclear how known constructions of
special discrete surfaces relate to the curvatures defined here: For instance, it seems
difficult to gain nice geometric properties from the condition vanishing mean cur-
vature. Nevertheless one of the known constructions of discrete minimal surfaces
might be equipped with a canonical normal congruence such that, when our theory
is applied, mean curvature vanishes.

Further applications of line congruences have been discussed by Wang et al. [21],
but there might be other examples of geometry processing tasks where the notion of
line congrence, or even normal congruence, becomes relevant.
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