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Abstract

Designing freeform architectural surfaces with due regard to economic and feasibility
factors is a challenging task. Rationalizing such surfaces by means of quadrilateral
meshes following principal curvature lines has proven to be beneficial for manufactur-
ing reasons, such as planar cladding panels and simplified substructure connections.
On the other hand, for structural efficiency, it is convenient to ensure static equilib-
rium in the load bearing structure through axial forces only. It turns out that both
of these goals can be reached for surfaces in membrane equilibrium where principal
stress and curvature directions coincide. In this paper, we present a method for
the optimization of a given shape towards stress and curvature alignment, within
a workflow for the design of principal meshes in equilibrium. Our method can be
applied to shapes without any geometric or topological limitation.

Key words: architectural geometry, computational design, freeform architecture, principal meshes
in equilibrium, structural optimization
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1 Introduction

Motivation. Principal meshes are discrete versions of principal curvature parametri-
zations of surfaces. This kind of meshes is particularly suitable in architecture for
several reasons. First of all, faces are planar and then easily manufacturable. More-
over, the network lines are as orthogonal as possible and admit the disposition of
prismatic beams that meet in the nodes with minimized geometric torsion, reduc-
ing significantly the complexity of connections. On the other hand, the edges of
these meshes are charged to bear the loads within the structure. It is well known
that the most efficient manner of bearing loads in a framework is through strictly
axial forces. This allows the beam cross section to be used to the highest capacity
and at the same time to offer the highest stiffness. Principal meshes in axial force
equilibrium provide an appealing solution for the discretization of freeform archi-
tectural surfaces. However, principality and equilibrium of quad meshes turn out
to be often conflicting goals. It is of interest then to provide computational tools
that enable to embody geometric and static optimization since the earliest design
stages.

Previous work. A significant step in mesh optimization for equilibrium comes from
thrust network analysis, introduced by Block and Ochsendorf (2007). Vouga et al.
(2012) provide a differential geometric understanding of this approach and use it
for the design of planar quad meshes in equilibrium. An efficient optimization of
quad meshes for equilibrium and face planarity is provided by Tang et al. (2014),
but the success of this method is strongly dependent on the initial mesh connec-
tivity. Schiftner and Balzer (2010) propose a method for planar quad-remeshing
of given surfaces, initialized by principal stress lines. However, the effectiveness of
this method is limited, since for a general surface, planarity of quads and the align-
ment with principal stress directions are often conflicting goals. A first attempt to
directly design principal meshes in equilibrium was made by Sun (2016), fixing the
mesh combinatorics in advance. Unfortunately, this approach rarely yields good

Figure 1: Architectural surfaces discretized with principal meshes in equilibrium, achieved
thanks to stress and curvature alignment. Cladding can be realized with flat panels, and
the substructure with prismatic beams and torsion-free nodes. At the same time, structural
bending effects are minimized. The mesh on the left discretizes a non-height field shape.
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convergence of optimization. The design of principal meshes in equilibrium is ad-
dressed in (Kilian et al., 2017), thanks to the alignment of principal curvature and
stress directions and a subsequent quad-remeshing. However, the applicability of
this method is restricted to height field shapes. We refer to the latter paper for
further literature. For an introduction to principal meshes in architecture, we refer
to (Pottmann et al., 2015).

Our contribution. It turns out that principal meshes in equilibrium are a discretiza-
tion of membrane surfaces with coincident stress and curvature directions. In this
paper, we propose a method for the optimization of a given shape towards stress
and curvature alignment, within a workflow for the design of principal meshes in
equilibrium. Relying on a discrete-continuous analog, we discretize a given surface
with a triangular mesh, enforcing the equilibrium on its edges, and we estimate an
equivalent membrane stress and curvature. We overcome in this way the shape
limitations of (Kilian et al., 2017). Once the shape is optimized for stress and
curvature alignment, we generate a quad mesh along the resulting directions that
is post-optimized for force equilibrium and face planarity. Thanks to our initial-
ization, we can expect convergence with minimal changes. It is noteworthy that
mesh connectivity and geometry are both part of our solution.

2 Membranes and gridshells

This paper deals with meshes in equilibrium under axial forces and subject to
vertical loads. We consider self-weight, dead, and static live loads lumped in
forces and applied in the vertices. The resulting framework structure is a gridshell
truss: a system of straight beams, with axes corresponding to the edges of the
mesh, connected together and to the supports with frictionless pin-joints. In this
paper, we refer to this model as gridshell. We point out here that this kind of
structure, depending on its geometry, connectivity and support conditions, might
be a mechanism in equilibrium. However, even if in an actual gridshell the nodes
are manufactured as rigid joints for stability and safety reasons, the use of a truss
model in the design stage is strongly beneficial for minimizing bending effects.

Let us consider now a refinement process that increases the density of a gridshell
truss. From a mechanical point of view, at the limit of refinement the gridshell will
tend to a membrane: a surface-like continuum that cannot support out of plane
bending, and with mechanical properties derived at each point from the thickness
in the normal direction. At the same time, the axial forces in the beams will
tend to the membrane stress. For a detailed description of gridshells approaching
membranes, we refer to (Mitchell, 2013).

In this paper, we rely on a discrete-continuous analog based on this refinement
process to describe principal meshes in equilibrium. In the following of this section,
we introduce the computational setting of continuous and discrete equilibrium,
namely membranes and gridshells.
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2.1 Membrane equilibrium

Let us consider a membrane M given by a regular surface. Away from points with
a vertical tangent plane, we parametrize the surface locally as a height function
M (x,y)= (x,y,z(x,y)). If we consider only vertical loads, it is convenient to express
equilibrium in the global coordinate system (x,y,z), with a vertical z axis. Let S̄ be
the tensor representing the xy projection of the membrane stresses. The horizontal
and vertical equilibrium, respectively, are expressed by

div(S̄) = 0, div(S̄∇z) = ρ.

Here divergence of a matrix is applied to its columns, and ρ(x,y) is the vertical
load per unit xy area (Angelillo and Fortunato, 2004; Vouga et al., 2012).

The horizontal component of the equilibrium can be expressed by the existence of
an Airy stress potential ϕ(x,y). The stress tensor S̄ is then given by the adjoint
Hessian of ϕ :

S̄ = ∇̃2ϕ =

(
ϕ,yy −ϕ,xy

−ϕ,xy ϕ,xx

)
,

where with comma we denote partial derivatives, and with over-tilde the adjoint
matrix operation. Let I be the first fundamental form of M (x,y). The principal
stresses are then given by the eigenvalues of ∆1/2I−1∇2ϕ , where ∆ = det(I). The
corresponding eigenvectors define the principal stress directions of M (x,y). For
further details we refer to (Kilian et al., 2017).

We can consider the Airy stress potential as a surface z = ϕ(x,y) in isotropic space.
This is a 3D space with a preferred direction along the z axis, and where distances
are measured in the xy plane. The Hessian of ϕ plays here the role of shape operator,
and its eigenvalues are the isotropic principal curvatures. These correspond to the
eigenvalues of S̄ along the swapped eigenvectors. For an introduction to isotropic
geometry, we refer to (Pottmann and Liu, 2007).

2.2 Gridshell equilibrium

Let M be a three dimensional gridshell truss, with members corresponding to the
edges of a mesh. We consider vertical loads applied in the vertices vi = (xi,yi,zi)
and support conditions given along the boundary. The force fi j exerted by the
oriented bar ei j = vi −v j on the vertex vi can be expressed as wi j(vi −v j), where
wi j is the axial force per unit bar length or force density, and where positive values
of wi j indicate compression. Let Ai be the area of influence at vi. If the system
is in equilibrium, at each unsupported vertex vi the horizontal and vertical force
balance gives, respectively,

∑
j∼i

wi j(v̄i − v̄ j) = 0, ∑
j∼i

wi j(zi − z j) = ρiAi, (1)

where v̄i, v̄ j are the xy projections of the points vi,v j, and ρi is the vertex-wise load
per unit area. With j∼ i we denote all the vertices j connected with the vertex i.
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Figure 2: Gridshell equilibrium. (a) A portion of a gridshell M under vertical load and its
projection into the xy plane M̄. (b) The horizontal equilibrium yields a force dual mesh
M̄∗ with edges given by the forces acting in the correspondent primal edges of M̄ rotated
by 90 degrees, as shown by Maxwell (1872). We can construct an Airy polyhedron Φ with
face gradients given by the coordinates of the corresponding dual vertex of M̄∗. (c) By
construction, the magnitudes of the forces in the bars v̄i − v̄ j are given by the isotropic
angles between the adjacent faces on Φ. The isotropic angle can be seen as the change
in slope between two faces of Φ when traversed orthogonally to v̄i − v̄ j.

Let us now consider the projection of the structure in the xy plane, denoted as
M̄. Let f̄i j be the xy projections of the forces fi j. Since M̄ is a 2D system in
horizontal equilibrium under boundary loads (given by the xy projections of the
support reactions), the forces f̄i j acting on each vertex v̄i can be arranged in a
planar closed cycle. We can build thus a reciprocal diagram M̄∗, combinatorially
dual to M̄, whose edges are given by the forces acting in the corresponding primal
edge. For convenience, we represent this dual diagram rotated by 90 degrees
clockwise in the xy plane, as shown in Figure 2b.

We can now construct a polyhedral stress potential Φ = (x,y,ϕ(x,y)), whose edges
and vertices coincide in the xy projection to the primal truss M̄, in the following way.
Let us denote as fk the faces of Φ, and let v̄∗k = (x∗k ,y

∗
k) be the corresponding dual

vertices of M̄. Hence, each face fk of Φ lies on a plane with gradient ∇ϕ | fk =(x∗k ,y
∗
k).

The closure of each face of M̄∗ ensures the closure of the polyhedron Φ turning
around the corresponding primal vertex. This construction is uniquely defined up
to vertical translations and shearing. For further details we refer to (Fraternali,
2010) and (Vouga et al., 2012).

Let fk, fl be the faces of Φ meeting at the oriented edge with projection ēi j, as
shown in Figure 2c. The force f̄i j, by construction, is given by J(∇ϕ | fl −∇ϕ | fk),
where J =

(
0 −1
1 0

)
is the 90 degrees counterclockwise rotation matrix in the xy plane.

Denoting the xy unit edge vector as ˆ̄ei j = (v̄i − v̄ j)/
∥∥v̄i − v̄ j

∥∥, the quantity

β is(ēi j) = J(∇ϕ | fl −∇ϕ | fk) · ˆ̄ei j (2)
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is the signed isotropic angle between the faces fl and fk. Positive values of β is(ēi j)
indicate compression in the bar ēi j. Note that β is(ēi j) = β is(ē ji).

3 Principal meshes in equilibrium

In this section we describe principal meshes in equilibrium under vertical loads. In
Section 3.1, we show that these meshes are discretizations of special surfaces in
membrane equilibrium, where principal directions of stress and curvature coincide.
In Section 3.2, we first show how a membrane can be conveniently discretized with
a triangular gridshell, enforcing the equilibrium on its edges. Then, we describe how
to evaluate an equivalent stress tensor on a triangular gridshell and how to align
the resultant principal directions with those of curvature. Finally, in Section 3.3,
we outline our workflow to design principal meshes in equilibrium.

3.1 Principal stress and curvature alignment

Principal meshes are a discretization of the network of principal curvature lines
of a continuous surface. A principal mesh in equilibrium, from a mechnanical
point of view, is a gridshell with a quad combinatorics. At the limit of refinement,
this gridshell will tend to a principal network of curves on a continuous surface in
membrane equilibrium.

Let M (x,y) be a membrane under vertical load, parametrized as a height field
surface over the xy plane, as described in Section 2.1. Let us then consider the
principal network of curves of M (x,y), defined at each point by two tangent vectors
a1 and a2, and let ā1 and ā2 be their xy projections. We are now looking for simple
conditions which express that the principal network is in equilibrium.

First, for principal curve networks, the vectors a1, a2 follow principal curvature
directions. These directions are orthogonal on the surface. With I as first funda-
mental form of M (x,y), we can express the orthogonality condition of a1, a2 as

āT
1 I ā2 = 0. (3)

Secondly, as seen in section 2.2, if a gridshell is in equilibrium under vertical loads,
its xy projection must admit an Airy polyhedron Φ with planar faces. At the limit
of refinement, the polyhedron Φ will tend to a continuous stress surface z = ϕ(x,y).
For a quadrilateral gridshell, the corresponding Airy polyhedron is a quad mesh with
planar faces. It is well known that a planar quad mesh, at the limit of refinement,
will converge to a network of conjugate curves on a surface (Liu et al., 2006). We
can then state the following condition: a quad network on a surface is in horizontal
equilibrium under vertical load if it is vertically projected onto a conjugate curve
network on the corresponding Airy stress surface. The condition for the directions
a1, a2 to be vertically projected onto conjugate directions of ϕ(x,y) is expressed
by

āT
1 ∇2ϕ ā2 = 0. (4)
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As shown in (Kilian et al., 2017), Equations (3) and (4) imply that the vectors
ā1, ā2 are eigenvectors of I−1∇2ϕ . Since the principal stress directions on M (x,y)
are given by the eigenvectors of ∆1/2I−1∇2ϕ , we can see that the only directions
in horizontal equilibrium and orthogonal on the membrane are the principal stress
directions. Therefore, we can state the following important fact:

Proposition 1. Principal meshes in equilibrium under vertical loads are discrete
representations of membrane surfaces where principal stress and principal curvature
directions agree. There, they follow these principal directions.

3.2 Estimating stress and curvature

As seen in section 2.1, at each point of a membrane we find three unknown stress
components and three equilibrium equations. Membranes are then statically deter-
minate in the sense that, given the loads and the boundary tractions, the stress
tensor is uniquely determined; the existence of a solution depends only on the
membrane geometry. Let us now consider a triangular gridshell forming a closed
polyhedron Γ of genus zero, and with loads applied in its nodes. Denoting by
v its number of vertices and e its number of edges, Euler’s formula shows that
3v = e+6. Since we have one unknown axial force per edge and three equilibrium
equations per vertex, the solution is uniquely determined up to rigid body motion;
the existence of the solution depends on the geometry of the polyhedron. The
same is true for a portion of Γ, given the force reactions of the remaining part. Tri-
angular gridshells can therefore reproduce the statical determinacy of membranes,
see (Pavlovi, 1984). In the following, we express membrane behavior of a surface
through the equilibrium of a gridshell triangulation.

In the continuous membrane, the projected stress tensor S̄ and the isotropic shape
operator ∇2ϕ are related by S̄ = ∇̃2ϕ . We are now searching for a discrete analog
of the isotropic shape operator defined for triangle meshes, and at first look at
the Euclidean counterpart. For that, we use the normal cycle approach by (Cohen-
Steiner and Morvan, 2003). One computes an extended shape operator W (3×3
matrix with two eigenvectors in principal curvature direction and the third eigenvec-
tor, with eigenvalue close to zero, orthogonal to the surface) as follows. Selecting
a vertex vi and a surrounding region Ri of area Ai, W is found by

W (vi) =
1
Ai

∑
j∼i

β (ei j)
∥∥ei j ∩Ri

∥∥ êi jêT
i j. (5)

Here β (ei j) is the signed Euclidean angle between the two normals of the faces ad-
jacent to the edge ei j, ei j ∩Ri is the portion of the edge ei j intersecting the region
Ri and êi j is the unit edge vector, given by (vi−v j)/

∥∥vi −v j
∥∥. The eigenvalues of

W (vi), associated with the two eigenvectors lying in the tangent plane at vi, will
give an estimation of principal curvatures along the swapped tangent eigenvectors.
To obtain a discrete isotropic shape operator, we have to replace Euclidean quan-
tities by isotropic ones. This means that lengths and areas are measured in the
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xy plane and the Euclidean angle β (ei j) is replaced by the signed isotropic angle
β is(ēi j), given by Equation (2). Setting ēi j ∩ R̄i = v̄i − v̄ j, we can estimate the 2×2
adjoint Hessian of Φ at v̄i as

∇̃2ϕ(v̄i) = S̄(v̄i) =
1
Āi

∑
j∼i

J(∇ϕ | fl −∇ϕ | fk)(v̄i − v̄ j)
T .

Observing that J(∇ϕ | fl −∇ϕ | fk) = f̄i j = wi j(v̄i − v̄ j), we can estimate the stress
tensor directly through force densities as

S̄(v̄i) =
1
Āi

∑
j∼i

wi j(v̄i − v̄ j)(v̄i − v̄ j)
T . (6)

To estimate the principal curvature directions on the triangulated surface we use
again Cohen-Steiner Equation (5). For sufficiently smooth meshes, we can make
the approximation β ≈ sinβ . With n fk and n fl as the unit normals of the left and
right faces of the edge ei j, we can then estimate the 3×3 extended shape operator
as

W (vi) =
1
Ai

∑
j∼i
(n fl ×n fk)(vi −v j)

T . (7)

Let κ1 and κ2 be the eigenvalues of W corresponding to the two eigenvectors in
the tangent plane of M. We can ensure the alignment of two vectors a1, a2 with
principal directions at each vertex vi by requiring

Wa1 = κ1a1, Wa2 = κ2a2.

3.3 Workflow

We have now the elements to design principal meshes in equilibrium. In particular,
we solve this problem: Given an initial surface subject to gravitational load and its
support conditions, find a quadrilateral mesh in force equilibrium with edges aligned
along principal curvature directions that is close to the initial design surface. Our
procedure can be summarized in the following steps:

step 1. Given an input surface as a triangular mesh and the support conditions, we
optimize the mesh geometry in order to align the equivalent stress and curvature
directions as described in section 3.2, while keeping the vertices as close as possible
to the input shape. The development and implementation of this step is the main
contribution of this paper.

step 2. We use the resulting directions as guide for a quadrilateral remeshing of the
optimized mesh. At this purpose we use mixed integer quadrangulation proposed
by (Bommes et al., 2009). In this step, the density of the mesh can be chosen
according to fabrication and design considerations.

step 3. The obtained quadrilateral mesh is subject to post-optimization for equilib-
rium and planarity of faces, while applying some fairness to the network curves to
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Figure 3: Design workflow. (a) An initial shape is given as triangular mesh and the
equilibrium is enforced on the edges. (b) The estimated curvature and stress directions, in
general, are not aligned. (c) After our optimization, we reach the alignment with a change
in the shape. (d) We remesh the resulting shape with mixed integer quadrangulation along
the computed directions. After a post-optimization, the structure is in equilibrium under
axial forces, (e) and panels are close to planar. According to a finite element analysis, the
ratio of internal elastic work wa due to axial forces in the final structure is 0.95. The stress
and curvature directions are scaled according to their anisotropy, given by the difference
between the two eigenvalues. A possible application of this design is depicted in Figures 1
and 7 (on the right).

guarantee aesthetic quality. For this purpose, we use the method of (Tang et al.,
2014). Thanks to step 1, we can expect convergence with minimized conflict
between planarity and equilibrium.

4 Implementation

In this section we briefly describe the implementation of step 1, described in the
workflow Section 3.3. Starting from a given triangular mesh M0 with specified sup-
port conditions, we find a mesh M where principal stresses and principal curvature
directions are aligned, as close as possible to M0.

Main variables and constraints. For a mesh M0 with v vertices and e edges, being
s and c respectively the number of vertices that are mechanically supported, and
fixed during the optimization, the main variables of the problem are:

• the position of the vertices vi of M (3(v− c) variables)
• the force densities wi j = w ji (e variables)
• the components of the stress tensor S̄11, S̄22 and S̄12 (3v variables)
• the components of the extended shape operator W11,W22,W33,W12,W23 and

W13 (6v variables)
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Figure 4: Results. A high-genus principal mesh in equilibrium. Finite element analysis
showed an axial work ratio wa of 0.89. On the left, the starting mesh M0 is shown.

• the tangent eigenvalues κ1 and κ2 of the extended shape operator (2v vari-
ables)

• the directions a1 and a2 at vi (6v variables).

The main constraints are:

• the equilibrium at unsupported vertices vi through Equation (1) (3(v− s)
equations)

• the connection of the stress tensor components with force densities through
Equation (6) (3v equations). Since we are interested only in principal direc-
tions, we can omit Āi from the equations.

• the connection of the curvature components with face normals through Equa-
tion (7) (6v equations). As for the previous point, we omit Ai.

• the normalization of directions: aT
1 a1 = 1 and aT

2 a2 = 1 (2v equations)

• the tangency of directions (tangency is guaranteed together with principal
direction alignment, see below): (a1 +a2)

T ni = 0 (v equations)

where ni is the vertex normal at vi. The target functions are given by the alignment
equations of the vectors a1,a2 with stress and curvature directions, as seen in
Sections 3.1 and 3.2. We have then:

• conjugacy on the Airy surface: āT
1

˜̄S ā2 = 0 (v equations)
• principal direction alignment: Wa1 = κ1a1 and Wa2 = κ2a2 (6v equations).

For proximity to the starting surface, we minimize the distance between the points
vi and the tangent plane of their closest vertex v0

j of M0. We point out here
that the projected stress tensor S̄ is not properly defined for surface points with
a vertical tangent plane. To avoid noise in the solution, we remove the target
functions of Airy conjugacy on vertices vi where the z coordinate of the normal ni

is in the range ±10−2.
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Counting degrees of freedom. Subtracting the number of constraints from the
number of variables, and keeping fixed during the optimization the supported ver-
tices (then s = c), we find 5v+ e degrees of freedom. The target functions of
alignment yield 7v equations. Considering that on a triangle mesh we have e ≈ 3v,
we are left with approximately v degrees of freedom. This allows us to ask for
closeness to the reference shape as a soft constraint.

Solver. For the optimization, we use the guided projection method of (Tang et al.,
2014). This method works best for systems of quadratic constraints. To reduce
the degree of the main constraints when higher than two, we introduce secondary
variables that are quadratic functions of the main ones; then, these functions are
added as constraints. Let us rearrange all the variables, in number of V , in the
vector x ∈ RV . Let then φn(x) = 0, n = {1, . . . ,N}, be the equations given by the
constraints and the target functions. It is possible to add more or less importance to
a specific constraint or target function by multiplying the corresponding equations
by a weight ωn. The system is solved iteratively. At each iteration k, given
the current variable vector xk, each equation is linearized with a 1st order Taylor
expansion:

φn(x)≈ φn(xk)+∇φn(xk)T (x−xk) = 0.

The linearized system of weighted equations can be rearranged in matrix form as
Hx = r, with H ∈ RN×V and r ∈ RN . To guarantee mesh quality and smoothness
during the optimization, we add a fairness energy; we define it at each vertex vi as
the squared norm of the distance between vi and the barycenter of its connected
vertices v j∼i. The total fairness energy can be written in matrix form as ∥Kx− s∥2.
Additionally, the distance from xk is used as a regularizer. The successive variable
vector xk+1 is found by solving

∥Hx− r∥2 +δ 2 ∥Kx− s∥2 + ε2∥∥x−xk
∥∥2 → min,

with δ ,ε ∈ (0,1) as weights. The iteration stops when a desired accuracy is
achieved, or when no more improvement is gained. For further details on guided
projection, we refer to (Tang et al., 2014).

Fig. vvv eee iterations time (s)

3 681 1960 12 13.8
4 1941 5784 15 78.4
5a 606 1760 15 16.7
5b 1140 3302 14 31.9
5c 1089 3136 13 28.3

Table 1: Optimization times and corresponding number of iterations for stress and curva-
ture alignment, relative to the presented results. Values refer to triangular meshes with v
vertices and e edges. The algorithm has been implemented in Python and tested with an
Intel Core i7-6700HQ CPU with 2.60 GHz and a 15.9 GB RAM memory.
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a b c

wa = 0.90 wa = 0.89 wa = 0.92

0 planarity 2%− axial force +

Figure 5: Results. Principal meshes in equilibrium achieved with our method. Meshes (a)
and (c) discretize non-height field shapes. All boundaries are supported. The gridshell
structures are in axial equilibrium under a homogeneous vertical load per unit surface area.
Axial forces, planarity error and axial work ratios wa are shown.

5 Results and discussion

The proposed workflow has been tested on some sample architectural surfaces.
Results are shown in Figures 3 to 5. The presented examples were subject to a
uniform load per unit surface area and supported along the boundary. Optimization
times of step 1 are given in Table 1. To evaluate the quality of the result, we relied
on the following two criteria.

Convergence of post-optimization. As seen in Section 3.3, the quad mesh is post-
optimized for equilibrium and planarity with the method of (Tang et al., 2014). In
this step, we let the supported vertices glide along the corresponding boundary. We
estimated planarity error of quadrilateral faces as the distance between the two face
diagonals divided by their mean length. Regarding equilibrium, we evaluated the
error per vertex as the norm of equilibrium Equation (1) divided by the mean vertex
load magnitude. We considered the post-optimization converged when it reached
a maximum planarity error below 2% and a mean equilibrium error below 1%. In
the test samples we achieved convergence in less than ten iterations, noticing small
changes in the mesh.

Finite element analysis. In actual gridshells the structure is dimensioned according
to finite element analysis. It is of interest to evaluate the effectiveness of our
optimization in this way as well. For this purpose, we modeled the final grid
shell with steel S235 Timoshenko beam elements, connected together with rigid
joints. Area loads were lumped in the nodes. The size of the cross section was
chosen constant, according to resistance verification. To evaluate the equilibrium
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Figure 6: Architectural applications. Steel-glass gridshells achievable with the meshes
shown in Figures 5b (on the left) and 5c (on the right). Face planarity errors below 2%
are compatible with cladding through flat glass panels.

hypothesis, we computed the ratio of internal elastic work due to axial force in the
beams over the total elastic work made by external loads. Axial work ratios wa,
found for our results, are shown beside Figures 3 to 5.

Limitations. Not all shapes achievable with our method own a stress-curvature
network suitable for the extraction of architectural meshes. Indeed, the network
layout may yield a mesh with a large variation of cell size, numerous or bad po-
sitioned singularities, or more generally, the resulting mesh may not possess the
desired aesthetic qualities.

6 Conclusion

We have introduced a method for the design of principal meshes in equilibrium.
Thanks to the optimization of a membrane surface towards stress and curvature
alignment, we can achieve a quad mesh connectivity that can be post-optimized
for equilibrium and planarity of faces with low conflict. In our implementation, the
use of a discrete equilibrium on the edges of a triangular mesh allows us to avoid a
parametrization of the surface and the explicit use of an Airy stress function. We
have overcome in this way the limitations to height field shapes of (Kilian et al.,
2017). We provide then a tool for the design of a wide range of architectural
freeform shapes that, taking into account geometric and static factors, can reduce
realization costs.
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