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We present a framework to generate mesh patterns that consist of a hybrid of
both triangles and quads. Given a 3D surface, the generated patterns fit the

surface boundaries and curvatures. Such regular and near regular triangle-

quad hybrid meshes provide two key advantages: first, novel-looking polyg-

onal patterns achieved by mixing different arrangements of triangles and

quads together; second, a finer discretization of angle deficits than utilizing

triangles or quads alone. Users have controls over the generated patterns

in global and local levels. We demonstrate applications of our approach in

architectural geometry and pattern design on surfaces.

CCS Concepts: • Computing methodologies → Mesh models; Mesh
geometry models;

Additional Key Words and Phrases: Meshes, Polygonal Patterns, Pattern

Design, Geometric Modeling

ACM Reference Format:
Chi-Han Peng, Helmut Pottmann, and PeterWonka. 2018. Designing Patterns

using Triangle-Quad Hybrid Meshes. ACM Trans. Graph. 37, 4, Article 1

(August 2018), 14 pages. https://doi.org/10.1145/3197517.3201306

1 INTRODUCTION
The study of tilings and patterns has various applications, e.g. in ar-

chitecture, industrial design, and art. In this work we study patterns

that are generated from triangle- and quad-shaped tiles. One moti-

vation for our work is that there is a large body of research studying

the meshing of surfaces using triangle, quad, or hex meshes. In

addition, there are also quad-dominant meshes, that mainly consist

of quads with a few isolated triangles. In this paper, we would like

to explore a richer class of designs that are not confined to be either

triangle or quad(-dominant) meshes, but a hybrid of both. See Fig. 1
for a novel architectural mesh design enabled by our work.

To start our investigation, we first look at meshes in the plane

consisting of regular triangles and squares. In this context, the tiling

of the infinite Euclidean plane has been studied for various tile

sets, including tile sets using quads and triangles [Grunbaum and

Shephard 2016]). However, an open question is how to tile a finite

domain with a given boundary using squares and regular triangles.

As an important building block of our work we analyze this tiling

problem and propose an optimization algorithm to compute a single

feasible tiling, enumerate all possible tilings within the given region,

Authors’ addresses: Chi-Han Peng, KAUST, chihan.peng@kaust.edu.sa; Helmut

Pottmann, TU Wien, pottmann@geometrie.tuwien.ac.at; Peter Wonka, KAUST, peter.

wonka@kaust.edu.sa.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0730-0301/2018/8-ART1 $15.00

https://doi.org/10.1145/3197517.3201306

Fig. 1. A triangle-quad hybrid mesh was used to design an alternative outer
skin of the Yas Island Marina hotel. The design of regular and near regular
triangle-quad patterns on surfaces is a difficult task that is tackled by the
computational framework in this paper.

or select a particular tiling by modeling an objective function that

includes aesthetic criteria (Section 3.3).

To tackle the design problem in 3D, we combine multiple 2D so-

lutions. We use a graph structure called patch graph, to encode the

boundaries of individual 2D regular hybrid meshes and cross-patch

consistency constraints (Section 4.1). The individual 2D solutions

can then be deformed and glued together to yield a 3D design. In

some cases, interesting designs can also be generated without de-

forming the individual 2D solutions, giving rise to an interesting

generalization of Lobel frames [Lobel 2004]. Patch graphs can be

generated from scratch, by a subdivision scheme, or designed on

a given reference surface using our proposed user-interface (Sec-

tion 4.2).

In Section 5, we showcase various designs enabled by our frame-

work to demonstrate that hybrid meshes are an interesting comple-

ment to existing triangle and quad-based meshes. Some advantages

of hybrid meshes for fabrication are a finer accuracy of the dis-

cretization of angle deficits at a vertex compared to triangle and

quad meshes as well as the easier planarization compared to quad

meshes. The main contributions of this paper are summarized as

follows:

• Introducing the concept of triangle-quad hybrid meshes, with
which we discovered novel polygonal patterns with a distinct

look that cannot be derived from existing triangle/hex or

quad meshes.
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• An IP optimization-based method that can exhaustively enu-

merate 2D hybrid mesh patterns consisting of equilateral

triangles and squares for a given 2D boundary.

• An extension to 3D that enables the computation of compati-

ble 2D solutions that can be deformed and glued together to

obtain a 3D design.

• A user-interface for designing a patch segmentation on a

given 3D surface.

• Demonstrating novel and high-quality freeform architecture

designs and artistic patterns created by our method.

2 RELATED WORK

Tiling and Tessellation. The essence of a tiling is that the tiles

cover the domain without overlap. In contrast, a packing requires

that the tiles do not overlap, but it does not require the complete

domain to be covered. There are multiple examples of packing prob-

lems in computer graphics, e.g. decorative mosaics [Hausner 2001;

Kim and Pellacini 2002], artistic packing layouts [Reinert et al. 2013],

texture atlases [Lévy et al. 2002], and packing on surfaces [Chen

et al. 2017; Hu et al. 2016; Schumacher et al. 2016]. Another variation

of the problem is to allow tiles in a tiling to deform. Example appli-

cations in computer graphics are layouts for urban environments

and floorplans [Peng et al. 2014; Yang et al. 2013]. A focus has been

on how to design the tile set that would best tile the given domain.

An iconic example is the "Escherization" problem - how to design

isohedral or dihedral tile sets that closely resemble user-supplied

goal shapes to tile the infinite Euclidean plane [Kaplan and Salesin

2000, 2004]. In this paper, our goal is to find ways to completely

tile a domain with a given boundary with a predefined tile set -

equilateral triangles and squares.

In computer graphics, tiling-based approaches also play a key

role in texture synthesis [Cohen et al. 2003] and blue noise genera-

tion [Ahmed et al. 2016; Kopf et al. 2006].

We drew inspiration from studies about tilings and pattens (see

[Grunbaum and Shephard 2016] for a comprehensive survey). Those

generated a large variety of polygonal patterns, including triangle-

quad hybrid meshes, with a focus on aesthetic qualities such as

symmetry and congruence. However, a key limitation is that they

typically aim to tessellate the infinite Euclidean plane, thus pre-

venting direct applications on surfaces where the boundaries and

curvature need to be respected.

Crystallography. Triangle-quad hybrid meshes, when generated

in a rotationally symmetric manner, may resemble quasicrystal pat-
terns. In the studies about symmetry structure of quasiperiodic tiling

classes ( [Hermisson et al. 2002] and chapter 2 in [Suck et al. 2002]),

square-triangle tilings are shown as results. Our method, having

the ability to exhaustively enumerate hybrid mesh patterns for a

given 2D boundary that is not restricted to be symmetric, may be

useful for crystallography researchers to discover new patterns.

Surface meshing. Surface meshing methods (we recommend the

book [Botsch et al. 2010] for a broad survey) can be categorized by

the types of faces being used. One type of meshes has no restriction

on the face type. Examples include centroidal Voronoi and power

diagrams [Alliez et al. 2005; Xin et al. 2016] and surface partition

cells [Cohen-Steiner et al. 2004; Sander et al. 2001]. Meshes consist-

ing of a single face type are pure triangle meshes, quad meshes, or

hex meshes. In quad meshing, there are methods that solve tessella-

tion with boundary constraints using integer linear programming

(ILP) [Marcias et al. 2015; Takayama et al. 2014]. To make mesh-

ing easier, it is advantageous to mix the dominant face type with

others, e.g., quad-dominant meshes mainly consist of quads with

a few isolated triangles (see [Bommes et al. 2013] for a survey).

Meshes can also be subdivided to give rise to a richer set of patterns,

similar to semi-regular tilings of the Euclidean plane. Examples

include predefined mixed-face types patterns derived from existing

triangle/hex or quad meshes [Jiang et al. 2015; Vaxman et al. 2017]

and non-convex hexagonal faces [Li et al. 2015]. Picking up this

direction, our goal is to devise a method that can generate meshes

from scratch using triangles and quads with equal preference. The

results are novel mesh patterns that could no longer be recognized

as being triangular/hexagonal or quadrilateral, but yet still have a

semi-regular structure consisting of two types of faces.

Subdivision surfaces. Subdivision operators that unify triangular

and quadrilateral subdivision schemes exist [Schaefer and Warren

2005; Stam and Loop 2003]. Our method can be used to generate

base meshes that consist of both triangle and quad patches.

Architecture. Several steel/glass constructions in contemporary

architecture are based on hybrid triangle/quad meshes. There, pla-

narity of quads is important and is facilitated by the presence of

triangles (see [Pottmann et al. 2015]). We mention three projects

(see inset, left to right):

The roof of the Islamic Art

Exhibition in the Louvre

is based on a simple repet-

itive pattern. The YasMall

in Abu Dhabi exhibits an

ornamental pattern of triangles and quads with a strong dominance

of triangles. At the Fiera Milano, we see a composition of triangle

and quad meshes (in nearly flat regions) with randomly appearing

splittings of non-planar quads into triangles. A square has more

than twice the area than a triangle of the same edge length. Their

use as panels reduces material usage and weight of the support

structure that follows the edges. As meshes from quads close to

squares (or rectangles) discretize principal parameterizations, they

lack degrees of freedom for many practical scenarios. The presence

of triangles not only increases the chance to planarize the quads,

but also stiffens the entire structure. Current solutions are mostly

derived from other meshes by simple edge insertion/deletion rules

or by cutting out a subset of tri-quad patterns in the infinite Eu-

clidean plane to fit the 2D or 3D surface. Then the mesh patterns

would not respect the boundaries (e.g., the Yas Mall). In contrast,

our method has the goal of computing hybrid meshes from a given

boundary constraint at the start.

3 REGULAR HYBRID MESHES IN THE PLANE
In this section, we begin with the definition of regular hybrid meshes

in the plane and explore some of their properties. In Section 3.2,

we introduce a discrete coordinate system to encode the vertices
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60⁰ 90⁰ 150⁰ 180⁰120⁰ 210⁰

(a) (b) (c) (d)

Fig. 2. Top row (a)-(d): the four configurations of a regular interior vertex. (d)
is of particular interest to us and is denoted as the "butterfly" configuration.
Bottom row: configurations of boundary vertices of various angles.

in a hybrid mesh, which is a key component for our planar regular

hybrid mesh generation method (Section 3.3).

A regular hybrid mesh in 2D is a tessellation of a connected part

of the Euclidean plane E2
with equilateral triangles and squares.

The configuration of a vertex is the sequence of types of its adjacent

faces (either triangle or quad) in the counter-clockwise order. For

interior vertices, it starts at the longest consecutive sequence of

triangles. Two configurations matched by rotational symmetry are

considered the same. For boundary vertices, there exists exactly one

way to encode the face types.

There are exactly four configurations for an interior vertex (see

Fig. 2 (a)-(d)). Boundary vertices can be distinguished by their bound-

ary angle, which can be any integer multiple of 30
◦ ∈ [60, 330]. As an

example, we show all configurations for boundary angles ∈ [60, 210]

(Fig. 2 bottom).

In a regular hybrid mesh, there are twelve possible directions for

every half-edge
1
. By arbitrarily fixing one half-edge direction, we

can encode each half-edge’s direction as an integer ∈ [0, 11].

3.1 Subdivision scheme
To obtain some insights about regular hybrid meshes, we introduce

a subdivision scheme as an auxiliary structure. The scheme, shown

in Fig. 3 (a), first inserts all edge midpoints as new vertices. For a

triangle, each edge midpoint is connected to the opposite vertex

and the two other edge midpoints. For a quad, each edge midpoint

is connected to the two vertices and midpoint of the opposite edge.

Assuming that the mesh edges are of length 2, they are categorized

and denoted by their Euclidean lengths as 1-edge, 2-edge,
√

3-edge,
and

√
5-edge. Mesh edges, which are 2-edges, can be divided into

two consecutive 1-edges if needed.

In this subdivision scheme, a 60
◦
angle inside a triangle is divided

into two 30
◦
angles, and a 90

◦
angle inside a quad is divided into

three angles, which are not exactly 30
◦
. This causes some distortions

because the

√
5-edges inserted into quads are no longer aligned with

the original twelve directions. However, we can still assign to a

√
5-

edge the direction label of the closest among the twelve directions.

The deviation angle between these two directions is a small positive

or negative number. Therefore, we distinguish between a

√
5-edge-a

and a

√
5-edge-b respectively.

1
We assume the half-edges of a face circulate in the counter-clockwise order.
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Fig. 3. (a) Subdividing triangles and quads. We show one direction label per
edge (the smaller one for the two half-edges). Original 2-edges are shown in
black and newly inserted 1-edges and 2-edges are shown in gray.

√
3-edges

are shown in blue,
√

5-edges-a in darker brown, and
√

5-edges-b in lighter
brown. (b) The main paths at the twelve directions from a vertex. Observe
that a main path is not necessarily a straight line in the Euclidean plane. (c)
A patch (see Section 4.1). The c-indices of the vertices and edge mid-points
along the patch boundary are shown in red.

We define a main path (see Fig. 3 (b)) in a subdivided regular

hybrid mesh as a connected sequence of half-edges with the same

direction label. Note that a main path does not necessarily lie on a

straight line. We state an important observation as follows:

Lemma 3.1. Every interior half-edge in a regular hybrid mesh is
part of a main path that goes from one boundary point to another.
A boundary point is either a boundary vertex or a midpoint of a
boundary edge.

3.2 Discrete coordinate system
Our hybridmesh generationmethod, detailed in Section 3.3, requires

a discrete coordinate system to uniquely encode every vertex in a

regular hybrid mesh with a fixed-length sequence of integers. To

make the coordinates unique, we need to identify an arbitrarily

chosen origin vertex and orient the mesh in a Cartesian system (e.g.

by aligning a half-edge to the x-axis).
The main purpose of this coordinate system is to identify and

enumerate vertices and edges of possible regular hybrid meshes with

a given boundary. Specifically, it should facilitate efficient checking

if two vertices are on a main path (needed by the coordinate test

described in Sec. 3.3).

The 4D system. Assuming the edges of a regular hybrid mesh in

E2
are of length 2, direction vectors of edges can only have x- and

y-coordinates from the following set: {0,±1,±2,±
√

3}. Therefore,

each vertex in the mesh must have a coordinate vectorv of the form

v = (A + B
√

3,C + D
√

3), (1)

with integers (A,B,C,D), called discrete 4D coordinates of v . By irra-

tionality of

√
3, these integer coordinates are unique, and uniquely

define the Cartesian coordinates of v . See Fig. 4 (a).
Can any four integers arise as 4D coordinates? The possible

edge direction vectors are (2, 0, 0, 0), (0, 1, 1, 0), (1, 0, 0, 1), (0, 0, 2, 0),

(−1, 0, 0, 1), (0,−1, 1, 0) and the ones obtained by multiplication with

−1. For all of them, A + D and B + C take values in {0, 2,−2}. As

any vertex coordinate is a linear combination of these vectors, only
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Fig. 4. (a) Discrete vertex coordinates in the 4D system and direction labels of the half-edges (shown in green). (b) Six-integer coordinates of vertices. (c)-(e):
The three projections of the mesh. Observe that each vertex’s six-integer coordinate is the concatenation of its coordinates in the three 2D projections.

4D coordinates with even values of A + D and B +C can arise. This

poses no problem in the algorithm.

The 4D system does not facilitate efficient checking if two vertices

are on a main path. Recall that, in E2
, a main path may not be exactly

straight due to the presence of the

√
5-edges. In 4D, a main path isn’t

straight either, and in addition, the 4D embedding,M4
, of a regular

hybrid mesh,M ⊂ E2
, does not lie in a plane anymore. In general, it

spans 4D space. We can now apply appropriate parallel projections

from 4D into 2D which map main paths onto straight lines. For that,

we need three parallel projections (linear maps), discussed next.

Projection 1.Wewant to design parallel projection, P1 : (A,B,C,D)
7→ (x1,y1), so that the main paths in the 0-, 3-, 6-, or 9-th direction

(i.e., those nearly parallel to the x- or y-axis of the Cartesian system

in E2
) become straight. This is achieved as follows: Edge vectors

which are parallel to the x-axis and of length 2 (4D coordinates:

(2, 0, 0, 0)) or of length
√

3 (4D coordinates: (0, 1, 0, 0)) are mapped

to the same vector; we choose it to be (4, 0) to stay entirely with

small integer coordinates. We map vectors of length 2 or of length
√

3 in the y-direction to (0, 4). Hence, P1 has to satisfy:

(2, 0, 0, 0) 7→ (4, 0), (0, 1, 0, 0) 7→ (4, 0),

(0, 0, 2, 0) 7→ (0, 4), (0, 0, 0, 1) 7→ (0, 4).

As we know the images of four independent vectors, the linear map

P1 is uniquely defined:

P1 : (A,B,C,D) 7→ (x1,y1) = (2A + 4B, 2C + 4D). (2)

Remarkably, P1 maps the

√
5-edges which are nearly parallel to the

x- or y-axis to vectors (±5, 0) or (0,±5), respectively. By symmetry,

it is sufficient to prove this for one of these

√
5-edges. In E2

, it

shall be represented by (
√

3, 1) + 1

2
(1,−
√

3); its P1-image is indeed

(4, 2) + 1

2
(2,−4) = (5, 0). Hence, P1 straightens exactly the main

paths in directions 0, 3, 6, and 9.

Projection 2. Now we straighten the main paths in directions 1, 4,

7, and 10 (i.e., those that are inclined against the x-axis by nearly

30
◦
or -60

◦
counter-clockwise). In short, the second projection, P2,

shall map 2-edge (0, 1, 1, 0) and
√

3-edge (3/2, 0, 0, 1/2) to (4, 0) and

those obtained by a 90
◦
rotation to (0, 4), which yields:

P2 : (x2,y2) = (2A + 3B +C + 2D,−A − 2B + 2C + 3D). (3)

Again, the

√
5-edges get mapped to (±5, 0) or (0,±5).

Projection 3. Finally, we straighten the main paths in directions 2,

5, 8, and 11 (i.e., those that are inclined against the x-axis by nearly

30
◦
or -60

◦
clockwise). This requires:

(0, 1,−1, 0) 7→ (4, 0), (3/2, 0, 0,−1/2) 7→ (4, 0),

(1, 0, 0, 1) 7→ (0, 4), (0, 1/2, 3/2, 0) 7→ (0, 4),

and is achieved via

P3 : (x3,y3) = (2A + 3B −C − 2D,A + 2B + 2C + 3D). (4)

An example of these three projections is shown in Fig. 4 (c)-(e).

Note that three 2-dimensional linear images of 4D-space cannot be

independent. The images under the three projections are related by

the equations:

x1 + y2 − y3 = 0, y1 − x2 + x3 = 0. (5)

If just four of the six coordinates (x1,y1,x2,y2,x3,y3) are known, we

can retrieve the 4D-coordinates and hence the Cartesian coordinates
in E2

. Hence, the inversion formulae are not unique. One version of

them is,

A = (−3x1 + 2x2 + 2x3)/2,

B = (2x1 − x2 − x3)/2,

C = (−3y1 + 2y2 + 2y3)/2,

D = (2y1 − y2 − y3)/2,

(6)

others follow with help of (5).

Note that this projection method is very similar to the approach

in Descriptive Geometry: There, a point (x ,y, z) in 3D is mapped to

at least two views, usually top view (x ,y) and front view (y, z), and
of course, these views are not independent. An object may appear

simpler or a construction be easier in a special view. For example,

instead of top and front view, one will use another side view. This

is also the case here. We choose the projections so that selected

non-straight paths become straight.

By concatenating the three 2D projections, (x1,y1), (x2,y2), and

(x3,y3), into single six-integer vectors, we arrive at our solution of

edge encodings, summarized in Table 1. For brevity, only the first

six directions are listed and encodings for 1-edges are omitted since

they are half of the encodings of the 2-edges in the same directions.

In Fig. 4 (b), we show the six-integer coordinates of vertices using

this system. Note that any main path becomes a straight line parallel
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2-edge

√
3-edge

√
5-edge-a

√
5-edge-b

(4,0; 4,-2; 4,2) (4,0; 3,-2; 3,2) (5,0; 4,-2; 4,3) (5,0; 4,-3; 4,2)

(4,2; 4,0; 2,4) (3,2; 4,0; 2,3) (4,3; 5,0; 2,4) (4,2; 5,0; 3,4)

(2,4; 4,2; 0,4) (2,3; 3,2; 0,4) (2,4; 4,3; 0,5) (3,4; 4,2; 0,5)

(0,4; 2,4; -2,4) (0,4; 2,3; -2,3) (0,5; 2,4; -3,4) (0,5; 3,4; -2,4)

(-2,4; 0,4; -4,2) (-2,3; 0,4; -3,2) (-3,4; 0,5; -4,2) (-2,4; 0,5; -4,3)

(-4,2; -2,4; -4,0) (-3,2; -2,3; -4,0) (-4,2; -3,4; -5,0) (-4,3; -2,4; -5,0)

Table 1. Six-integer coordinates of edge vectors.

to a coordinate axis in one of the three projections. Therefore, the

six-integer coordinates facilitate fast checking if two vertices could

lie on amain path as follows. Two vertices are on the samemain path

in the 0-th / 6-th direction only if the second of the six coordinates

are the same. Similarly, they are on the main path in the 1-th / 7-th,

2-th / 8-th, 3-th / 9-th, 4-th / 10-th, or 5-th / 11-th direction only

if the fourth, fifth, first, third, or sixth of their coordinates are the

same.

3.3 Hybrid mesh generation in a given boundary
We describe a method that can exhaustively enumerate regular hy-

brid meshes in a given 2D boundary, B. Recall that, all edges in a reg-

ular hybrid mesh have the same length and all boundary angles are

in multiples of 30
◦ ∈ [60, 330]. We use a sequence of non-negative

integers to encode B. The integers denote the boundary angles in

multiples of 30
◦
at every boundary vertices in counter-clockwise

order. For example, the patch boundary of the mesh in Fig. 4 is en-

coded as (4, 5, 5, 4, 7, 4, 5, 6, 3, 5, 7, 5), starting at the boundary vertex

in the bottom-left corner. A boundary description is unique up to a

cyclic permutation.

The main steps of our algorithm are summarized as follows:

(1) Initialization.Given a boundary description as input, compute

an embedding in E2
and six-integer coordinates of boundary

vertices and midpoints of boundary edges. See Fig. 5 (a).

(2) Edge enumeration. Enumerate a superset S of potential edge

placements within the boundary. This is based on main paths
according to Lemma 3.1 and integer programming (IP).

(3) Mesh generation. Solve another IP problem to compute a reg-

ular hybrid mesh by selecting edges in S .
(4) Complete enumeration. To exhaustively enumerate all possible

solutions, we can run IP multiple times, each time banning

all previously retrieved solutions.

(5) Solution optimization. Additionally, the IP problem can be

setup with different objective functions and constraints to

retrieve solutions with desired attributes.

In the following, we describe steps (2) to (5) in more detail.

Edge enumeration. Edge enumeration proceeds in two main steps.

(1) We enumerate all pairs of boundary points (vertices and edge

midpoints) that could lie on a main path inside the boundary, and

(2), we enumerate all possible edges between all pairs detected in

the first step.

For every pair of boundary points (vertices and edge midpoints),

we perform a sequence of tests to determine if they could lie on a

main path:

(2)

(1)

(3)

(a)

(b) (c) (d)

(e) (f)

E0

E1
E2

E6

E9

E5

E3

E7
E8

E4

E10
E11

vj

Cj,m

Fig. 5. A closed loop traced by a given boundary description, (4, 5, 3, 8, 3,
5, 4, 5, 5), starting at the bottom-left corner. (a) is the embedding in the
Euclidean plane and (b)-(d) are the three projections. (1) to (3) denote three
main paths with direction labels 1, 3, and 2. Their six-integer vectors are
(10, 6; 12, 0; 6, 10), (0, 12; 6, 10; -6, 10), and (3, 4; 4, 2; 0, 5). (e) is a reference
meshing. In (f), we illustrate a configuration variable, Cj,m , that becomes
true if and only if E1, E4, E6, E9, E11 are true and E0, E2, E3, E5, E7, E8, E10

are false.

(a) Coordinate test.We check if two boundary points could lie on

the same main path of a particular direction label, a, by the

fast checking rules described at the end of Section 3.2.

(b) Inside test. If the boundary is not convex, we need to ensure

that the possible main path is inside the boundary. We check

that the complete line segment between the pair is inside the

boundary in the projection where a main path in direction a
is straight.

(c) Decomposition test. Here we test whether the line segment

between the pair can be decomposed into individual 1-edges,
√

3-edges,

√
5-edges-a, and

√
5-edges-b. We do this by solv-

ing the following IP problem. Let V denote the six-integer

vector between the two points and let (t0, t1, t2, t3) denote
the numbers of the four edge types,

find t0, t1, t2, t3 s.t.

∑
i
tiTi = V ,

where Ti is the six-integer vector encoding edge type i in
direction a (see Table 1).

Finally, for every quadruple, (t0, t1, t2, t3), we enumerate all pos-

sible edge combinations, (x0,x1,x2,x3), that appear before some

2-edge, which are:

(x0,x1,x2,x3),x0 ≤ t0 − 2,x1 ≤ t1,x2 ≤ t2,x3 ≤ t3,xi ≥ 0.

We now have exhaustively enumerated all possible potential place-

ments of interior 2-edges. Our next task is to find a subset of these

2-edges which together with the boundary 2-edges forms a regular

hybrid mesh.

Mesh generation. We formulate the mesh generation step as a

linear IP problem. In the previous step, we found potential place-

ments of 2-edges indexed 0 ≤ i < Ne . We use Boolean variables

Ei to denote the presence of the i-th 2-edge in the mesh. We also

enumerate unique potential placements of vertices, denoted as vj ,
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0 ≤ i < Nv . This enumeration is implemented using a map data

structure with the 4D coordinates of vertices as key. Next we enu-

merate possible edge configurations around each vertex vj . For an
interior vertex, there are 29 different configurations, because the

four basic configurations in Fig. 2 can appear in rotated forms (2,

3, 12, 12 rotations respectively). For a boundary vertex, multiple

configurations exist depending on the boundary angle (see Fig. 2

bottom row). We use Boolean variablesCj,m to denote the presence

of them-th configuration at vj . The index set Ij,m contains all edge

indices corresponding to configuration Cj,m , and the index set Īj,m
contains indices of all edges adjacent to vj but not in configuration

Cj,m . For each vertex and each configuration, we formulate the fol-

lowing two configuration constraints. The configuration is active if

and only if all corresponding edges are selected and all other edges

at vj are not selected (see Fig. 5 (f)).

0 ≤
∑

i ∈Ij,m

Ei +
∑

i ∈Īj,m

(1 − Ei ) + NjCj,m < Nj (7)

where Nj denotes the number of edge placements adjacent to vj .
We now formulate the complete IP problem as:

find Ei , 0 ≤ i < Ne , and

Cj,m , 0 ≤ j < Nv , 0 ≤ m < Mj ,

s.t. Equation (7), ∀ vj ,∑
m

Cj,m = 1, ∀ boundary vertices vj ,∑
m

Cj,m ≤ 1, ∀ interior vertices vj ,∑
m

Ca,m − Ei ≤ 0 and∑
m

Cb,m − Ei ≤ 0, ∀ Ei with vertices va ,vb

(8)

whereMj denotes the number of configurations at vj . The second
constraint dictates that for every boundary vertex, exactly one of

the configurations should appear. The third constraint dictates that

for every internal vertex, at most one of the configurations should

appear (since many interior vertices will not be part of the mesh).

The fourth constraint prevents dangling edges. After solving Prob-

lem (8), the set of active Ei form a regular hybrid mesh with the

given boundary.

Complete enumeration.We can exhaustively enumerate all possi-

ble regular hybrid meshes with the same given boundary by solving

Problem (8) repeatedly, each time banning all previously retrieved

solutions. This is done as follows. Let Zi , 0 ≤ i < Ne , be the value

of Ei of an existing solution. Then, for every existing solution, we

have the following constraint:∑
i
(Ei if Zi is true, or (1 − Ei ) if Zi is false) < Ne

added to Problem (8).

Configuration optimization. We can augment the IP problem to

prioritize or penalize certain types of configurations to appear in

the solution. This is done by adding the following objective function

to the IP problem:

minimize

∑
j

∑
m

λmCj,m

where the λm ’s are the weights for configuration Cj,m . As shown

in Fig. 6 (f)-(g) and Fig. 7 (d)-(e), one useful scenario is to prioritize

or penalize the "butterfly" configurations (Fig. 2 (d)) to produce

solutions that look more or less fractured.

Symmetry optimization. We can improve the symmetry of the

solution in an approximate sense as follows. Given the desired sym-

metry, e.g., a reflective symmetry or an n-way rotational symmetry

with respect to a user-specified center, we synthesize a scalar field F
that is invariant under the selected symmetry. This field is generated

in two steps. First, we generate a smooth function and then compute

a random function using the smooth function values as the seeds.

Afterwards, we add the following term to the objective function:∑
j
Fj (

∑
m

Cj,m )

where Fj is the value of the scalar field at the location of vertex vj .
As a result, some vertices will be arbitrarily preferred over other

vertices. Since this preference respects the selected symmetry, the

objective function is typically lower for symmetric configurations.

See Fig. 6 (c)-(e) and and Fig. 7 (a)-(c) for examples.

3.4 Approximating 2D boundary curves
We now describe an algorithm to compute a valid regular hybrid

mesh boundary from a boundary curve, given as an arbitrary 2D

piece-wise linear loop. In short, the former has uniform edge length

and angles in multiples of 30
◦
while the latter can have arbitrary

edge lengths and angles. A simple greedy algorithm, i.e., starting at

one arbitrary boundary vertex and inserting edges one by one, may

not create a closed loop in the end. Instead, we formulate the task

as an IP optimization problem as follows.

First, we enumerate a superset of potential placements of bound-

ary 2-edges close to the given boundary. For every enumerated edge,

we distinguish two half-edges. Our goal now is to find a subset of the

half-edges that forms a closed loop that best approximates the given

boundary curve. Let Boolean variables Ei, j denote the presence of a
half-edge from vertex vi to vertex vj in the subset. The IP problem

is formulated as:

find Ei, j , 0 ≤ i, j < Nv , such that

min.

∑
i
Disti, jEi, j ,

s.t.

∑
i
Ei, j = 1 and

∑
k

Ej,k = 1, ∀ fixed vj ,∑
i
Ei, j =

∑
k

Ej,k , ∀ non-fixed vj .

(9)

where Nv is the number of potential boundary vertices enumerated.

We distinguish a set of vertices to be fixed, i.e., they must appear in

the mesh boundary solution, by a distance threshold to the given

boundary curve (note that the vertex at (0, 0) is necessarily fixed).

Disti, j is the average distance of half-edge Ei, j to the given boundary
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Fig. 6. Generating regular hybrid meshes for a 2D boundary curve inspired by the cross-section of the Lilium Tower by Zaha Hadid Architects. (a) The
input boundary curve (red) is approximated by a regular hybrid mesh boundary (black). (b) A regular hybrid mesh solution computed without symmetry
constraints, (c) with left-right reflective symmetry constraint, (d) with left-right and top-down reflective symmetry constraints, (e) and with four-way rotational
symmetry constraint. The smooth versions of the underlying scalar fields are also shown. (f)-(g): Solutions computed while penalizing (f) or prioritizing (g) the
appearances of the "butterfly" configurations. (f) and (g) have 40 and 84 butterfly configurations, respectively.

Fig. 7. Regular hybrid meshes for a 2D boundary curve inspired by the Japan National Stadium design by Zaha Hadid Architects. (a) A solution computed
with up-down reflective symmetry, (b) with left-right reflective symmetry, (c) with four-way rotational symmetry constraints. (d)-(e): Solutions optimized for
an as-regular-as-possible (d) or as-fractured-as-possible (e) look by penalizing or prioritizing the appearances of the "butterfly" configurations.

curve. The constraints ensure that the selected half-edges form a

closed loop. See Fig. 6 (a) for an example.

4 HYBRID MESHES ON SURFACES
In this section, we begin with the definition and key properties of

regular hybrid meshes in 3D. To gain more flexibility, we move on

to nearly regular hybrid meshes and show that they are suitable

for remeshing a given surface. Section 4.1 introduces patch graphs,
which are graph structures that facilitate the mapping of multiple

2D regular hybrid meshes onto surfaces to form 3D hybrid meshes.

Section 4.2 shows how to generate patch graphs and associated

hybrid meshes on a given surface. Finally, in Section 4.3, we intro-

duce a set of editing operations on patch graphs that are useful for

pattern exploration.

Regular hybrid meshes in 3D. A regular hybrid mesh in 3D is a

mesh formed by equilateral triangles and squares. Denoting the sum

of angles at the corners of the faces atv by s(v), the angle defect δ (v)
equals 360

◦−s(v) for an interior vertex and 180
◦−s(v) for a boundary

vertex. A vertex v is called regular if it has a zero angle defect, δ (v),
and irregular otherwise. In Fig. 8, we show configurations of interior

vertices with various angle defects. Obviously, all angle defects

are multiples of 30
◦
. This is in contrast to regular triangle meshes

and regular quad meshes where angle defects of vertices count in

multiples of 60
◦
and 90

◦
, respectively. For an interior vertex v , δ (v)

equals the discrete Gaussian curvature (if angles are measured in

radians). Therefore, a regular hybrid mesh in 3D is a discrete surface

with vanishing Gaussian curvature except at the irregular interior

vertices where Gaussian curvature is concentrated. A special case is

provided by Lobel frames which are formed by equilateral triangles

only. While angle defects for Lobel frames are just multiples of 60
◦
,

the apparent gain of flexibility in terms of angle defects when using

regular hybrid meshes is lost on another side, namely the reduced

degrees of freedom at vertex stars which include squares. As 3D

regular hybrid meshes are an interesting topic, e.g. for architecture,

we provide selected examples (see Figures 14 and 15) but focus on

the more general 3D hybrid meshes described next.

3D hybrid meshes. Due to the shape limitation of regular hybrid

meshes in 3D, we concentrate on nearly regular 3D hybrid meshes

and simply call them hybrid meshes. Our main goal is to provide an

algorithm to approximate a given 3D surface by hybrid meshes and

to explore the variety of possible solutions.

With any hybrid mesh, we associate combinatorial quantities
which match the geometric ones in the regular case. We define

the combinatorial angles (c-angles) at the vertices of a triangle or
quad to be 60

◦
or 90

◦
, respectively. Regularity of vertices at hybrid

meshes shall be computed based on c-angles. Moreover, we use

combinatorial edge lengths (c-lengths) equal to 2 in addition to

the geometric ones. Finally, it turns out to be useful to subdivide a

hybrid mesh via edge midpoint insertion as in the regular 2D case

and this gives rise to c-lengths

√
3 and

√
5. Subdivision splits vertex

angles of triangles and quads into 2 or 3 parts, respectively. Their
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0⁰ -30⁰30⁰60⁰90⁰ -60⁰120⁰180⁰

150⁰

Fig. 8. An exhaustive list of configurations of interior vertices in 3D with angle defects ranging from 180◦ (the largest possible value) to -60◦.

Fig. 9. Multiple ways to construct a patch graph (thick edges) on a 3D
regular hybrid mesh derived from a regular 12-sided antiprism. The numbers
show the c-indices for the highlighted patches.

c-angle is defined to be 30
◦
, although this is not geometrically true

for quads in the regular case.

4.1 Patch graph
Given the subdivided version (Section 3.1),Ms , of a hybrid meshM
in 3D, we define a patch as follows. It is a simply connected part of

M bounded by a sequence of half-edges inMs . Further, it shall not

contain irregular vertices ofM in its interior. For every vertex and

edge mid-point along the boundary of a patch, we define its c-index
as the sum of c-angles inside the patch divided by 30

◦
. See Fig. 3 (c)

for an example.

All patch boundary points with a c-index , 6 are called patch
graph vertices; they split the patch boundary into patch graph edges
that are formed by sequences of boundary points with c-index 6.

Each patch is combinatorially equivalent to a patch in a 2D regular

hybrid mesh on which the patch graph edges are main paths. This

is an important property which will be used later to combine 2D

solutions to 3D hybrid meshes.

A 3D hybrid mesh is always the union of non-overlapping patches.

For every partition into patches, the set of patch boundary half-

edges plus the c-indices form a patch graph of the mesh. See Fig. 9

for examples. In the next section, we describe a patch graph-based

strategy for re-meshing a given surface with 3D hybrid meshes.

4.2 Generating hybrid meshes on surfaces
We now present our framework for generating hybrid meshes on

surfaces (see Fig. 10 for an overview). The key idea is to partition the

surface into sub-surfaces which are suitable as patches of a patch

graph. We can then compute a 2D regular hybrid mesh for each

of the patches (by the algorithm described in Section 3.3 and its

extensions described later) and map them back to the surface by

least squares conformal maps. The 2D solutions for the patches are

independent of each other if the patch graph edges contain only

combinatorial 2-edges. Otherwise we have to care about consistency

constraints along graph edges and the process becomes global.

Patch graph construction. Given an input surface S (as a fine

polygonal mesh), we would like to re-mesh it by a hybrid mesh

M which is close to a regular one. Thus, we have to ensure that

combinatorial and geometric angles and edge lengths ofM are nearly

the same (up to a common scaling factor for the edge lengths). It

follows easily that the total Gaussian curvature inside patches has

to be close to zero. In other words, we have to nicely distribute

the Gaussian curvature at patch graph vertices. This is a guiding

principle for patch graph design. We solve it by a subdivision-based
strategy which can be used in a fully automatic manner, but is also

open for user interaction.

The total Gaussian curvature of a mesh can be computed by the

discrete Gauss-Bonnet theorem. It states that the total angle defect

(i.e., the sum

∑
δ (v) of all angle defects) equals 360

◦χ where χ is the

Euler characteristic of the mesh. Here, one may use combinatorial

or geometric angles. The total angle defect can be decomposed into

the total interior angle defectT ID :=
∑
δ (v) over all interior vertices

v and the sum B :=
∑
δ (v) over all boundary vertices v . If angles

are computed in a geometric way and faces are planar, then T ID is

a discrete version of the total Gaussian curvature and B is the total

intrinsic turning angle (approximating total geodesic curvature) of

the boundary.

A patch of a regular 3D hybrid mesh has χ = 1 andT ID = 0 since

δ (v) = 0 for all interior vertices v . Hence, we have to decompose S
into patches for which

T ID = 360
◦ −

∑
v ∈Vboundary

δ (v) (10)

equals zero for c-angles which are close to geometric angles.

To compute T ID for a disk-like region R of the input surface,

bounded by a polyline b, we first compute B using geometric angles

on the 3D surface and then round to the closest integer multiple

of 30
◦
. The assignment of c-indices requires care, since we do not

yet have the hybrid mesh and we want to compute one which is

as regular as possible. For that, let us call boundary points with a

geometric angle deficit that is not in [−15, 15] corners and the parts

between two consecutive corners sides. We now assign c-indices

Ij to the corners vj so that (i) they are as close as possible to their

inner angles, divided by 30
◦
, and (ii) the combinatorial T ID of R

equals 360
◦ −

∑
j (6 − Ij )30

◦
. Our user interface also leaves the user

the option to satisfy this equation by introducing c-indices different

from 6 to selected vertices at sides. This turns them later into patch
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Fig. 10. Overview of our framework. (a) A sphere given as the input surface, which is subdivided into six identical slices. (b)-(e) Subdivision process for one
slice. The slice has a total interior angle defect (T ID) of 120◦. At the end of the construction, there are twelve sub-faces with a zero T ID . The four irregular
vertices, with an angle defect of 30◦, are shown in cyan. (f) The edges are discretized into 2-edges (black) and

√
3-edges (blue). (g) A regular hybrid mesh

solution for the whole slice. (h) After geometric post-processing. (i) A final hybrid mesh solution.

graph vertices. Both ways achieve the goal of distributing the total

geodesic curvature of the boundary into selected points.

Subdivision process. If the input surface S is not a topological disk, we
subdivide it into a collection of sub-surfaces of disk topology. Next,

for each sub-surface, we generate a conformal uv parametrization

(using LSCM [Lévy et al. 2002] implemented by libigl [Jacobson

et al. 2016]). This has the advantage that angles at corners can be

computed in the uv domain and that further splitting into patches

is simplified. We recursively subdivide the sub-surfaces until all of

them have T ID = 0 as outlined by Algorithm 1.

Algorithm 1 Sub-surfaces subdivision

S , a queue of sub-surfaces
S ← the collection of sub-surfaces with a disk-like topology

while S is not empty do
s ← dequeue from front of S
T ID ← total angle defect of s
if T ID , 0 then
P ← enumerate all admissible partitions of s
for all p ∈ P do

Score p
end for
p̂ ← the highest scored p ∈ P
Partition s by p̂, enqueue new sub-surfaces at end of S

end if
end while

Partitioning a sub-surface S0 into smaller parts happens in two

ways: It can be a binary partition (connecting a pair of boundary

vertices on two sides, splitting the sub-surface into two) or an n-ary
partition (n being the number of sides of the sub-surface) which

splits S0 into n parts by connecting an interior point of S0 with

one boundary vertex on every side. Splitting shall introduce an-

gles which are close to multiples of 30
◦
. Hence, at a vertex on S0’s

TID = 30⁰

0⁰

30⁰

0⁰ 0⁰

0⁰

Fig. 11. Partitions of a sub-surface with a total interior angle
defect (T ID) of 30◦. Blue: an admissible binary partition that
leads to two parts withT ID 0◦ and 30◦. Green: an admissible
3-ary partition that leads to three parts all with T ID = 0

◦.

boundary with c-index i we have only i − 1 possible directions at

which the splitting curve has to meet. As splitting curves connect-

ing two boundary vertices we use cubic curves in the uv-domain.

A partition is admissible if all new sub-surfaces have an absolute

value of T ID not greater than the absolute value of the T ID of S0.

To score a partition, we use a heuristic summing up the rounding

errors and imposing a large penalty for partitions that run across

sharp features of the surface. See Fig. 11 for illustrations.

Algorithm 1 can be executed automatically or in a user-guided

manner, where at each iteration the user picks one admissible par-

tition among a pool enumerated by the system. We developed a

user-interface for the user-guided subdivision process (see the ac-

companying video).

Turning the final partition into a patch graph. At the end of the

subdivision process, we have a graph structure consisting of faces all

with a zeroT ID and the sides of the faces form the edges in the graph.

This is not yet a patch graph as we do not yet have a decomposition

of the graph edges into sequences of combinatorial 1-edges, 2-edges,
√

3-edges, and

√
5-edges so that each face boundary loop has a

geometric realization with the assigned c-angles and c-lengths as

Euclidean quantities in the plane. For a more compact description,

we just present the case where we have only combinatorial 2-edges.
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Fig. 12. Two different 3D hybrid mesh solutions for a dome model. They
have the same patch graph (thick edges), but differ in the sequential orders
of 2-edges and

√
3-edges along the graph edges.

To obtain a patch graph we solve the following IP optimization

problem:

find ei , 0 ≤ i < N e , such that

min.

∑
i
(Li − 2ei )

2,

s.t.

∑
0≤a<12

(
∑

i ∈Ia, fj

Eaei ) = 0, ∀ fj ,

(11)

Here N e
is the number of edges in the graph, ei , 0 ≤ i < N e

,

are positive integers indicating the number of 2-edges constituting

the i-th edge in the graph. Li , 0 ≤ i < N e
, are the actual lengths

of the graph edges in 3D. fj denotes the j-th face in the graph. a,
0 ≤ a < 12, indicates one of the twelve directions. Ea is the six-

integer vector of the 2-edge in the a-th direction. Ia,fj indicates the
lists of indices of 2-edges circulating fj in the a-th direction (one

edge of every face is arbitrarily chosen to be in the 0-th direction).

In short, the objective function is to minimize the sum of squared

errors of the differences between the combinatorial edge lengths 2ei
and their actual lengths Li . The constraints are to ensure that for

every face, the boundary loop forms a closed loop in the six-integer

discrete coordinate system.

After solving Problem (11), the graph structure becomes equiv-

alent to a patch graph (the c-indices are directly derived from the

c-angles). The process can be reviewed in Fig. 10 (b)-(f).

3D hybrid mesh generation. For every patch in the patch graph,

we generate a 2D regular hybrid mesh (multiple solutions may exist)

and then map the hybrid mesh back to the surface using a least

squares conformal parameterization. Afterwards, the hybrid meshes

are combined together to form a watertight 3D hybrid mesh for the

input surface. This process is shown in Fig. 10 (g)-(i).

More interesting patterns can be obtained by discretizing the

graph edges into 2-edges, 1-edges, and

√
3-edges (we exclude

√
5-

edges for simplicity). This means that Problem (11) is extended

to find the sequences of 2-edges, 1-edges, and

√
3-edges for the

graph edges. More details of the extended formulation is presented

in the additional materials. In addition, cross-patch consistency

constraints, described next, are needed to ensure that the per patch

solutions join in a seamless manner.

Fig. 13. Editing operations for patches. Top row: the regular polygonal
pattern in a 4-sided patch (left) is progressively made more fractured by
introducing pairs of zigzags (a vertex with a c-index of 7, orange, followed
by a vertex with a c-index of 5, cyan) on its boundary. Bottom row: two ways
to introduce a triple of zigzags to the 3-sided patch.

Cross-patch consistency constraints.The first type of constraints
ensure that the sequential order of different edge types (e.g. 2-edges,

1-edges, and

√
3-edges) along every interior graph edge are consis-

tent for the two adjacent patches. One simple method is to enumer-

ate all or a subset of permutations explicitly. Another more complex

formulation can defer the selection of what permutation to choose

to the solver. For both adjacent patches, the enumeration of bound-

ary edge placements needs to include all possible permutations of

different edge types along that graph edge. Afterwards, additional

constraints are added to the IP formulation (Equation 8) to ensure

the order of edge types is consistent on both sides. See Fig. 12.





The second type of constraints ensure that partial faces

are consistently completed on both sides. For example,

a

√
3-edge can be completed in two correct ways to be

the mid-line in a triangle and two incorrect ways to be

the diagonal of a parallelogram. Constraints need to be

added to exclude incorrect completions (see inset).

Post-processing. We use three different numerical optimization

algorithms to post-process the geometry of hybrid meshes. The

first algorithm optimizes the rotational symmetry of faces using the

Euclidean Regularity (ER) term proposed in [Vaxman et al. 2017].

The second algorithm optimizes the global regularity by enforcing

globally constant values for edge lengths and diagonal lengths, re-

spectively. The third algorithm optimizes for the planarity of quads,

the proximity to a reference surface, and relative fairness (imple-

mented by minimizing the difference between discrete curvatures

of original and optimized mesh).

4.3 Patch graph editing
To explore alternative polygonal patterns of 3D hybrid meshes gen-

erated by our framework, we propose a set of editing operations

that work by altering the c-indices of an existing patch graph. The

basic idea is to introduce "zigzags" (i.e., a vertex with a c-index of 5

followed by a vertex with a c-index of 7 and vice versa) on the patch

boundaries. Our user interface includes an interesting subset of all

possible such c-index-editing operations (a detailed explanation is

in the additional materials). See Fig. 13 for illustrations.
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5 RESULTS AND APPLICATIONS
Table 2 lists the statistics and computation times (on a system with

Intel Xeon 16 Core 2.30GHz CPU, 128GB RAM, and NVidia GeForce

GTX 1080) for the results shown in the paper.We use Gurobi [Gurobi

2016] to solve the IP problems and Google Ceres Solver [Agarwal

et al. 2016] for numerical optimization. For exhaustive enumerations,

we observe that the computational cost for retrieving each new

solution is roughly linearly proportional to the number of existing

solutions to avoid (that we already found previously). Therefore,

it may be very expensive to retrieve all the solutions for larger

problems such as Fig. 6 and 7 (we successfully did so for Fig. 6

retrieving all the 338 solutions in roughly 6 hrs).

Model |Input| |Result| FPG EPG TPG TIP Tpost
Fig. 6 (b) 112e 156T 66Q 1 36 0.76 4.56 1.32

Fig. 6 (e) 112e 156T 66Q 1 36 0.76 4.89 1.27

Fig. 6 (f) 112e 156T 66Q 1 36 0.76 4.88 1.25

Fig. 7 (c) 78e 250T 125Q 1 60 1.01 17.01 3.30

Fig. 7 (e) 78e 250T 125Q 1 60 1.01 11.99 3.41

Fig. 10 pie 108f 152T 16Q 12 28 0.23 0.57 0.55

Fig. 12 3072f 288T 204Q 44 102 0.78 4.87 6.40

Fig. 14 b3D 38f 144T 42Q 38 108 0.42 0.63 0.12

Fig. 14 tatT 62f 380T 120Q 62 180 1.2 1.02 1.91

Fig. 16 576f 984T 492Q 79 306 3.36 6.57 143.94

Fig. 18 (a) 5400f 271T 532Q 12 37 1.02 3.42 48.04

Fig. 18 (b) 5400f 788T 346Q 16 129 1.33 4.09 60.65

Fig. 18 (c) 5400f 770T 365Q 25 345 6.66 5.56 64.83

Fig. 19 (a) 3312f 668T 380Q 16 80 1.88 4.68 47.95

Fig. 19 (b) 3312f 756T 380Q 38 146 1.92 4.73 57.33

Fig. 19 (c) 3312f 886T 405Q 36 204 2.07 5.74 76.61

Fig. 20 L 8526f 1005T 586Q 30 84 1.25 9.01 136.63

Fig. 20 R 8626f 1029T 619Q 32 202 3.88† 7.87 158.82

Fig. 21 (a) 5367f 0T 1496Q 22 63 1.47 7.25 195.59

Fig. 21 (b) 5367f 1006T 950Q 30 97 1.52 7.90 173.82

Fig. 21 (c) 5367f 1070T 918Q 26 93 1.71 9.49 176.95

† 2-edges only.

Table 2. Statistics. |Input| is the face count of the 3D input surface or the edge
count of the 2D input boundary loop. |Result| is the face count (triangles and
quads) of the resulting hybrid mesh. FPG and EPG are numbers of patches
and edges (i.e., sides) in the patch graph. TPG, TIP, and Tpost are time (in
seconds) for solving Problem 11 (patch graph generation), Problem 8 (hybrid
meshing using IP), and geometric post-processing, respectively.

3D Hybrid Mesh Design. Using our framework, we propose sev-

eral strategies for 3D hybrid mesh design. In Fig. 14, we explore

designs from polyhedra. In Fig. 15, we generate 3D designs by fold-

ing a 2D regular hybrid mesh. Finally, in Fig. 16, we design a lamp

model with a hybrid mesh as an artistic decorative pattern. To see

how our design works with lighting, we printed a 3D model shown

in Fig. 17.

Architectural Geometry. To illustrate the power of our hybrid

meshing technique, we have created novel triangle-quad patterns

for three well-known architectural freeform surfaces (see Figures 18,

19, 20, and 21). Such patterns have not been seen in architecture

before. An important criterion in this application is the planarity

of panels. We could confirm the conjecture that the probability for

success of an optimization towards planarity of quads is high for

fractured patterns (see Fig. 22). Clusters of quads, if not aligned

correctly with the curvature behavior of the surface, lead to a failure

of planarization or severe distortion of the pattern. For details on

underlying geometric facts, see e.g. [Pottmann et al. 2015].

Fig. 14. 3D hybrid mesh design from polyhedra. We first convert polyhedra
with Conway polyhedral notations "b3D" (top row) and "tatT" (bottom row)
to patch graphs. The "b3D" polyhedron has twelve 10-sided and the "tatT"
polyhedron has four 12-sided faces. In the middle, we show 3D hybrid
meshes generated from patch graphs directly derived from the polyhedra.
On the right, the hybrid meshes are made as-regular-as-possible by the
ER-based geometry optimization (the "b3D" result achieved full regularity).

Fig. 15. We can turn 2D regular hybrid meshes into interesting 3D shapes.
We change the combinatorics by cutting out parts of the mesh and gluing the
newly created boundaries together. Then, we use numerical optimization to
compute 3D regular hybrid meshes with the new combinatorics. We reduce
the degrees of freedom with a cylindrical reference surface.

6 CONCLUSIONS AND FUTURE WORK
A limitation of our current framework is that we do not have a

theoretical study of necessary and sufficient conditions that a given

2D boundary admits at least one regular hybrid mesh solution. At

the moment, we can only establish the answer to this question

computationally. If the IP solver returns no solutions it means that

no solution exists. The simplest necessary condition is related to the

area enclosed by the given boundary. A hybrid mesh withm squares

and n triangles has area 4m +
√

3n. This implies that all possible

solutions inside a boundary must have the same number of triangles

and the same number of quads. Therefore, the area inside a given

boundary gives a simple necessary condition for the existence of a

solution (See Fig. 23 left for an example of a boundary that admits

no solution due to the area condition).

However, even if the simple area test passes, there are boundaries

that admit no solutions. Given an arbitrary boundary, the likelihood

that problem 8 is infeasible is considerable. Often, these boundaries

ACM Transactions on Graphics, Vol. 37, No. 4, Article 1. Publication date: August 2018.
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Fig. 16. Making the lamp model. Left: the patch graph. The c-indices are
shown for vertices of selected patches (one color for one patch). Here we
utilized the patch editing operations (Section 4.3) for pattern design. A key
strategy is to assign c-indices 5 and 7 on to the same vertex in two adjacent
patches to keep it regular. Middle: 3D hybrid mesh result (the patch graph
is shown in thicker edges). Right: After geometric post-processing.

Fig. 17. 3D printed lamp model.

can be meshed by adding an additional shape to the tile set, a rhom-

bus with a 30
◦
at its sharpest corner (that has an area of 2). We

implemented this extended meshing algorithm and show a result

in Fig. 23 middle. We can also setup the computation to move the

rhombi towards the boundary to compute the minimal change to

the boundary that would enable a solution. (See Fig. 23 right). We

propose the theoretical investigation of the existence of solutions

as interesting avenue for future work.

As a consequence of the aforementioned limitation, a bottleneck

of our framework is that the prescribed patch boundary division and

combinatorial angles after a patch graph is constructed may admit

no feasible solutions for some of the patches. Therefore, consider-

able effort is needed to ensure the feasibility of 2D solutions when

manually designing patch graphs. We currently workaround this

problem by having a patch graph construction strategy that starts

from one with known 2D solutions (such as a patch graph with

only 3-sided and 4-sided patches) and create variations by editing

operations that we know would preserve the feasibility of 2D solu-

tions (such as the ones described in Sec. 4.3). However, this probably

limited the possibility of designs being explored. We believe that

there is a lot of room for improving the patch graph construction in

future work.

Further, we would like to look at volumetric extensions. Here, one

can observe that it is not possible to mesh with tets and cubes alone,

because their faces do not match. Therefore, it would be interesting

to understand what (volumetric) tile sets are feasible while at the

same time providing meshes of practical relevance.

Conclusions. In this paper, we introduced the concept of triangle-

quad hybrid meshes. While special forms of these meshes, such as

quad dominant meshes, were used before, this is the first extensive

computational treatment of this topic. We proposed a first frame-

work for designing triangle-quad hybrid meshes on surfaces and

show the computational design of a new type of meshes that only

could be generated manually before. The core algorithmic contribu-

tion is an IP formulation that can exhaustively enumerate hybrid

meshes inside a given boundary.
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Fig. 18. 3D hybrid mesh designs for the freeform surface at the Yas Island Hotel, Abu Dhabi. (a) A baseline design that can be seen as the combination of
multiple triangle and quad meshes. (b) Horizontal stripe patterns are created by adding "zigzags" along the patch graph edges in the vertical direction. (c)
Fractured patterns are created by interleaving stripes in both horizontal and vertical directions. In each result, we show two views of the model and a part of
the patch graph (near the front end of the model). We illustrate the c-indices , 6 of vertices with little spikes pointing into the corresponding patches.

Fig. 19. Three 3D hybrid mesh designs for the Great Court of the British Museum with increasingly complex patterns. We show one selected solution for each
patch graph. Note that a patch graph can have many solutions, e.g., patch graph (c) admits 81 hybrid mesh solutions. Some are shown in the additional
materials.

Fig. 20. 3D hybrid mesh designs for the model of the Lilium tower by Zaha Hadid Architects.
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Fig. 21. Three hybrid mesh designs for a freeform architectural surface. We begin with a pure quad mesh design (a) and gradually introduce fractured patterns
to produce (b) and (c). In (b), we also break each of the four irregular vertices with an angle defect of 90◦ into three irregular vertices with an angle defect of
30◦. The patch graphs are shown in the bottom-left corners.

Fig. 22. Meshes (a), (b) and (c) from Fig. 19 after optimization for planarity
with the same tolerance for proximity to the reference surface. The planarity
value per quad is the diagonal distance, divided by the mean diagonal length.
Only the most fractured model (c) is below the practical tolerance of 0.005
for this value.

Fig. 23. Left: A 2D boundary with uniform-length edges and angles in multi-
ples of 30◦ that admits no regular hybrid mesh solution. It also failed the
the area condition (since it can be meshed with the addition of a rhombus).
Middle: A boundary that passes the area condition but still admits no solu-
tion. Interestingly, it can be meshed with the addition of two rhombi. Right:
Computing a solution with rhombi on the boundary suggests a minimal
change to the boundary that enables a solution.
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