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A B S T R A C T

We introduce a novel class of quadrilateral gridshell structures in axial force equilibrium where rods are
aligned symmetrically with the principal stress directions of a limit membrane shell. These structures exhibit
a distinctive property where the axial forces in the four connected rods at each node are nearly equal.
This characteristic enables a more uniform distribution of forces within the structure, particularly in cases
where stresses exhibit significant anisotropy. In contrast, conventional gridshells often result in numerous rods
remaining nearly unloaded in such scenarios. We begin by studying the equilibrium of rod networks that
are symmetric to principal stress directions. Next, we explore the geometric properties of these networks in
relation to the isotropic geometry of their Airy stress surface. We introduce then a computational pipeline for
designing principal symmetric structures through quadrilateral remeshing of a surface in membrane equilibrium
and subsequent optimization. Finally, we present some of the achieved results.
1. Introduction

Gridshell trusses provide an efficient solution to building shell
structures, combining strength with a lightweight architectural design.
Indeed, by transmitting loads through axial stresses within their rods,
these structures maximize the utilization of structural material.

Among all gridshells, quadrilateral configurations are especially
well-suited for manufacturing. Firstly, compared to triangular con-
figurations, they enable connections where four rods meet at joints
instead of six. Furthermore, when rods follow the principal curvature
directions of the underlying surface, we attain flat cladding panels and
joint connections that align along a common axis, streamlining the
production process (see [1]).

From a mechanical perspective, a common approach to designing
quadrilateral gridshell trusses is to follow the principal stress lines of
a membrane shell. In this way, we achieve an orthogonal framework
in axial equilibrium. It has also been shown in [2] that such struc-
tures are the ones that minimize the usage of structural material in
tension-compression areas on a given shape in membrane equilibrium.
However, when the principal stresses of the membrane exhibit signif-
icant anisotropy, aligning the rods with the principal stress directions
can cause many rods to remain largely unloaded in the direction of
lower stress, as shown in Fig. 2. When using rods with a constant
cross-section, this leads to suboptimal material usage. If rods with
similar forces are clustered into a limited collection of cross-sections,
the majority of joints will involve connecting different profiles, thereby
increasing manufacturing complexity.

∗ Corresponding author.
E-mail address: davide.pellis@isti.cnt.it (D. Pellis).

In this paper, we introduce a new class of quadrilateral gridshell
trusses, called principal symmetric gridshells, characterized by nearly
equal axial forces at each joint. A distinctive feature of these gridshells
is that, despite variations in axial forces within the structure, the force
distribution remains remarkably homogeneous. As a consequence, a
reduced collection of cross-sections can be employed, and joints exhibit
a majority of connected beams sharing identical profiles, reducing fab-
rication complexity and material waste. It turns out that such gridshells
must follow two specific directions that are symmetric to the principal
stress directions of a tension-only or a compression-only membrane.

1.1. Related work

This study is situated in the broader field of gridshell design and
optimization, which has been extensively reviewed in [3]. Our ap-
proach leverages the separation of horizontal and vertical equilibrium
and utilizes the polyhedral Airy stress potential as a discretization
of a continuum, drawing upon the methodological insights provided
in [4] and [5]. Strubecker [6] was the first to realize the connection
between equilibrium of a 2D elastic body and geometric properties of
the associated Airy stress surface in isotropic geometry. In this context,
Vouga et al. [7] further leveraged the connections between statics and
discrete differential geometry.

Regarding the layout design of gridshells, the works of Mitchell [8]
and Kilian et al. [2] investigated the use of quadrilateral meshes aligned
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Fig. 1. A principal symmetric gridshell and its axial forces under a vertical homogeneous load (right).
Fig. 2. On the left, a gridshell aligned with principal stress directions. Many rods remain almost unloaded. On the right, a principal symmetric gridshell. At each node, the
distribution of axial forces is more homogeneous.
with principal stresses as statically-optimal gridshells. These works
build upon the pioneering finding of A.G. Michell on trusses at the limit
of economy [9]. Furthermore, gridshells aligned with both principal
stresses and principal curvatures of a membrane surface have been
addressed in [10], while structures symmetric to principal stress direc-
tions have been previously introduced by Schling and colleagues [11]
on shapes with rotational symmetry.

The geometric properties and manufacturing implications of quadri-
lateral gridshells have been extensively studied in the field of architec-
tural geometry, as surveyed in [12]. In this context, Pellis et al. [13]
introduced gridshells that are symmetric to principal curvature direc-
tions, rather than principal stress directions, and investigated their
potential for use in architectural panelization.

1.2. Overview and contributions

This paper builds upon and completes our previous preliminary
work on principal symmetric structures [14] with a geometric char-
acterization in terms of isotropic geometry. In Section 2, we begin
with a brief overview of truss equilibrium at the limit of refinement,
while considering its relationship with the Airy stress surface. Addi-
tionally, we introduce the concept of the Airy stress surface in the
context of isotropic geometry. In Section 3, we start exploring the
properties of principal symmetric structures in two dimensions and
exploit their properties in isotropic geometry. In Section 4, we ex-
tend our geometric interpretation to gridshell structures under vertical
loading conditions. Finally, in Section 5, we outline our computational
design pipeline for the creation of principal symmetric gridshells with
additional implementation details and show new results.
2

2. Equilibrium of 2D trusses

In this section, we introduce the equilibrium of trusses in 2D. Our
approach involves a refinement process of the truss, which eventually
converges to a ‘‘truss-like continuum’’ where the mechanical state
can be described using the Cauchy stress tensor. First, we show that
the equilibrium of a 2D truss implies the existence of a polyhedron
that represents its axial forces. Next, we analyze the problem in the
continuum setting where the polyhedron converges to a Airy stress
surface. Finally, we study a quadrilateral truss at the limit of refinement
as a network of curves on the Airy stress surface.

2.1. Discrete equilibrium

Let us consider a two dimensional truss in the 𝑥𝑦-plane, with mem-
bers corresponding to the edges of a mesh 𝑀 with vertices 𝐯𝑖 = (𝑥𝑖, 𝑦𝑖),
where loads and support reactions are applied at boundary vertices. Let
𝐟𝑖𝑗 be the force exerted by the oriented bar 𝐯𝑖−𝐯𝑗 on the vertex 𝐯𝑖. If the
system is in axial equilibrium, at each unsupported vertex 𝐯𝑖 we have
∑

𝑗∼𝑖
𝐟𝑖𝑗 = 0, (1)

where with 𝑗∼ 𝑖 we denote all the vertices 𝑗 connected with the vertex
𝑖.

As shown by Maxwell [15], for such a truss we can construct a
force polyhedron 𝑃 with planar faces, whose edges and vertices coincide
in the 𝑥𝑦 projection with the mesh 𝑀 , in the following way. Let the
polyhedron 𝑃 be described by the piece-wise linear function 𝑧 = 𝜙(𝑥, 𝑦),
and let 𝜙|𝑓 be the restriction of the function to the face 𝑓 . Each face 𝑓
of 𝑃 lies then on a plane with gradient ∇𝜙|𝑓 . Let 𝑓𝑙 and 𝑓𝑟 be the left
and right faces of the oriented edge 𝐯 − 𝐯 . The continuity of the plane
𝑖 𝑗
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faced polyhedron 𝑃 implies that the difference vectors ∇𝜙|𝑓𝑟 − ∇𝜙|𝑓𝑙 ,
hich are oriented orthogonally to each edge 𝐯𝑖 − 𝐯𝑗 , form a closed

oop around each interior vertex 𝐯𝑖. Let then 𝑅 be the counterclockwise
0◦ rotation matrix in the 𝑥𝑦-plane. By setting 𝐟𝑖𝑗 = 𝑅(∇𝜙|𝑓𝑟 − ∇𝜙|𝑓𝑙 ),
he equilibrium of Eq. (1) is then ensured at each interior vertex by
he existence of the force polyhedron 𝑃 . Forces exerted at boundary
ertices can be represented through the incorporation of a boundary
trip consisting of planar faces intersecting along the lines of action of
he applied forces. In cases where adjacent boundary vertices are free of
xternal loads, they naturally align within a shared plane. The closure
f this strip ensures the overall global equilibrium of the structure.
his construction is uniquely defined up to vertical translations and
hearing. For further details see [15], [4] and [7].

.2. Equilibrium of a 2D continuum

Let us now consider a refinement process that increases the density
f a 2D truss. From a mechanical perspective, as the refinement limit is
eached, the truss will approach a 2D anisotropic continuum. Simulta-
eously, the force polyhedron representing the structure’s equilibrium
onverges to a continuous surface known as the Airy stress surface,
ortraying the stresses within the 2D body. In the following, we will
elve into the equilibrium analysis of the 2D continuum, without ex-
licitly considering compatibility conditions. The specific configuration
f the limit truss and the stiffness of its rods will give rise to the
ocal stiffness of the 2D continuum. It is noteworthy that the resulting
quilibrium may not be achieved through elastic deformations of the
imit truss. However, for quadrilateral trusses, as will be the case for
rincipal symmetric structures, a unique equilibrium solution typically
merges when boundary loads are specified. Therefore, this solution
an be attained through elastic deformations.

Let 𝐷 be a 2D continuum with loads and constraints applied on its
oundary 𝜕𝐷, and let it have a Cartesian reference system 𝑥𝑦. At each
oint 𝑝(𝑥, 𝑦) within the continuum, the stress field can be described by
he Cauchy stress tensor

=
(

𝜎𝑥𝑥 𝜎𝑥𝑦
𝜎𝑥𝑦 𝜎𝑦𝑦

)

.

tatic equilibrium in the interior of the domain 𝐷 is expressed by
iv𝑆 = 𝟎, where the divergence is applied to both columns sepa-
ately. In a simply connected domain, this implies existence of an Airy
otential 𝜙(𝑥, 𝑦) such that

𝜙 =
(

𝜙,𝑥𝑥 𝜙,𝑥𝑦
𝜙,𝑥𝑦 𝜙,𝑦𝑦

)

=
(

𝜎𝑦𝑦 −𝜎𝑥𝑦
−𝜎𝑥𝑦 𝜎𝑥𝑥

)

= 𝑆̃,

here 𝐻𝜙 is the Hessian of the function 𝜙 [16]. Here we indicate partial
erivatives by a comma and subscripts, and with a tilde the adjoint
atrix operation given by 𝑆̃ = 𝑅𝑇𝑆𝑅.

The Airy stress potential can be seen as a surface 𝛷∶ 𝑧 = 𝜙(𝑥, 𝑦),
ften referred to as the Airy stress surface. Since stresses are determined
y second derivatives of the Airy potential 𝜙(𝑥, 𝑦), potentials of the form
′(𝑥, 𝑦) = 𝜙(𝑥, 𝑦)+𝑐1𝑥+𝑐2𝑦+𝑐3 are associated with the same stress field,

or all choices of 𝑐𝑖. Considering the transformation given by
′ = 𝑧 + 𝑐1𝑥 + 𝑐2𝑦 + 𝑐3, (2)

t is important to note that this is not a Euclidean rigid body trans-
ormation. Consequently, Euclidean geometry should not be employed
n the analysis of the Airy stress surface 𝛷. Instead, one has to use

geometry in which the maps of Eq. (2) are rigid body transforma-
ions. This leads to isotropic geometry, which has been developed by
. Strubecker (see [17]). Strubecker has also been the first to realize

he close connection between mechanical properties of a 2D stress
ield and geometric properties of the associated Airy surface 𝛷 within
sotropic geometry [6]. Isotropic geometry is based on the group of
sotropic congruence transformations, which appear as Euclidean rigid
ody motions in the projection onto the 𝑥𝑦-plane (top view). Hence,
3

f

istances between points and angles between lines in isotropic space
re just Euclidean distances and angles in the top view. Lines and planes
arallel to the 𝑧-axis are called isotropic lines and planes, respectively.

In a 2D stress field, that lies in the plane 𝑧 = 0, the stress tensor
can be interpreted as follows: If we make an infinitesimal cut in the

ontinuum at the point 𝑝 along a vector 𝐚, the force acting across the
ut is

(𝐚) = 𝑆𝑅 𝐚.

he corresponding stress vector (force per unit length) is given by

(𝐚) = 𝐟 (𝐚)
‖𝐚‖

.

The normal stress across the cut 𝐚, computed as

𝑛(𝐚) =
𝝈𝑇(𝐚)𝑅 𝐚

‖𝐚‖
=

𝐚𝑇𝐻𝜙 𝐚
𝐚𝑇 𝐚

, (3)

corresponds to the isotropic normal curvature 𝜅𝑖𝑠
𝑛 of the Airy stress

surface in direction 𝐚. Principal stress directions 𝐞1, 𝐞2, given by the
eigenvectors of 𝐻𝜙, correspond to isotropic principal curvature direc-
tions on the Airy surface 𝛷. The associated principal stresses 𝜎1, 𝜎2
correspond to its isotropic principal curvatures.

In Euclidean geometry, the osculating paraboloid of a surface at
a point 𝑝 is defined as the paraboloid that establishes second-order
contact with the surface at 𝑝, its axis being normal to the surface at
that specific point. This paraboloid reproduces the shape of the surface
near this point up to variables of the second order. In the context of
isotropic geometry, we can define the isotropic osculating paraboloid 𝛱
of the Airy stress surface 𝛷 as a paraboloid with a 𝑧-parallel axis making
second-order contact with 𝛷 at 𝑝. By intersecting the paraboloid 𝛱 with
a 𝑥𝑦-parallel plane at a unit distance in 𝑧 direction from its vertex, we
obtain a quadric curve called the isotropic Dupin indicatrix. If 𝛱 is an
elliptic paraboloid, the Dupin indicatrix is an ellipse where semi-axes
𝐫1, 𝐫2 point along the principal stress directions, with lengths |𝜎1|

− 1
2

and |𝜎2|
− 1

2 respectively (see Fig. 5). At a point 𝑝, an isotropic stress
state is therefore characterized by a paraboloid of revolution, known
in this context as i-sphere. This is represented by the equation

𝛴 ∶ 𝑧 =
𝑐0
2
(𝑥2 + 𝑦2) + 𝑐1𝑥 + 𝑐2𝑦 + 𝑐3,

where 𝑐0 is its constant isotropic curvature. Any planar intersection of
such an i-sphere is an i-circle: This is either a parabola with a 𝑧-parallel
axis or an ellipse whose top view is a Euclidean circle.

2.3. Equilibrium of 2D quadrilateral networks

Let us now consider a 2D truss with a quadrilateral connectivity. At
the limit of refinement, the edges of the truss will eventually converge
to form a network of smooth curves on the domain 𝐷, as depicted in
Fig. 3. The equilibrium of the network is now represented by its 𝑧-
rojection on the Airy stress surface 𝛷∶ 𝑧 = 𝜙(𝑥, 𝑦). To form a force
olyhedron, this projected network should span infinitesimal planar
aces on 𝛷. Let 𝐚1, 𝐚2 be the tangent vectors of the two network curves
assing through a point 𝑝 = (𝑥, 𝑦) ∈ 𝐷. Let us then consider the
uadrilateral given by the points 𝜙(𝑝), 𝜙(𝑝+𝐚1), 𝜙(𝑝+𝐚2), and 𝜙(𝑝+𝐚1+
2). Such a quadrilateral is planar if 𝜙(𝑝+𝐚1+𝐚2) = 𝜙(𝑝+𝐚1)+𝜙(𝑝+𝐚2).
Taylor expansion tells us that

(𝑝 + 𝐚1 + 𝐚2) − 𝜙(𝑝 + 𝐚1) − 𝜙(𝑝 + 𝐚2) = 2 𝐚𝑇1 𝐻𝜙 𝐚2 + 𝑜(𝐚1 + 𝐚2)2.

t a point 𝑝, two directions 𝐚1, 𝐚2 are then in equilibrium at the limit
f refinement if
𝑇
1 𝐻𝜙 𝐚2 = 0. (4)

uch directions are said to be conjugate to 𝐻𝜙. This result can also
e interpreted informally as follows: Let us imagine to substitute the
ontinuum at a point with two crossing rods 𝐚1 and 𝐚2. To insert the

irst rod, we have to make a cut 𝐚1 in the continuum. The resulting



Structures 60 (2024) 105972D. Pellis and H. Pottmann
Fig. 3. On the left : A 2D quadrilateral truss 𝑀 and its Maxwell polyhedron 𝑃 representing the axial equilibrium. On the right : At the limit of refinement, the truss converges to
a truss-like continuum D, and the corresponding Maxwell polyhedron converges to a network of curves which span planar faces on the Airy stress surface 𝛷.
force across it is 𝑆𝑅 𝐚1. For axial force equilibrium, this force should
point in the direction of the second rod 𝐚2, therefore 𝐚𝑇1 𝑅

𝑇𝑆𝑅 𝐚2 =
𝐚𝑇1 𝐻𝜙 𝐚2 = 0. This condition is symmetric and entails equilibrium also
for the insertion of the rod 𝐚2.

3. Principal symmetric trusses in 2D

In this section, we introduce the concept of principal symmetric
structures in 2D and their characterization in isotropic geometry.

3.1. Stress symmetric networks in 2D

We look now for two directions 𝐚1, 𝐚2 such that the forces across
these two cuts have the same magnitude, or rather ‖𝝈(𝐚1)‖ = ‖𝝈(𝐚2)‖.
To do this, let us first decompose the stress vector 𝝈(𝐚) into its normal
component 𝜎𝑛, given by Eq. (3), and its tangential component 𝜎𝑡, given
by

𝜎𝑡(𝐚) =
𝝈𝑇(𝐚)𝐚
‖𝐚‖

. (5)

Let then 𝐚(𝜃) be a direction that makes an angle 𝜃 with the principal
stress direction 𝐞1, and define 𝝈(𝜃) = 𝝈(𝐚(𝜃)). Applying the tensor
transformation law, the normal and tangential components of the stress
vector can be now expressed as functions of the angle 𝜃 and of the
principal stresses 𝜎1, 𝜎2 as follows:

𝜎𝑛(𝜃) = 𝜎1 cos2 𝜃 + 𝜎2 sin
2 𝜃,

𝜎𝑡(𝜃) = (𝜎1 − 𝜎2) sin 𝜃 cos 𝜃.
(6)

These relations give rise to the well-known Mohr’s circle, as depicted
in Fig. 4. We can observe that the squared norm 𝝈2(𝜃) = 𝜎2𝑛 (𝜃) + 𝜎2𝑡 (𝜃)
is equal for couples of angles {𝜃, −𝜃} – that is for directions that are
symmetric to the principal stress directions 𝐞1, 𝐞2.

Two directions 𝐚1 and 𝐚2 that are symmetric to principal directions
can be written as

𝐚1 = 𝑎𝐞1 + 𝑏𝐞2 and 𝐚2 = 𝑎𝐞1 − 𝑏𝐞2, (7)

where 𝑎, 𝑏 ∈ R. If we desire that 𝐚1 and 𝐚2 span a quad net in
force equilibrium, they must fulfill the conjugacy Eq. (4). Therefore,
substituting Eqs. (7), we get

𝐚𝑇1𝐻𝜙 𝐚2 = 𝑎2𝐞𝑇1𝐻𝜙 𝐞1 − 𝑏2𝐞𝑇2𝐻𝜙 𝐞2 = 𝑎2𝜎1 − 𝑏2𝜎2 = 0. (8)

As first we note that the solution exists only if 𝜎1 and 𝜎2 have the same
sign, i.e. for tension-only or compression-only stress states. Moreover,
4

Fig. 4. Mohr’s circle. In a 𝜎𝑛 , 𝜎𝑡 plane, the components of the stress vector 𝝈(𝜃) =
(𝜎𝑛(𝜃), 𝜎𝑡(𝜃))𝑇 form a circle with a diameter of |𝜎1 − 𝜎2|, centered on the 𝜎𝑛 axis. The
stress vector 𝝈(𝜃) corresponds to a point that subtends an angle 2𝜃 with the principal
stress direction associated with 𝜎1. It can be observed that stress vectors 𝝈(𝜃) and 𝝈(−𝜃)
share the same magnitude.

we observe that the angle 𝜃 between the directions 𝐚1, 𝐚2 and the first
principal direction 𝐞1 satisfies

tan 𝜃 = ± 𝑏
𝑎
= ±

√

𝜎1
𝜎2

. (9)

From Eq. (9), we observe that principal symmetric directions in equi-
librium are aligned with the two diagonals of the axes rectangle of the
Dupin indicatrix. We call these directions characteristic stress directions.
By discretizing a characteristic stress network with a quadrilateral
mesh, we obtain a principal symmetric gridshell in 2D. Some examples
of principal symmetric gridshells for constant stress fields with different
stress anisotropy are shown in Fig. 6.

Plugging Eq. (9) into Eqs. (6), we get

𝝈2 = 𝜎1𝜎2. (10)

We can see that, in a characteristic stress network, the norm of the
stress vectors is everywhere constant for stress fields where 𝜎1𝜎2 =
constant, or equivalently, where det(𝐻𝜙) = constant. We observe that
such a stress state is characterized by an Airy stress surface of positive
constant isotropic Gaussian curvature (see [17]).
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Fig. 5. Isotropic Dupin indicatrix. On the left : At a point 𝑝, the Dupin indicatrix is given by the intersection of the isotropic osculating paraboloid 𝛱 of the Airy stress surface 𝛷
with a plane at unit distance from its vertex. On the right : The characteristic stress directions 𝐚1, 𝐚2 point along the diagonals of the rectangle formed by the semi-axes 𝐫1, 𝐫2 of
the Dupin indicatrix.
Fig. 6. Principal symmetric gridshells for constant 2D stress states. From left to right, the anisotropy of the principal stresses is increasing. Note that the rod layout is naturally
disposed towards the major stress direction.
3.2. Stress symmetric networks in isotropic geometry

Let us now consider a curve on the Airy stress surface 𝛷. At a point
𝑝, the osculating i-circle of the curve is defined as the ellipse with second
order contact with the curve at 𝜙(𝑝) and whose top view is a Euclidean
circle. Then, Meusnier’s theorem in i-geometry, introduced in [17],
says: All curves on a surface 𝛷 which pass through a given point 𝑝
with the same tangent 𝐚, possess osculating i-circles at 𝜙(𝑝) which lie
on an i-sphere 𝛴 called the Meusnier i-sphere. The Meusnier i-sphere
is tangent to 𝛷 at 𝜙(𝑝) and its i-radius equals 1∕𝜎𝑛, where 𝜎𝑛 is the
normal curvature (that coincides here with the normal stress) across
the direction determined by 𝐚.

Hence, if two curves on a surface 𝛷 are symmetric with respect
to principal curvature directions at a point 𝑝, they possess the same
Meusnier i-sphere 𝛴 at 𝜙(𝑝) (see Fig. 7). Viewing 𝛷 as a stress sur-
face, we obtain a geometric characterization of directions which are
symmetric with respect to principal stress directions.

4. Principal symmetric gridshells

We now extend the previous results to surface-like gridshells in
axial force equilibrium, loaded at joints with forces along a 𝑧-axis.
With a refinement process similar to the one described in the 2D
case, such a structure will converge to a ‘‘truss-like membrane’’, where
the stress state is represented in its tangent plane by the membrane
stress tensor. If the gridshell has a quadrilateral connectivity, the rods
5

will then converge to a network of curves on the membrane surface.
The geometric and mechanical properties of this limit network can be
analyzed with differential geometry and continuum mechanics. For a
formal description of gridshells approaching membranes, see [8].

4.1. Equilibrium at the limit of refinement

Let us consider a membrane surface  ∈ R3, given as the graph of a
function  ∶ 𝑧 = 𝑠(𝑥, 𝑦). At a point 𝑝 ∈ , let 𝐚1, 𝐚2 ∈ R3 be two vectors
tangent to the surface, and let 𝐚̄1, 𝐚̄2 ∈ R2 be their projections in the
𝑥𝑦-plane. The first fundamental form I of the surface parametrization,
given by

I =

(

1 + 𝑠2,𝑥 𝑠,𝑥𝑠,𝑦
𝑠,𝑥𝑠,𝑦 1 + 𝑠2,𝑦

)

,

defines the inner product

⟨𝐚1, 𝐚2⟩ = 𝐚̄𝑇1 I 𝐚̄2. (11)

Let the surface  be subject to a distributed load in 𝑧 direction
𝑝𝑧(𝑥, 𝑦), expressed per unit 𝑥𝑦-area, and let 𝑆 be the membrane stress
tensor. The projection of the stress tensor in the 𝑥𝑦-plane, denoted as 𝑆̄,
is then given by 𝑆̄ = 𝛥𝑆, where 𝛥 = det(I). Here, the determinant

√

𝛥
of the first fundamental form can be computed as

√

𝛥 = 1∕ cos 𝛽, where
𝛽 is the inclination angle of the design surface’s tangent plane against
the 𝑥𝑦-plane. Since loads act only in 𝑧 direction, the 𝑥𝑦-component of
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Fig. 7. Meusnier i-sphere 𝛴 of the Airy stress surface 𝛷. On the left : At a point 𝑝, the osculating i-circles (red) of all surface curves that share the same tangent direction 𝐚 lie
on a i-sphere 𝛴. On the right : At a point 𝑝, the osculating i-circles (red) of two curves with tangents 𝐚1, 𝐚2 that are symmetric to the principal i-curvature direction 𝐞1 lie on the
same i-sphere 𝛴. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
the equilibrium requires the projected stress tensor 𝑆̄ to be divergence
free. As in Section 2.2, this entails the existence of an Airy stress surface
𝛷∶ 𝑧 = 𝜙(𝑥, 𝑦), representing the 𝑥𝑦-equilibrium, such that

𝑆̄ = 𝐻̃𝜙 =
(

𝜙,𝑦𝑦 −𝜙,𝑥𝑦
−𝜙,𝑥𝑦 𝜙,𝑥𝑥

)

.

Being 𝐻𝑠 the Hessian of the surface , given by

𝐻𝑠 =
(

𝑠,𝑥𝑥 𝑠,𝑥𝑦
𝑠,𝑥𝑦 𝑠,𝑦𝑦

)

,

the 𝑧-component of the equilibrium is described by the Pucher’s equa-
tion

𝐻𝑠 ∶ 𝐻̃𝜙 + 𝑝𝑧 = 0,

where 𝐻𝑠 ∶ 𝐻̃𝜙 = 𝑠,𝑥𝑥𝜙,𝑦𝑦 − 2𝑠,𝑥𝑦𝜙,𝑦𝑦 + 𝑠,𝑦𝑦𝜙,𝑥𝑥 is a element-wise matrix
multiplication.

The normal stress acting across a cut 𝐚 in the surface is now
computed as

𝜎𝑛(𝐚) =
𝐚̄𝑇

√

𝛥𝐻𝜙 𝐚̄
𝐚̄𝑇 I 𝐚̄

. (12)

Note that the principal stress directions and the corresponding prin-
cipal stresses are now given by the eigenvectors and eigenvalues of
√

𝛥I−1𝐻𝜙. We observe that the main difference between Eq. (12) and
the 2D normal stress of Eq. (3) is that the inclination of the tangent
plane of the design surface  causes the appearance of the first funda-
mental form I. To adapt the isotropic geometry to the 3D membranes
case, we need not use the canonical inner product in the 𝑥𝑦-plane, but
use the one induced by the first fundamental form of Eq. (11).

In this way, each point 𝑝 on the design surface  determines via I a
‘‘locally adapted isotropic geometry’’. At each point 𝑝, such a geometry
is related to the previously discussed one by applying an affine map in
𝑥𝑦 and keeping 𝑧 unchanged. Hence all results are easily transferred.
An i-sphere is now an elliptic paraboloid with equation of the form

𝛴𝑝 ∶ 𝑧 =
𝑐0
2
(𝐱̄𝑇 I 𝐱̄) + 𝑐1𝑥 + 𝑐2𝑦 + 𝑐3,

with 𝐱̄ = (𝑥, 𝑦)𝑇 . Its intersections with non-isotropic planes are ellipses
(i-circles) whose projections parallel to the 𝑧-axis into the tangent plane
of the design surface  at 𝑝 are Euclidean circles (see Fig. 8). Using the
locally adapted isotropic geometry, the isotropic normal curvatures 𝜅
6

𝑛

on the stress surface 𝛷 are related to the actual stresses on the design
surface  via

𝜎𝑛 =
√

𝛥𝜅𝑛.

4.2. Quadrilateral gridshell networks

Let us consider now a quadrilateral gridshell that at the limit of
refinement converges to a network of curves on . Let 𝐚1 and 𝐚2 be
the tangent vectors of the two network curves passing through a point
𝑝 of the surface, and let 𝐚̄1 and 𝐚̄2 be the projections of these vectors in
the 𝑥𝑦-plane. As in Eq. (4), horizontal equilibrium requires conjugacy
of the projected directions to 𝐻𝜙.

We can also impose additional requirements on the network to
facilitate the manufacturing process. For instance, we may seek a
network with planar faces. As indicated in Eq. (4), this condition
demands conjugacy with respect to the surface Hessian 𝐻𝑠. Including
equilibrium, as shown in [7], this leads to conditions

𝐚̄𝑇1 𝐻𝑠 𝐚̄2 = 0; 𝐚̄𝑇1 𝐻𝜙 𝐚̄2 = 0, (13)

which, together with a normalization constraint of vectors 𝐚̄1 and 𝐚̄2,
give rise to four equations involving four variables. If at least one
of the matrices 𝐻𝑠 or 𝐻𝜙 is invertible, both conditions are satisfied
if 𝐚̄1 and 𝐚̄2 align with the eigenvectors of 𝐻−1

𝑠 𝐻𝜙 or 𝐻−1
𝜙 𝐻𝑠. If we

additionally ask 𝐚1 and 𝐚2 to be orthogonal, and therefore 𝐚̄𝑇1 I 𝐚̄2 = 0,
we have the condition that 𝐚̄1 and 𝐚̄2 must, at the same time, point along
the eigenvectors of I−1𝐻𝑠 and I−1𝐻𝜙. This requires that the principal
directions of stress and curvature coincide. Such a problem is over
constrained and admits a solution only for a special class of membrane
surfaces. A method for the design of such gridshells is described in [10].

4.3. Stress symmetric gridshell networks

Similarly to Section 3.1, we look now for two directions 𝐚1, 𝐚2
tangent to the surface  at a point 𝑝 which are in equilibrium and along
which the membrane stress vector has the same magnitude.

In this case, two tangent directions are symmetric with respect to
the principal stress directions on  if the corresponding directions on
the Airy surface 𝛷 have the same adapted Meusnier i-sphere. Note that
angles in the adapted isotropic geometry agree with Euclidean angles
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Fig. 8. On the left : The i-sphere 𝛴𝑝 in the adapted isotropic geometry. At a point 𝑝, an i-sphere intersects the tangent plane of the membrane surface  in a Euclidean circle,
whose projection in the 𝑥𝑦-plane is an ellipse. On the right : Principal symmetric directions at a point 𝑝 of a membrane . In red, the Dupin indicatrix of the adjoint stress tensor
√

𝛥I−1𝐻𝜙 and its projection in the 𝑥𝑦-plane are shown. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
in the corresponding tangent plane of the design surface. Therefore,
Eqs. (6) and (9) are still valid, where the angles 𝜃 between the stress
characteristic directions and the principal stress direction are Euclidean
angles on the tangent plane of the design surface.

Let us now consider the Dupin indicatrix of the adjoint membrane
stress on the tangent plane of . We have here the same conditions
as described in Section 3.1, with stress characteristic directions being
the diagonals of the principal axes rectangle, where now the principal
stresses 𝜎1, 𝜎2 and the principal directions 𝐞1, 𝐞2 are the eigenvalues
and eigenvectors of the adjoint stress tensor

√

𝛥I−1𝐻𝜙. To compute the
characteristic stress directions in our 𝑥𝑦-parametrization, let us consider
the eigenvectors of the adjoint stress tensor, denoted as 𝐞̄1, 𝐞̄2. The 𝑥𝑦
projections of the semi-axes of the Dupin indicatrix are given by

𝐫̄1 =
𝐞̄1

√

|𝐞̄𝑇1 𝐻𝜙𝐞̄1|
, 𝐫̄2 =

𝐞̄2
√

|𝐞̄𝑇2 𝐻𝜙𝐞̄2|
.

As shown in Fig. 8, the 𝑥𝑦 projection of the stress characteristic di-
rections can be computed as 𝐚̄1,2 = 𝐫̄1 ± 𝐫̄2. We observe that these
directions are also conjugate to 𝐻𝜙: This can be seen considering that
(𝐫̄1+𝐫̄2)𝑇𝐻𝜙(𝐫̄1−𝐫̄2) = 𝐫̄𝑇1 𝐻𝜙 𝐫̄1−𝐫̄𝑇2 𝐻𝜙 𝐫̄2, and that 𝐫̄𝑇1 𝐻𝜙 𝐫̄1 = 𝐫̄𝑇2 𝐻𝜙 𝐫̄2 =
±1.

The stress conjugate gridshell network, as in the 2D case, is uniquely
determined and exists solely for tension-only or compression-only mem-
branes. A principal symmetric structure which additionally spans pla-
nar faces requires the conjugacy of the directions 𝐚̄1, 𝐚̄2 with respect to
the surface Hessian 𝐻𝑠, as in Eq. (13). These networks exist only on a
special class of membrane surfaces.

A particularly interesting structure would be one with constant
forces in all the network. From Eq. (10), but considering the membrane
principal stresses, we observe that this happens for networks where
det(

√

𝛥I−1𝐻𝜙) = constant.

5. Design of principal symmetric structures

In this section, we outline a design workflow for the design of
principal symmetric gridshells, summarized in Fig. 9.
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5.1. Design of a compression-only (tension-only) membrane in equilibrium

As input, we need a compression-only or tension-only membrane in
equilibrium. To compute it, we model the membrane  as a triangular
gridshell truss, with loads applied on its vertices. The density of the
triangular mesh should be chosen to match or be higher than the
intended density of the final quadrilateral structure. We impose then
the equilibrium at each unsupported vertex asking for compression-only
or tension-only axial forces using the force density method: Being 𝑤𝑖𝑗
the force density in the bar 𝐯𝑖−𝐯𝑗 , with positive values indicating com-
pression, compressive (tensile) equilibrium at a vertex 𝐯𝑖 is expressed
as
∑

𝑗∼𝑖
𝑤𝑖𝑗 (𝐯𝑖 − 𝐯𝑗 ) + 𝐩𝑖 = 0, with 𝑤𝑖𝑗 > 0 (𝑤𝑖𝑗 < 0), (14)

where 𝐩𝑖 is the load applied at the vertex 𝐯𝑖. We address the form-
finding task using the implementation proposed by Tang et al. [18],
and compute the forces in the bars according to the resulting force den-
sities. In this step, alternative form-finding methods which involve the
computation of an Airy stress surface, based on NURBS surfaces [19]
or radial basis functions [20], can be employed.

5.2. Computation of a principal symmetric network

Once we have a membrane in equilibrium, we estimate the stress
tensor at vertices from the forces of incoming edges, using the normal
cycle approach introduced by [21]. As shown in [10], one computes
an extended stress tensor 𝑆𝑒 (3 × 3 matrix with two eigenvectors in
principal curvature direction and the third eigenvector, with eigenvalue
close to zero, orthogonal to the surface) at a vertex 𝐯𝑖 ∈ R3 as follows:

𝑆𝑒(𝐯𝑖) =
1
𝐴𝑖

∑

𝑗∼𝑖
𝑤𝑖𝑗 (𝐯𝑖 − 𝐯𝑗 )(𝐯𝑖 − 𝐯𝑗 )𝑇 ,

where 𝐴𝑖 is the Voronoi area on the membrane mesh  associated
with the vertex 𝐯𝑖. The two swapped eigenvectors of 𝑆𝑒(𝐯𝑖) lying in the
tangent plane at 𝐯𝑖, and the associated eigenvalues, are then used to
compute the principal symmetric directions with Eq. (9).
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Fig. 9. Design pipeline. (a) A membrane shell in funicular equilibrium is given as input. To compute it, we use a triangular gridshell in compression-only or tension-only equilibrium.
(b) We estimate the characteristic directions with Eq. (9). (c) We compute a quadrilateral mesh aligned with characteristic directions and we optimize the resulting gridshell for
equal forces at nodes.
Fig. 10. Principal symmetric gridshells designed with our computational pipeline. Mesh singularities emerge at singular points of the principal stress lines of the limit membrane,
coinciding with regions characterized by isotropic stress.
5.3. Quadrilateral remeshing

From the resulting directions, we extract then a quadrilateral mesh.
Given that our hypotheses involve stresses, the achievement of accurate
results hinges significantly on the condition that the edge lengths of
this mesh are as uniformly distributed as possible. For this remeshing
task, we use mixed integer quadrangulation [22]. This method requires
as input an orthogonal cross field. Since principal symmetric directions
are not orthogonal, we first transform the triangular mesh by moving its
vertices such that the computed directions become orthogonal through
optimization. An implementation of this transformation is described
in [23]. We apply then mixed integer quadrangulation on the trans-
formed mesh and map back the result on the original shape through
barycentric coordinates.

5.4. Post-optimization

We finally optimize the quadrilateral mesh for equilibrium under
vertical load with Eq. (14), additionally asking for equal forces at
vertices. For that, at each unsupported vertex 𝑖 with connected vertices
𝑗1, 𝑗2, 𝑗3, 𝑗4, we define the force equalization energies

𝐸eq =
(

‖𝐟𝑖𝑗𝑘‖ − ‖𝐟𝑖𝑗𝑙‖
)2

, (𝑘, 𝑙) ∈ {(1, 2), (2, 3), (3, 4), (4, 1)}.

We then minimize the sum of all energies 𝐸eq using a Levenberg–
Marquardt algorithm, enabling the vertices of the mesh to move while
maintaining proximity to the reference triangulated membrane. To
ensure a uniform distribution of edge lengths, we can additionally
minimize a fairness energy for each edge 𝑖 ∼ 𝑗, defined as 𝐸fair =
𝜀
(

‖𝐯𝑖 − 𝐯𝑗‖ − 𝑐
)2, where 𝑐 is a coefficient subject to optimization and

is equal for all edges. The parameter 𝜀 denotes a small weight. During
the optimization, we also minimize the graph Laplacian energy of the
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mesh, with a small weight, to ensure smoothness of mesh polylines (for
details, see [18]).

Results are shown in Figs. 1, 2, 9, and 10. For all the presented
examples, the structure is subjected to a constant area load along the
vertical direction, and it is supported by pinned joints at the boundary
vertices.

6. Conclusion and final remarks

In this study, we introduced principal symmetric gridshells, char-
acterized by nearly equal axial forces at each joint. We demonstrated
that these gridshells discretize a specific network of curves symmetri-
cally aligned with the principal stress lines of either a tension-only or
compression-only membrane. Additionally, we revealed insightful con-
nections between this network and the isotropic geometry of the Airy
stress surface. Finally, we outlined a method for computing a principal
symmetric network on a membrane and extracting the corresponding
principal symmetric gridshell.

Concerning manufacturing aspects, a potential extension of this
work involves developing tools for designing principal symmetric struc-
tures with nearly constant forces in the rods, enabling the use of a single
cross-section profile. As shown in Section 3, this can be achieved by
designing membranes with a constant stress determinant.

A critical aspect to highlight is that principal symmetric gridshells
generally do not span planar faces, presenting a challenge when cover-
ing them with panels made of rigid materials like glass. One plausible
solution is to enable the design of membranes with stress characteristic
directions that are conjugate to curvature. In this scenario, a remeshing
along these directions would result in a principal symmetric gridshell
with planar faces. The exploration of these extensions is deferred to
future investigations.
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