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Representing smooth geometric shapes by polyhedral meshes can be quite

difficult in situations where the variation of edges and face normals is promi-

nently visible. Especially problematic are saddle-shaped areas of the mesh,

where typical vertices with six incident edges are ill suited to emulate the

more symmetric smooth situation. The importance of a faithful discrete

representation is apparent for certain special applications like freeform

architecture, but is also relevant for simulation and geometric computing.

In this paper we discuss what exactly is meant by a good representation

of saddle points, and how this requirement is stronger than a good approxi-

mation of a surface plus its normals. We characterize good saddles in terms

of the normal pyramid in a vertex.

We show several ways to design meshes whose normals enjoy small

variation (implying good saddle points). For this purpose we define a discrete

energy of polyhedral surfaces, which is related to a certain total absolute

curvature of smooth surfaces. We discuss the minimizers of both functionals

and in particular show that the discrete energy is minimal not for triangle

meshes, but for principal quad meshes. We demonstrate our procedures

for optimization and interactive design by means of meshes intended for

architectural design.
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1 INTRODUCTION
The approximation of a smooth surface by a triangle mesh, or more

generally, by a polyhedral mesh, is a basic task of geometry process-

ing. It is a bit surprising that the following aspect has not received

more attention in the past, namely the proper representation of

saddle-shaped surfaces by meshes. Here ‘proper’ means that the

shape of the immediate neighbourhood of a vertex in the mesh

should resemble the shape of a small piece of smooth surface. This
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Fig. 1. A reflective surface reveals the deficiencies in mesh fairness which
we quantify by means of a discrete fairness energy based on edge lengths
and dihedral angles. This energy its minimal for principal quad meshes
(right). In this special case both meshes approximate a reference surface of
small total variation of the normal vector field, so all visible deficiencies are
not caused by the reference shape, but by the way this shape is meshed.

criterion can to some extent be expressed by the requirement that

dihedral angles in the mesh are small.

Meshes which are defective in this respect cause not only prob-

lems with the computation of discrete differential quantities, but

their visual appearance can be very different from the underlying

smooth reference surface. This is particularly true for meshes used

for freeform architectural skins with reflective materials.

1.1 Overview and contributions
We start in § 2 with a discussion of the inevitable deficiencies of

discrete surfaces which are meant to approximate smooth surfaces.

We identify the shape of the normal pyramid as a key difference

between the discrete case and the smooth case. We propose that a

mesh faithfully models a smooth surface if, in negatively curved

areas, it exhibits so-called good saddles. We go on to show that

then normal pyramids are free of self-intersections. This is a cri-

terion for visual smoothness of the mesh (in particular it implies

small dihedral angles). We introduce a class of highly-constrained

principal-symmetric meshes which in some sense optimally repre-

sent saddle-shaped surface geometry. The different mesh properties

we study can be symbolically arranged in the following order,

principal-symmetric

meshes
=⇒ meshes with

good saddles
=⇒ intersection-free

normal pyramids

with the more restrictive properties to the left.

To quantify the visual smoothness of a mesh, in § 3 we turn to a

mesh energy measuring the total variation of the normal vectors. It

essentially is the sum of edge lengths times dihedral angles. A small

energy implies that normal pyramids cannot be too badly behaved.
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A thorough discussion of properties of this energy reveals that

for a given geometric shape, the mesh with smallest energy is no

triangle mesh, but a quad mesh alighed with principal curvature

lines. We are not able to strictly prove this statement, but we provide

strong motivation. This result is fortunate, because principal meshes

are relevant for freeform architecture for various reasons. They

admit offsets at constant distance, have near-rectangular panels,

and possess torsion-free support structures — for an overview see

the survey [Pottmann et al. 2015]. It is interesting to know that they

have good properties also from the viewpoint of visual appearance.

It turns out that among all meshes approximating a given smooth

reference surface, the lowest achievable energy equals a certain

curvature measure which we call total absolute curvature, see § 4.
It has an interpretation as total variation of the surface’s normal

vector field. If that quantity is small, the surfaces have especially

good visual smoothness when represented by a mesh.

Finally, in § 5 we use a single computational framework to deal

with (i) interactive modeling with principal-symmetric meshes, (ii)

the optimization of meshes towards lower energy, and (iii) finding

surfaces of minimal total absolute curvature for given boundary.

1.2 Previous Work
We do not attempt to review the wealth of literature on fairness

of meshes here. Early quantifications of fairness, e.g. the umbrella

vector of Kobbelt et al. [1998] are still relevant to us because of their

usefulness as regularizers in nonlinear optimization procedures.

There has been systematic work on meshes which approximate

smooth surfaces, and criteria which ensure that discrete-differential

quantities derived from meshes approximate their smooth counter-

parts, see [Bauer et al. 2010; Hildebrandt et al. 2006]. This question

is also going to be relevant in our work.

Smoothness of polyhedral surfaces in our narrower sense revolves

around the behaviour of the Gauss image of the mesh, i.e., the face

normals. Günther et al. [2017] investigate in detail properties of

vertex stars and Gauss images, establishing relations between the

local shape of the mesh and the question of self-intersections of

the Gauss image. On that basis, Jiang et al. [2016] discuss optimiza-

tion of meshes towards star-shaped Gauss images (which implies

absence of self-intersections). Good representation of saddles is al-

ready implicitly present in their work, but is only expressed in terms

of relative position of edges to a smooth reference surface.

It is worth noting that the relation between mesh and Gauss

image we employ in this paper has a 2-dimensional analogy, namely

the relation between a 2D triangulation and a reciprocal-dual mesh.

Here Orden et al. [2004] characterize pseudo-triangulations whose

reciprocals have no self-intersections.

Imposing conditions on the normal pyramid has been successfully

done before: the “hinge condition” of [Stein et al. 2018] corresponds

to developability of surfaces.

To achieve fairness (in our special sense) of meshes, we work

with a mesh fairness energy. It falls into a broader class of energies

of the form

∑
f (ℓe ,αe ), where the sum is taken over all edges of

a mesh and f is a function of edge length ℓe and dihedral angle

αe , see [Tamstorf and Grinspun 2013] for an overview. We employ

the energy E = 2

∑
ℓe | sin

αe
2
| which approximates the energy

v
w

n(w )
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Fig. 2. Discrepancy between smooth surfaces and discrete surfaces. (a) When
circling a point v of a smooth surface Φ, the normal vector describes a
convex cone. (b) In a polyhedral surface, the normal vectors of a vertex
star form a pyramid. Deviating from the smooth situation, this pyramid is
typically non-convex in case of negative curvature. (c) Normal pyramids
can even self-intersect. Here we show the worst possible representation of a
saddle-shaped surface by a vertex star which itself is not even saddle-shaped.

E ′ =
∑
ℓe |αe |. Both are a kind of bending energy. E ′ has been

used for the purpose of optimizing triangulations of surfaces (see

[Alboul and van Damme 1996] and follow-up papers), and also of

volumes [Dyn et al. 2001]. Its usage for formfinding was poposed

by [Garanzha 2010].

Our work also involves fairness functionals operating on surfaces.

These are frequently defined in terms of curvatures. We employ the

total absolute curvature defined as the surface integral

∫
|κ1 | + |κ2 |,

where κ1,κ2 refers to principal curvatures. Several deep theorems

concern the gradient flow of such functionals. Well-studied exam-

ples include the surface area functional, and also the total mean

curvature

∫ κ1+κ2

2
. Moving the surface with speed proportional to

mean curvature
κ1+κ2

2
resp. Gauss curvature κ1κ2 corresponds to

L2
-steepest descent of surface area resp. total mean curvature. It is

known that in both cases, convex surfaces flow to round points [An-

drews 1999; Huisken 1984]. Flows used for geometry processing pur-

poses include the gradient flow of Willmore energy

∫
(κ1 −κ2)

2
, see

[Bobenko and Schröder 2005] for a mesh version. A sign-corrected

Gauss curvature flow has been used by [Zhao and Xu 2006].

In the present paper, we do not use the gradient flow for mini-

mizing total absolute curvature, but a method very similar to the

one of Pellis et al. [2017].

A mesh energy may or may not be a discretization of a surface

fairness functional. It is well known that discrete mean curvature

1

2

∑
ℓeαe is a discretization of total mean curvature

∫ κ1+κ2

2
, see

[Cohen-Steiner and Morvan 2003]. It must be emphasized that our

energies E, E ′ do not enjoy such a property for general meshes,

despite being called total “absolute mean curvature” in the literature.

Returning to curvature-based functionals, both our total absolute

curvature

∫
|κ1 | + |κ2 | and the functional

∫
(κ2

1
+ κ2

2
)1/2

have an

interpretation as total variation of the normal vector field. The latter

functional is studied in detail in a recent preprint by Bergmann et al.

[2019]. They also discuss the energies E, E ′ and touch upon several

of our topics. Energy-minimal meshes (considered in this paper) are

mentioned as an unsolved problem.

2 REPRESENTATION OF SADDLES IN MESHES
Experience shows that visible deficiencies in fairness of polyhedral

meshes occur mainly in negatively curved regions, i.e., parts of

the mesh where the underlying smooth reference surface is locally

saddle-shaped. The visual appearance of the mesh depends heavily
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(a) (b)

Fig. 3. Saddles and numerical differential geometry.We display the “cotan”
mean curvature field H⃗ for a mesh inscribed in the surface z = x 2 − y2/2.
The x, y coordinates of vertices are taken from a regular lattice, slightly
perturbed. Vertices and face normals approximate the smooth reference
geometry to roughly the same extent in both (a) and (b), but H⃗ is much better
behaved in (a), where vertex stars are saddle-shaped. In (b), vertex stars are
no saddles, like in Fig. 2c. Compared to (a), a much smaller deviation from
a precisely regular sampling makes H⃗ break down.

on the normal vectors of faces – Fig. 1 shows how a reflective

surface reveals the normal vectors’ high variation. For this reason

we have a closer look at the immediate neighbourhood of a vertex

and visualize the normal vectors. Fig. 2 illustrates a fact which

we feel has not been sufficiently appreciated so far: there is a big

difference between the local shape of a smooth surface and the

local shape of a mesh. In particular the normal vectors of faces in

the immediate neighbourhood of a vertex behave in a much more

irregular way than they do in the smooth surface case.

2.1 Saddle-shaped meshing of saddle-shaped surfaces
Even if a mesh is a regular sampling of a smooth saddle-shaped

surface, vertex stars are not guaranteed to have proper saddle form.

Here saddle-shapedness means that there is a test plane (which

can be considered a tangent plane) through the central vertex, inter-

secting the vertex star in precisely 4 line segments. We require that

these four segments are not contained in a common half-plane, and

that the vertex star projects onto the tangent plane in a 1-1 manner.

Examples of proper saddles are shown by Figures 2b and 4, while

the vertex star of Fig. 2c is neither convex nor a saddle.

Figure 3 demonstrates how evaluation of discrete differential

quantities can go wrong even for a mesh precisely inscribed in a

smooth surface, if the local geometry of the mesh does not reflect

the local geometry of the surface. This experiment supports the

claim that visually smooth meshes are better behaved with respect

to the numerical differential geometry, even if the mesh and normals

of faces approximate a smooth reference geometry to the a similar

extent.

2.2 The normal pyramid
Consider a vertex v and neighbours w1, w2 etc., in that order –

see Fig. 4. The normal vectors of faces vwiwi+1 form the normal
pyramid. Such normal pyramids have been studied by [Günther et al.

2017; Jiang et al. 2016] who were in particular interested in cases

where it has no self-intersections. This is a criterion for smoothness

of the mesh. We attach a local xyz coordinate system with origin in

v , such that the tangent plane is the xy plane.

The edges vw j are partitioned into four sets of edges lying below

resp. above the tangent plane. The number of elements of these sets

w1

w2

w4

w5

w6

v

n34

n23

(a) w1

w2

w4

w6

v

n34

n23

(b) w1

w2

w4

w6

v

n34

n23

(c)

Fig. 4. (a) Good saddle, where vw1w2 and vw4v5 are no inflection faces.
(b), (c): Bad saddles where the number of edges above and below the tan-
gent plane is 2, 2, 1, 1 resp. 3, 1, 1, 1. Besides, there are inflection faces not
intersecting the tangent plane.

can be 1, 2, 1, 2 (Fig. 4a) or 2, 2, 1, 1 (Fig. 4b) or 3, 1, 1, 1 (Fig. 4c). We

want to give a criterion which is easily checked and which ensures

that the normal pyramid is free of self-intersections. We say a face

vwiwi+1 is an inflection face, see [Günther et al. 2017], if neighbours
vwi−1wi and vwi+1wi+2 lie on different sides of the plane which

carries the face f . In the simplest case of valence 4, every face of a

saddle is an inflection face. We now say that a valence 6 saddle is a

good saddle if the numbers of edges above and below the tangent

plane is 1, 2, 1, 2 (Fig. 4a) and the two faces not intersecting the

tangent plane are no inflection faces.

Prop. 1. In a “good” saddle point, the pyramid of vertex normals is
free of self-intersections.

Proof.

n61

n12

n56

n45

n34

n23

L′(t56)

L′(t23)

o

L(t ∗
5
)

L(t ∗
4
)

L(t ∗
3
)

We cut off the normal pyramid

by the plane η which has equation z = 1.

Verticesw1, . . . ,w6 are neighbours of v
(indices modulo 6). In the plane η we

mark the pointsni,i+1, which are defined

as intersection with η of the normal of

the plane [vwiwi+1]. Consider a ray L(t )
rotating around v but always contained inside the surface of the

mesh. Here t is a time parameter. Consider the plane L(t )⊥ orthog-

onal to L(t ) and trace the intersection L′(t ) = L(t )⊥ ∩ η.
There are six time instances t∗

1
, . . . , t∗

6
where L(t∗j ) coincides with

an edge vw j . Then L′(t∗j ) equals the line nj−1, j ∨ nj, j+1 (yellow in

the inset figure). In the time interval where L(t ) is contained in the

face vw jw j+1, L
′(t ) rotates about nj, j+1. The rotation is consistenly

in one direction. Four times the line L(t ) lies in the tangent plane.

We assume the vertices are numbered so that these four lines lie

in faces vw jw j+1 for (j, j + 1) = (2, 3), (3, 4), (5, 6), (6, 1) (which are

inflection faces). This happens at time instances t = tj, j+1. The

corresponding line L′(tj, j+1) passes through the point o where the
z axis intersects η (shown in red).

Observe the ray L(t ) rotating from edge vw4 to edge vw5. The

edge vw5 is reached at time t = t∗
5
, before the plane [vw5w6] is

crossed (this is the non-inflection property of vw4w5). The line

L′(t ) during this rotation has not crossed n56. Similarly, during the

rotation in the time interval [t∗
5
, t∗

6
], the line L′(t ) does not cross

n34. Therefore n45 lies in the interior of the triangle o,n34,n56.

Likewise, n12 lies in the interior of the triangle o,n61,n23. □

Remark. If a triangle mesh of regular combinatorics is generated

by sampling a smooth surface in a geometrically regular way, it is

hard to create saddle points with more than 4 inflection faces, and
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(a) (b) (c)

Fig. 5. Design of triangle meshes. (a) We interactively design
meshes with the principal-symmetric property. (b) Their local
symmetries respect curvatures, so their normal pyramids
resp. Gauss image has symmetric shape and is free of self-
intersections. (c) The principal-symmmetric property means
in particular that one third of edges is aligned with principal
curvatures, and vertex normals form developable strips.

typically also the asymmetric situations of Fig. 4b,c will not occur.

There is however a nonzero probability that the mesh will have

vertices which are neither convex nor proper saddles like in Fig. 2.

2.3 Principal-symmetric triangle meshes
Arguably the best way to resolve a saddle-shaped reference surface

Φ as a mesh is that in each vertex, the local geometry of the mesh

around a vertex v has the same symmetries as Φ. For a typical

valence 6 vertex v this means that two edges through v , say vw1,

vw4 (see Figure 6), are aligned with a principal curvature direction,

while the others are symmetric to it. Differential geometry tells us

that they are then alignedwith two curves enjoying the same normal

curvature. To discretize these two properties we must distinguish

between principal edges and non-principal edges and require that in

each valence 6 vertex, there are exactly two principal edges which in

the vertex star are opposite to each other. We impose the following

set of conditions.

n(v )

w1

w4

v

Σ(v ) w2 w3

w5

Fig. 6. The spherical condition imposed on
principal-symmetric meshes. Vertex v is
endowed with a sphere Σ(v ) containing
v itself and 4 neighboursw2, w3, w5, w6.
In case of negative curvature we require
that the remaining vertices lie on the
other side of the sphere’s tangent plane.

• A valence 6 vertex has four non-principal edges vw j . According

to [Schling et al. 2018], equality of normal curvatures is discretized

by the property that v and all involved w j ’s lie on a sphere Σ(v ).
See Fig. 6.

• Every vertexv is now endowed with a normal vector n(v ), namely

the normal vector of the sphere Σ(v ). For a principal edge vw j
we require that n(v ), n(w j ), w j − v are co-planar. In this way we

construct developable strips orthogonal to the mesh along all the

principal edges, see Fig. 5.

• In a valence 6 vertex v with angle sum greater than 2π we assume

a saddle shape. Then the sphere Σ(v ) and a principal edge vw j are

required to lie on different sides of the sphere’s tangent plane.

• Vertices of valence different from 6 are considered singularities,

comparable to umbilic points, and no conditions are imposed there.

These principal-symmetric conditions are rather strong, but they
yield the best results regarding shape reproduction by meshes (for

the meaning of ‘best’, see the start of this paragraph). We use them

for interactive design of triangle meshes, see Figures 5 and 14. For

implementation see §5.

3 ENERGIES OF POLYHEDRAL SURFACES
The local shape properties of meshes discussed in §2 are in direct

relation to the variation of normal vectors of meshes. E.g. the total

variation of normal vectors around a vertex, which equals the sum of

unsigned dihedral angles of the vertex star, can be seen as a kind of

spherical perimeter of the normal pyramid. A smaller total variation

corresponds to a smaller perimeter which is obviously achieved in

cases where the normal pyramid is free of self-intersections. We

therefore propose to construct a discrete mesh energy E as explained

below, which penalizes big dihedral angles and in turn, a higher

total variation of normals.

Consider a polyhedral surface P = (V ,E, F ) with vertex set V ,
edge set E and face set F . Each face f ∈ F has a normal vector nf .
Any edge e ∈ E has a length ℓe , a dihedral angle αe , and a dual edge
length ℓ∗e , which is defined by the relations

e = f ∩ f ′ =⇒ |αe | = ∠(nf ,n
′
f ), ℓ

∗
e = ∥nf − nf ′ ∥ = 2 sin

αe
2

.

The energy

E ′(P ) =
∑

e ∈E
ℓe |αe |

is built similar to discrete mean curvature and penalizes big dihe-

dral angles (i.e., a big contribution to the total variation of normal

vectors). A slight modification leads to the energy

E (P ) =
∑

e ∈E
ℓe ℓ
∗
e = 2

∑
e ∈E
ℓe

����sin

αe
2

���� ,

which is easier to handle from the computational viewpoint.

With sinx ≈ x for small values of x , the energies E, E ′ assume

similar values; they act identically for all practical purposes.

3.1 Differential-geometric interpretation of the energy E
Recall the definition of the shape operator of a surface Φ [do Carmo

1976]. When sitting in a point x ∈ Φ and moving by the small

amount δx , the unit normal vector n is incremented by δn ≈ −W δx .
The shape operatorW is linear. Its eigenvectors are orthogonal and

indicate the principal directions: If the increment δx is in the j-th
principal direction (j = 1, 2), then the normal vector increment is

δn = −κj δx ,

where κj is the j-th principal curvature. In an orthonormal coordi-

nate system aligned with the principal directions,W is described

by the diagonal matrix (κ1κ2
).

For a principal quad mesh P = (V ,E, F ), the edge polylines ap-
proximate the principal curvature lines of a smooth surface Φ. In
such cases the faces of the mesh (away from umbilics) are near-flat,

and can in fact be assumed flat [Bobenko and Suris 2009].
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(a) (b) (c) (d)

E = 757 E = 767 E = 772 E = 935, C (Φ) = 776 Fig. 7. Convergence of mesh energy to total absolute curvature
C (Φ). (a)–(c) show finer and finer principal meshes, each approxi-
mating the same reference shape Φ. The energies approach C (Φ).
Every edge e is color-coded according to ℓe |αe |. The reference
surface Φ is represented by the triangle mesh (d).

For any face f of the mesh, the normal vector nf is also a normal

vector of the underlying smooth reference surface Φ in an appropri-

ate point. This location, when projected back onto the face f , yields
a point cf , see Figure 8.

For any edge e = f ∩ f ′, we now have the following correspon-

dences between the discrete mesh situation and the smooth surface

situation:

cf ′ − cf ≈ δx , nf ′ − nf ≈ δn, ℓ∗e ≈ ∥δn∥ ≈ |κe |∥δx ∥

=⇒ E (P ) =
∑

e
ℓe ℓ
∗
e ≈
∑

e
|κe |ℓe ∥cf − cf ′ ∥.

Here κe is the principal curvature in the direction orthogonal to e .
The quadrangle spanned by cf , cf ′ and e has area approximately

1

2
∥cf − cf ′ ∥ · ℓe . One half of the edges corresponds to the first

principal direction, the other half to the 2nd principal direction, so

the term ℓe ∥cf − cf ′ ∥ occuring in the formula above is the area of

influence of the edge e . Summing up,

E (P ) ≈

∫
Φ
( |κ1 | + |κ2 |) dA = C (Φ).

Numerical experiments confirm this, see Fig. 7. We return to the

functional C (Φ) in §4.

3.2 Energy gradient
Wenow investigate energy-minimalmeshes, and in particularmeshes

which have minimal energy subject to the constraint that they ap-

proximate a given smooth surface Φ. We will eventually arrive at

the conclusion that principal meshes are energy minimizers.

Triangle meshes with fixed connectivity form a linear space iden-

tifiable with (R3) |V | . The energy E as a function of vertices v ∈ V
has gradient (∇Ev )v ∈V if for a smooth path (v (t ))v ∈V the energy

changes according to
d
dt E =

∑
v ∈V ∇E

T
v
dv
dt . Certainly in energy-

minimal meshes, all individual vectors ∇Ev of free vertices v must

vanish. If we consider the class of meshes whose vertices are con-

strained to a smooth surface Φ, energy-minimal meshes have the

property that ∇Ev is orthogonal to Φ.
A difficulty arises from the fact that E is not differentiable for

zero edge length and zero dihedral angles. The latter case cannot be

excluded and in fact typically is present in optimal meshes. We start

our discussion by describing the energy gradient in the generic case.

The proof of the following result is contained in the appendix.

nf
nf ′

cf
cf ′

e
Φ

Fig. 8. To interpret the energy E, we look at
faces f , f ′ intersecting in an edge e . Stepping
from f to f ′ (actually, from point cf to point
cf ′ ), we increment position by δx = cf ′ − cf
and the normal vector by δn = nf ′ − nf .

Prop. 2. For a triangle mesh P = (V ,E, F ) with edge lengths and
dihedral angles nonzero, the energy E is differentiable, with

∇Ev =
∑
e=vw

ℓ∗e
ℓe

(v −w )+ (1)

+
∑

e = vw = f ∩ f ′

f = vww+, f ′ = vww−

ℓe

(w+ −w
2| f |

×
πf (nf ′ )

ℓ∗e
+
w −w−

2| f ′ |
×
πf ′ (nf )

ℓ∗e

)

+
∑

f =vww+, ē=ww+=f ∩ ¯f

ℓē
w+ −w

2| f |
×
πf (n ¯f )

ℓ∗ē

(for notation see Fig. 9). Each sum is over the immediate neighbours
w of the central vertex v , and involves the area | f | of faces and the
orthogonal projection πf onto the 2D subspace defined by the face f .

Ideal energy-minimal meshes I. We return to the case of meshes

approximating a reference surface Φ. It is easy to identify a case

where ∇Ev is orthogonal to Φ: This surely happens if the neigh-

bourhood of v which is involved in computing ∇Ev is symmetric

w.r.t. a half-turn about the surface normal in v . In that case also

∇Ev has this symmetry, i.e., is orthogonal to Φ. The vertexv is then

in an energy-optimal position on the surface Φ insofar as ∇Ev has

no component tangential to Φ.
Of course this ideal symmetric situation cannot be expected to

happen in the strict sense, but any triangle mesh which approxi-

mates a smooth net of curves on a smooth surface is close to it.

One-sided energy gradient and ideal minimal case II. In the case of

vanishing dihedral angles, the energy still has a one-sided gradient,

and it is useful to identify situations where the one-sided energy

gradient is positive. This is guaranteed if each individual contribution
to the derivative of energy is positive, i.e., if the mesh is deforming

with time t , t ≥ 0, we have

lim

t↘0

1

t

(
ℓe (t )ℓ

∗
e (t ) − ℓe (0)ℓ

∗
e (0)
)
> 0. (2)

We can show this is true in case e = f ∩ f ′ where f ∪ f ′ is a paral-
lelogram. The proof of this statement is contained in the appendix.

Such a situation is highly idealized, but any polyhedral mesh which

approximates the parameter lines on a smooth surface consists of

quads which are approximately parallelograms, see e.g. Fig. 10.

v

w
w+

w−

e ē
f

¯f

f ′ Fig. 9. Notation for Prop. 2. Edges e
emanate from the central vertex v ,
edges ē lie opposite to it. Faces f , f ′

lie in the 1-ring neighbourhood, faces
¯f are adjacent to it.
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Fig. 10. Energy minmization: Ideal situation II. Here a surface is endowed
with a principal quad mesh, each quad having approximately rectangular
shape. Thus we are close to ideal situation II encountered in our discussion
of energy-minimizing meshes (in fact this meshing is energy-minimal).
In addition to the meshing, the reference surface itself has minimal total
absolute curvature, for prescribed boundaries. The rendering is that of a
freeform glass facade.

3.3 Energy-minimal meshes
Previous ideal cases lead to the following conclusion:

Energy-minimal meshes. Among meshes which approximate a
given reference surface Φ such that edges approximate a smooth net-
work of curves on Φ, the principal meshes enjoy minimal energy. In
negatively curved areas, other meshes have higher energy. The energy
of a minimizer equals the total absolute curvature of Φ.

We argue as follows. Consider a mesh (V ,E0, F ) with flat quadri-

lateral faces and make it a triangle mesh (V ,E0∪E1, F
′) by introduc-

ing diagonals in all faces (the set of diagonals is E1). By the smooth

curve network assumption we are close to ideal situations I and II

discussed above. The energy is split into contributions E = E0 + E1

from edge sets E0,E1, respectively. From ideal situation I we know

that in any vertex, ∇E0,v is orthogonal to Φ. Thus E0 is infinitesi-

mally constant for all infinitesimal changes of vertices tangential to

Φ. From ideal situation II we know that changing the mesh away

from planarity of faces increases E1.

We now apply the following argument. We replace Φ by a local

2nd order Taylor approximation, namely a paraboloid with equation

z = αx2 + βy2
. We then show that among all parallelogram vertex

stars of the origin which are inscribed in the paraboloid, the value∑
ℓℓ∗ per area is minimal for rectangles. We skip this lengthy but

(a) (b)

z = x 2 + .4y2 z = .8x 2 − .5y2

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)

(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

∑
ℓe ℓ

∗
e

A

∑
ℓe ℓ

∗
e

A

∑
ℓe ℓ

∗
e

A

∑
ℓe ℓ

∗
e

A

∑
ℓe ℓ

∗
e

A

∑
ℓe ℓ

∗
e

A

∑
ℓe ℓ

∗
e

A

∑
ℓe ℓ

∗
e

A

∑
ℓe ℓ

∗
e

A

∑
ℓe ℓ

∗
e

A

∑
ℓe ℓ

∗
e

A

∑
ℓe ℓ

∗
e

A

∑
ℓe ℓ

∗
e

A

∑
ℓe ℓ

∗
e

A

∑
ℓe ℓ

∗
e

A

∑
ℓe ℓ

∗
e

A

∑
ℓe ℓ

∗
e

A

Fig. 11. Finding an energy minimum. In our argumentation we check “en-
ergy per area” for meshes inscribed in paraboloids z = αx 2 + βy2 whose
faces are parallelograms. At right we show this value as a function of the
polar angle of an edge. We get the result that the energy is minimal if the
polar angle is a multiple of π /2, where faces are actually rectangles.

Fig. 12. Interactive design of small-energy meshes. An initial shape (left) is
modified interactively by pulling at handles. A fairness functional together
with energy E guides the shape of the final mesh (right). We also show the
Gauss images of meshes (unit normal vectors of faces). Self-intersections
are avoided, which would not be the case if we neglected E.

elementary computation — see Fig. 11 for a demo. Only in case

αβ < 0 (negative curvature) the minimum is significant enough,

however. This is in accordance with the fact that if αβ > 0, E

discretizes total mean curvature, independent of the meshing.

Summing up, minimal energy is achieved for polyhedral meshes

whose faces are approximately rectangular, i.e., which are principal

quad meshes. In case of negative curvature, other meshes have

higher energy. The chain of arguments presented above is not proof,

but numerical evidence so far supports the statement.

The problem of approximating a given smooth surface by an

energy-minimal mesh is highly nonlinear and we cannot expect

to solve it without knowing in advance the combinatorics of the

solution. However it makes still sense to improve the energy E by

continuous optimization, and also to include it in an interactive

design tool. This is because minimizing the energy E modifies a

mesh such that the individual normal pyramids typically have no

self-intersections (see Fig. 12). This experimental result is entirely

plausible since the energy E penalizes a larger spherical perimeter

of normal pyramids.

4 TOTAL ABSOLUTE CURVATURE OF SURFACES
We already saw that the total absolute curvature

C (Φ) =

∫
Φ
( |κ1 | + |κ2 |) dA

of a smooth surface Φ coincides with the smallest achievable value

of the discrete energy E for polyhedral meshes approximating Φ. It
therefore makes sense to ask the question which surface Φ, under
given boundary conditions, achieves the lowest value of C (Φ).

The shape operatorW in a principal coordinate frame is described

by the diagonal matrix (κ1κ2
), so total absolute curvature equals

C (Φ) =

∫
∥W ∥1, where ∥W ∥1 = |κ1 | + |κ2 |

is the 1-norm (trace norm) of the shape operator. It can be used to

bound the infinitesimal normal vector incrementδn ≈ −W δx caused
by the position increment δx (cf. the discussion in the beginning of

§3). Like any proper matrix norm, ∥W ∥1 obeys

∥δn∥ ≈ ∥W δx ∥ ≤ ∥W ∥1 · ∥δx ∥. (3)

Because of this formula, the total absolute curvature C (Φ) can be

interpreted as the total variation TV(n) of the normal vector field,

if the size of derivatives is measured using ∥ · ∥1.
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Besides ∥W ∥1, also other functions of the principal curvatures

obey inequality (3) and yield a sensible curvature measure. Berg-

mann et al. [2019] define total variation as

∫
∥W ∥2, where ∥W ∥2 =

(κ2

1
+ κ2

2
)1/2

is the Frobenius norm of the shape operator. We use

∥W ∥1 because of its relation to the discrete mesh energy E.

Only in special situations we are able to describe the minimizers

of C (Φ). Consider e.g. a surface with rotational symmetry about

the z axis described by a radius function r (z) > 0 and boundary

values r (z0) = r0, r (z1) = r1. It is not difficult to compute the area

element dA = 2πr
√

1 + r ′2 dz and curvatures κ1 = 1/(r
√

1 + r ′2),
κ2 = r ′′(1 + r ′2)−3/2

. Thus,

∫
|κ1 | dA =

∫
2π dz = 2π (z1 − z0)

depends only on the boundary conditions, whereas

∫
|κ2 | dA =∫

|r ′′ |(. . .) dz vanishes if and only if r (z) is linear. Thus, among

rotational surfaces, minimizers are cones and cylinders (see Fig. 13).

The computation of surfaces which minimize energy under dif-

ferent boundary conditions is treated below. Examples are shown

throughout this paper (Figures 1, 10, 13, 15, 16, 21).

Relation between curvature functionals andmesh energies. It is known
that for a mesh P approximating a smooth surface Φ, under reason-
able assumptions the expression

∑
e ℓeαe approximates

∫
Φ
κ1 + κ2,

see [Cohen-Steiner and Morvan 2003]. As a consequence,

∑
e ℓeαe

is approximately independent of the meshing and only dependent

on the geometric shape described by the mesh. No such statement is

true for the energies E, E ′ considered by this paper, even if the defi-

nition E ′(P ) =
∑
ℓe |αe | is very similar to the above. E (P ) changes

with remeshing, and only if P is principal, the value E (P ) can be

identified with the functional

∫
|κ1 | + |κ2 |, see Fig. 7.

One must beware of the following argument, which is correct

as far as it goes, but can easily lead to a wrong conclusion. Round-

ing off a mesh P with cylinders along edges and small suitable

surface pieces near vertices will create a smooth surface Ψ with

C (Ψ) ≈ E (P ). This does not imply that in general, for meshes P
which approximate a smooth surface Φ, we have E (P ) ≈ C (Φ).
A corresponding statement on the energy E ′ and the functional

C2 (Φ) =
∫
Φ
(κ2

1
+ κ2

2
)1/2

is made by Bergmann et al. [2019]. It does

not imply that E ′ discretizes C2 in general.

(a)

(b)

(c)

(d)

Fig. 13. Surfaces minimizing total absolute curvature. Here we show surfaces
with prescribed boundary curves which minimize

∫
|κ1 |+ |κ2 |. Among rota-

tional surfaces, minimizers are cylinders and cones. Observe that minimizers
have features not seen in minimizers of e.g. Willmore energy.

5 IMPLEMENTATION
We are solving three different computational problems:

• Finding surfaces of small total absolute curvature under given

boundary conditions. Such surfaces are represented by meshes,

which have to be optimized w.r.t. a nonlinear target functional.

• Optimizing meshes towards smaller energy. This can be done

such that the given mesh is required to approximate an unchanging

reference surface. In any case this procedure means moving the ver-

tices in order to improve the value of the energy, without changing

the connectivity (which usually prevents us from reaching energy

values equal to the total absolute curvature).

• Interactive design with principal-symmetric meshes.

All three tasks boil down to solving a potentially large system

of nonlinear constraints, and finding that point in the solution va-

riety where a certain target functional, as well as standard fair-

ness functionals, assume small values. For that purpose, we employ

guided projection as proposed by Tang et al. [2014]. The procedure

works well for sparse systems of polynomial equations of degree at

most 2. This low degree is mostly achieved by introducing auxiliary

variables or computing with approximations. The next paragraphs

describe our setup in greater detail.

5.1 Computing energy-minimal meshes
We discuss how to optimize meshes such that the energy E =∑
e ∈E ℓe ℓ

∗
e is minimal and the vertices of the mesh obey constraints

like proximity to a reference surface, or proximity to handles moved

by the designer, see Fig. 12. We confine ourselves to optimizing

vertex positions without changing combinatorics.

Setup of variables and constraints. For a mesh (V ,E, F ), the collec-
tion “X ” of variables consists of the coordinates of vertices, edge
lengths ℓe , dual edge lengths ℓ

∗
e , and normal vectors nf of faces. The

constraints “F (X ) = 0” imposed on these variables are the quadratic

defining relations for ℓe and ℓ∗e together with ℓe = δ2

e , ℓ
∗
e = µ2

e to

ensure that ℓe , ℓ
∗
e are nonnegative. The normal vectors of faces are

defined by their orthogonality to edges (nTf (v −w ) = 0 whenever

v,w ∈ f ) and by the normalization ∥nf ∥2 = 1. We do not attempt

to eliminate redundant constraints since the method is resilient w.r.t.

redundancies and they even appear to stabilize the solution.

In addition to these constraints, we have the condition that ver-

tices are confined to a smooth reference surface Φ. Such soft con-

straints are linearized by replacing Φ by its tangent planes, appropri-

ately updated as iteration progresses, cf. [Tang et al. 2014]. Boundary

curves are treated in a similar manner.

The guided projection method, in each round of iteration, com-

putes a linearization “AX = B” of the constraints and solves ∥AX −
B∥2 + R (X ) → min, where R (X ) is a quadratic regularizer,

R (X ) = wreg∥X − X
prev∥2 +w

fair
E
fair

(X ) +wtargetEtarget (X ).

HereXprev
is the value ofX in the previous round of iteration. E

fair
is

a fairness functional. We use a sum of squares of second differences

of mesh polylines. The third contribution to R, the target functional,
here is Etarget (X ) = E =

∑
ℓe ℓ
∗
e . Its weight has to be chosen such

that R is still positive definite. When employed in a design situation,
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K < 0

K > 0

(c)

(b)

(a)

(d)

(e)

(f)

(g) (h)

(i)

(j)

Fig. 14. Meshes with good reflections. Starting from a triangle mesh representing a torus (a), we interactively design a mesh with the principal-symmetric
property (b). It features normal developables along the principal edges (c). Subdivision and subsequent optimization produces finer principal-symmetric
meshes. We show how reflections in the finer triangle meshes (d,e) compare with reflection in a smooth reference surface Φ (f) and a principal quad mesh
approximating Φ (g). These results confirm that both principal quad meshes and principal-symmetric triangle meshes provide a good discrete representation
of local surface geometry, and reflection patterns of the smooth reference geometry are faithfully reproduced.

Subfigure (h) shows another design. A mesh (visible only as edges) is modified such that the highlighted vertices are fixed in order to create a nodoidal-shaped
mesh. The principal-symmetric condition is enforced only in the highlighted polylines, otherwise the energy E is minimized. The result is subdivided and
optimized again. We show reflection in the coarse version and a smooth reference shape. Faithful reflections are much less evident than for (d) and (e).

the designer’s input is added in the form of appropriately weighted

constraints.

5.2 Computing principal-symmetric meshes
Like for energy-minimization, implementation of a full-fledged de-

sign tool for meshes enjoying the principal-symmetric property is

not straightforward. This is because such meshes must follow the

principal curvature lines of the mesh’s geometric reference shape

Φ, which is extremely sensitive w.r.t. shape changes. A design tool

therefore must handle changes in combinatorics. We did not attempt

to implement design in such generality. Therefore the procedure

described in this section is only part of the overall design pipeline.

Setup of variables and constraints. This follows directly from the

description of the principal-symmetric property in §2. Variables are

vertices v , sphere centers c (v ), and auxiliary unit normal vectors

n(e ) for planes associated with the principal edges. For any co-

spherical neighbour w of v we need the constraint ∥v − c (v )∥2 =
∥w − c (v )∥2, and for any principal edge vw we need the coplanarity

constraints n(e )T (v −w ) = n(e )T (c (v ) −v ) = n(e )T (c (w ) −w ) = 0.

We also require that n(e )T n(e ) = 1. The saddle-shaped constraint

requires that for any vertex v with principal neighbourw , we have

(v − c (v ))T (v −w ) < 0

whenever that vertex has negative curvature. We therefore require

that (v − c (v ))T (v − w ) = −δ2

v,w , where δv,w is a dummy vari-

able associated with the edge vw . The linearization of proximity

constraints has already been mentioned above.

Fig. 15. Minimizers of total absolute cur-
vature where boundaries plus tangent
planes along boundaries are prescribed.

This concludes the setup of variables and constraints. Regulariz-

ing terms are the same as in the previous paragraph, with wtarget

nonzero if in addition to the principal-symmetric property we also

want to achieve small energy. For results see Figure 14.

5.3 Minimizing total absolute curvature
We show how to compute a surfaceΦwhichminimizes total absolute

curvature under boundary conditions. The surface is represented

by a mesh (V ,E, F ) of sufficiently high resolution.

Before we list variables and constraints, we describe how we

discretize the required differential quantities of Φ. To estimate the

shape operator, we use the normal cycle method of Cohen-Steiner

and Morvan [2003]. They extend the shape operator to a symmetric

3×3 matrix by requiring that it kills the normal vector of the surface.

Their formula for the shape operatorWv , aggregated over the star

of a vertex v , involves the dihedral angles αe of edges emanating

from v . By replacing αe with sinαe we get a modified versionW ′v
of this shape operator:

W ′v =
1

2

∑
e=vw=f ∩f ′

(nf × nf ′ ) (w −v )
T ∈ R3×3

symm
.

In this way, the total absolute curvature is discretized as

C (Φ) ≈
∑

v
|λ1,v | + |λ2,v |,

where the numbers λj,v indicate the eigenvalues ofW ′v correspond-

ing to the two tangential eigenvectors. Their geometric meaning is

principal curvatures times the area of influence of the vertex v .

Setup of variables and constraints. We use as variables the coor-

dinates of vertices v , the face normal vectors nf , and their cross

products nf × nf ′ for all faces f , f ′ which share an edge. Further,

we have matricesW ′v with their eigenvalues λj,v and eigenvectors

dj,v (j = 1, 2). These variables are subject to constraints:

(1) If v,w ∈ f , then (v −w )T nf = 0. We ensure that all nf point

to the same side of the mesh.

(2) ∥nf ∥2 = ∥d1,v ∥
2 = ∥d2,v ∥

2 = 1.
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(3) For each edge e = vw = f ∩ f ′ we define s(v,w ) = nf × nf ′
(if the edge is traversed from v tow , then f ′ is to the right,

and f is to the left).

(4) W ′v =
1

2

∑
e=vw s(v,w ) (w −v )T , by definition.

(5) W ′vdj,v = λj,vdj,v , for all vertices v ∈ V , and j = 1, 2.

(6) To ensure that eigenvectors dj,v are tangential to the mesh,

we require dTj,v
∑
f ∋v nf = 0 for all vertices v ∈ V .

(7) Eigenvectors are orthogonal: dT
1,vd2,v = 0 for all v ∈ V .

(8) The third eigenvalue ofW ′v vanishes; we therefore require

tr(W ′v ) = λ1,v + λ2,v , for all v ∈ V .

Here (3), (4) are explicit definitions. Items (1)+(2) implicitly de-

fine normal vectors, and (2)+(5) do the same for eigenvectors and

eigenvalues of W ′v . The remaining equations can be considered

constraints. Further constraints are given by boundary conditions

like fixed vertices or vertices gliding on boundary curves. They

are linearized as described above. We use the same regularizer

wreg∥X − X
prev∥2 as in previous paragraphs, and as an additional

fairness functional, a sum of squares of umbrella vectors [Kobbelt

et al. 1998].

For target functional C (Φ) we use a weight iteration approach.

In the i-th round of iteration we do not wish to minimize

∑
|λ1,v | +

|λ2,v | directly, but rather the quadratic function

Etarget =
∑
v ∈V

λ2

1,v
���λ
(i−1)
1,v

��� + ϵ
+

λ2

2,v
���λ
(i−1)
2,v

��� + ϵ
.

Here λ
(i−1)
j,v is the value of the variable λj,v assumed in the previous

round of iteration. Etarget is part of the regularizer R (X ).

6 RESULTS AND DISCUSSION
The results and procedures contained in this paper provide tools for

both formfinding and design.

Formfinding via total absolute curvature. For formfinding, we have

at our disposal the procedure to find a surface minimizing total

absolute curvature for given boundary conditions. In addition to

that, a mesh approximating that surface has minimal energy, if

its faces are planar quads following the principal curvature lines.

Meshing and postprocessing, however, are not contributions of this

(a) (b)

Fig. 16. Two-step architectural designs. Firstly we find surfaces which min-
imize total absolute curvature, secondly we mesh these surfaces along
principal curves, making the energy minimal.

sur-

face Ψ −−−−−−−−−−−−−−−−−−−−→
absolute curvature
minimize total

Surface Φ
C (Φ) ≤ C (Ψ) −−−−−−−−−−−−→

meshing
principal

mesh P ′
E (P ′) ≈ C (Φ)

mesh P close to surface Φ
C (Φ) ⪅ E (P ) −−−−−−−−−−−−−−−−−−−−−−→

small energy
optimize for

mesh P ′ close to surface Φ
C (Φ) ⪅ E (P ′) ≤ E (P )

−−−−−−−
−−−−−−−

−−−−−−−
−−−−−−−

−−−−−−−
−−−−−−−

−−−−−→

principal r
emeshing

Fig. 17. Pipelines for (i) computing surfaces with minimal total absolute
curvature, (ii) computing meshes with small energy which approximate a
fixed design surface, and (iii) meshing along principal curvature lines, which
yields the energy-minimal meshes approximating the design surface.

paper. We refer to [Bommes et al. 2009] for meshing with edges

aligned with principal curvatures, and to [Tang et al. 2014] for

postprocessing for planarity of faces. Examples are given by Figures

1, 10, 13, 15, 16, 21.

Interactive design of meshes. Principal-symmetric meshes are those

triangle meshes which exhibit the most faithful representation of

a surface’s local shape. The geometric modeling tool described by

§5 is incorporated into a design pipeline as follows: (i) Design a

desired geometric shape Φ. (ii) Compute the cross field of principal

directions onΦ and create a quadmesh which follows this cross field,

using e.g. the method of [Bommes et al. 2009]. Suitable diagonals in

faces of this mesh now yield a triangle mesh whose combinatorics is

already that of a principal-symmetric triangle mesh. (iii) Impose the

principal-symmetric property and interactively modify the mesh

further, always maintaining the principal-symmetric property.

We do not regard (i)+(ii) as new contributions. Task (iii) is solved

by guided projection as described in §5. The unchangeable combi-

natorics of the principal curves of the mesh during phase (iii) can

be seen as a restriction of design freedom, but on the other hand

it is also a guarantee that essential shape characteristics cannot be

destroyed by the designer. Results are shown by Fig. 14.

The design of meshes with a small energy E (see Fig. 18) is much

more straightforward: One uses the guided projection procedure

directly, in the same manner as proposed by [Tang et al. 2014].

Implementation details. Figure 19 gives statistics for minimizing

total absolute curvature, and Fig. 20 does the same for mesh design.

Examples involving the principal-symmetric property (Figures 5,

14) have been constructed by a multiresolution approach: We first

design a coarse mesh, where the response time of the algorithm

E = 22.7
E
final
= 11.1

Fig. 18. Mesh optimization. The hybrid mesh with triangular and planar
quadrilateral faces used for the roof of the Islamic Art exhibition in the
Louvre, Paris, undergoes energy minimization while retaining proximity to
the original. The final mesh is overlaid by the original in red.Quads are kept
planar via constraints ℓ∗e = 0, for all diagonals e of planar quads.
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Fig. |V | |F | |E | # var wregwfair
wtargetwprox C (Φ) # it. Ttotal

1 2784 5376 8160 87k 10
−3

.30 .05 — 94.3 18 58.3

10 2606 4992 7597 82k 10
−3

.20 .03 — 179.3 11 32.8

13a,16b 1056 2048 3104 33k 10
−3

.30 .05 — 124.4 14 16.1

13b 4224 8193 12416 133k 10
−3

.20 .10 — 180.2 11 57.4

13c 555 1017 1572 17k 10
−3

.20 .05 — 45.5 7 3.8

15left 6084 11949 18032 193k 10
−3

.05 .01 — 36.9 8 69.4

15right 2166 4236 6403 68k 10
−3

.10 .05 — 171.6 17 45.3

21 2118 3991 6112 66k 10
−3

.20 .05 — 143.8 17 39.2

(Code in Python, on Intel® Core™ i7-6700HQ CPU with 2.6 GHz, 16GBRAM)

Fig. 19. Statistics for minimizing C (Φ). We give the number of vertices
etc. of the meshes we ran the optimization on (not necessarily the meshes
shown in figures), as well as the weights used for regularizing functionals
in the guided projection method. wprox is the weight of soft constraints of
vertices’ proximity to a reference surface. We show total computation time
in seconds. Experience shows that after about half the number of iterations
shown, the minimizer’s shape is more or less defined.

is small (the designer has to wait at least one iteration before con-

tinuing, and typically the shape stabilizes after 25 or so iterations).

Subsequently we apply subdivision and optimize again. For the

finer mesh, the response time is considerably longer, but only few

iterations are needed.

Limitations. An obvious limitation of the design methods presented

here is that the combinatorics is fixed during the process. This has

already been discussed above. Another limitation is the computation

time. Calling the design method ‘interactive’ surely is borderline

(then again, certain prospective users are currently happy to wait

hours for a genetic design to emerge).

Thirdly, we are concerned about the regularity of the surfaces and

meshes which are the result of optimization. The features present in

Fig. 16b or Fig. 21 suggest that it is advisable to include fairness func-

tionals in our optimization. Indeed, the minimizers of total absolute

curvature will exhibit cone points if a boundary

point is kept fixed (because rounding off a cone’s

vertex with radius r yields absolute curvature of
magnitudeO (1/r ) concentrated on an area of mag-

nitudeO (r2), which isO (r ) in total, i.e., negligible).

Conclusion. We have presented a detailed study of the local geom-

etry of vertex stars and its implications on visual smoothness of

polyhedral surfaces. Besides theoretical results concerning the shape

of the normal pyramids, we present certain nonlinear functionals

which quantify the variation of the normal vector field over an entire

surface (both polyhedral and smooth). We analyze these function-

als and demonstrate optimality of principal meshes in the discrete

case. We show how to utilize these functionals for formfinding and

design at interactive or near-interactive speeds. Design further is

performed on basis of the principal-symmetric property of meshes,

which is a strong condition ensuring good discrete representation

of saddle points.

Future Research. One direction of future research is the connection

between triangle meshes with “nice” hexagonal normal pyramids on

the one hand, and meshes with flat faces of “nice” hexgonal shape

on the other hand. Work by Günther et al. [2017] about projective

Fig. |V | |F | |E | # var. wreg w
fair

wtargetwprox E T /iter
5ac 714 2058 1344 25k 10

−6
1.0 10

−6
— 16.0 0.53

12 189 525 336 6k 10
−6

1.0 10
−6

— 13.4 0.03

14bc 480 1440 960 17k 10
−6

1.0 10
−9

— 66.5 0.49

14d 1920 5760 3840 69k 10
−6

1.0 10
−9

— 67.8 7.07

14e 7680 23040 15360 23k 10
−1

1.0 — — 73.5 6.65

14i 480 1440 960 17k 10
−6

1.0 10
−9

— 79.7 0.06

14h 1920 5760 3840 69k 10
−6

1.0 10
−9

— 61.0 0.97

18 1247 3598 2352 25k 10
−6

1.0 10
−6

0.2 11.1 0.21

(Code in C++, on Intel® Core™ i7-7500U CPU with 2.70GHz 16GB RAM)

Fig. 20. Statistics for mesh design examples, similar to Fig. 19. wprox is the
weight of soft constraints of vertices’ proximity to a reference surface.

dualities and by Jiang et al. [2015] on polyhedral patterns is expected

to be combined with our work on princpial-symmetric meshes.

The question of meshing with fair mesh polylines and small

variations of normals is not yet exhausted, especially further study

of minimizers in the triangle mesh case is needed. Likewise the total

absolute curvature deserves a more thorough investigation, also

from the mathematical viewpoint.
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APPENDIX
Proof of Prop. 2. The computation of the energy gradient is lengthy

but elementary. Similar computations are contained in [Tamstorf

2013]. To find ∇Ev we must consider the effect of moving v . In the

notation of Figure 9, this movement of v changes quantities ℓe , ℓ
∗
e

and ℓ∗ē , for all edges e incident with v , and all edges ē opposite to v :

∇Ev =
∑

e ∋v
(ℓ∗e∇ℓe + ℓe∇ℓ

∗
e ) +
∑

ē oppositev
ℓē∇ℓ

∗
ē .

The contribution by ∇ℓe =
1

ℓe
(v −w ) accounts for the 1st sum in

(1). Next, we observe e = vw = f ∩ f ′, f = vww+, f ′ = vww−, so

ℓ∗e = ∥nf − nf ′ ∥, nf =
ñf

2| f |
, ñf = (w+ −w ) × (v −w ).

For any face f ∋ v , we find 2∇v | f | by rotating the edge vector

opposite tov by 90 degrees, i.e., 2∇| f | = nf × (w+−w ). We compute

the gradient of nf , using the notation a× for the matrix of the

linear mapping x 7→ a × x , so that ∇ñf = (w+ −w )×. Observing

(a×)
T = −a×, we get

∇nTf = (2| f |)−2

(
2| f |∇ñTf − (2∇| f |)ñTf

)
= −(2| f |)−1

(
(w+ −w )× + ((w+ −w ) × nf )n

T
f

)
= −(2| f |)−1 (w+ −w )×

(
id − nf n

T
f

)
= −(2| f |)−1 (w −w+)×πf .

From here we compute ∇ℓ∗e =
1

ℓ∗e
(∇nTf −∇n

T
f ′ ) (nf − n

′
f ), using the

previous expression for ∇nf and the analogous expression for ∇nf ′ .
Terms πf (nf ), πf ′ (nf ′ ) vanish, yielding the 2nd sum in Equ. (1).

The 3rd sum is analogous and involves ∇ℓ∗ē ; however moving v
causes a change only to faces on one side of ē . Accordingly, only
faces f ∋ v contribute to the 3rd sum. □

Preparations for ideal energy-minimal case II. The basis of our com-

putations in case of vanishing ℓ∗e is the following small result:

Prop. 3. Assume that the vertices of mesh P = (V ,E, F ) move along
paths v (t ), 0 ≤ t < ϵ , and that for all edges e ∈ E we have ℓe , 0 and
in case t > 0 also ℓ∗e , 0. Then the energy E (t ) at time t obeys

lim

t↘0

1

t
(E (t ) − E (0)) =

∑
v ∈V

(∇aEv )
T · av , where av =

dv

dt
and

∇aEv arises from ∇Ev by taking the limit as appropriate ℓ∗e ’s go
to zero. The limit of fractions involving ℓ∗e in the denominator are
computed as follows. With the temporary notation e = v1v2 = f1 ∩ f2,
we have

lim

t↘0

πf1 (nf2 )

ℓ∗e
= lim

t↘0

nf2 (t ) − nf1 (t )

∥nf2 (t ) − nf1 (t )∥
= ±

J (v2 −v1)

ℓe
.

The symbol J means a 90
◦ rotation within the plane of faces fj . The

sign depends on the velocity vectors av . It points from f1 to f2 (resp.
from f2 to f1) if, as t↘0, the edge e is convex (resp. concave) when
we define that nfi point to the outside.

Proof. The proposed equation fordE/dt holds for all t > 0, since

we are in the generic case of Prop. 2 then. In order to investigate

t = 0 we observe how πf1 (nf2 ) changes as the dihedral angle αe
approaches 0. The projected vector is always orthogonal to the edge

(like nf1 − nf2 ) and lies in the face f1 (in the limit, also nf1 − nf2
assumes this property). Its length is sinαe . Since ℓ

∗
e = 2 sin

αe
2
, the

limit of πf1 (nf2 )/ℓ
∗
e is a unit vector orthogonal to e , parallel to the

plane of faces fi . Depending on the sign of αe , it points from f1 to

f2 or the other way, just as described in the proposition. □

Proof concerning ideal situation II. To show (2) we assume e = v0v2,

f1 = v0v1v2, f2 = v0v2v3. We use the notation dvj/dt = aj for
velocity vectors and ejk = vk −vj for edge vectors. Analogous to
the proof of Prop. 2 it is not difficult to see that for t > 0, we have

an equality of the form

d

dt
ℓe ℓ
∗
e =
( ℓ∗e
ℓe

e23 +
ℓee23

2| f2 |
×
πf2 (nf1 )

ℓ∗e
+
ℓee12

2| f1 |
×
πf1 (nf2 )

ℓ∗e

)T
a0 + · · ·

(further terms involve a1, a2, a3). According to Prop. 3,

lim

t↘0

d

dt
ℓe ℓ
∗
e =
( e23

2| f2 |
× (±Je02) +

e12

2| f1 |
× (∓Je02)

)T
a0 + · · · .

The vector Je02 occurs in every summand. A parallelogram shape

implies | f1 | = | f2 |, e03 = e12, e01 = e32, and we eventually get

lim

t↘0

d

dt
ℓe ℓ
∗
e = (e02 × (±Je02))

T (a1 + a3 − a0 − a2)/2| f1 |

= ±ℓ2en
T
fi
(a1 + a3 − a0 − a2)/2| f1 |.

It is not difficult to see that nfi
T (a1 + a3 − a0 − a2) < 0 (resp. > 0) if

the edge e is convex (resp. concave) for t > 0. At the same time the

sign in front of Je02 has to be chosen as −1 in the convex case and

+1 in the concave case. In summary, the contribution of the edge e
to the total energy has a positive one-sided derivative. □

Fig. 21. Surface of minimal total absolute curvature. We also show the value
of absolute curvature (center; white = zero) and a principal remeshing with
edges color coded according to dihedral angle (right).
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