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Abstract. Motivated by the recent need to work with spherical vertex stars in applications

and theory, we contribute to the algebraic description of the sphericity of points and planes.

Driven by the well-known characterization of four concyclic points through cross-ratios we
extend this notion to sphericity of five points in 3-space by making use of quaternionic ratios

which we call diagonal-ratios. We investigate the dual setting and obtain properties of a
corresponding diagonal-ratio in terms of dual quaternions for five planes in tangential contact

with a sphere.
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1. Introduction and Preliminaries

1.1. Introduction. In recent years several applications [7, 6, 4] have brought up the necessity to
work with spherical vertex stars. A vertex star is a vertex (the central vertex) of a mesh together
with its edge neighbors. It is called spherical if these vertices lie on a common sphere. In a mesh
with Z2 combinatorics a vertex star consists of a central vertex and four neighboring vertices.
These five points generically do not lie on a common sphere as a sphere in R3 is determined by
four points in general position.

There are certainly many ways to determine whether five points lie on a common sphere or
not. In our paper we generalize the method known for circles. For that we would like to recall
the very elegant characterization of four points in a plane (or in space) lying on a common circle.
Four points lie on a common circle if and only if their complex or quaternionic cross-ratio is real
(cf. [1, 3, 10] and Section 1.2).

In the same way as complex numbers are often used in plane geometry, the skew field of
quaternions is brought up to work in three-dimensional space. For that, the three-dimensional
imaginary part of the quaternions can be identified with R3. We use this representation of
points and vectors in R3 to introduce a novel ratio, analogous to the cross-ratio, which involves
the diagonals of a pentagon (hence the name diagonal-ratio in Definition 6). It turns out that
this ratio is independent of reversing their order if and only if the five points lie on a common
sphere (Theorem 8).

Points lying on a sphere is invariant under Möbius transformations which map spheres and
planes to spheres and planes (potentially swapping some of them). However, neither the cross-
ratio nor the diagonal-ratio per se are Möbius invariant. Still some geometric information encoded
in these ratios is invariant under those transformations (Lemma 5, Theorem 8).

We are also interested in some kind of a dual point of view. Instead of points on spheres we
study planes in tangential contact with spheres. For that we take advantage of descriptions that
have been used to work with the special orthogonal group SO(3). The action of its elements is
easily representable by quaternion multiplication. This method led to the elegant description of
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all Euclidean motions with the use of dual quaternions, particularly in kinematic geometry [8, 2].
After identifying the set of oriented planes in R3 with a subset of the dual quaternions (the special
unit dual quaternions) we interpret the shape of the cross-ratio of four planes in geometric terms
(Theorem 15). If five planes are in tangential contact with a sphere then the diagonal-ratio is
independent of reversing the order of planes (Theorem 21).

Planes being in oriented tangential contact with oriented spheres is invariant under so called
Laguerre transformations which map spheres and points to spheres and points (potentially swap-
ping some of them). The cross-ratio of four planes in terms of dual quaternions is not Laguerre
invariant, however, the geometric meaning of the cross-ratio is Laguerre invariant (Theorem 15)
and analogously for the diagonal-ratio.

1.2. Preliminaries. We start by setting the notation, then quickly recall quaternions, basic
ideas of Möbius and Laguerre geometry and define the notion of the cross-ratio.

1.2.1. Complex numbers and cross-ratio. It is common in two-dimensional Möbius geometry to
identify the plane with the complex numbers. Their real and imaginary parts are the x- and
y-coordinates of the corresponding points

(x, y) ∈ R2 ←→ x+ iy ∈ C.
We will therefore abuse notation and write for a point p dependent on the setting either p = (x, y)
or p = x+iy. We further follow the common strategy to extend the complex plane C conformally
by adding ∞ and denote Ĉ := C ∪∞. The Möbius and anti-Möbius transformations

z 7→ az + b

cz + d
, and z 7→ az̄ + b

cz̄ + d
, with a, b, c, d ∈ C s.t. ad− bc ̸= 0,

act on Ĉ sharply 3-transitive. The cross-ratio of four pairwise distinct points or complex numbers
a, b, c, d ∈ C reads

(1) cr(a, b, c, d) = (a− b)(b− c)−1(c− d)(d− a)−1.

It is a complex number that is invariant under Möbius transformations but not under anti-Möbius
transformations. Denoting q := cr(a, b, c, d) the set {q, q̄} is invariant under both, Möbius and
anti-Möbius transformations. In Möbius geometry, circles and straight lines are considered to
be the same and can be mapped to each other by Möbius transformations. The lines are those
circles which contain ∞. A simple and well-known geometric property of the cross-ratio is the
following (see, e.g., [10, p. 32]).

Theorem 1. Four points a, b, c, d in Ĉ lie on a common circle if and only if the cross-ratio
satisfies cr(a, b, c, d) ∈ R.

Remark 2. If q = cr(a, b, c, d) /∈ R, the triplets of points a, b, c and a, c, d determine two different
circumcircles k1, k2. In this case the imaginary part of the normalized cross-ratio q/|q| is the sine
of the intersection angle between k1 and k2 (see, e.g., [10]).

1.2.2. Quaternions and cross-ratio. The skew field of quaternions H can be used to express
geometry in three-dimensional space and in particular for three-dimensional Möbius geometry.
While quaternions are often defined via imaginary units i, j, k in the form r + ix+ jy + kz ∈ H,
with r, x, y, z ∈ R, we prefer to identify them with elements of R× R3 in the form

H = {[r, v] | r ∈ R, v ∈ R3},
where [r, v] with v = (v1, v2, v3) corresponds to r+iv1+jv2+kv3. The first component r = Re q of
a quaternion q = [r, v] is called real part and the second component v = Im q is called imaginary
part. The addition in this notation of H reads [r, v]+[s, w] = [r+s, v+w], and the multiplication
reads [r, v] · [s, w] = [rs − ⟨v, w⟩, rw + sv + v × w], where ⟨·, ·⟩ is the Euclidean scalar product
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in R3 and where × is the cross product. The conjugation of q = [r, v] is defined by q = [r,−v]
and the square root of the real number qq̄ is called norm of q and is denoted by |q| =

√
qq̄.

For every q ∈ H \ {0} its inverse is given by q−1 = q/|q|2. We denote the purely imaginary
quaternions by ImH = {q ∈ H | q = [0, v], with v ∈ R3}. To express points and vectors of R3

with quaternions we identify R3 with ImH via p↔ [0, p]. Note that the inverse of an imaginary
quaternion q is q−1 = −q/|q|2 which will appear frequently in our paper. Furthermore, note
that two quaternions commute if and only if their imaginary parts are linearly dependent. The
cross-ratio of four quaternions a, b, c, d ∈ H is defined as

cr(a, b, c, d) = (a− b)(b− c)−1(c− d)(d− a)−1,

where now the order of the factors is crucial as the quaternions are not commutative. In analogy
to Theorem 1, there is the following theorem (see, e.g., [1, 3]).

Theorem 3. Four points a, b, c, d in R3 (or in ImH, resp.) lie on a common circle if and only
if the cross-ratio satisfies cr(a, b, c, d) ∈ R.

1.2.3. Laguerre geometry. Laguerre geometry is the geometry of oriented (hyper)planes and ori-
ented (hyper)spheres and whose transformations preserve the oriented contact between them.
The orientation of a plane τ with equation ⟨n, x⟩ + d = 0 is given by a specified direction of a
unit normal vector n. The oriented distance of a point x to τ is given by dist(x, τ) = ⟨n, x⟩+ d.
The positive [negative] side of τ is where the oriented distance is positive [negative]. The ori-
entation of a sphere is given by the signed radius r. An oriented sphere is in oriented contact
with an oriented plane if both, the sphere and the plane touch each other in the Euclidean sense,
and if the negatively oriented sphere lies on the positive side of the plane or vice versa (see
Figure 1). Two oriented spheres are in oriented contact if they are in oriented contact with the
same oriented plane in the same point. Two parallel planes are similarly oriented parallel if their
unit normal vectors are the same.

r < 0

n

r1 < 0 r2 > 0

n

Figure 1. Oriented contact. The orientation of circles or spheres is given by the sign of their radius r indicated
by clockwise or counterclockwise oriented arrows. An oriented sphere is in oriented contact with an oriented

plane if they touch and if the negatively oriented sphere lies on the positive side of the plane or vice versa. Two
oriented spheres are in oriented contact if they are in oriented contact with the same oriented plane in the same

point.

2. Sphericity in Möbius Geometry

Three distinct points in a plane always lie on a unique circle (straight lines are also considered
as circles). The property that four points lie on a circle is characterized by the property that
their cross-ratio is real. Four distinct points in space always lie on a sphere. This circumsphere
is unique if the four points do not lie on a common circle in which case there are infinitely many
spheres containing that circle and therefore the four points.

In Theorem 8 we will characterize when five points in space lie on a common sphere. Our
characterization is also in terms of certain ratios depending on imaginary quaternions represent-
ing the points. To show that criterion we need some preparatory notions and properties. The
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following two lemmas can be found in [5, 9], but we include a proof here since it is key for what
follows.

a

c

b

a+ S2

k

v1

v2

k′

tcb

Figure 2. Illustration for the proof of Lemma 4: We reflect two points b, c in a circle around a. The connecting
line of the reflected points is parallel to the tangent of the circumcircle of a, b, c at point a.

Lemma 4. Let a, b, c ∈ ImH be pairwise distinct. The imaginary quaternion

tcb := (a− b)−1(b− c)(c− a)−1,

interpreted as a vector in R3, is the tangent vector to the circumcircle through a, b, c at point a
(cf. Figure 2).

Proof. We compute

tcb = (a− b)−1(b− c)(c− a)−1 = (b− a)−1(b− a+ a− c)(a− c)−1

=
(
(b− a)−1(b− a) + (b− a)−1(a− c)

)
(a− c)−1 = (a− c)−1 + (b− a)−1 = v1 − v2,

where we set v1 := (a − c)−1 and v2 := (a − b)−1. We therefore obtain tcb = v1 − v2. Since
v1, v2 ∈ ImH we have v1 = c−a

|c−a|2 and v2 = b−a
|b−a|2 which are reflections of c− a and b− a in the

unit sphere S2 (cf. Figure 2). Consequently, the reflection in the unit sphere with center a maps
b to a+ v2 and c to a+ v1.

The reflection in the sphere a+ S2 maps the circumcircle k through a, b, c to a line k′ since a
is mapped to ∞. By symmetry reasons k′ is parallel to the tangent of k in a. Furthermore, this
line k′ is parallel to tcb which proves the lemma. □

Note that the proof above implies that tcb can be written in the form

tcb = (a− c)−1 + (b− a)−1,

which immediately implies

(2) tcb = −tbc.

Furthermore, note that the expression of tcb with reversed inversions in the product, i.e.,

t̃cb := (a− b)(b− c)−1(c− a)

is parallel to tcb since t̃
−1
cb = −(a−c)−1(c−b)(b−a)−1 = −(a−b)−1−(c−a)−1 = tcb. Consequently,

(3) t̃cb =
−tcb
|tcb|2

.
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Throughout the paper, we will heavily use this notation also in connection with other points
but always rooted at a, for example,

tdc = (a− c)−1(c− d)(d− a)−1.

Lemma 5. For a, b, c, d ∈ ImH the vector Im cr(a, b, c, d) represents the normal vector to the
circumsphere through a, b, c, d at point a.

Proof. Using Lemma 4 and Equation (3) we get

cr(a, b, c, d) = (a− b)(b− c)−1 · 1 · (c− d)(d− a)−1 =

= −(a− b)(b− c)−1 · (c− a)(a− c)−1 · (c− d)(d− a)−1 =

= −t̃cbtdc =
1

|tcb|2
tcbtdc =

1

|tcb|2
[−⟨tcb, tdc⟩, tcb × tdc].

(4)

Therefore, Im cr(a, b, c, d) = 1
|tcb|2 (tcb × tdc). Lemma 4 implies that tcb is a tangent vector to the

circumcircle of a, b, c at point a, and analogously, tdc is a tangent vector to the circumcircle of
a, c, d at point a, they both lie in the tangent plane to the circumsphere of a, b, c, d in a. Hence,
their cross product is parallel to the normal vector at point a. □

With Lemma 5 we obtain an alternative proof of Theorem 3: Let k1, k2 be the circumcircles
of a, b, c and a, c, d, respectively. Both lie on the circumsphere of a, b, c, d. Equation (4) implies
that the cross-ratio cr(a, b, c, d) is real if and only if the cross product tcb × tdc of the tangent
vectors in a to k1 and k2 vanishes. Consequently, the cross-ratio is real if and only if tcb and tdc
are parallel which means that k1 and k2 coincide.

With the following definition we “generalize” the cross-ratio of four points to five points by
including the diagonals of the pentagon.

Definition 6. Let a, b, c, d, e ∈ ImH be five distinct points. We call the following ratio of edges
and diagonals

dr(a, b, c, d, e) := (a− b)(b− e)−1(e− a)(a− d)−1(d− e)(e− c)−1(c− d)(d− b)−1(b− c)(c− a)−1

the diagonal-ratio of a, b, c, d, e (cf. Figure 3).

a

b

c d

e

Figure 3. Illustration of the vectors involved in the diagonal-ratio.

Lemma 7. Let a, b, c, d, e ∈ ImH be five distinct points. Then the diagonal-ratio factorizes into
cross-ratios

(5) dr(a, b, c, d, e) = cr(a, b, e, d) · cr(a, e, c, d) · cr(a, d, b, c).
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k1
k2

a

c

d

b
e

k1=k2

ab

c d

e

Figure 4. Left: The five points a, b, c, d, e do not lie on a common sphere. The quadruplet a, b, c, d defines sphere

k1 and the quadruplet a, c, d, e defines sphere k2. The two spheres intersect along the circle through a, c, d and

their normal vectors are linearly independent. Right: All five points are co-spherical.

Proof. In analogy to Lemma 5, we express the diagonal-ratio in terms of tangent vectors at a

(6)

dr(a, b, c, d, e) = (a− b)(b− e)−1(e− a)(a− d)−1(d− e)

(e− c)−1(c− d)(d− b)−1(b− c)(c− a)−1

=
(
(a− b)(b− e)−1(e− a)

)(
(a− d)−1(d− e)(e− a)−1

)(
(a− e)(e− c)−1(c− a)

)(
(a− c)−1(c− d)(d− a)−1

)(
(a− d)(d− b)−1(b− a)

)(
(a− b)−1(b− c)(c− a)−1

)
= t̃ebtedt̃cetdct̃bdtcb = −

1

|teb|2
tebted

1

|tce|2
tcetdc

1

|tbd|2
tbdtcb.

Using Equations (4) and (2) concludes the proof. □

The following theorem characterizes five points lying on a sphere in terms of this diagonal-
ratio. We assume the elementary geometric fact that two spheres passing through the same circle
are identical if and only if the two normal vectors of the spheres in a common point of the circle
are parallel.

Theorem 8. Five points a, b, c, d, e ∈ ImH lie on a common sphere if and only if

dr(a, b, c, d, e) = dr(a, e, d, c, b).

Then both Imdr(a, b, c, d, e) and Imdr(a, e, d, c, b), respectively, represent a normal vector of the
circumsphere at point a.

Proof. In general the two quadruples of points a, b, c, d and a, c, d, e lie on two different spheres
k1 and k2, both containing a, c, and d, and therefore their circumcircle (see Figure 4).

We have to show that k1 and k2 coincide if and only if dr(a, b, c, d, e) = dr(a, e, d, c, b). We
first express both diagonal-ratios in terms of tangent vectors at point a via (6)

dr(a, b, c, d, e) =
1

|tbe|2
tbeted

1

|tec|2
tectdc

1

|tdb|2
tdbtcb,

dr(a, e, d, c, b) =
1

|teb|2
tebtbc

1

|tbd|2
tbdtcd

1

|tce|2
tcetde.

Since tbe = −teb etc. and by setting α := 1/|tbetectdb|2 we obtain

dr(a, b, c, d, e)− dr(a, e, d, c, b) = αtbetedtectdctdbtcb − αtebtbctbdtcdtcetde

= αtbe(tedtectdctdbtcb − tcbtdbtdctected).
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Expanding yields

αtbe
(
[−⟨ted, tec⟩, ted × tec] · tdc · [−⟨tdb, tcb⟩, tdb × tcb]

−[−⟨tcb, tdb⟩, tcb × tdb] · tdc · [−⟨tec, ted⟩, tec × ted]
)
.

After setting r1 := −⟨tdb, tcb⟩, r2 := −⟨ted, tec⟩, n1 := tcb × tdb, n2 := ted × tec, and t := tdc, the
term simplifies to

αtbe
(
[r2, n2] · t · [r1,−n1]− [r1, n1] · t · [r2,−n2]

)
.

Inserting the identity

(7) t · [rl,−nl] · t = [⟨t, nl⟩, rlt− (t× nl)] · t = [−rl⟨t, t⟩, ⟨t, nl⟩t− (t× nl)× t] = −|t|2[rl, nl]

in the above we get

dr(a, b, c, d, e)− dr(a, e, d, c, b) = −αtbe|t|2
(
[r2, n2][r1, n1]− [r1, n1][r2, n2]

)
· t−1.

We see that dr(a, b, c, d, e)−dr(a, e, d, c, b) = 0 if and only if the term in the bracket is zero. This
is the case if and only if the product of the quaternions [r1, n1] and [r2, n2] commutes, i.e., if
and only if their imaginary parts n1 and n2 are linearly dependent. Since n1 and n2 are normal
vectors at point a to the spheres k1 and k2, respectively, it means that k1 and k2 coincide if and
only if n1 and n2 are linearly dependent which proves the first part of the theorem.

To prove the second part we recall Equation (6) and expand it

dr(a, b, c, d, e) = αtbetedtectdctdbtcb

= α[−⟨tbe, ted⟩, tbe × ted] [−⟨tec, tdc⟩, tec × tdc] [−⟨tdb, tcb⟩, tdb × tcb].
(8)

The three quaternions in this latter product all have vector-parts parallel to the normal vector
of the sphere k1 = k2 at point a. Since the product of quaternions with linearly dependent
imaginary parts yields a quaternion with an imaginary part linearely dependent to the previous
ones, Imdr(a, b, c, d, e) must also be parallel to the normal vector of k1 = k2 at point a. □

Corollary 9. If five points a, b, c, d, e in R3 lie on a common circle then dr(a, b, c, d, e) ∈ R.

Proof. If the points a, b, c, d, e lie on the same circle then each four of them are also concyclic.
Therefore the cross-ratios in Equation (5) are real, hence so is dr(a, b, c, d, e). □

Remark 10. A real diagonal-ratio however does not imply that the five points lie on a circle as
the following example shows. Choosing

a = (1, 0, 0), b = (0, 1, 0), c = (− 1
2 ,

√
3
2 , 0), d = (−1, 0, 0),

e =
(
5
8 (
√
3− 2),− 1

8

√
100
√
3− 159, 0

)
,

yields

dr(a, b, c, d, e) = [ 5
2892 (60 + 85

√
3−

√
36228

√
3− 38349), 0] ∈ R

however

cr(a, b, e, d) = [ 1
1928 (539− 100

√
3 + 5

√
12076

√
3− 12783),

(
0, 0,

3

2(5 +
√
100
√
3− 159)

)
)
] /∈ R.

Consequently, a, b, d, e are not concyclic.
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3. Sphericity in Laguerre Geometry

The algebraic structure often used to describe elements and transformations in (planar) La-
guerre geometry is the ring of dual numbers D defined as (see, e.g., [10])

D = {x+ ϵy | x, y ∈ R},

where ϵ ̸= 0 is a symbol satisfying ϵ2 = 0 and where x and y are called real and dual part,
respectively. Adding dual numbers works componentwise (a+ ϵb) + (c+ ϵd) = (a+ c) + ϵ(b+ d)
and the product of dual numbers reads (a+ ϵb) · (c+ ϵd) = ac+ ϵ(ad+ bc).

The conjugate of z = a + ϵb is z̄ = a − ϵb and its modulus is defined as the square root of
zz̄ = a2 and therefore equals |a|. Consequently, a dual number has an inverse if and only if its
modulus does not vanish in which case it is z−1 = 1

z = z̄
zz̄ = a−ϵb

a2 = 1
a − ϵ b

a2 .
An oriented straight lines in the plane which is not parallel to the x-axis can be identified

by its polar coordinates (ϕ, s), where ϕ denotes the oriented angle with the x-axis and where s
denotes the oriented distance of its intersection point with the x-axis to the origin. Consequently,
oriented straight lines can be identified with dual numbers in the following way

(ϕ, s) ∈ ((0, 2π) \ π)× R←→ tan
(ϕ
2

)
(1 + ϵs) ∈ D.

For lines parallel to the x-axis this identification does not work and it is necessary to assign
adapted dual numbers to them (for details, see [10, p. 81-83]).

Theorem 11 ([10, p. 93-94]). Four oriented lines in R2 touch a common oriented circle if and
only if the corresponding dual numbers a, b, c, d ∈ D satisfy cr(a, b, c, d) ∈ R where the cross-ratio
definition has the same algebraic composition as for complex numbers in Equation (1).

Remark 12. For the generic case, q = cr(a, b, c, d) /∈ R the triplets of oriented lines a, b, c and
a, c, d determine two different circles k1, k2. In this case the imaginary part of the normalized
cross-ratio q/|q| is the tangent distance between k1 and k2 [10, p. 162].

To describe oriented planes in space, we choose a subset of the dual quaternions

DH = {aq | a ∈ D, q ∈ H} = {q + ϵp | p, q ∈ H},

which form a skew ring. Dual quaternions are often used to describe motions in kinematic
geometry. For a dual quaternion d = q + ϵp ∈ DH, we call q its quaternion-part and p its dual
part. We will also sometimes refer to Im q as vector-part.

In analogy to dual numbers, a dual quaternion d = q + ϵp with q ̸= 0 has an inverse

d−1 = q−1(1− ϵpq−1)

since dd−1 = (q + ϵp)(q−1(1 − ϵpq−1)) = qq−1 + ϵpq−1 − ϵqq−1pq−1 − ϵ2pq−1pq−1 = 1. The
inverse of the product of dual quaternions d1, d2 ∈ DH is the reversed product of their inverses
(d1d2)

−1 = d−1
2 d−1

1 .
For our purpose, we will need dual quaternions with a purely imaginary unit quaternion-part

and real dual part which we denote by

S := {q + ϵr ∈ DH | q ∈ ImH, |q| = 1 and r ∈ R}

and which we call special unit dual quaternions. Clearly, special unit dual quaternions are
invertible.

Each oriented plane in R3 can be represented by an affine equation ⟨n, x⟩ + d = 0 with unit
normal vector n and oriented distance to the origin d. The two equations

⟨n, x⟩+ d = 0 and ⟨−n, x⟩ − d = 0
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S2

nA

nB

nC

tcb

k

Figure 5. The end points of the three vectors nA, nB , nC lie on the unit sphere S2. The tangent vector tcb of
their circumcircle k can be computed via quaternion product (Lemma 13).

represent the same Euclidean plane but they are oriented differently. Two parallel planes are
similarly oriented parallel if their unit normal vectors are the same. We identify each oriented
plane with a special unit dual quaternion by

⟨n, x⟩+ d = 0←→ [0, n] + ϵd ∈ S.

From here on we will frequently omit the word “oriented” for oriented spheres, oriented planes
or oriented contact, since in Laguerre geometry we always deal with oriented objects and make
it a general assumption.

Lemma 13. Let

a = [0, nA] + ϵdA, b = [0, nB ] + ϵdB , c = [0, nC ] + ϵdC ∈ S

represent three planes A,B,C which are pairwise not similarly oriented parallel. Furthermore,
let the circle through the three points nA, nB , nC on the unit sphere S2 be denoted by k. Then
the vector-part of the dual quaternion

scb := (a− b)−1(b− c)(c− a)−1

represents the tangent vector tcb to the circle k at point nA (see Figure 5).

Proof. Since A and B are not similarly oriented parallel planes, the dual number a − b has a
non-vanishing quaternion-part and is therefore an invertible dual quaternion. The computation
starts the same way as in the proof of Lemma 4 (applied at (∗)) until we insert the corresponding
dual quaternions:

scb = (a− b)−1(b− c)(c− a)−1 (∗)
= (a− c)−1 + (b− a)−1

= ([0, nA − nC ] + ϵ(dA − dC))
−1 + ([0, nB − nA] + ϵ(dB − dA))

−1

= [0, nA−nC ]
−1(1−ϵ(dA−dC)[0, nA−nC ]

−1)+[0, nB−nA]
−1(1−ϵ(dB−dA)[0, nB−nA]

−1)

=
1

|nA − nC |2
(
[0,−nA + nC ] + ϵ(dA − dC)

)
+

1

|nB − nA|2
(
[0,−nB + nA] + ϵ(dB − dA)

)
=
[
0,

nC − nA

|nC − nA|2
+

nA − nB

|nA − nB |2
]
+ ϵ
( dA − dC
|nA − nC |2

+
dB − dA
|nB − nA|2

)
.

Setting v1 := nC−nA

|nC−nA|2 and v2 := nB−nA

|nB−nA|2 yields tcb := v1−v2 as vector-part of scb. Following

the arguments in the proof of Lemma 4 and Figure 2, the vector-part of scb, which is tcb = v1−v2,
is parallel to the tangent line of k at point nA. □
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Note that from the proof above we obtain that scb can be expressed as

scb = [0, tcb] + ϵλcb,

where λcb := dA−dC

|nA−nC |2 + dB−dA

|nB−nA|2 ∈ R. It also immediately implies scb = −sbc. Furthermore,

note that the expression of scb with reversed inversions in the product, i.e.,

s̃cb := (a− b)(b− c)−1(c− a)

has a parallel vector-part to the one of scb since

s̃−1
cb = −(a− c)−1(c− b)(b− a)−1 = −sbc = [0,−tbc]− ϵλbc,

Consequently,

(9) s̃cb = [0,−tbc]−1(1 + ϵλbc[0,−tbc]−1) =
−1
|tcb|2

([0, tcb] + ϵλbc).

The following lemma is the Laguerre geometric analogue to Lemma 5.

Lemma 14. Let a, b, c, d ∈ S represent four planes A,B,C,D which are not similarly oriented
parallel. Then the vector-part of their cross-ratio cr(a, b, c, d) is parallel to the normal vector nA

of plane A.

Proof. Using Lemma 13 and Equation (9) we get

cr(a, b, c, d) = (a− b)(b− c)−1(c− d)(d− a)−1

= −(a− b)(b− c)−1(c− a)(a− c)−1(c− d)(d− a)−1

=
1

|tcb|2
([0, tcb] + ϵλbc)([0, tdc] + ϵλdc)

=
1

|tcb|2
[−⟨tcb, tdc⟩, tcb × tdc] + ϵ

1

|tcb|2
[0, λdctcb + λbctdc].

(10)

Since tcb and tdc are both tangents in nA to the circles through nA, nB , nC ∈ S2 and nA, nC , nD ∈
S2, respectively, their cross product points in the direction of the normal to the unit sphere in
nA which is parallel to the vector nA itself, i.e., the normal vector of the plane A. □

Unlike in Möbius geometry, where four points determine a unique sphere (unless they lie on
a common circle), in Laguerre geometry four planes are not necessarily in oriented contact with
a common sphere. For example if two planes are similarly oriented parallel, there is no oriented
sphere in oriented contact with both planes. Another example exists of three planes enveloping
a rotational cone and a fourth plane being similarly oriented parallel to a tangent plane of that
cone. See Figure 6 (Case (iii)) for illustrations of that setting.

Three planes A,B,C which are pairwise not similarly oriented parallel always envelope a
rotational cone k (or cylinder which is the same in Laguerre geometry). There are three essentially
different possible arrangements of an additional fourth distinct plane D in relation to the three
given planes, which are illustrated schematically in Figure 6.

Theorem 15. Let A,B,C,D be four planes which are pairwise not similarly oriented parallel.
Their arrangement in space determines the structure of their cross-ratio. For some r ∈ R, n, v ∈
ImH we have

(i) cr(a, b, c, d) = r ⇔ A,B,C,D touch a rotational cone,
(ii) cr(a, b, c, d) = [r, n] + ϵ · [0, v] with n ̸= 0 ⇔ A,B,C,D touch a unique sphere,
(iii) cr(a, b, c, d) = [r, 0] + ϵ · [0, v] with v ̸= 0 ⇔ A,B,C,D touch no common sphere.
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k

D

k

D

k

D

k

D

k

D

Case (i) Case (ii) Case (iii)

Figure 6. Any three planes A,B,C which are pairwise not similarly oriented parallel envelope a rotational cone

or cylinder k. There are three essential different positions of a fourth plane D with respect to k. Case (i): D is

another tangent plane of that cone k in which case there are infinitely many spheres in oriented contact with the
four planes. Case (ii): D is not similarly parallel to any tangent plane in which case there is exactly one sphere

in oriented contact with the four planes. Case (iii): D is similarly parallel but distinct to a tangent plane of k

in which case there is no sphere in oriented contact with the four planes.

Proof. Before we go through the individual cases we make some general preparations. From
Equation (10) we obtain the cross-ratio of four planes in the following form:

cr(a, b, c, d) =
1

|tcb|2
[−⟨tcb, tdc⟩, tcb × tdc] + ϵ

1

|tcb|2
[0, λdctcb + λbctdc].

By setting

r :=
−1
|tcb|2

⟨tcb, tdc⟩, n :=
1

|tcb|2
tcb × tdc, v :=

1

|tcb|2
(λdctcb + λbctdc),

the cross-ratio becomes

cr(a, b, c, d) = [r, n] + ϵ · [0, v].
Since three planes always envelope a rotational cone (or cylinder), we denote the cone en-

veloped by A,B,C by k1, and the cone enveloped by A,C,D by k2. Let s1 and s2 be arbitrary
spheres which are in oriented contact with k1 and k2, respectively. We denote their centers by
m1 and m2, and their radii by r1 and r2. Then the distances of the planes from the origin can
be expressed as (see Figure 7):

⟨m1, nA⟩+ r1 = ⟨m2, nA⟩+ r2 = −dA,
⟨m1, nB⟩+ r1 = −dB ,
⟨m1, nC⟩+ r1 = ⟨m2, nC⟩+ r2 = −dC ,

⟨m2, nD⟩+ r2 = −dD.

Consequently,

(11) ⟨m1, nA⟩ − ⟨m2, nA⟩ = ⟨m1, nC⟩ − ⟨m2, nC⟩ = r2 − r1 and ⟨m1 −m2, nA − nC⟩ = 0.

For the coefficients λbc, λdc in the dual part of the cross-ratio we obtain

λbc =
dA − dB
|nA − nB |2

+
dC − dA
|nC − nA|2

=
−⟨m1, nA⟩ − r1 + ⟨m1, nB⟩+ r1

|nA − nB |2
+
−⟨m1, nC⟩ − r1 + ⟨m1, nA⟩+ r1

|nC − nA|2
(12)

=
⟨m1, nB − nA⟩
|nB − nA|2

+
⟨m1, nA − nC⟩
|nA − nC |2

= ⟨m1,
nB − nA

|nB − nA|2
+

nA − nC

|nA − nC |2
⟩ = ⟨m1, tbc⟩,

and analogously λdc = ⟨m2, tdc⟩. Hence the imaginary part v of the dual part can always be
expressed as

(13) v =
1

|tcb|2
(⟨m2, tdc⟩tcb + ⟨m1, tbc⟩tdc).
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A

nA

m dA

r >
0

Figure 7. Illustration of an oriented sphere with center m and radius r in oriented contact with an oriented plane

given by the equation ⟨nA, x⟩+ dA = 0. We can read off the elementary relation ⟨m,nA⟩+ r = −dA.

To prove (i) we first assume that A,B,C,D touch the common rotational cone k1 = k2. Then
the four normal vectors nA, nB , nC , nD represent four points on a common circle on S2. Since
the two vectors tcb and tdc are tangent vectors to this circle at point nA (as learned at the end
of the proof of Lemma 13), these vectors must be parallel, i.e., tdc = µtcb for some µ ∈ R \ 0.
Consequently, we obtain n = 0.

Furthermore, since the cones conincide k1 = k2, we can choose the two spheres s1, s2 to be
equal s1 = s2 (every sphere which touches the cone also touches all four planes). Denoting its
center by m := m1 = m2 and using tdc = µtcb we obtain for v

v =
1

|tcb|2
(⟨m2, tdc⟩tcb + ⟨m1, tbc⟩tdc) =

1

|tcb|2
(⟨m,µtcb⟩tcb + ⟨m, tbc⟩µtcb) = 0,

since tbc = −tcb. Therefore cr(a, b, c, d) = r.
For the other direction of (i) we assume cr(a, b, c, d) = r. Consequently, v = 0 and n = 0

which immediately implies tdc = µtcb for some µ ∈ R \ 0 and furthermore

0 = v |tcb|2 = ⟨m2, tdc⟩tcb + ⟨m1, tbc⟩tdc = ⟨m2, µtcb⟩tcb − ⟨m1, tcb⟩µtcb = µ⟨m2 −m1, tcb⟩tcb,

which yields

⟨m2 −m1, tcb⟩ = ⟨m2 −m1, tdc⟩ = 0.

We therefore have

0 = ⟨m2 −m1, tdc⟩ = ⟨m2 −m1,
nA − nC

|nA − nC |2
+

nD − nA

|nD − nA|2
⟩ (11)= ⟨m2 −m1,

nD − nA

|nD − nA|2
⟩,

which further implies

⟨m2, nD⟩ − ⟨m2, nA⟩ = ⟨m1, nD⟩ − ⟨m1, nA⟩.

Again using Equation (11) we obtain

⟨m1, nD⟩ = r2 − r1 − r2 − dD = −r1 − dD,

which implies that the sphere s1 is also in oriented contact with plane D. Analogously, it follows
from 0 = ⟨m2−m1, tcb⟩ that the sphere s2 is also in oriented contact with plane B. Consequently,
all four planes are in oriented contact with two different spheres which implies that they are in
tangential contact with a rotational cone.

As for (ii) we first note that n ̸= 0 is equivalent to tcb and tdc not being parallel. Since tcb
is a tangent vector to S2 touching the circumcircle of nA, nB , nC and tdc is a tangent vector to
S2 touching the circumcircle of nA, nC , nD, both at point nA, we conclude that this is further
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equivalent to the four points nA, nB , nC , nD not lying in a plane. Consequently, any linear system
of the form (vectors are notated as columns) n⊤

A 1

n⊤
B 1

n⊤
C 1

n⊤
D 1

(m
r

)
+

(
dA

dB

dC

dD

)
= 0

has a unique solution for m and r representing the unique sphere in oriented contact with the
four planes given by equations ⟨nA, x⟩+ dA = 0, etc.

Property (iii) follows by eliminating cases (i) and (ii). □

Remark 16. Property (i) of Theorem 15 states that the cross-ratio of four oriented planes is real
if and only if they touch a rotational cone (i.e., they touch a one parameter family of spheres).
This is the analogue of Theorem 3 of Möbius geometry, stating that the cross-ratio of four points
is real if and only if they lie on a common circle, i.e., on a one parameter family of spheres.

The following lemma is the Laguerre analogue to Lemma 7 where the diagonal-ratio definition
has the same algebraic composition as for quaternions in Definition 6.

Lemma 17. Let a, b, c, d, e ∈ S denote five distinct planes. Then the diagonal-ratio factorizes
into cross-ratios

(14) dr(a, b, c, d, e) = cr(a, b, e, d) · cr(a, e, c, d) · cr(a, d, b, c).

Proof. Following the proof of the analogous Lemma 7 for Möbius geometry, we express the
diagonal-ratio in terms of tangent vectors:

dr(a, b, c, d, e) =
(
(a− b)(b− e)−1(e− a)

)(
(a− d)−1(d− e)(e− a)−1

)
(
(a− e)(e− c)−1(c− a)

)(
(a− c)−1(c− d)(d− a)−1

)
(
(a− d)(d− b)−1(b− a)

)(
(a− b)−1(b− c)(c− a)−1

)
=
−1
|teb|2

([0, teb] + ϵλbe)([0, ted] + ϵλed)

−1
|tce|2

([0, tce] + ϵλec)([0, tdc] + ϵλdc)

−1
|tbd|2

([0, tbd] + ϵλdb)([0, tcb] + ϵλcb).

With the representation (10) for the cross-ratio we easily find the claimed cross-ratios in the
expression of the diagonal-ratio. □

Lemma 17 also implies the Laguerre analogue of Corollary 9.

Corollary 18. Let a, b, c, d, e ∈ S be five oriented planes that touch a rotational cone. Then
dr(a, b, c, d, e) ∈ R.

Proof. If all the planes a, b, c, d, e touch a rotational cone, then each four of them also touch the
same rotational cone. Therefore all three cross-ratios in Lemma 17 are real, hence dr(a, b, c, d, e)
is real. □

Lemma 19. Let a, b, c, d, e ∈ S and let q be the quaternion-part of dr(a, b, c, d, e). Then Im q
represents the normal vector nA of plane A.
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Proof. By partially expanding the last term of the proof of Lemma 17 we get

dr(a, b, c, d, e) =
−1

|teb|2|tce|2|tbd|2
((

[−⟨teb, ted⟩, teb × ted] + ϵ[0, λedteb + λbeted]
)

(
[−⟨tce, tdc⟩, tce × tdc] + ϵ[0, λdctce + λectdc]

)
(
[−⟨tbd, tcb⟩, tbd × tcb] + ϵ[0, λcbtbd + λdbtcb]

))
.

By the same argument as in the proof of Lemma 14, the dual quaternions in the three parentheses
all have quaternion-parts whose vector-parts are parallel to nA. Since the product of dual
quaternions with linearly dependent vector-parts yields again a dual quaternion with a vector-
part parallel to the ones of its factors, dr(a, b, c, d, e) must also have a vector-part parallel to
nA. □

Lemma 20. Let a, b, c, d, e ∈ S and let q1 and q2 be the quaternion-parts of dr(a, b, c, d, e) and
dr(a, e, d, c, b), respectively. Then q1 = q2.

Proof. The proof of Lemma 17 yields the representation of dr(a, b, c, d, e) in terms of tangent
vectors in nA (as point of the unit sphere). We set α := −1/(|tbe|2|tdb|2|tec|2) and use the
notation O(ϵ) = ϵ · ∗ ∈ ϵH for a purely dual quaternion, i.e., with vanishing quaternion-part. We
get

dr(a, b, c, d, e) = α(teb + ϵλbe)(ted + ϵλed)(tce + ϵλec)(tdc + ϵλdc)(tbd + ϵλdb)(tcb + ϵλcb)

= α(teb + ϵλbe)([−⟨ted, tce⟩, ted × tce] +O(ϵ))(tdc + ϵλdc)([−⟨tbd, tcb⟩, tbd × tcb] +O(ϵ)).

Setting r1 := −⟨tbd, tcb⟩, r2 := −⟨ted, tce⟩, n1 := −tbd × tcb, n2 := ted × tce, and t + ϵλ :=
tdc + ϵλdc we obtain for the above expression

α(teb + ϵλbe)([r2, n2] +O(ϵ)) (t+ ϵλ)([r1,−n1] +O(ϵ))(t+ ϵλ) (t+ ϵλ)−1

(7)
= −α(teb + ϵλbe)([r2, n2] +O(ϵ)) |t|2([r1, n1] +O(ϵ)) (t+ ϵλ)−1.

By substituting indices we also get the corresponding expression for

dr(a, e, d, c, b) = −α(tbe + ϵλeb)([r1, n1] +O(ϵ)) |t|2([r2, n2] +O(ϵ)) (−1)(t+ ϵλ)−1

and therefore

dr(a, b, c, d, e)− dr(a, e, d, c, b) = −α(teb + ϵλbe)|t|2

·
[
([r2, n2] +O(ϵ))([r1, n1] +O(ϵ))− ([r1, n1] +O(ϵ))([r2, n2] +O(ϵ))

]
· (t+ ϵλ)−1.

Since n1 and n2 are both parallel to nA, the quaternion-parts of the dual quaternions

([r2, n2] +O(ϵ))([r1, n1] +O(ϵ)) and ([r1, n1] +O(ϵ))([r2, n2] +O(ϵ))

are equal. Therefore

dr(a, b, c, d, e)− dr(a, e, d, c, b) = −α(teb + ϵλbe)|t|2(0 +O(ϵ))(t+ ϵλ)−1 = O(ϵ),

i.e., the quaternion-parts of dr(a, b, c, d, e) and dr(a, e, d, c, b) are equal. □

Theorem 21. Let A,B,C,D,E be five oriented planes in R3 which touch a common oriented
sphere. Then the corresponding dual quaternions a, b, c, d, e ∈ S satisfy

dr(a, b, c, d, e) = dr(a, e, d, c, b).
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Proof. Lemma 20 implies that the quaternion-parts of dr(a, b, c, d, e) and dr(a, e, d, c, b) are equal.
Therefore, it remains to prove that here their dual parts coincide as well.

Let us first bring the cross-ratio into a form which we can better deal with. Using Equa-
tion (10), the first cross-ratio in Equation (14) equals

cr(a, b, e, d) =
1

|teb|2
(
[−⟨teb, tde⟩, teb × tde] + ϵ[0, λdeteb + λbetde]

)
.

We set (similar to the proof of Theorem 15 without the denominators):

rec := −⟨teb, tde⟩, ne
c := teb × tde, vec := (λdeteb + λbetde).

Lemma 14 and its proof imply that ne
c is parallel to nA which yields

ne
c = µe

cnA

for some µe
c ∈ R \ {0}. Let us denote by m the center of the common sphere which is in contact

with all planes and that exists by assumption. Then for m1 = m2 = m, Equation (12) implies

(15) vec = ⟨m2, tde⟩teb+⟨m1, tbe⟩tde = ⟨m, tde⟩teb−⟨m, teb⟩tde = m×(teb× tde) = m×ne
c = µe

cv,

where we define v := m × nA. Note that ne
c ⊥ vec and also nA ⊥ v. The cross-ratio can now be

written as

cr(a, b, e, d) =
1

|teb|2
(
[rec , µ

e
cnA] + ϵµe

cv
)
.

By setting α := (|teb|2|tce|2|tbd|2) the diagonal-ratio becomes (after carefully expanding)

α dr(a, b, c, d, e) = α cr(a, b, e, d) · cr(a, e, c, d) · cr(a, d, b, c)

=
(
[rec , µ

e
cnA] + ϵµe

cv
)
·
(
[rcb , µ

c
bnA] + ϵµc

bv
)
·
(
[rbe, µ

b
enA] + ϵµb

ev
)

= . . . = ∗+ ϵ
(
recr

c
bµ

b
e + recr

b
eµ

c
b + rcbr

b
eµ

e
c − µe

cµ
c
bµ

b
e

)
v.

From ne
c = µe

cnA we obtain (the symbol ∡(·, ·) denotes the non-oriented angle)

µe
c = ⟨ne

c, nA⟩ = ⟨teb × tde, nA⟩ = ⟨|teb||tde| sin∡(tbe, tde)
ne
c

|ne
c|
, nA⟩ = |teb||tde| sinφe

c,

where φe
c := ⟨

ne
c

|ne
c|
, nA⟩∡(tbe, tde) is a signed angle. On the other hand the angle satisfies

(16) cosφe
c|teb||tde| = ⟨teb, tde⟩ = −rec ,

which implies

µe
c = −rec tanφe

c, and analogously µc
b = −rcb tanφc

b, and µb
e = −rbe tanφb

e.

Therefore,

α dr(a, b, c, d, e) = ∗ − ϵrecr
c
br

b
e

(
tanφb

e + tanφc
b + tanφe

c − tanφe
c tanφ

c
b tanφ

b
e

)
v.

Lemma 23 (from the appendix) implies

α dr(a, b, c, d, e) = ∗ − ϵrecr
c
br

b
e

sin(φb
e + φc

b + φe
c)

cosφb
e cosφ

c
b cosφ

e
c

v

(16)
= ∗+ ϵ|teb||tde||tce||tdc||tbd||tcb| sin(φb

e + φc
b + φe

c)v.

Analogously, the other diagonal-ratio takes the form

α dr(a, e, d, c, b) = ∗+ ϵ|tbe||tcb||tdb||tcd||tec||tde| sin(φe
b + φd

e + φb
d)v.

Consequently,

(17) dr(a, b, c, d, e) = dr(a, e, d, c, b) ⇐⇒ sin(φb
e + φc

b + φe
c) = sin(φe

b + φd
e + φb

d).
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Figure 8. Left: Stereographic projection of the circumcircles of nA, nB , nE , nA, nE , nD, nA, nD, nC . The angle

φe
c between tbe and tde is measured in the projection between the edges vB − vE and vD − vE . Right: A

quadrilateral with diagonals and oriented angles which fulfill the angle condition stated in Lemma 24.

The angles on the right-hand side are oriented angles of tangent vectors teb, . . . of circumcircles
through nA, nE , nB , . . . on the unit sphere (see Figure 8 left). A stereographic projection with
nA as center maps the circles to the edges of a polygon with vertices vB , vC , vD, vE . Since angles
are preserved under steregraphic projection we have φe

c = ∠(vB − vE , vD − vE) measured with
orientation.

Now equality on the right-hand side of (17) follows from Lemma 24 in the appendix which
concludes the proof. □

Corollary 22. Let A,B,C,D be four planes in oriented contact with a unique sphere with center
m. Then the dual part of cr(a, b, c, d) is parallel to the cross product

m× nA,

where nA is the normal vector of plane A.

Proof. Equation (15) implies that the dual part is parallel to m× (tcb × tdc) and Lemma 14 and
its proof imply that tcb × tdc is parallel to nA. □

Appendix

Lemma 23. For three angles α, β, γ we have the identity

tanα+ tanβ + tan γ − tanα tanβ tan γ =
sin(α+ β + γ)

cosα cosβ cos γ
.

Proof. Using standard trigonometric identities yields

(tanα+ tanβ + tan γ − tanα tanβ tan γ) · (cosα cosβ cos γ)

= sinα cosβ cos γ + sinβ cosα cos γ + sin γ cosα cosβ − sinα sinβ sin γ

= sinα(cosβ cos γ − sinβ sin γ) + cosα(sinβ cos γ + cosβ sin γ)

= sinα cos(β + γ) + cosα sin(β + γ) = sin(α+ β + γ),

which concludes the proof. □
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Lemma 24. Let vB , vC , vD, vE ∈ C be a quadrilateral and let its oriented angles be denoted by

φe
c = ∠(vB − vE , vD − vE) φb

d = ∠(vE − vB , vC − vB)

φc
b = ∠(vE − vC , vD − vC) φd

e = ∠(vB − vD, vC − vD)

φb
e = ∠(vD − vB , vC − vB) φe

b = ∠(vC − vE , vD − vE)

(see Figure 8 right). Then

sin(φe
c + φc

b + φb
e) = sin(φb

d + φd
e + φe

b).

Proof. For an oriented angle ∠(a, b) between two complex numbers a, b ∈ C the exponential
ei∠(a,b) is equal to b

|b|/
a
|a| . Consequently,

ei(φ
e
c+φc

b+φb
e)

ei(φ
b
d+φd

e+φe
b)

=
vD−vE

vB−vE
vD−vC
vE−vC

vC−vB
vD−vB

vC−vB
vE−vB

vC−vD
vB−vD

vD−vE
vC−vE

= 1,

which concludes the proof. □

Acknowledgments

We would like to thank Arvin Rasoulzadeh and Andrew Sageman-Furnas for fruitful discus-
sions. Furthermore, the authors gratefully acknowledge the support by the Austrian Science Fund
(FWF) through grant I 4868 (SFB-Transregio “Discretization in Geometry and Dynamics”).

References

[1] Alexander I. Bobenko and Ulrich Pinkall. Discrete isothermic surfaces. J. Reine Angew. Math., 475:187–208,

1996.
[2] Oene Bottema and Bernard Roth. Theoretical kinematics, volume 24 of North-Holland Series in Applied

Mathematics and Mechanics. North-Holland Publishing Co., Amsterdam-New York, 1979.
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