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Abstract. The fairness of meshes which represent geometric shapes is a topic which has been
studied extensively and thoroughly. However, the focus in such considerations often is not the
mesh itself, but rather the smooth surface approximated by it, and fairness essentially expresses a
mesh’s suitability for purposes such as visualization or simulation. This paper focuses on meshes
in the architectural context, where vertices, edges and faces of meshes are often highly visible,
and any notion of fairness must take new aspects into account. We use concepts from discrete
differential geometry (star-shaped Gauss images) to express fairness, and we also demonstrate
how fairness can be incorporated into interactive geometric design of triangulated freeform skins.
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1. Introduction and Motivation

Smoothness of meshes. Whenever a smooth shape is realized in a discrete man-
ner, the smoothness resp. fairness of this approximation is of great importance.
Depending on the application, different aspects of fairness play a role. For some
applications like the simulation of physical processes (finite element analysis), or
computer graphics rendering, the vertices and edges of the mesh are only a means
to an end, and “fairness” mostly refers to the suitability of the mesh for the task
at hand. Typically, it involves avoiding small angles between edges, comparable
edge lengths in triangles, and avoiding vertices whose number of incident edges is
not 6.

Figure 1. Non-Smoothness from geometric constraints: The Cour Visconti roof in the Louvre
is a hybrid mesh consisting of both triangular and quadrilateral glass panels, for reasons of
efficiency and weight optimization. The triangle mesh originally intended by the architect is
achieved by placing triangular shading elements on top of each panel. Merging of two triangular
faces into a quad consumes one degree of freedom, so this mesh is not as optimally smooth as
would have been possible with a triangle mesh.
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Figure 2. Non-Smoothness from geometric constraints is exhibited by Building 16 of King
Abdullah University of Science and Technology (left) and by the BMW Welt building in Munich
(right). These meshes contain rows of faces whose vertices alternate between two straight lines
L1, L2, or at least approximately so. Center: Intersection of the mesh’s surface with a plane
parallel to both L1, L2 is a zigzag polyline whose edges are parallel to either L1 or L2. This
shows that meshes which contain straight lines in the manner described above cannot avoid a
certain degree of non-smoothness.

Smoothness of meshes in freeform architecture. In freeform architecture, the pur-
pose of meshes typically is twofold: Firstly, to make a visual statement, and sec-
ondly, to be part of the structure. The high visibility of edges and vertices makes
them a much greater part of fairness resp. smoothness than in other applications.
The human eye notices minimal zigzags in edge polylines which are entirely irrele-
vant for physical simulations or for rendering. Similarly, reflective surfaces expose
even very small kink angles between faces.

Mesh smoothness is to be distinguished from smoothness of the reference shape
which the mesh is thought to approximate. A wiggly mesh can mean that a smooth
reference surface is approximated in a bad manner, but it can also mean that there
are wiggles in the reference shape. Unfortunately the former can sometimes not
be avoided because of constraints imposed on the mesh, see examples in Figures 1
and 2.

In this paper we discuss a notion of smoothness which we believe to be con-
sistent with expectations of users in the field of freeform architecture. We can
already draw on an existing mathematical discussion by (Günther and Pottmann,
2016). We further discuss the optimization of meshes towards greater smoothness.
The optimization consists of setting up hard and soft constraints, and subsequent
application of standard numerical procedures.

2. Measuring smoothness

The main topic of this paper is the behaviour of meshes in the neighbourhood
of vertices. This does not mean that in algorithms we neglect other contributions
to visual smoothness like fairness of edge polylines (see Section 3), but these are
the standard ones.



MEASURING AND CONTROLLING FAIRNESS OF TRIANGULATIONS 3

2.1. The Gauss image. We endow a mesh with a Gauss image whose vertices
are the consistently oriented unit normal vectors of the faces; we think of them as
pointing to the outside of the mesh. The Gauss image is part of the unit sphere.
Each original (primal) edge separating two faces corresponds to a Gauss image
edge (dual edge) connecting two unit normal vectors. Figure 3 illustrates the
Gauss image g(v) of the 1-ring neighbourhood of a vertex v, while Figure 4 shows
Gauss images of entire meshes.

Properties of Gauss images. There are certain obvious properties of Gauss images
which correspond to visual smoothness: Long edges in the Gauss image correspond
to large kink angles between adjacent faces (see Figure 3). Also, the shape of the
Gauss image cycle of a vertex (again, see Figure 3) defines the shape of the mesh’s
surface in the immediate neighbourhood of a vertex. Therefore, we look for an
even pattern of dual faces in the Gauss image.

If the dual Gauss image face g(vi) of a vertex vi is a proper polygon without
self-intersections, then we might view any point in its interior as a candidate for
a normal vector associated with the vertex vi. Further, we observe the sign of
discrete Gauss curvature K of the mesh: We have K > 0 or K < 0 depending on
whether the Gauss image g(vi), and the cycle of faces incident with the vertex vi,
have the same orientation or opposite orientations (see Figure 3).

This behaviour entirely corresponds to the behaviour of the normal vectors along
a small circle in smooth surfaces (Figure 3, right). If the original circle is denoted
by C and its Gauss image by g(C), then the ratio of signed areas of g(C) to C is
the Gauss curvature K. Zero Gauss curvature implies zero signed area and thus
self-intersections of the Gauss image.
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Figure 3. Gauss image of a vertex vi. The cycle of faces f1, . . . , f6 incident with vi defines a
cycle g(vi) of unit normal vectors n1, . . . ,n6 on the unit sphere which form the Gauss image g(v).
The kink angle between faces fk, fk+1 coincides with the spherical edge length nk,nk+1. In the
case shown here the Gauss image polygon g(v) has no self-intersections, so it is the boundary of
two spherical domains — one of them contains unit vectors like ñv which point to the outside of
the primal mesh; it is called the interior of g(v). We can observe the sign of curvature (negative,
from the fact that the two cycles have opposite orientations). Further, any interior point ñv

of the Gauss image polygon g(v) can be viewed as an auxiliary unit normal vector associated
with the vertex vi. Right: The surface with point x and normal vector illustrates the smooth
situation.
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Figure 4. Smooth and non-smooth triangle meshes. Meshes 1 and 2 represent the same refer-
ence shape. Mesh 1 fulfills Definition 1 of “smoothness”, while mesh 2 does not.
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Figure 5. Local shape analysis of smooth surfaces: The intersection of a smooth surface with an
almost-tangent plane generically approaches a conic called Dupin’s indicatrix which is an ellipse
in case of positive Gauss curvature (a), and a hyperbola in case of negative Gauss curvature (b).
In the latter case, the intersection with a tangent plane yields two smooth curves whose tangents
define the asymptotic directions T1, T2 in the point under consideration (c). Right: approximate
asymptotic directions of the Cour Visconti surface (Fig. 1), computed with the jet fit method of
(Cazals and Pouget, 2003).

Coming back to the discrete case, we set aside entirely the case of developable
surfaces which have K = 0 everywhere. Apart from the rare instances where a
vertex exactly marks the boundary between K > 0 and K < 0 we have non-proper
Gauss images with self-intersections only if the geometry of the primal mesh is so
convoluted that it is hard to even define a normal vector. We therefore formulate
the main requirement for smoothness (see Figure 4):

Definition 1. A triangle mesh is smooth, if all Gauss images of vertices are free
of self-intersections.

2.2. Relation between Gauss image and asymptotic lines. Closer study
reveals that smoothness in the sense of Definition 1 is related to local shape prop-
erties of the surface, in particular Dupin’s indicatrix and asymptotic directions,
for which the reader is referred to Figure 5 or textbooks like (do Carmo, 1976).
We state:
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Figure 6. Relevance of edge orientations for smoothness. The graph of the function z = x2−y2

carries two families of straight lines which correspond to x ± y = const , and which are also the
asymptotic directions. Images (a1)–(c1) show different tilings of the xy plane by triangles, which
in (a2)–(c2) are lifted to the graph surface and generate a mesh. Their respective Gauss images
have dual faces without self-intersections in (c3), and with self-intersections in (b3). Image (a3)
illustrates a boundary case where self-intersections begin to occur, and where the edges coincide
with the surface’s asymptotic directions.

Observation 2. Assume a mesh approximates a smooth saddle-shaped surface,
and that the vertex v has face cycle f1, . . . , f6 (indices modulo 6). Then, we typi-
cally have the following properties of the Gauss image hexagon g(v):

(i) g(v) has no self-intersections, if the quadrants bounded by the asymptotic
directions do not contain faces except for a pair fk, fk+3, which are contained in
opposite quadrants.

(ii) g(v) has self-intersections, if faces fk, fk+1 are both contained in the same
quadrant between asymptotic directions, and fk+3, fk+4 lie in the opposite quadrant.

Figure 6 illustrates this phenomenon on a very simple surface. Situations (i) and
(ii) correspond to Figure 6c and Figure 6b, respectively. Figure 7 demonstrates
this observation by means of an actual freeform skin.

Observation 2 is not a mathematical statement, but it could be turned into one
by specifying more clearly what is meant by “typically”.1

1We argue as follows: the observation is true for the hyperbolic paraboloid and for lifted regular
triangulations (this is an easy exercise, see Figure 6). It is true in the limit, for small faces, and
limit-regular triangulations because of the hyperbolic paraboloid’s capability of approximating
a surface up to 2nd order (thus approximating asymptotic directions and normal vectors up to
1st order). The observation thus is true whenever the size of triangles is small enough and the
triangulation is regular enough.
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case (i) case (ii)

Figure 7. Smooth and unsmooth meshes. The blue subfigures show two patches of the Cour
Visconti mesh, together with the asymptotic directions of the underlying reference surface within
each face. The left and right hand patches correspond to cases (i) and (ii) of Observation 2.
Consequently their respective Gauss images (green subfigures) exhibit few self-intersections in
case (i) and many self-intersections in case (ii). Thus the left hand patch is revealed as smooth,
the right hand patch as unsmooth. It must be admitted that these images are difficult to read,
since this mesh has triangle pairs which together form a flat quadrilateral, so the Gauss image
mesh has zero length edges.

Conclusions regarding mesh design. A fundamental question is to find a “smooth”
triangulation of a given reference surface. The previous paragraphs give guidance
for the combinatorially regular case with 6 edges per vertex: In the negatively
curved regions of the reference surface, the positioning of edges must take the
asymptotic directions into account. According to Observation 2, in each quadrant
bounded by asymptotic directions we may place 1 or 2 edges, but not 3.

Thus the layout of a “smooth” triangulation essentially experiences the same
combinatorial restrictions as the layout of quadrilateral meshes with planar faces,
where in the negatively curved regions of a surface, the edges cannot deviate much
from the principal curves, see (Zadravec et al., 2010).2

The design of “smooth” triangulations on a reference surface is therefore an
instance of a well known dilemma: Choosing the surface determines much of the
triangulation, and design freedom is limited. Further, it is generally not possible to
optimize a triangle mesh towards smoothness by only slightly moving the vertices.
Figure 7 is an instance of this, as will be shown below.

2.3. Star-shaped Gauss images. The constraint that Gauss image hexagons
do not self-intersect is cumbersome to handle in optimization procedures. It is
fortunate that another property, which is a bit stronger, is both easier to deal with
and has interesting implications on the local shape of meshes. We define:

2Edges of smooth planar-quad meshes must follow two families of curves which constitute
a conjugate network, see (Liu et al., 2006) and (Bobenko and Suris, 2008). Theoretically one
family can be chosen arbitrarily and determines the other. However, in practice, the requirement
of a minum angle between edges ensures that edge polylines cannot cross asymptotic curves, see
(Zadravec et al., 2010).
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(a) (b) (c)

Figure 8. These images, taken from (Günther and Pottmann, 2016), illustrate Proposition 5.
For a vertex v with a proper star-shaped Gauss image g(v), the discrete indicatrix is either a
discrete ellipse (i.e., a convex polygon, subfigure a) or a discrete hyperbola (i.e., it consists of two
convex arcs, subfigures b,c). The Gauss image corresponding to subfigure c is shown at right.

Definition 3. The Gauss image g(v) is star-shaped if it has no self-intersections
and there is a point ñv in its interior which can be connected to the entire circum-
ference of the Gauss image by spherical arcs contained in that interior.

Figures 8 and 9 show examples. In order to properly formulate the shape prop-
erties of meshes with star-shaped Gauss images, we recall the Dupin indicatrix of
Figure 5 and define:

Definition 4. Assume that a vertex v in a mesh with planar faces has a Gauss
image g(v) which is star-shaped with respect to ñv. Intersecting the star of v with
a plane close to v and orthogonal to ñv yields the discrete indicatrix.

The meaning of “close to v” is that the intersection shall not be disturbed by
edges which are not incident with v itself. The following result, illustrated by
Figure 8, has been shown by (Günther and Pottmann, 2016). It refers to the
discrete Gauss curvature of triangle meshes, cf. (Banchoff, 1970).

Proposition 5. Consider a vertex v in a mesh with planar faces. Its Gauss
curvature is given by K(v) = 2π −

∑
f∼v αf , where

∑
αf is the sum of all angles

between successive edges incident with that vertex. Then, the following holds:
(i) If K(v) > 0 and g(v) is free of self-intersections, then g(v) is star-shaped

and any indicatrix is a discrete ellipse, i.e., a convex polygon.
(ii) If K(v) < 0 and g(v) is star-shaped with respect to some point ñv, then

the corresponding indicatrix typically3 is a discrete hyperbola, i.e., consists of two
convex polygonal arcs. Also the reverse implication is true.

We conclude that star-shaped Gauss images imply that the local shape of a mesh
in the immediate vicinity of a vertex coincides with what is expected from the local
shape of a smooth surface (in particular the manner of up-down oscillations w.r.t.
a fictitious tangent plane, and the convexity of intersections with near-tangent
planes). This means that insisting on star-shaped Gauss images makes triangle
meshes even more smooth than Definition 1 already does.

3The exceptions are cases where both ñv and −ñv are contained in the interior of g(v).
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Figure 9. Constraints imposed on smooth meshes in our optimization procedure. Left: For
purposes of approximation, vertices vi of the mesh are kept close to the reference surface Φ, by
adding the constraint that vi lies in the tangent plane of Φ in the point v∗

i which was closest to vi

in the previous iteration of our optimization procedure. Right: The spherical polygon n1, . . . ,n6

is star-shaped w.r.t. the center ñv if all triangles nknk+1ñv have the same orientation and it
winds around ñv exactly once.

3. Optimization of meshes

We have implemented a procedure to optimize a mesh such that its Gauss images
become star-shaped, which makes them “smooth” as explained in detail in the
previous section. The method expresses each desired property in terms of an
energy function. The variables in the optimization are positions vi of vertices,
normal vectors nk of faces, and auxiliary normals ñi of vertices. To express the
relation between faces and normal vectors, we minimize the energy

Enormal =
∑

vivj is edge of face fk

(nk · (vi − vj))
2 +

∑
faces fk

(‖nk‖ − 1)2.

We also ensure that these normal vectors are oriented consistently, i.e., cycling the
face fk in the positive sense when looking in direction nk, and cycling the face fl in
the positive sense when looking in direction nl, must assign different orientations
to the common edge fk ∩ fl.

Secondly, if the mesh is to approximate a reference surface Φ, we should try to
minimize something like

∑
dist(vi,Φ)2 which is highly nonlinear. However, we re-

place Φ by the tangent plane Ti in the point v∗i of Φ which is closest to Φ. Thus the
highly nonlinear squared distance function is substituted by its quadratic Taylor
approximation without disturbing convergence of algorithms, cf. Pottmann et al.
(2006). In each round of our iterative optimization procedure, we recompute the
closest point v∗i and the normal vector n∗i there. The energy expressing closeness
then reads

Eclose =
∑

vertices vi

((vi − v∗i ) · n∗i )2.
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(a) (b)

Figure 10. This mesh on a minimal surface together with its Gauss image (subfigure a) under-
goes optimization. All Gauss image hexagons of vertices become star-shaped (subfigure b). These
images illustrate the fact that the non-smoothness of certain meshes (like the one in subfigure a)
may not be visible in all renderings.

Thirdly, the Gauss image polygon n1,n2, . . . of a vertex vi is star-shaped with
respect to the normal vector ñi only if all triangles ñinknk+1 have the same orien-
tation when we look at them in the direction of ñi. We therefore let

Egauss =
∑

vertices vi

∑
fk in face cycle of vi

(
det(nk+1,nk, ñi)− ω2

ik

)2
,

where ωik is a slack variable. This condition is also sufficient for star-shapedness if
the polygon winds around ñi exactly once (this is checked a posteriori, by comput-
ing angle sums). To prevent zigzag in edge polylines, we use the classical second
order differences

Epolylines =
∑

successive vertices vi,vj ,vk

‖vi − 2vj + vk‖2.

The total energy is a weighted linear combination of the individual energies:

E = w1Enormal + w2Eclose + w3Egauss + w4Epolylines.

Figure 10 shows the result of optimization on a simple surface.

Implementation details. Since the limit residual of the polyline fairness energy is
nonzero, it is used with a low weight, in the manner of an additional regularizer. We
further use units such that the typical edge lengths in the mesh are of magnitude 1.
Then we may let w1 = w2 = w3 = 1 and w4 = 0.01, but some user experimenting
is necessary for good results. For the actual minimization of the combined energy,
we use a standard Gauss-Newton method, cf. (Kelley, 1999, pp. 22–23).

Discussion of results. Figures 11 and 12 show the behaviour of two different meshes
which undergo optimization. In one case optimization is not successful, as can be
seen in Figure 11c. This is not the fault of the method but rather the fault of
the design itself which places mesh polylines relative to asymptotic directions such
that case (ii) of Observation 2 applies. It depends on the nature of the mesh if
optimization manages to move vertices such that smoothness can be achieved or
not. In the case of Figure 12 this works because there is not much to do: Vertices
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(a) (b) (c)

Figure 11. Partly successful optimization. The three smaller images show the Cour Visconti
mesh of Figure 1 (a) and the Gauss images of two selected patches (b,c) before optimization. The
larger figures show the situation after optimization has been performed. Since the right hand
patch corresponds to case (ii) of Observation 2, optimization can hardly be successful unless
we entirely rearrange the mesh layout. Our optimization procedure does not do that; rather it
applies small changes which may be acceptable as an augmentation of an already existing design.

(a) (b) (c) (d)

Figure 12. Successful optimization. The mesh in (a) is inspired by the skin of the BMW
Welt building in Munich, cf. Figure 2. It is obviously unsmooth and yields mesh (b) under
optimization. Below each mesh, the respective Gauss images are shown. Another triangulation
of the same reference shape (c) is weakly smoooth because Gauss images of vertices are free
of self-intersections, but are not star-shaped. Optimization yields mesh (d). The meshes are
rendered as reflective surfaces, which allows visual inspection of smoothness.

only have to move along parallel circles a bit. In the case of Figure 11 this is not
possible without completely rearranging the mesh.

A more complex example is the Eindhoven Blob by M. Fuksas. Figure 13 il-
lustrates how close the optimized mesh is to the original one, and illustrates the
change in Gauss images.

Comparison with other smoothing methods. There is a host of smoothing methods
available in the area of geometry processing, starting with very simple methods
like Laplacian smoothing a.k.a. linear diffusion (this means moving each vertex
towards the average of its neighbours, see e.g. (Botsch et al., 2010)). However,
most methods deal with removing noise from the shape which is described by the
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Figure 13. Optimization using different energies. In (a) we see the triangle mesh used for the
Eindhoven Blob, together with patches No. 1 and No. 2 highlighted. The result of optimization
towards star-shaped Gauss images is shown in (b). A superimposed image of slices through
original mesh and optimized mesh (c) shows approximation quality. The detailed images in the
bottom row show Gauss images of patch No. i (i = 1, 2) before optimization (labelled gi), after

optimization using Egauss (labelled ggi ), or Eangle (labelled gai ), or both energies (labelled gg+a
i ).

mesh, and this is not our intention. Methods which seek to represent a reference
surface by a better mesh are referred to as remeshing, which usually means to
discard the previous mesh altogether. This is also not what we are doing. Actu-
ally, from the viewpoint of geometry processing, our smoothing procedure hardly
does anything at all, which is true if one forgets the important visual role which
vertices and edges play in our applications. Being aware of the different aims of
other smoothing methods, we really made only few comparisons, and we only ob-
served the behaviour of meshes as they undergo Laplacian smoothing. While for
some meshes like the Blob of Figure 13, this procedure produces almost acceptable
results, it does not improve the meshes of Figure 10 and Figure 12 at all.

We might also ask a different question: What happens if we directly minimize
the kink angles αkl between faces fk, fl? With cosαkl = nk · nl it is easy to set up
an energy which directly penalizes large kink angles, namely

Eangle =
∑

edges fk ∩ fl

(1− nk · nl)
2.

The result of optimization using this energy combined with the one producing
star-shaped Gauss images is illustrated by Figure 13. One can see that optimizing
kink angles has an effect similar to making the Gauss image star-shaped, but
weaker. Statistics show that between these two kinds of optimization (or the
combined optimization of both) there is no substantial difference in kink angles.
We therefore conclude that optimizing Egauss can be augmented by adding Eangle

to the total energy, but should not be replaced by it.
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4. Conclusion

We have presented a two-stage definition of “smoothness” of a triangle mesh
in terms of the Gauss image of vertices. A weaker version requires absence of
self-intersections, a stronger one requires that Gauss images are star-shaped. We
discussed the relation between smoothness and the placement of edges relative
to the asymptotic directions. We conclude that in negatively curved areas, we
have strong combinatorial restrictions on the placement of edges if we want the
mesh to be smooth. If the stronger smoothness condition is fulfilled, we can even
deduce that the piecewise-flat mesh surface has local shape properties analogous
to smooth surfaces (which justifies our definition of smoothness). Finally, we show
the optimization of a mesh towards smoothness and discuss in which cases this
optimization can succeed.
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