
EUROGRAPHICS 2014 / B. Lévy and J. Kautz
(Guest Editors)

Volume 33 (2014), Number 2

Detection and reconstruction of freeform sweeps
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Abstract
We study the difficult problem of deciding if parts of a freeform surface can be generated, or approximately gen-

erated, by the motion of a planar profile through space. While this task is basic for understanding the geometry of
shapes as well as highly relevant for manufacturing and building construction, previous approaches were confined
to special cases like kinematic surfaces or “moulding” surfaces. The general case remained unsolved so far. We
approach this problem by a combination of local and global methods: curve analysis with regard to “movability”,
curve comparison by common substring search in curvature plots, an exhaustive search through all planar cuts
enhanced by quick rejection procedures, the ordering of candidate profiles and finally, global optimization. The
main applications of our method are digital reconstruction of CAD models exhibiting sweep patches, and aiding
in manufacturing freeform surfaces by pointing out those parts which can be approximated by sweeps.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling—

Introduction and motivation. The topic of this paper is to
detect if freeform surfaces can be generated by simple pro-
cesses, in particular sweeping. This can mean digitally re-
constructing the sweep which generates a given shape, but
it can also mean information relevant for manufacturing.
These are complex tasks which become increasingly impor-
tant with today’s trends towards totally free forms in many
fields of engineering and design: Large scale undertakings,
such as realizing freeform architecture (Fig. 1), manufactur-
ing free forms required in engineering (Fig. 2), or any kind
of mass production, obviously benefit enormously from a
cheap and effective way of manufacturing.

A guiding principle in this area is the decomposition of
complex parts into simpler ones, which can be built cheaply
and efficiently, without being obviously ‘simple’ to the un-
trained eye. Similar thoughts have e.g. led architects to de-
sign building skins of freeform appearance which are in fact
not genuinely freeform in a two-dimensional way, but can
still be described by one-dimensional entities (like the trans-
lational surface used for the Hippo house in the Berlin zoo).
A very general class of surfaces which are simple from the
manufacturing viewpoint contains the surfaces generated by
the motion of a profile curve through space. Manufacturing
processes based on them are the following:
• Hot-wire foam cutters are tools to cut materials like

Figure 1: Large parts of an architectural design may be
representable as a sweep surface. In this particular case
the simplest kind of sweep, namely ruled surfaces, are used.
Left: design by Zaha Hadid architects. Right: ruled surfaces
approximating this design, holes omitted (www.evolute.at).

polystyrene. They are acting on the principle that a straight
line L (i.e., the hot wire) is moving relative to the workpiece,
thereby acting as a knife. The boundary of the volume cut
away by this process is the surface swept by L during its
motion. Such a surface is a ruled surface. It is also possible
to employ curved hot blades instead of straight wires under
tension, and in this way to generate more general surfaces.
• In building construction, temporary or permanent un-

derconstructions might be necessary, e.g. when pouring con-
crete onto wooden formworks. The complex task of form-
work assembly is considerably simplified, if the formwork
can be made from straight elements (as a ruled surface) or
from elements which are not straight but at least which are
all the same shape. The resulting surface is a surface gener-
ated by the motion of a single curve.
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Figure 2: Formworks
for concrete tunnel
of variable cross sec-
tion (Silvretta reser-
voir, cf. www.spezial-
schalungen.com).

Contributions. This paper revolves around the above-men-
tioned class of surfaces, which are generated by the motion
of a profile curve through space, and which we call sweep
surfaces (see Fig. 3). In particular, we do the following:

? We evaluate the degree of movability of a given curve
within a surface (i.e., to what extent can a curve move
such that it remains close to the surface). This evaluation
is fast, and is a key ingredient in other algorithms.

? An exhaustive search finds planar profiles whose move-
ment generates a given surface or a part of it. It combines
profile evaluation, profile comparison, intelligent explo-
ration of the search space, and global optimization.

? We decompose any given surface into parts which are well
approximated by sweep surfaces. Thus locally the two-di-
mensional geometry information contained in the surface
is compressed into one-dimensional information, namely,
the shape of a curve plus the information on how it moves.

? The overall goal is to gain information on efficient man-
ufacturing according to the techniques described above,
avoiding the very expensive building of molds and similar
genuinely two-dimensional methods.

(a) (b) (c)

Figure 3: Sweep surfaces of increasing geometric complex-
ity generated by planar profiles. (a) Kinematic surface (here:
surface of revolution). (b) Surface generated by a planar
profile which is also a principal curvature line, the motion of
the profile being defined by slip-free rolling (moulding sur-
face aka profile surface, cf. [PHOW04]). (c) General sweep.

Previous work. The mathematical questions basic to this
paper are (i) detecting if a certain surface is a sweep surface,
and (ii) approximation of a surface by a sweep surface. Un-
fortunately they have not been solved, and to the authors’
knowledge no differential-geometric infinitesimal character-
ization of sweep surfaces has been found.

There is, however, previous work on “simpler” classes
of sweep surfaces (for a general discussion, see [VM02]).
Approximation of surfaces by ruled surfaces is studied e.g.
by [CP99], [EW13] and [FP10]. Surfaces swept by circles

have been briefly treated by [BPK∗11] and more extensively
by [BSK∗13]. An interesting case is the recognition of kine-
matic surfaces which are movable within themselves (like
surfaces of revolution, see Fig. 3a). They are the topic of
[PHOW04, HOP∗05]. [GG04] investigated segmentation of
surfaces into kinematic parts, and [AS13] studied algorithms
in this context from the viewpoint of robustness and indepen-
dence of coordinate transforms. [PCL98] and [PHOW04]
use the ability to recognize rotational surfaces to recon-
struct moulding surfaces (also known as profile surfaces, see
Fig. 3b). They represent the class of sweeps by planar pro-
files where the paths of individual points are orthogonal to
the profile. They are also studied by [KV13] who reconstruct
the profile curves from the property that they are principal
curvature lines. A general treatment of sweep surfaces how-
ever has been missing so far.

As to architecture and building construction, freeform
formworks comprise an active field of study. We do not sur-
vey the literature, but only highlight a pneumatic method
[DK09] for achieving free forms and point to a survey on
fabric formworks [VWB11], which is a large topic.

1. Analyzing curves and surfaces.

Profile curves generating sweep surfaces have certain prop-
erties which are easy to verify, so one can quickly determine
if a certain curve can possibly serve as a profile. In this sec-
tion we develop such tests which form the basis of the algo-
rithms of Section 2.

1.1. Analyzing curves: assessing movability. We start
with the analysis of movability of a curve within a surface
S. This analysis is based on the velocities experienced by the
points of a rigid body which moves. If t denotes time and
x(t) is the trajectory of a point, the velocity vector of that
point is denoted by the symbol ẋ(t): we write d

dt x(t) = ẋ(t).
At any time instance t the velocity state of the body is de-
scribed by 6 parameters

C = (c1,c2,c3, c̄1, c̄2, c̄3)
T =

[ c
c̄
]
, (1)

with c as vector of angular velocity and c̄ as translational
component of motion. There is the well known formula

ẋ = c̄+ c×x, (2)

see e.g. [PW01]. Now consider a curve moving through
space. Assume it to be densely sampled by vertices xi (i =
1, . . . ,n), each experiencing a certain velocity, ẋi = c̄+c×xi.
If the curve moves within S, then these velocity vectors must
be tangent to S. With the unit normal vector ni in the point
xi, this condition reads nT

i (c̄+ c×xi) = 0, i.e.,[ xi×ni
ni

]T [ c
c̄
]

= 0 (i = 1, . . . ,n). (3)

The question if the given curve is movable within the given
surface S can be answered by solving the above system of n
linear equations in the 6 unknowns C =

[ c
c̄
]
.

c© 2014 The Author(s)
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compute
movable cuts
of reference
shape, §1.3

sort similar
cuts into bins,

using §2.1

for each
bin, extract
ribs, §2.2

for each rib
sequence,
interpolate

motion, §2.3.2

improve
profile, §2.3.3

check if sweep
fits reference
shape, §2.3.4

report sweep

if fit is not good enough
Figure 4: Algorithm overview.

By minimizing the weighted sum of squares

F(C) = ∑
n
i=1 wi

(
nT

i (c̄+ c×xi)
)2 (4)

under the side condition ‖C‖ = 1, we compute a nonzero
least-squares solution of (3), thus finding the velocity state
which moves the given curve in a manner as tangential as
possible to the given surface (see Fig. 5). The weights wi
will be set later. Rewriting the target function,

F(C) =
[ c

c̄
]T (

∑i wi

[ xi×ni
ni

][ xi×ni
ni

]T )[ c
c̄
]

= CTAC,

shows that the minimizer of F is a unit eigenvector of the
6 by 6 matrix A, corresponding to the smallest eigenvalue
λ (then also minF(C) = λ). The case λ = 0 indicates exact
movabililty of the given collection of sample points. We use

fi =
(

nT
i

ẋi

‖ẋi‖

)2
= cos2 ^(ẋi,ni) (5)

as the movability of the vertex xi, which is expressed in terms
of the angle between the surface and the velocity (recall that
ẋi = c×xi + c̄). The value fi is small if the movement of the
vertex xi is nicely tangential to the surface.

1.2. Analyzing curves: extracting movable parts. We
here determine if a curve has parts capable of moving tan-
gentially to the given surface S. For that, we make use of
the possibility to assign weights to vertices when assess-
ing movability: We iteratively downweight vertices which
do not move tangentially. Eventually the “movable” parts of
the given curve consist of vertices whose weight is still large.

Algorithm 1 (Weight Iteration). Vertices xi with normal vec-
tors ni, i = 1, . . . ,n are given. Initialize weights wi←− 1.

1. Find the velocity state C =
[ c

c̄
]

which best fits the given
data, by minimizing F(C) according to Equ. (4).

2. Compute movability values fi according to (5), based on
velocities ẋi = c×xi + c̄, and recompute weights by

wi←− 1/(1+β f γ

i ),

so wi is smaller if xi does not move tangentially.

S

c̄+ c×xi

ni

Figure 5: Movability of a
curve (blue) within a surface
S. Individual vertices xi ex-
perience optimal velocities
(yellow) tangential to S.

3. Go to 1. unless maximum number of iterations is reached.
4. Find the connected components xi0 , . . . ,xi1 of the set of

vertices whose weights are above a certain threshold ε.
For each component report its gliding energy

Egliding(xi0 , . . . ,xi1) =
1

i1− i0 +1 ∑
i1
i=i0

(1−wi)
2 fi.

In our examples we choose γ = 2, β = 400, and (mostly) 3
iterations. As to the weight threshold, we let ε = 2

3 . Fig. 6
illustrates this weight iteration. The precise form of the for-
mulae for weights and gliding energy is not important: their
final form as printed in this paper is the result of experiments.

1.3. Analyzing surfaces: search for movable cuts. The
main applications we consider in this paper rest on a compre-
hensive answer to the question which parts of a given surface
S can be generated, at least approximately, by the movement
of a planar profile curve.

For this end we need to exhaustively search all planar cuts
of S and determine if they can possibly serve as profiles;
those who cannot are discarded and not further considered
by the algorithms of Section 2.

The exhaustive search starts with a regular sampling of
the unit sphere (we take the vertices of one of Buckminster
Fuller’s geodesic spheres) to sample the set of normal vec-
tors. Secondly, for each normal there is an interval of planes
which intersect S, which is regularly sampled too. Thus we
have sampled the space of planes which intersect S. For each
plane α we assess movability of the intersection curve S∩α,
using the method above. Since the sample was rather coarse
we adaptively refine the sampling density in the neighbour-
hood of such planes which produce cuts of low gliding en-

ε

3rd iteration

2nd iteration

1st iteration

Figure 6: Left: Plot of weights wi associated to the vertices
xi of a curve during weight iteration. Right: The red polyline
consists of vertices whose weights are above the threshold
value ε in the 3rd iteration, implying that it is movable.

c© 2014 The Author(s)
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(a) (b) (c) (d) (e)

Figure 7: Verifying our search procedure for movable cuts by means of a surface S which is generated by the movement of a
planar profile. (a) A coarse sampling of plane space yields 2420 planar cuts of S. We compute Egliding for each and visualize
those with small values of Egliding (the 5-th percentile, which has 206 members). The color of these “most movable” planar cuts
corresponds to the value of Egliding. (b) In plane space, each planar cut is visualized as a point: A plane with equation nTx = d
is visualized as the point “d ·n”. The moving planar profile corresponds to the black path in plane space. (c) For each of those
“good” planes, we consider a neighbhourhood which appears as a box in plane space, and increase sampling density there.
(d), (e) After sampling density has been increased, there are 667 good cuts (again, the 5-th percentile of the Egliding statistics).

ergy. The result is a set of planar cuts which are infinitesi-
mally movable within the given surface, see Fig. 7.

2. Fitting sweep surfaces.

This section shows how for any given surface S we find those
parts which can be represented by the motion of a planar
profile. Our algorithm is based on the data collected by the
methods of §1 and consists of the following stages:

? A set of planar cuts of S is distributed into bins, each con-
taining cuts which partially match in the sense that a rigid
body motion transforms one onto the other.

? From each bin we select a sparse set of cuts which can be
ordered in the manner of sequential positions of a profile
curve which moves in space.

? These initial data undergo optimization and produce a
patch of sweep surface which fits the given surface S.

Figure 4 gives a detailed overview of this algorithm.

2.1. Comparing two curves by partial shape matching.
It is well known that planar curves are uniquely determined
by their curvature as a function of arc length [dC76]. This
implies the following criterion:

Two planar curves b,b′ in space are congruent (i.e., there
is a rigid body motion mapping one to the other) ⇐⇒ they
have the same length and their signed curvatures κ(s), κ

′(s),
considered as functions of arc length, agree up to reversal of
sign and/or reversal of direction.

We can therefore recognize parts of polylines as congru-
ent by finding matching parts in the plots of their respective
curvatures as functions of arc length, see Fig. 8. This is much
simpler than a direct attempt at registration of one curve onto
the other (which would have to deal with the 6 degrees of
freedom of the group of Euclidean motions).

Solution by Dynamic Programming. We treat this matching
problem in a manner very similar to the common substring
problem, and solve it by dynamic programming [CLRS05].

The curves to be matched are evenly sampled by vertices
x1, . . . ,xn and x′1, . . . ,x

′
n′ , resp., so that the distance of suc-

cessive vertices is a constant. A partial matching i′ = ϕ(i)
of vertices, such as illustrated by Fig. 8 is a diagonal walk
connecting elements (i1, i′1) and (i2, i′2) within the n× n′

matrix of possible vertex correspondences: We have either
ϕ(i) = i′1− i1 + i or ϕ(i) = i′1 + i1− i. Matchings which are
too short are not useful for our applications, so we require

length(ϕ) = |i2− i1|= |i′2− i′1|> lmin.

We set up a similarity energy E which is based on comparing
the curvatures κi,κ

′
j at vertices xi,x′j, resp.:

Eκ,κ′(ϕ) =
1

length(ϕ) ∑
i2
i=i1
|κi−κ

′
ϕ(i)|. (6)

and find ϕ such that Eκ,κ′(ϕ) is small but ϕ is still long.
The unknowns in this optimization problem are the indices
i1, i
′
1, i2, i

′
2 (under the side condition above). The longest

match ϕ whose energy is below a certain threshold is then
the sought-after partial shape match of curves. We find ϕ

via dynamic programming, using an n× n′ cost matrix C,
with C j, j′ = min{Eκ,κ′(ϕ) | ϕ partially matches polylines
x1, . . . ,x j and x′1, . . . ,x

′
j′}. We omit the details and refer

to [CLRS05] instead.

b′b

κ(s) κ
′(s)

s
s0 6

ϕ(s0)

s1 6

ϕ(s1)

Figure 8: Partial match (red) between two planar cuts of a
surface. The match is discovered by comparing the respec-
tive curvature plots κ(s), κ

′(s) and finding a length-preserv-
ing mapping ϕ such that κ(s)≈ κ

′(ϕ(s)) for s ∈ [s0,s1].

Remark. User-defined parameters in the above procedure are
lmin and the energy threshold. We set lmin such that curves

c© 2014 The Author(s)
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shorter than 20% of the bounding box diameter are pruned
away. For the energy threshold, see Fig. 15.

Remark. For evaluating the energy E in Equ. (6) we use the
robust curvatures of [PWHY09], but E could be based on
any similarity measure (e.g. based on deviation of tangent
fields [CEY97], see also [BB82] for 2D shape descriptors).

Figure 9: Congruent curve seg-
ments arranged in a good (top)
and a bad (bottom) manner, as far
as future construction of sweep
surfaces is concerned. Any sweep
surface based on the bottom se-
quence exhibits a sharp twist.

2.2. Finding sequences of proto-profiles. Every valid
partial match between two curves gives rise to a family of
similar curves, which consists of all other curves matching
the initial ones. An exhaustive search of all candidates needs
O(N3) time, with N as number of curves. Since the purpose
of matching is to find a profile whose smooth motion gen-
erates the surface under consideration, we reject any pairing
of curves where the angle between their planes exceeds a
certain threshold (mostly 25◦), see Fig. 9. The result of this
search is an unordered set of curve parts trimmed to equal
length, looking like Fig. 10, left, not yet like Fig. 9.

b0 b1 b2

Figure 10: Extracting rib sequences from a set of similar
curves (left, in red). Choosing weights (ω1,ω2) = (1,1) and
(0.6,1), resp., produces the yellow, resp. green, ribs.

Sparsification and ordering of proto-profiles. We proceed
with further treatment of the set of near-congruent curves we
have found (see Fig. 10, left, for an example). Our aim is to
extract a sequence of curves, called ribs, which are arranged
in the manner of a moving profile. The relative position of
successive ribs should be like in Fig. 9, top, and not like in
Fig. 9, bottom. For that purpose we must assess the ‘good-
ness’ of the relative position of two curves b, b′ of equal
length. For that, we define:

? dmin is the minimal distance of curves b, b′.
? dhaus is the Hausdorff distance of curves b,b′.
? δ is the diameter of the family of curves which is under

investigation at the moment.
? ti = xi+1−xi

‖xi+1−xi‖ is unit tangent vector of b (similar for b′).

From these quantities we constuct the combined energy

Eorder(b,b′) =−dmin

δ
+ω1

1
n ∑i tT

i t′i +ω2
dmin

dhaus
.

Maximizing Eorder then favours curves in proximity (1st
summand), favours “parallel” curves (2nd summand), and
penalizes tangential misalignment, i.e., the sliding of b′

along b (3rd summand). Eorder is used to extract and order a
sparse rib sequence as follows: We start with an unordered
set of curves such as produced by exhaustive search, pick
an element b0 and find b1 such that Eorder(b0,b1)→ max.
We then inductively find the curve bi+1 by maximizing
Eorder(bi,bi+1), under the side condition that bi−1 and bi+1
do not lie on the same side of the plane which carries bi. An
analogous recursion finds curves b−1,b−2, . . . (see Fig. 10
for an example. For this paper we used ω1 = 0.6, ω2 = 1).

2.3. Computing sweeps by interpolation and optimiza-
tion. A nicely ordered sequence of ribs, such as shown by
Figure 10 is converted into a surface by interpolation. That
surface patch subsequently undergoes optimization. The fol-
lowing paragraphs describe the individual parts of our op-
timization procedure; for a detailed overview of the entire
algorithm see Figure 4.

2.3.1. Hermite Interpolation of motions. The design of
curves by Hermite interpolation is a standard procedure of
geometric modeling, which has been transferred to the de-
sign of motions by [HPR04]. The vertices and tangent vec-
tors used for curve interpolation are thereby replaced by po-
sitions of rigid bodies and velocity fields, respectively. Re-
call that such a velocity field has the form given by Equation
(2) and is encoded in a vector C =

[ c
c̄
]
, cf. Equation (1).

Figure 11a illustrates that kind of Hermite data. [HPR04]
perform “ordinary” Hermite interpolation in the linear space
of affine transformations, followed by closest point projec-
tion onto the subset of Euclidean motions (using a distance
measure constructed from the vertices which move).

2.3.2. Estimating velocities for Hermite interpolation.
Assume two curves b,b′ close to a reference surface S. They
are sampled uniformly by vertices x1, . . . ,xn and x′1, . . . ,x

′
n.

We also compute closest point projections x∗i of vertices xi
onto the reference surface S, and the normal vectors ni there.

We seek a velocity state C =
[ c

c̄
]

belonging to a sweep
which after a timestep of magnitude ∆t = t′− t moves all
xi’s along S, to eventually reach x′i . This wish is expressed
by minimizing the following quadratic function F(C):

Fb,b′(C) = Ftang +µ1Freg +µ2Fpivot, where (7)

Ftang = ∑i

(
nT

i (xi +∆t · ẋi−x∗i )
)2

, ẋi = c̄+ c×xi,

Freg = ∑i ‖xi +∆t · ẋi−x∗i ‖2,

Fpivot = ∑i ‖x
′
i−xi−∆t · ẋi‖2.

The parts of F have the following meaning: Ftang is small if

c© 2014 The Author(s)
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(a)

b1

b3 b4

(b) (c)

(d)

red: 1st profile (rib)
green: optimized profile
black: curves α

−1
t (b∗t ), for selected

times t = t1 , . . . , tr

Figure 11: Generating and optimizing sweeps from a sequence b1, . . . ,b4 of ribs. (a) The procedure of §2.3.2 yields velocities
for each rib (shown in yellow). (b) These Hermite data define a motion (cf. §2.3.1), which is applied to the profile b1 and
generates a sweep surface. (c) One round of profile optimization according to §2.3.3 yields this sweep. (d) Sweeping any planar
profile b (here b = b1) along a surface S does not recreate S exactly. This image visualizes the traces α

−1
t (b∗t ) of the reference

shape S in the moving plane which carries b before optimization (referring to the notation employed in §2.3.3).

the vertex xi moves tangential to the reference surface. Freg
is a regularizer, we chose µ1 = 0.002. Fpivot is small if the
velocity state causes xi to move close to its partner x′i . We
choose µ2 = 0.1.

The velocity states Ci associated with ribs {bi}imax
i=imin

are
now computed as minimizers of Fbi,bi−1 +Fbi,bi+1 (two sum-
mands occur for all indices except for i = imin and i = imax).
The time ti associated with ribs bi is chosen as ti = i. We
proceed with C1 Hermite interpolation, using the method
of [HPR04] as a black box (see Fig. 11a and Fig. 11b).

2.3.3. Improving proto-profiles. Having obtained (by
Hermite interpolation) a continuous motion of an initial pro-
file curve b and a sweep surface, we now compare that sweep
with the reference shape S — see Figure 11. The position of
the curve at time t is denoted by αt(b), where αt is a rigid
body transformation. If S were generated by that profile in
an exact manner, then all curves αt(b) would lie in S. Com-
puting the intersection (temporarily denoted by b∗t ) of their
plane with S would yield αt(b) itself. Since this is in gen-
eral not the case, we improve the profile b by replacing it by
a common approximant of the trace curves α

−1
t (b∗t ). Fig-

ure 11 displays such curves and their common approximant.
To numerically perform this procedure we compute the in-
tersection curves b∗t for a finite number (say, 8 between each
rib pair) of intermediate values t and use the tangent-distance
minimization method introduced by [BI98] for approxima-
tion.

2.3.4. Checking the sweep surface for a good fit. Her-
mite interpolation (§2.3.2) and improving the profile (§2.3.3)
are performed in an alternating way, until the resulting sweep
surface is close enough to the reference shape S. We check
this condition by means of the intermediate profiles αt(b)
which occurred in §2.3.3. The bounding box of S having di-
ameter 1, we declare a sweep to be good enough if its dis-
tance to S does not exceed a certain threshold εprox, which
typically is in the range of 0.001 to 0.01. Having now col-
lected all ingredients of our algorithm, let us refer to Figure 4
again which depicts how they are called in succession.

3. Results and discussion

Applications. Application: Surface analysis. Fig. 12 shows
our analysis of a freeform architectural design (‘Skipper
library”). One can see that the convex nature of this de-
sign allows us to cover it almost completely with sweep
patches. Similarly, Figure 13 shows results for the “Yas Ma-
rina Hotel”, Abu Dhabi, and the top of the proposed “Lilium
Tower”, Warszawa. Here a complete covering would require
us to use rather small patches. Fig. 20 (Heydar Aliev Cul-
tural center, Baku) exhibits similar properties.

Application: Digital Surface Reconstruction. Fig. 14 demon-
strates how we digitally reconstruct a given sweep surface
which is given as a mesh S (see Fig. 7 for a similar exam-
ple). We here do not run our entire algorithm, but visualize
only the search for movable planes. One can clearly see that
up to sampling density in plane space, and apart from some
spurious false positives, we reconstruct exactly the planes
which correspond to the original motion generating S.

Application: Analysis of CAD models. Since the form of ma-

Figure 12: Analyzing the ‘Skipper library’ design by Form-
texx. The left hand figure shows the largest patches found,
while the right hand figure shows all 119 patches detected
by our exhaustive search which lie closer to the reference
geometry than 0.001 times its bounding box diameter, and
which are large enough not to fall below the algorithm’s size
threshold.

c© 2014 The Author(s)
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(b)(a)

Figure 13: Here we show several of the larger sweep patches we de-
tected on the skin of architectural designs. (a) Yas Marina Hotel, Abu
Dhabi, 2009, by Asymptote Architecture. (b) Top of Lilium Tower (to be
constructed in Warszawa; by Zaha Hadid Architects).

(a) (b) (c) (d)

Figure 14: Digital reconstruction of a sweep surface S. S is generated by sweeping a profile in the shape of the letter G. In plane
space (see insets), the continuum of planes carrying the generating profile appears as a curve. Subfigures (b)–(d) illustrate the
‘movable’ curves and their planes found by the analysis procedure of §1.3. The individual subfigures correspond to different
gliding energy thresholds. Apart from some spurious sections which accidentally are movable, we basically reconstruct the
exactly movable ones.

Reference shape pre- Initializing planes Matching curves Optimizing sweeps Total time [sec]
Fig. No. #vertices proc Nini g [%] # iter Ngood αmatch Nmatch Fmatch εmatch Nopt εprox Nsweeps Tini Tmatch Topt

7a 5k 0.1 2420 5 1 206 8
7e ” ” ” 5 2 667 21
12 32k 0.6 1452 1 3 142 25 167 536 .01 152 .001 119 286 234 86
13a 5k 0.01 310 5 3 137 60 241 637 .1 310 .01 49 17 184 57
13b 82k 1.6 310 5 3 164 60 162 342 .1 185 .005 122 97 854 152
14b 10k 0.3 1936 5 3 4002 78
14c ” ” ” 3 3 574 78
14d ” ” ” 1 3 194 78
16a 9k 0.15 665 5 3 151 25 166 312 .01 194 0.01 112 63 212 68
16e .4k 0.01 312 5 3 196 25 229 471 .01 356 0.01 263 14 241 87
17 5k 0.1 176 1 3 380 45 403 814 .01 612 0.005 315 52 529 72
18a 200k 15 496 5 3 132 25 144 724 .01 516 .001 292 172 312 962
18b ” ” 114 5 3 84 25 95 300 .01 211 .001 138 144 148 423
18e 414k 10 186 5 3 76 25 87 291 .01 229 .01 216 342 671 582

18d, 20 ” ” ” ” ” ” ” ” ” ” ” .05 111 ” ” 624
18c ” ” ” ” ” ” ” ” ” ” ” .001 36 ” ” 871
19a 10k 0.3 1210 1 3 1720 42

Figure 15: Statistics and timings for the examples shown in the paper. The first columns show the number of vertices in the
mesh used to represent the reference shape, and the amount of time spent preprocessing. • The “initialization” columns show
the number Nini of planes we cut the reference shape with initially; and the number Ngood of good planes taken away to the next
step in the algorithm. Goodness is decided by the value of the gliding energy being in the lowest g-th percentile. Further we
show the number of iterations used for adaptive denser sampling of plane space. • The “matching” columns show the angle
threshold αmatch used for pruning pairs of planes; the number Nmatch of “good” curve segments we perform matching on; the
number Fmatch of families of near-congruent curves which were found; and the threshold used in matching: We consider a match
ϕ good enough if Eκ,κ′(ϕ)≤ εmatch ·Eκ,0(·). • The “optimization” columns show the number Nopt of initial sweep patches; the
distance threshold εprox for deviation of the sweep from the reference geometry; and the number Nsweeps of sweep patches found.
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(a) (b) (c) (d) (e) (f)

Figure 16: CAD models like the ones shown in (a), (e) often exhibit simple surface parts which are trimmed away before
analysis is applied to the freeform parts of the model (b,c,d,f). The sweep patches we found on the latter are not consistent
enough to convince us that sweepability is a design feature here.

Figure 17: Analyzing incomplete
data. Here our algorithm is applied to
a sweep surface S which has a big hole
in it. In the undisturbed areas of S, the
original sweep is recovered. Near the
hole we find a different sweep which
approximates S within tolerance, and not the original sweep which in this area would require a rather short profile curve. Our
algorithm has not been extended to handle closed profiles, as evident from the right hand figure.

chine parts often must match their function, CAD models
usually exhibit simple kinds of surfaces, e.g. parts which are
planar or which have rotational symmetry. Figures 16a and
16e show two examples, where we trim away the simple sur-
face parts and apply sweepability analysis to the rest.

Stability. We have tried to verify the veracity and stability
of our approach by various means:

? Varying the proximity threshold between the values 0.01
and 0.001 of the bounding box diameter yields informa-
tion on stability w.r.t. to tight proximity bounds when
checking the fit of sweeping patches in §2.3.4. See
Fig. 18c–e for such a test.

? Varying the number of planes used in the exhaustive
search for “movable” cuts in §1.3 yields information on
stability w.r.t. coarse sampling of plane space. This infor-
mation is valuable when one wants to quickly assess the
sweepability of a reference shape in seconds rather than
minutes. See Fig. 18a,b for such a test.

? Running the algorithm on a reference shape which is al-
ready known to be generated by a planar profile yields
information on the fundamental question of false nega-
tives. In our experience, existing sweeps are detected in a
satisfactory manner. Figures 7 and 14 show examples of
such tests. Fig. 17 illustrates missing data on an otherwise
exact sweep.

? Running the algorithm on a reference shape which is gen-
erated by a planar profile up to local deformation yields
information on how stable the “sweepability” property is.
Such a deformation series is shown by Fig. 19.

Convergence. One can prove that any given surface S can
be completely covered (approximately) by sweep patches.

That covering is far from optimal but can be described ex-
plicitly, and its existence implies that our algorithm is able
to completely cover S if we just increase the sampling den-
sity and decrease the minimum permitted length of profile
curves. We construct such a covering, namely by strips of
predefined length but possibly small width: we move circular
arcs such that they are in second order contact with S along
arbitrarily chosen paths. By Meusnier’s theorem [dC76] we
only have to choose the circle radius sufficiently small.

Implementation details. At the moment only an academic
implemention of the algorithm is available which requires
the user to set parameters. Statistics concerning the number
of variables, of samples, of results, of iterations are given in
Fig. 15, together with various thresholds. It is not surprising
that the difficult problem of recognizing ‘sweeping’ parts of
a given shape is time-consuming. The most complex shape
contained in the table required half an hour for computation.
Timings refer to a desktop PC with a 3.33 GHz processor.

Since we do not know of other work which solves the
same problem, we found it hard to do a meaningful com-
parison with other work.

Limitations. The main limitations of our algorithm lie in
its complexity and the time-consuming nature of individ-
ual steps. Since the problem of detecing sweep surfaces is
known to be difficult, this is hardly suprising. However, stan-
dard procedures of 3D reconstruction [VM02], like trim-
ming away simple surface parts, and segmentation along
sharp edges, will typically leave only smaller freeform parts
for inspection by our algorithm.

When applying the algorithm to shapes which are appar-
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(a) (a) (c)

εprox = 0.001

(d)

εprox = 0.005

(e)

εprox = 0.01

Figure 18: Stability of our algorithm. Subfigures (a), (b) illustrate the effect of thinning set of planar sections on the number
of sweep patches found. This architectural design is part of the Heydar Aliev cultural center built in Baku by Zaha Hadid
Architects. Subfigures (c)–(e) illustrate how we improve coverage by sweep patches via lowering the proximity threshold εprox.
This architectural design was proposed for the National Holding Headquarters, Abu Dhabi. In both cases, the change in
coverage is not as big as the change in the intial algorithm parameters might suggest, which implies good stability of the
method.

(a)

0 .025

dist(x,Sa)

(b) (c) (d)

Figure 19: Behaviour of the sweepability property under deformation. This series of images demonstrates reconstruction of a
double-sweep surface Sa which is locally deformed into surfaces Sb, Sc, Sd . The amount of deformation is illustrated by inset
figures which show the deviation from Sa (Sa has bounding box diameter 1). (a) The reference shape Sa is in parametric form
described by x(u,v) = b(u) + b′(v). It therefore is doubly a sweep: The profile b moves by translations along the profile b′,
likewise b′ moves along the profile b. The planes carrying the various copies of b appear as a straight line in plane space, and
so do the planes carrying the various copies of b′. These planes are detected by our algorithm, up to sampling density of plane
space. Subfigures (b)–(d) illustrate the effect of deformation, by analyzing the surfaces Sb, Sc, Sd in the same way. The best cuts
(most movable cuts, actually the 1-st percentile according to Egliding) are shown, proving that the profiles not affected by the
deformation are still reconstructed.

ently not smooth, the user has two choices: One is to con-
sider the small features of the given shape as intentional and
run the algorithm with an appropriately dense set of initial
planes which is able to capture all details. The other one is
to consider the small features as noise, and make sure that
partial matching is based on a similarity measure which is
robust w.r.t. noise.

We should remark here that the apparently much less than
full coverage of shapes by sweep patches – as evident from
various figures – does not indicate a limitation of the algo-
rithm, but rather a limitation of the shapes under investiga-
tion: Our algorithm will cover the remaining parts of the ref-
erence shape if the size thresholds in our algorithm are set
lower (cf. remarks on convergence).

Conclusion. We have presented an algorithmic approach to
a difficult geometric problem for which so far no analytic so-
lution has been presented, namely, detecting if a surface can
be represented by sweeping of a planar profile, or at least
approximately so. Our method successfully solves this prob-

lem. It relies on a coarse exhaustive search in the space of
planes, combined with adaptive refinement and pruning, an
intelligent method of partial curve matching, and optimiza-
tion of sweep patches.

In summary we believe that we have presented a substan-
tial contribution to the understanding of shapes: This topic
is interesting from the purely geometric point of view, since
we are now able to determine if a shape is genuinely two-
dimensional, or it is in fact simpler and can be defined by
one-dimensional entities alone. The topic is also interesting
from the viewpoint of applications, in particular manufactur-
ing, and underconstructions in freeform architecture.

Future research. One direction of future research is an ex-
tension of our algorithms to the case of non-planar profiles.
Unfortunately at the moment this seems out of reach. An-
other direction is to establish connections with NC milling,
aiming at tool motions which can generate large parts of a
surface in a single sweep.
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(a) (b) (c)

Figure 20: Finding sweep patches in the skin of the Heydar Aliev cultural center, Baku. (a) For one large detected patch, the
correspondong motion and planar profile is shown in detail. (b) Partial covering by sweep patches. (c) Selected larger patches
together with the profiles they are generated from.
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