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Abstract. This paper builds on recent progress in computing with geometric con-
straints, which is particularly relevant to architectural geometry. Not only do var-
ious kinds of meshes with additional properties (like planar faces, or with equilib-
rium forces in their edges) become available for interactive geometric modeling, but
so do other arrangements of geometric primitives, like honeycomb structures. The
latter constitute an important class of geometric objects, with relations to “Lobel”
meshes, and to freeform polyhedral patterns. Such patterns are particularly inter-
esting and pose research problems which go beyond what is known for meshes, e.g.
with regard to their computing, their flexibility, and the assessment of their fairness.

1 Introduction

Architectural projects of high geometric complexity greatly benefit from the in-
corporation of essential aspects of function, fabrication and statics into the shape
modeling process. This integrated view is one of the major goals of Architectural
Geometry. One has to avoid detailed physical simulation as this would hardly be
compatible with interactive shape manipulation. Instead, we aim at developing
shape modeling tools which employ simplified mathematical models in order to
respect manufacturing and structural constraints. Still, one needs to develop effi-
cient numerical solvers for the arising systems of constraints. In the present paper,
we briefly address a few core ideas on the mathematical formulation and mainly
discuss a class of numerical algorithms which are well suited for interactive design.

From a mathematical perspective, the problems to be solved are not typical con-
strained optimization problems. Constraint-aware design is about the solution of
under-determined systems of usually nonlinear, and frequently redundant, equations
and inequalities and about ways of guiding the user towards preferred solutions.
This guidance is provided by additional targets related to the aesthetics of a design
and other goals which depend on the specific application scenario and task.
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1.1 Prior work

The methodology presented in our paper is applicable to a wide range of problems in
Architectural Geometry, but we confine our survey of prior work to the integration
of structural constraints and to interactive constraint-aware design.

Statics-aware design. The incorporation of structural constraints into shape de-
sign is probably best accomplished by aiming at force equilibrium. This approach
is taken within the thrust network method in connection with the design of self-sup-
porting structures [Block and Ochsendorf 2007; Block 2009; Block and Lachauer
2011; Vouga et al. 2012; Panozzo et al. 2013; de Goes et al. 2013; Liu et al. 2013],
as well as closely related form-finding methods for compression support structures
[Lachauer and Block 2012], fabric formwork for concrete shells [Van Mele and
Block 2011] and tension structures [Barnes 2009].

The design of structures which are built from simple elements (such as planar
quad panels) and which are structurally sound at the same time, is much less in-
vestigated. Schiftner and Balzer [2010] do not simultaneously consider statics and
the rationalized geometry. Vouga et al. [2012] show how to rationalize any self-
supporting shape by a self-supporting planar quad mesh, but do not directly design
it. Form-finding with polyhedral meshes in static equilibrium is the topic of [Tang
et al. 2014], of which our paper is a follow-up.

Interactive design tools for freeform architecture. Most early work in architectural
geometry was already aimed at fabrication-aware design and realized this goals by
means of constrained optimization algorithms. The most successful ones are already
incorporated in commercially available software (e.g. “EvoluteTools”).

A lot of recent progress comes from the research group of M. Pauly at EPFL.
Their shape-up algorithm [Bouaziz et al. 2012] uses projections onto individual
constraints, but has the disadvantage that each constraint requires a separate treat-
ment. Local shape modifications of constrained models using ideas from sparsity
have been presented by Deng et al. [2013]. Finally, Deng et al. [2014] extended
shape-up within an augmented Lagrangian formulation to a framework which aims
at real-time manipulation and a careful distinction between hard constraints and soft
targets. Poranne et al. [2013] introduced plane coordinates as auxiliary variables for
modeling polyhedral surfaces. In this way, the planarity constraint is quadratic. This
approach motivated the systematic avoidance of constraints of degree ≥ 3 by Tang
et al. [2014] which forms the basis of the present paper. Extensive comparative tests
showed that it clearly outperforms previous work in terms of the combination of
speed and high accuracy of constraint satisfaction. Moreover, it is well suited for
the integration of statics based on the thrust network method.
Remark: Tools based on evolutionary optimization such as Galapagos attracted a
lot of attention in the architectural community. Their simplicity comes at the cost
of low efficiency and accuracy and thus they are not suitable for the interactive
modeling tasks we are interested in here.
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1.2 Contributions and overview

In § 2, we briefly outline the surprisingly effective method of Tang et al. [2014]
which is suitable for interactive design of constrained meshes and more general
structures. § 3 discusses form-finding with polyhedral meshes. We show how to
design meshes with planar faces subject to further constraints such as alignment
with a given boundary, force equilibrium, and others. This method is very well
suited for modeling structures with repetitive elements. This is demonstrated in § 4
by means of so-called honeycomb structures and Lobel frames which are closely
related to them. In § 5 we turn to the wider topic of polyhedral patterns and discuss
ways for assessing and controlling the aesthetics of such patterns. Along with a
discussion of our findings and insights, we address future research directions in § 6.

2 Computational Setup.

The computational setting we are about to describe is very general, and we illustrate
it by means of a few examples which also serve to introduce the geometric objects
which are the focus of this paper. Their interrelations are the topic of later sections.
Each time we describe a set of variables which define a certain geometric structure,
provided certain contraints are fulfilled. We aim at constraints which are linear or
quadratic equations, and which involve as few variables as possible.

”Lobel” meshes (cf. Figure 1), are defined by having equilateral triangles as
faces. We use the vertices v1,v2, . . . as variables, together with the edge length
“l”. The equilateral property reads (vi− vj)

T (vi− vj) = l2, for all edges vivj. We
conclude that the set of constraints imposed on a triangle mesh in order to enforce
the Lobel property is one quadratic equation per edge.

Figure 1: Lobel Meshes. This series of images visualizes surfaces composed of equilateral
triangles created by cutting out pieces of a diamond (red areas in inset figures) and gluing the
newly arising boundaries together. Finding such surfaces is one example of a mesh optimiza-
tion problem with constraints (here: equal edge lengths in a triangle mesh). Structures made
from equilateral triangles are called “Lobel” structures in honor of the French architect Alain
Lobel who intensively studied them, see [Lobel 1993].
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Figure 2: Designing honeycomb structures is an in-
stance of modeling with constraints: A collection of
quadrilaterals form the walls of a honeycomb struc-
ture, if their combinatorial arrangement is along the
edges of a hexagonal-dominant mesh, and their in-
tersection angle is 120◦. Constraints are planarity
of quads and the correct intersection angles. Note
that one can find a Lobel mesh which intersects the
honeycomb orthogonally, and vice versa.

Polyhedral meshes. A more complex example are meshes whose faces can be ar-
bitrary n-gons, but are required to be planar. In addition to vertices, we here use
the normal vectors n1,n2, . . . as variables. The condition that face No. k is planar is
expressed by (vi−vj)

T nk = 0, for all edges vivj of that face. It is also convenient to
require the normalization nT

k nk = 1. Again, we get a set of quadratic constraints.

Honeycomb structures, as defined by Figure 2 are studied by Jiang et al. [2014].
They are arrangements of quadrilaterals combinatorially different from the arrange-
ment of faces of a mesh; however the constraints describing their planarity are the
same. The required intersection angles of 120◦ are most elegantly expressed by re-
quiring that whenever faces No. i, j, k meet in a common axis, their normal vectors
must form an equilateral triangle, which results in the equation ni +nj +nk = o.

Self-supporting meshes. We wish to incorporate forces in our computational set-
ting, since meshes with compressive equilibrium forces in their edges (Figure 4)
play an important role e.g. in the stability analysis of masonry, see e.g. [Block and
Ochsendorf 2007]. The force which vertex No. j exerts on vertex No. i has the form
wij(vi−vj). Since wij = wji, information on forces is stored via one force coefficient
wij per edge. This edge experiences compression if wij ≥ 0. The inequality wij ≥ 0 is
made an equality by introducing a dummy variable ωij and requiring wij =ω2

ij (while
wij represents a force per edgelength, ωij is there only to assist in a mathematical
trick and does not have a physical interpretation).

As to constraints, we must formulate what the forces should be in equilibrium
with. The simplest case, which e.g. applies to Figure 4b, is discussed by Figure 3.

vi vjvjvjvjvjvjvjvjvjvjvjvjvjvjvjvjvj

wij(vi−vj)wij(vi−vj)wij(vi−vj)wij(vi−vj)wij(vi−vj)wij(vi−vj)wij(vi−vj)wij(vi−vj)wij(vi−vj)wij(vi−vj)wij(vi−vj)wij(vi−vj)wij(vi−vj)wij(vi−vj)wij(vi−vj)wij(vi−vj)wij(vi−vj)

Figure 3: Force equilibrium. The simplest case is
that forces wij(vi−v j) in edges viv j counterbalance
the weight of edges, which is modelled by the weight
“ρ” per unit length. With (0,0,−1) as direction of
gravity, force balance at vertex vi reads

(0,0,−1) ·∑ j∼i ρlij = ∑ j∼i wij(vi−vj)

where summation is over all vertices vj connected to
vi by an edge, and the edge lengths are defined by
l2
ij = (vi−v)T (vi−vj).
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(a) (b)

Figure 4: Self-supporting meshes represent a bar-and-joint framework with compressive
forces in the edges counterbalancing the deadload. They serve as ficticious “thrust networks”,
proving stability of freeform masonry via Heyman’s Safe Theorem (a), or as the basis of
structures made of beams and rigid joints (b). Remark: These images do not show forces.

Again, all equations are quadratic. For details and other ways to define the weight,
e.g. proportional to area as shown by Figure 4a, see [Tang et al. 2014].

Projection onto the constraint space. Tang et al. [2014] describe how to treat con-
straints of the kind described above (the restriction that constraints should be at
most quadratic is not severe, since any equality or inequality expressible in polyno-
mial form can be made quadratic, by introducing products of two existing variables
as new variables, until the polynomial degree is down to 2). They describe how
to quickly solve the system of constraints, and thus make interactive modeling of
constrained geometry possible. A typical application of their method would be to
implement a graphical interface where a user can interactively create and modify
a given geometry, while the system performs projection onto the constraint space,
i.e., searching for variables which fulfill the constraints and which are close to the
values they had before, and close to those the user wanted.

For their algorithm, Tang et al. [2014] make use of a fairness energy “E(x)”
which is a quadratic expression in the collection x of variables. The definition of E
varies depending on the application. The method is a Newton iteration; in the i-th
iteration the nonlinear system of constraint equations is converted to a linear sys-
tem of the general form Aix− si = o, whose solution xi is computed. The iteration
stops whenever the desired accuracy is reached or xi, xi+1 are equal for all practical
purposes. Linearization of quadratic equations is a standard procedure; nonlinear
constraints like vertices being confined to a curve or surface are linearized by re-
placing those curved objects by their tangent resp. tangent plane. Since the system
of constraints is both underdetermined and redundant, one cannot solve Aix− si = o
directly. Instead xi is found via regularization, as minimizer of ‖Aix−si‖2 + εE(xi)
+ ε′‖xi−xi−1‖2, with ε,ε′� 1. For details we refer to [Tang et al. 2014].
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Figure 5: Interactive modeling of forces in the edges of a quad mesh under planarity con-
straints. We use the method of Tang et al. [2014] to combine subdivision and projection onto
the constraint space (defined by planarity of faces, the self-supporting property, and the con-
dition that boundary vertices must not leave the boundary curve of the subdivision surface
generated by the control points as set by the user). (a) The user works on the control points of
a mesh created by subdivision. (b) Each time the user moves the control points and releases
them, the system preforms projection onto the constraint space. (c), (d) Numerical informa-
tion is conveyed by color coding the faces (blue means planar) and edges (color corresponds
to magnitude of forces).

3 Interactive form-finding with polyhedral meshes

Loss of design freedom by geometric constraints. Meshes with planar faces are
important objects of architectural geometry, since they represent the shapes of steel-
glass-constructions. Their modeling is, of course, easiest for triangle meshes, be-
cause planarity is automatic there. Quad meshes are more of a challenge. It is
known that “fair” quad meshes (whose mesh polylines emulate the isoparameter
lines of smooth surfaces) offer little design freedom once the reference surface to
be covered is fixed. If edges are required to intersect near-orthogonally, they must
already follow the principal directions of the reference surface [Liu et al. 2006],
leaving only the density of edges as a design element. This is true also for quad
meshes whose edges carry forces counterbalancing vertical loads: The edges must
follow relative principal curvature lines (with the Airy stress potential assuming the
role of unit sphere, cf. [Vouga et al. 2012]). With either side-condition it is usually
impossible to perform a fair quad meshing of the reference geometry such that the
mesh’s boundary is nicely aligned with the original surface’s boundary.

Interactive modeling of polyhedral meshes. If one can solve the constraint equa-
tions quickly enough, however, then interactive geometric modeling becomes avail-
able. It is no longer necessary to perform surface analysis and subsequent remeshing
as proposed e.g. by [Liu et al. 2006; Vouga et al. 2012]. Figure 4b shows a self-sup-

Figure 6: Interactively modifying a polyhedral mesh by increasing the enclosed volume.
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Figure 7: Projecting a triangle
mesh onto the constraint space
defined by the “Lobel” prop-
erty makes all faces equilat-
eral and the mesh developable,
apart from cuts necessary to ac-
commodate valence 5 vertices.

porting quad mesh created in this way. For details see Figure 5.
The computational setup for this projection is as described in § 2. As fairness

energy we use the sum of terms of the form ‖vi − 2vj + vk‖2, for each possible
choice of consecutive vertices vi,vjvk on a mesh polyline.

We do not pursue this topic further, since it is anyway treated by Tang et al.
[2014]. We mention only a few more constraints easily incorporated into this setup,
such as symmetry w.r.t. to a plane, or w.r.t. to rotation about an axis, or inequalities
involving panel sizes. Another constraint is a prescribed total area of the mesh,
or a prescribed enclosed volume, see Figure 6. Constraints like the latter however
involve many more variables than the ones expressing local properties like planarity.
They will slow down computations, since the matrices Ai will no longer be sparse.

4 Element repetition: Honeycomb structures and Lobel frames

For fabrication of freeform skins in architecture, it is very relevant if a substantial
number of parts is the same. E.g. Sing and Schaefer [2010] studied meshes where
only a small number of shapes of triangles occur. Here we are very much interested
in two kinds of geometry: meshes where all faces are the same, and support struc-
tures where all nodes are the same. These two questions lead us to the concept of
Lobel mesh on the one hand, and honeycomb structure on the other hand.

Lobel meshes. Frameworks built from equilateral triangles are sometimes called
“Lobel frames”, after the French architect Alain Lobel who intensively studied
them. We are here interested in triangle meshes all of whose faces are equilateral
triangles and which we would like to call Lobel meshes. An equivalent definition of
such a Lobel mesh is that all edges have the same length. Yet another definition is
that all angles in the mesh are 60 degrees. Examples are shown by Figures 1, and 7.

The duality Honeycomb — Lobel mesh. Objects dual to Lobel meshes are hon-
eycomb structures, defined as an arrangement of open hexagonal cells bounded by
quadrilateral walls, such that the cells and walls follow the faces and edges of a
hexagonal mesh, respectively. In addition we require that walls intersect at 120
degrees — see Figure 2. This leads to the important property that any structure
made of beams which follow the walls of the honeycomb has congruent nodes. For
modeling and properties of honeycombs see [Jiang et al. 2014].
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Figure 8: Lobel meshes and Honeycombs. A combinatorial dual to the walls of a honeycomb
(left) is a triangle mesh where edges intersect at 60 degrees (right), implying the Lobel prop-
erty. Step-by-step construction of the Lobel mesh orthgonal to the honeycomb is possible
only for simply connected honeycombs; otherwise the construction does not globally close.

Given a simply connected honeycomb, one can step by step construct a Lobel
mesh whose edges are orthogonal to the walls of the honeycomb, see Figure 8.
Conversely, given a Lobel mesh, one may construct the corresponding honeycomb.
The honeycomb, however, carries more geometric information than the Lobel mesh:
the latter is uniquely determined, up to scale, by the planes carrying the walls of the
honeycomb. The information on the location of vertices of the honeycomb is lost.
This duality between honeycomb structures and Lobel meshes is easy to see, but it
does not seem to have been mentioned in earlier publications. We also mention that
Lobel meshes are a special case of the circle packing meshes studied by Schiftner et
al. [2009], since placing spheres at the vertices (whose diameter is the mesh’s edge
length) yields a packing.

Discrete developable surfaces. Lobel meshes are developable, meaning that every
1-ring neighbourhood of a valence 6 vertex can be mapped isometrically into the
plane without stretching or tearing. This follows immediately from the fact that all
angles in the mesh are 60 degrees. Depending on the global topology and geometry
of the mesh, one can grow this developable neighbourhood by adding more and

+ − +

Detail

Figure 9: Local and global properties of Lobel meshes. The image at right illustrates the
curve-like spherical image of the Lobel mesh at left. It follows from the discussion in [Jiang
et al. 2014] that the normal vectors of a 1-ring neighbourhood of any vertex typically form a
zero area hexagon on the unit sphere.
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more triangles. If a vertex has valence different from 6, we must cut the Lobel mesh
near that vertex to develop it into the plane, cf. Figures 1 and 10b.

A Lobel mesh which approximates a smooth surface should therefore have prop-
erties similar a developable surface. One such property is that developables have
only a 1-dimensional variety of normal vectors in contrast to the 2-parameter set
which non-developable surfaces have. Lobel meshes exhibit a discretized version
of this behaviour, cf. Figure 9: When constructing a Lobel mesh from a honeycomb,
the intersection lines of walls become the normals of faces in the Lobel mesh. We
visualize those normals by the spherical image of the Lobel mesh. As Jiang et al.
[2014] remark in their discussion of honeycombs, the spherical image of the Lo-
bel mesh consists of zero-area spherical hexagons (which follows from the Gauss-
Bonnet theorem), and a certain fairness/regularity implies that these hexagons fill a
curve-like stripe on the unit sphere. For details we refer to that paper.

5 Novel forms of fairness: Polyhedral patterns

Motivation. We already discussed the problematic task of representing a given ref-
erence shape by a mesh with planar quadrilateral faces. If the mesh polylines are
to mimick the isoparameter lines of a smooth surface parameterization e.g. in the
manner of Fig. 6, we have very little design freedom, because such a quad mesh is
never far away from the network of principal curvature lines, cf. [Liu et al. 2006;
Zadravec et al. 2010]. If the reference surface is not convex, the resulting meshes
might easily be unacceptable (besides the fact that lack of design freedom is fre-
quently unacceptable in itself). There are several ways out of this situation:

1. One might give up the condition that all faces are quadrilaterals and thus gain
design freedom;

2. one might give up the condition that the mesh strictly follows the reference
geometry (making use of interactive modeling tools);

3. one might give up the condition of smoothness/regularity.

Solution No. 1 has been sought for the “flying carpet” roof in the Cour Visconti
in the Louvre, Paris, by R. Ricciotti and M. Bellini. Even if not visible through
the outer skin of triangular shading elements, many of the glass panels below are
quadrilaterals, making the structure lighter and have fewer parts.

Polyhedral patterns from honeycombs. For the third solution proposed above, it
is obviously important that regularity is given up in an aesthetic and regular (if it
may be called that) way. What we mean by this is demonstrated by means of the
example shown by Figure 10: Jiang et al. [2014] have proposed to derive polyhe-
dral patterns from freeform honeycomb structures. The honeycomb contains a “top
layer” hexagonal mesh, and in this mesh we split hexagons in half by introducing
additional edges. The resulting quad mesh is being planarized by means of the
computational framework of Tang et al. [2014]. We cannot however employ this
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(a)

(b)

Figure 10: Honeycombs and polyhedral patterns. (a) A honeycomb following the “flying
carpet” roof in the Cour Visconti in the Louvre, Paris. Its walls are near-orthogonal to the
reference geometry in so far as they have been initialized this way, before projection onto the
constraint manifold has been applied.

(b) The Lobel mesh dual to this honeycomb. Developability of this surface is visualized
by a rendering with tangential light, recalling crumpled paper.

(c–e) (opposite page) Consider the top layer hex mesh of the honeycomb in (a), introduce
new edges (colored strokes in left hand insets) and seek a nearby polyhedral mesh, guided
by an alternate smoothness energy. While the patterns in (c) and (d) follow a single rule, the
one in (e) is irregular. It is created by a greedy rule: among the three possibilities to split
a hexagon in half we take the one which makes the resulting quads most planar. The inset
figures are right show a detail and the quality of planarity by color coding faces according to
the value of δ, where δ is defined as distance of diagonals, divided by average edge length.
We also give the value σ which is the distance of vertices to the reference geometry, divided
by average edge length of the mesh.
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(c) σmax = 2 ·10−4, σavg = 1 ·10−5
δmax = 9 ·10−3, δavg = 5 ·10−3

(d) σmax = 4 ·10−4, σavg = 2 ·10−5
δmax = 4 ·10−3, δavg = 1 ·10−3

(e) σmax = 1 ·10−4, σavg = 3 ·10−6
δmax = 5 ·10−3, δavg = 8 ·10−4
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algorithm in the way in its original form, since it is guided by a smoothness energy
which is not appropriate here.

In order to derive an alternative smoothness energy, we have a closer look a the
patterns under consideration. Obviously patterns 10c,d are quite regular, but the
edges do not form “straight” mesh polylines. This is even less so for pattern 10e. It
is still possible, however, to select sequences of vertices on a succession of hexagons
which form a periodic zigzag sequence, such as those highlighted in red in Figure
10 (right hand insets).

A zigzag sequence is considered fair, if (vi− vj)− (vk − vl) is small, for any
choice of consecutive vertices vi,vj,vk,vl . We therefore take as a fairness energy
the sum of squares of such expressions. Similarly we consider triples vi, vj, vk of
vertices analogous to those highlighted in blue – there are six of them for every
hexagon. We would like the kink in the short polyline vivjvk to be small, so we add
as a constraint (vi−vj)× (vj−vk) = 0, but mulitplied with a small factor to make
it a “soft” constraint. With these modifications, the method of Tang et al. [2014]
works fine, as demonstrated by Figure 10.

6 Conclusion

We have shown how the algorithmic concept of Tang et al. [2014] can be applied to
several classes of geometric objects which are relevant to architectural geometry for
various reasons (flatness of panels, or repetition in elements). These objects include:

• Polyhedral meshes in general, and polyhedral meshes with equilibrium forces
in their edges in particular.
• More general than meshes are honeycomb structures with their interesting

relations to Lobel meshes and to developable surfaces.
• An interesting topic are polyhedral patterns. We have in particular demon-

strated patterns derived from honeycomb structures.

While part of this paper is merely an exposition of the capabilities of [Tang et al.
2014] we have also presented new geometry, namely the relations beween honey-
comb structures, Lobel frames, and developable surfaces, thereby extending recent
work on honeycombs, cf. [Jiang et al. 2014].

Limitations. The algorithmic concept for solving constraint equations we used in
this paper has turned out to be efficient and fast in such cases where the constraints
can be formulated by linear or quadratic equations each of which involve only few
variables. Already Tang et al. [2014] observed that higher-order polynomial con-
straints cause a dramatic drop in performance. So do constraints which involve
many variables (such as total volume of a mesh).

A different kind of limitation is posed by geometric problems which contain a
discrete optimization component, such as a change in combinatorics. An exam-
ple of this is the paneling algorithm of Eigensatz et al. [2010] which contains an
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assignment problem. Relevant to our work, it would be a challenge to incorpo-
rate automatic changes in combinatorics into our modeling system for polyhedral
meshes.

Future Work. It should not be difficult to extend the methods discussed in this
paper to situations where the variables and constraints do not act on “visible” geom-
etry variables directly, but indirectly, e.g. on control points of NURBS surfaces. In
this way e.g. developability of NURBS can be incorporated into our computational
framework. An interactive system which combines aspects of shape, function, and
fabrication is a long term goal of our work. For all types of applications (devel-
opables, crumpled paper, . . . ), comparison with existing methods is needed.
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Figure 11: Different kinds of polyhedral patterns resolve this freeform skin into planar
quads. Like for the example of Figure 10, the pattern has been found via a two-step proce-
dure: (i) compute a honeycomb structure following the given reference surface, and (ii) split
hexagons in half and planarize the resulting quad mesh. Both steps use the method of [Tang
et al. 2014]; the 2nd step being guided by the “zigzag” fairness energy mentioned in § 5.


