
PARAMETERIZED RANDOM COMPLEXITY

JUAN ANDRÉS MONTOYA AND MORITZ MÜLLER

1. Introduction

1.1. Parameterized complexity. While classically running times or other re-
sources of algorithms are measured by a function in the length of the input only,
in parameterized complexity a secondary measurement is introduced: each prob-
lem instance comes along with an associated natural number – its parameter. The
parameter of an instance is intended to encode some knowledge we have about
‘typical’ instances or instances we are interested in and that we want to exploit
algorithmically. Intuitively, the associated parameter is small compared to the in-
stance length. To allow full exploitation of this knowledge the notion of tractability
is adjusted accordingly: an algorithm that decides instances of length n with pa-
rameter k in time f(k) · nO(1) is called fixed-parameter tractable (fpt). Here, f is
an arbitrary computable function.

The theory of parameterized intractability is centered around the W-hierarchy

W[1] ⊆W[2] ⊆ · · · ⊆W[SAT] ⊆W[P].

The classes W[1] and W[P] are two natural parameterized analogues of NP in
that they can be characterized via RAMs using certain restricted existential non-
determinism [22]. A ‘W[P]-machine’ is a RAM that on instances of size n with
parameter k makes ‘few’ (f(k) many) existential guesses of ‘large’ (size f(k) ·nO(1))
natural numbers. A ‘W[1]-machine’ additionally has to make these guesses in the
end of the computation (during the last f(k) many steps).

1.2. Randomness in the parameterized setting. First, there are methods to
design fpt algorithms by first designing a certain type of randomized algorithm
which is then fully derandomized. The most famous example is “Color-Coding” [3]
which is based on a certain use of random colourings that can be derandomized
using perfect hash families. See [37, Section 13.3] for an exposition of the method,
a sample of examples is [34, 49, 47, 16]. Other such methods are “Random Sepa-
ration” [10] and “Randomized Disposal of Unknowns” [17], both employing deran-
domization via universal sets [57, 58].

Second, some randomized fpt algorithms have been designed. Early examples
as [33] can be found in the (short) list in [27, Appendix A.3]. R.G.Downey et
al. [29] constructed randomized reductions providing parameterized analogues of
the Valiant-Vazirani Lemma (cf. Section 8). V.Arvind and V.Raman [5] designed
randomized approximate counting algorithms (cf. Section 7).

Third, some works use hypotheses on randomized parameterized intractability in
the one or the other sense. An example is M.Alekhnovich and A.A.Razborov’s [2]
proof that short resolution refutations are hard to find. This result has been deran-
domized by K.Eickmeyer et al. [32]. As another example, Y.Chen and J.Flum [19]
disprove #W[1]-hardness of certain counting problems.

1

2 J. A. MONTOYA AND M. MÜLLER

1.3. Parameterized random complexity. Except [19] all work cited above is
concerned with randomized algorithms running in fpt time. A genuinely parame-
terized view on random complexity would instead mean to measure random com-
plexity using parameterizations. How?

We look at the classical world: there a randomized polynomial time algorithm is
explained to be a binary ‘NP-machine’ where nondeterministic steps are interpreted
as coin tosses. Using the machine characterizations of parameterized NP-analogues,
this procedure can be mimicked in the parameterized world as follows.

Interpret a nondeterministic step as rolling a die instead of tossing a coin. Tak-
ing W[P] as analogue of NP, a W[P]-randomized algorithm is then an algorithm
rolling, on instances of length n with parameter k, only very ‘few’ (f(k) many) but
possibly ‘large’ (f(k) ·nO(1)-sided) dice. In terms of Turing machines this amounts
to a random complexity of f(k)·log n many random bits, and in some sense this can
be vaguely called an ‘arbitrarily low but nontrivial’ amount of randomness (cf. Sec-
tion 5). Taking W[1] as analogue of NP amounts to additionally restricting the use
of randomness: dice rolls are allowed only at the end of the computation.

This way, parameterized complexity theory can provide a genuine view on ran-
domization by reusing the parameterized restrictions on nondeterminism as restric-
tions on randomness. This possibility has already been shown by R.G.Downey et
al. in [29]. They set up a framework for parameterized randomization based on
a parameterized analogue of the classical BP-operator and a characterization of
parameterized classes by bi-indexed circuit families. Within that framework W[P]-
randomization has been systematically studied in [51, 52].

Meanwhile, the machine characterization theorems are available and, as sketched
above, give rise to somewhat handier definitions. Here we develop the corresponding
theory. Amongst other things this leads to new proofs of some of the results in
[29, 51, 52] (more precisely, the analogous statements in the current framework).
These proofs significantly simplify and strengthen the results concerned.

1.4. This work. Section 3 defines W[1]- and W[P]-randomization, the correspond-
ing parameterized analogues of BPP, namely BPFPT[1] and BPFPT, and contains
some basic observations concerning the robustness of these definitions.

Strong probability amplification for W[P]-randomization has been established
in [51] within the framework given by the parameterized BP-operator. In our
setting we obtain a new and simpler proof of this fact in Section 4 (Theorem 4.1).
We therefore suggest that BPFPT is a fairly robust class. However, is it useful?

Algorithmically, we give some W[P]-randomized algorithms: we use a parame-
terized version of polynomial identity testing as a toy example throughout the text;
Sections 7 and 8 construct some more involved W[P]-randomized algorithms.

Theoretically, one may ask what W[P]-randomization can tell us about the classi-
cal derandomization question. In Section 5 we shall see that “black-box” derandom-
ization of BPFPT is equivalent to, vaguely said, ‘arbitrarily weak but nontrivial’
classical derandomization.

We then ask for parameterized analogues of classical results, questions that often
call for new arguments. We give such analogues for the Sipser-Gács Theorem [62] in
Section 6 (Theorem 6.3), a theorem of Stockmeyer [63] in Section 7 (Theorem 7.3)
and the Valiant-Vazirani Lemma [66] in Section 8 (Theorem 8.6).

PARAMETERIZED RANDOM COMPLEXITY 3

An analogue of the Sipser-Gács Theorem has already been established in [52] for
W[P]-randomization (Theorem 6.3 (1)). Section 6 presents a new and simple argu-
ment in our framework that extends to W[1]-randomization (Theorem 6.3 (2)). The
paper [52] also contains an analogue of Stockmeyer’s theorem for W[P]. Section 7
gives a more general statement (Theorem 7.5) that implies such analogues for all
classes of the W-hierarchy and more (Theorem 7.3). Our parameterized analogue
of the Valiant-Vazirani Lemma (Theorem 8.6) strengthens the one from [29] and
generalizes it to various classes outside the W-hierarchy. We obtain it as a corollary
to a result on model-checking problems (Theorem 8.3) that may be of independent
interest.

For more information the reader may consult the introductions preluding each
section. These state the main results of the section and detail motivation, back-
ground and related work.

1.5. References. This paper reports parts of the authors PhD Theses [50, 56].
Some results appeared in the extended abstracts [53, 54, 55] and, as already men-
tioned, in the articles [51, 52]. To be precise, the latter contain statements (formu-
lated in the framework there) analoguous to Theorems 4.1 and 6.3 (1) and 7.3 (3).

1.6. Acknowledgements. We thank again Jörg Flum, the advisor of our PhD
Theses. The second author thanks the John Templeton Foundation for its support
under Grant #13152, The Myriad Aspects of Infinity, and the FWF (Austrian
Research Fund) for its support through Grant P 23989 - N13

2. Preliminaries

Our mode of speech and notation closely follow [37].

2.1. Parameterized problems. Fix a finite alphabet Σ containing 0, 1. A pa-
rameterized (decision) problem is a pair (Q, κ) of a classical problem Q ⊆ Σ∗ and
a polynomial time computable parameterization κ : Σ∗ → N mapping any string x
to its parameter κ(x). We often identify Q ⊆ Σ∗ with its characteristic function

Q : Σ∗ → {0, 1}

mapping every x ∈ Q to 1 and every x ∈ Σ∗ \Q to 0. Then parameterized decision
problems are special cases of parameterized counting problems: pairs (F, κ) of a
function F : Σ∗ → N and a parameterization κ.

A function from strings to strings is fpt computable with respect to κ if it is
computable by an fpt algorithm, i.e. one running in fpt time

f(κ(x)) · |x|O(1)

for some computable f : N→ N. A parameterized counting problem (F, κ) is fixed-
parameter tractable if F is fpt computable with respect to κ (values of F coded in
binary); the class of such problems is FPT. The class XP contains those (F, κ) such
that for some computable f : N→ N, F is computable in time

|x|f(κ(x)).

4 J. A. MONTOYA AND M. MÜLLER

2.2. Parameterized reductions. A parameterized counting problem (F, κ) is fpt
reducible to another (F ′, κ′) if there is an fpt computable (with respect to κ) function
r : Σ∗ → Σ∗ such that F ′ ◦ r = F and κ′ ◦ r ≤ g ◦ κ for some computable
g : N → N. Note that this definition includes the case of parameterized decision
problems. Intuitively, fpt reductions are required to keep the parameter small.

An fpt Turing reduction from a parameterized decision problem (Q, κ) to another
(Q′, κ′) is an fpt algorithm for Q that on input x ∈ Σ∗ makes balanced oracle queries
to Q′, that is, for some computable g : N→ N every query x′ ∈ Q′? made on input
x must satisfy κ′(x′) ≤ g(κ(x)).

Originally (see e.g. [27]) the classes W[t] of the W-hierarchy have been defined
as those parameterized problems that are for some constant d ∈ N fpt reducible to

p-WSat(Ωt,d)
Input: a weft t, depth d Boolean circuit C, and k ∈ N.

Parameter: k.
Problem: does C have a satisfying assignment of weight k?

For the purpose of this paper it is most convenient to define the classes by their
complete model-checking problems. We recall the necessary notation.

2.3. First-order logic. A (relational) vocabulary τ is a finite non-empty set of
relation symbols each with an associated arity. A τ -structure A consists of a
nonempty finite universe A and an interpretation RA ⊆ Ar of each r-ary rela-
tion symbol R ∈ τ . A τ -structure B is an (induced) substructure of a τ -structure
A if B ⊆ A and RB = RA ∩Br for each r-ary R ∈ τ ; in this case A is an extension
of B. For τ ⊆ τ ′, a τ ′-expansion of a τ -structure A is a τ ′-structure obtained from
A by adding interpretations of the symbols in τ ′ \ τ .

First-order τ -formulas are build from τ -atoms using Boolean connectives and ex-
istential and universal quantification. τ -atoms are of the form x1 = x2 or Rx1 · · ·xr
for a relation symbol R ∈ τ of arity r where x1, x2, . . . are individual variables. We
write ϕ(x̄) to indicate that the free variables in ϕ are among x̄. The set of tuples
ā from A of the same length as x̄ that satisfy ϕ(x̄) in A is denoted

ϕ(A).

A τ -formula with parameters in A is one containing besides symbols from τ also
parameters a ∈ A in place of variables. It can be interpreted only in structures
containing its parameters. ϕ āx̄ is the formula with parameters obtained from ϕ by
substituting in ϕ the parameters ā for the free occurences of the variables x̄.

2.4. Least fixed-point logic. LFP extends first-order logic by declaring [lfpx̄,Xϕ]z̄

a τ -formula of LFP whenever |x̄| = |z̄| and ϕ = ϕ(x̄ȳ) is a τ ∪̇ {X}-formula of LFP,
where X is a |x̄|-ary relation symbol outside τ that occurs positively in ϕ. It has
free variables ȳz̄. It is satisfied by b̄c̄ in a τ -structure A if c̄ is in the least fixed-point
reached when, starting with ∅, iterating the operation

B 7→ ϕ b̄ȳ
(
(A, B)

)
on subsets of A. Here, (A, B) is the τ ∪̇ {X}-expansion of A interpreting X by B.

PARAMETERIZED RANDOM COMPLEXITY 5

2.5. Model-checking problems. For a set of LFP formulas Φ we consider the pa-
rameterized model-checking problem p-MC(Φ) and its counting version p-#MC(Φ):

p-MC(Φ)
Input: a structure A and a formula ϕ ∈ Φ.

Parameter: the length of ϕ.
Problem: Is ϕ(A) 6= ∅?

p-#MC(Φ)
Input: a structure A and a formula ϕ ∈ Φ.

Parameter: the length of ϕ.
Problem: compute |ϕ(A)|.

Using instead the number of (free or bound) variables in ϕ as parameter results
in the decision problem var-MC(Φ) and its counting version var-#MC(Φ).

We introduce notation for important classes Φ. Let `, t, u ∈ N. As usual

Π`

denotes the class of prenex first-order formulas with ` alternating blocks of quanti-
fiers starting with ∀. Continuing the alternating quantifier blocks by t such blocks
each of length at most u we get the class

Π`,t,u.

E.g. a Π2,3,1 formula looks like ∀x̄1∃x̄2∀y1∃y2∀y3 ϕ for quantifier free ϕ, single
variables y1, y2, y3 and tuples of variables x̄1, x̄2. Note Π` = Π`,0,0 and Π0 is the
class of quantifier-free formulas. Further,

LFPu

denotes the class of LFP formulas of the form [lfpx̄,Xϕ]z̄ such that ϕ is first-order
with at most u bounded quantifiers and |x̄| ≤ u.

2.6. Parameterized classes. Parameterized complexity knows two sources of com-
plexity, namely quantificational and propositional alternation ([27, p.337], [37,
p.195]). These lead to a two-dimensional array of apparently intractable classes,
the A-matrix [29, 36] containing the W-hierarchy as its first row.

Definition 2.1. Let `, t ≥ 1.

(a) A[`, t] is the class of those parameterized problems that are fpt reducible
to p-MC(Π`−1,t−1,1);

(b) W[SAT] is the class of those parameterized problems that are fpt reducible
to var-MC(Π0);

(c) W[P] is the class of those parameterized problems that are fpt reducible to
p-MC(LFP2);

(d) W[t] := A[1, t] and A[`] := A[`, 1].

The counting classes #A[`, t],#W[SAT] and #W[P] are analogously defined via
the couting problems p-#MC(Π`−1,t−1,1), var-#MC(Π0) and p-#MC(LFP2). Fur-
ther, #W[t] := #A[1, t] and #A[`] := #A[`, 1].

Remark 2.2. Note that in this setup W[1] = A[1] holds by definition. For u ≥ 1,
the class A[`, t] also contains the problems fpt reducible to p-MC(Π`−1,t−1,u), and

6 J. A. MONTOYA AND M. MÜLLER

W[P] contains those fpt reducible to p-MC(LFPu) for all u ≥ 1. 1 Concerning our
definition of p-MC(Π`), observe that deciding non-emptiness of extensions of Π`-
formulas is tantamount to deciding truth of Σ`+1-sentences. E.g. to decide, whether
a given existential first-order sentence holds in a given structure, is complete for
W[1] (the parameter is the length of the sentence).

2.7. Machine characterizations. The machine model (cf. [37]) is based on a
standard notion [25] of a random access machine (RAM) with the uniform cost
measure. A RAM works with an infinite sequence of registers each containing a
natural number. The first register is called the accumulator. A program is a finite
sequence of basic instructions allowing to copy around register contents, add and
subtract (cut off at 0) them and to test if the accumulator is 0 or not.

A program for a nondeterministic RAM can additionally guess a number by
nondeterministically replacing its accumulator content by a smaller number (and
make, say, no change if the accumulator content is 0). This accumulator content is
called the guess bound of the nondeterministic step. Such a nondeterministic step
can be either existential or universal and acceptance is explained as for alternating
Turing machines. For ` ∈ N, such a program P is `-alternating if on any run on any
input it makes at most ` alternating guesses starting with an existential one.

Let κ be a parameterization. A program P (for a nondeterministic RAM) is
κ-restricted if there are a computable f : N→ N and a constant c ∈ N such that for
every x ∈ Σ∗ and every run of P on x, f(κ(x)) bounds the number of nondetermin-
istic steps and f(κ(x))·|x|c bounds the number of steps, the indices of registers used
and the numbers contained in any register at any time; if additionally all nondeter-
ministic steps occur among the last f(κ(x)) many steps, P is tail-nondeterministic
(with respect to κ).

Definition 2.3. A program P or a nondeterministic Turing machine is exact if for
every input x ∈ Σ∗ any two runs of P on x contain the same number of nondeter-
ministic steps.

Definition 2.4. A program P has uniform guess bounds if for every input x ∈ Σ∗

there is an nx ∈ N such that nx is the guess bound of every nondeterministic step
in every run of P on x.

The following result is from [21]. The additional and optional claims in paren-
theses are very easy to verify. Note that 1-alternating programs are those making
only existential nondeterministic steps.

Theorem 2.5. Let (Q, κ) be a parameterized problem and ` ∈ N.

(1) (Q, κ) ∈W[P] if and only if Q can be decided by a κ-restricted, 1-alternating
program (with uniform guess bounds).

(2) (Q, κ) ∈ A[`] if and only if Q can be decided by a tail-nondeterministic
κ-restricted, `-alternating program(with uniform guess bounds).

The classes of the W-hierarchy and, more generally, the A-matrix can be charac-
terized by machines using a second sort of nondeterminism [22] (for “propositional”
alternation). For proofs of these and the other results mentioned in this section we
refer to the monograph [37] and to [21] for W[P]. A relatively short presentation of
these proofs can be found in [56, Chapter 1].

1The authors do not know whether p-#MC(LFP1) is #W[P]-complete.

PARAMETERIZED RANDOM COMPLEXITY 7

3. Parameterized randomization: basic observations and techniques

3.1. Introduction. This section defines the two modes of parameterized random-
ization, namely W[P]- and W[1]-randomization, according to the idea outlined in
the Introduction and defines the corresponding two analogues of BPP, namely
BPFPT and BPFPT[1]. We give a sequence of propositions and lemmas, meant to
provide some first, preliminary understanding of these concepts. These statements
are mainly concerned with the following three types of robustness of the definitions.

First, to what extent do the classes depend on the bound on the error probability?
We make clear what can be achieved by standard, classical amplification methods.

Second, to what extent does the computational power depend on the size of
dice used? We essentially answer this question (Lemma 3.16 and Propositions 3.17
and 3.18). The main result is the so-called Dice Lemma, our main technical tool
used throughout the paper. It tells us how to alter a given program to one using
larger dice with a desired number of sides.

Third, we characterize W[P]-randomized computations by Turing machines. This
characterization is exploited later in Section 5.

3.2. Parameterized randomized tractability. Recall Definitions 2.3 and 2.4.

Definition 3.1. Let κ be a parameterization.

(a) An exact, κ-restricted, 1-alternating program with uniform guess bounds
is W[P]-randomized (with respect to κ).

(b) An exact, tail-nondeterministic, κ-restricted, 1-alternating program with
uniform guess bounds is W[1]-randomized (with respect to κ).

We usually omit the phrase “with respect to κ” as usually κ is clear from the
context. Some mode of speech and notation: let κ be a parameterization and P
be a W[P]- or W[1]-randomized program (with respect to κ). Say, P on input
x ∈ Σ∗ performs exactly d(x) many nondeterministic steps each with guess bound
nx. Then we say that P on x uses d(x) many nx-sided dice. For n,m ∈ N, n < m,
write

[n,m] := {n, n+ 1, . . . ,m}.
We refer to a possible outcome of the dice rolls of P on x as a random seed for

P on x, i.e. a random seed is an element of [0, nx − 1]d(x). By P(x) we denote the
output of P on x: this is the function mapping a random seed for P on x to the
output of P on x of the run determined by the random seed. P(x) is a random
variable with respect to the probability space given by the uniform probability
measure on the set of random seeds of P on x.

As usual, we sloppily denote various probability measures always by Pr and let
the context determine what is meant. E.g. when talking about P(x), by Pr we refer
to the uniform measure on [0, nx − 1]d(x).

Remark 3.2. We can usually assume that the number of dice a given W[P]- or
W[1]-randomized program uses depends only on the input parameter, that is, on
input x the program uses exactly g(κ(x)) many dice for some computable g : N→ N:
if a W[P]- or W[1]-randomized program P on an input x uses d(x) many dice, then
d ≤ g ◦ κ for some computable g : N → N. Consider the program P′ that on x
simulates P and, when entering the first nondeterministic step, rolls exactly g(κ(x))
many dice and then continues simulating P using as random seed the first d(x) many

8 J. A. MONTOYA AND M. MÜLLER

outcomes of its dice rolls. Note that the number g(κ(x)) is fpt-computable from x
and

P′(x) ∼ P(x),

that is, the random variables P′(x) and P(x) have the same distribution.

Recall that we do not distinguish notationally between a problem Q ⊆ Σ∗ and
its characteristic function.

Definition 3.3. Let b : Σ∗ → [0, 1), (Q, κ) be a parameterized problem and P
be W[P]- or W[1]-randomized program with respect to κ. P decides (Q, κ) with
two-sided (one-sided) error b if

Pr [P(x) 6= Q(x)] < b(x)

for all x ∈ Σ∗ (and additionally Pr [P(x) = 1] = 0 for all x /∈ Q).

Definition 3.4.

(a) BPFPT and RFPT are the classes of parameterized problems (Q, κ) decid-
able by a W[P]-randomized program with two-sided, respectively, one-sided
error 1/|x|.

(b) BPFPT[1] and RFPT[1] are the classes of parameterized problems (Q, κ)
decidable by a W[1]-randomized program with two-sided, respectively, one-
sided error 1/|x|.

Proposition 3.5. RFPT ⊆W[P], RFPT[1] ⊆W[1] and BPFPT ⊆ XP.

The first two statements follow directly from the definitions and Theorem 2.5.
The third follows by brute force derandomization: simulate the algorithm exhaus-
tively on all its random seeds. We omit the details.

We use polynomial identity testing for arithmetical terms as a running example
throughout the text. We parameterize it by the number of variables:

var-PIT[terms]
Input: an arithmetical term C.

Parameter: the number of variables in C.
Problem: is pC nonzero?

Here, pC denotes the polynomial over Z computed by C. Recall, an arithmetical
circuit is a circuit whose inner nodes compute, over the integers, binary + (addition)
or binary × (multiplication) or unary − (unary additive inverse) and whose input
nodes are variables or constants 0, 1. It is a term if inner nodes have fan-out one.

Remark 3.6. From an arithmetical circuit C one can get in polynomial time
another C ′ by replacing a variable X in C by a sufficently large power of X such
that pC 6= 0⇐⇒ pC′ 6= 0. This well-known reduction shows that parameterizing by
the number of variables does not make sense for circuits. For terms this reduction
can move from a circuit C with k variables to one with k/` variables in time
|C|O(`). In the terminology of parameterized complexity theory this means that
var-PIT[terms] is scalable [24] or length-condensable [20].

Example 3.7 (pit). var-PIT[terms] is decidable by a W[P]-randomized program
with one-sided error 1− Ω(1/ log n).

Of course, here n refers to the size of the input. The proof relies on [7, 8]

PARAMETERIZED RANDOM COMPLEXITY 9

Lemma 3.8. There is a polynomial time computable function mapping every arith-
metical term to an equivalent one (with the same variables) of logarithmic depth.

Here, being equivalent means to compute the same polynomial.

Sketch of proof of Example 3.7: Let C be an arithmetical term of size n with k
variables. By the lemma above we can assume that C has depth O(log n). It is
routine to verify that then for some suitably large constant c we have deg(pC) ≤ nc
and |pC(ā)| < ‖ā‖nc

where ‖ā‖ := max{2,maxi |ai|} for ā ∈ Zk.
Let q be the least prime bigger than 2n log n. By Bertrand’s Postulate q <

4n log n and thus q can be computed in polynomial time.
Our program rolls ‘few’, k + 1 many, ‘large’ qc-sided dice, say with outcome āb

where ā ∈ [0, qc − 1]k and b ∈ [0, qc − 1]. It computes pC(ā) mod b and accepts if
the outcome is not 0; otherwise it rejects.

If pC = 0 the program rejects for sure. If otherwise pC 6= 0, then the algorithm
accepts with probability at least Ω(1/ log n). This follows according to the standard
analysis of the Schwarz-Zippel Algorithm. �

We shall see in Section 4 how to improve the error from 1− Ω(1/ log n) to 1/n.

3.3. Random kernels. Just as deterministic fixed-parameter tractability is char-
acterized by the existence of kernelizations, randomized fixed-parameter tractability
is characterized by the existence of randomized kernelizations. For brevity, we state
and prove this simple result only for the case of W[1]-randomized computations with
two-sided error 1/|x|.

Definition 3.9. Let (Q, κ) be a parameterized problem and b : Σ∗ → [0, 1). A
W[P]-randomized (W[1]-randomized) kernelization with two-sided error b is a W[P]-
randomized (W[1]-randomized) program P running in polynomial time such that
for some computable f : N→ N we have for all x ∈ Σ∗

Pr
[
Q(x) 6= Q(P(x)) or |P(x)| > f(κ(x))

]
< b(x).

Proposition 3.10. A parameterized problem (Q, κ) is in BPFPT[1] if and only
if Q is decidable and (Q, κ) has a W[1]-randomized kernelization with two-sided
error 1/|x|.

Proof. Assume (Q, κ) ∈ BPFPT[1], say witnessed by the program PQ with running
time bounded by f(κ(x)) · |x|c for computable f : N → N and c ∈ N. Then Q is
decidable by Proposition 3.5. We assume that both Q 6= ∅ and Σ∗ \ Q 6= ∅ and
choose x1 ∈ Q and x0 ∈ Σ∗ \Q. The kernelization P simulates PQ on x for at most
|x|c+1 steps. If this computation halts, P outputs x0 or x1 according to the answer
obtained. Otherwise f(κ(x)) > |x| and P outputs x.

Conversely, choose P and f : N→ N as stated and let A decide Q in time tA(|x|).
We can assume that tA is nondecreasing and computable. A randomized program
PQ for Q simply does the following: on x ∈ Σ∗ it simulates first P on x, and then
A on the output obtained for at most tA(f(κ(x))) steps. If A does not halt within
that time, PQ rejects. Otherwise it answers as A.

With probability at least 1 − 1/|x| both Q(P(x)) = Q(x) and |P(x)| ≤ f(κ(x)).
In this case A halts within tA(f(κ(x))) steps (recall tA is nondecreasing) and then
PQ answers correctly. Hence PQ has error 1/|x|. Clearly PQ uses the same dice as P.
After the simulation of P it simulates at most tA(f(κ(x))) many steps of A. Thus
PQ uses its dice only in the end of the computation, i.e. PQ is W[1]-randomized. �

10 J. A. MONTOYA AND M. MÜLLER

Remark 3.11. A slight modification of the above argument shows that we can
equivalently require the kernelization to additionally satisfy

Pr
[
κ(P(x)) ≤ κ(x) , |P(x)| ≤ f(κ(x))

]
= 1.

This parallels the deterministic case, where the existence of kernelizations and pa-
rameter non-increasing kernelizations are equivalent (this fails, however, for poly-
nomial kernelizations [23, Proposition 3.3]).

3.4. Trivial amplification. A trivial method of probability amplification is naive
repetition:

Lemma 3.12. Let b : Σ∗ → [0, 1) and (Q, κ) be a parameterized problem. Assume
` : Σ∗ → N is fpt computable with respect to κ and ` ≤ h ◦ κ for some computable
h : N→ N. Then

(1) if (Q, κ) can be decided by a W[P]-randomized (W[1]-randomized) program

with two-sided error b, then also with two-sided error
(

2`
`+1

)
· b`+1.

(2) if (Q, κ) can be decided by a W[P]-randomized (W[1]-randomized) program
with one-sided error b, then also with one-sided error b`.

Proof. We only show (1). Let P be a W[P]- or W[1]-randomized program decid-
ing (Q, κ) with two-sided error b. A program P′ with the claimed error runs P
independently for 2`(x) times and takes a majority vote.

If P is W[P]-randomized, then so is P′. If P is W[1]-randomized, then we imple-
ment P′ as a W[1]-randomized program as follows: on input x first simulate P until
it reaches the configuration C when it is about to roll the first of its, say, g(κ(x))
many dice; compute k∗ := `(x) · g(κ(x)) and roll k∗ many dice (note that k∗ can
be computed from x in fpt time); simulate P started at C using the first g(κ(x))
outcomes of your dice rolls, then simulate P started at C using the second g(κ(x))
outcomes of your dice rolls and so on. Thus, P′ simulates `(x) computations that are
effectively time-bounded in terms of the parameter (P is W[1]-randomized). Since
`(x) too is effectively bounded in terms of the parameter, P′ is W[1]-randomized.�

Proposition 3.13. Let h : N → N be computable. Every (Q, κ) in BPFPT[1]
(in BPFPT) can be decided by a W[1]-randomized (W[P]-randomized) program with
two-sided error |x|−h(κ(x)).

Proof. Let (Q, κ) be decidable by a W[1]-randomized or W[P]-randomized program
with two-sided error 1/|x|. Applying the previous lemma with ` = h ◦ κ gives a

program with error 1/|x|h(κ(x)) on instances x with |x| ≥
(

2h(κ(x))
h(κ(x))+1

)
. On other

instances we run a ‘brute force’ decision procedure for Q (note Q is decidable by
Proposition 3.5). The time needed is bounded effectively in κ(x), so the running
time is fpt. �

Lemma 3.12 is useless to amplify e.g. constant success probabilities. Amplifica-

tion from e.g. 3/4 to 1− 22−k

can be done by standard methods:

Lemma 3.14. Let (Q, κ) be a parameterized problem and g : N→ N be unbounded
and nondecreasing. There is a W[P]-randomized (W[1]-randomized) program de-
ciding (Q, κ) with two-sided error 1/4 if and only if there is such a program with
two-sided error 1/g ◦ κ.

Sketch of Proof. The forward direction follows by standard probability amplification
based on Chernoff bounds. W[1]-randomization can be preserved by the same trick

PARAMETERIZED RANDOM COMPLEXITY 11

as in the previous proof. Conversely, assume P is a program for (Q, κ) with two-sided
error 1/g ◦κ. This is error 1/4 on instances with a parameter k such that g(k) ≥ 4.
There are only finitely many parameters k such that g(k) < 4. On instances with
such a parameter a deterministic XP-algorithm A (from Proposition 3.5) runs in
polynomial time, say |x|100. Hence we can first run A for at most |x|100 steps and,
if this does not lead to an answer, then run P. �

3.5. The size of dice. Assume we run a given program with some larger dice by
interpreting in some reasonable way each outcome of a roll with a larger die as an
outcome of a roll with the original smaller die. The new program can be seen as the
old one using a defective random source, i.e. loaded dice. We need to estimate the
loss of the success probability. First, intuitively, the larger the new dice (compared
with the old one) the better. Secondly, the more dice, the worse. This is made
precise by the “Dice Lemma” below.

Recall that two random variables X,Y with range E have distance in variation

dV (X,Y) := sup
A⊆E

∣∣Pr[X ∈ A]− Pr[Y ∈ A]
∣∣.

We shall use the following elementary lemma (see e.g. [9, Chapter 4, Lemma 1.1]):

Lemma 3.15. Let X,Y be random variables with an at most countable range E.
Then

dV (X,Y) =
1

2

∑
e∈E

∣∣Pr[X = e]− Pr[Y = e]
∣∣.

Lemma 3.16 (Dice Lemma). Let κ be a parameterization and g : N → N com-
putable. Let P be a W[P]-randomized (W[1]-randomized) program that on x ∈ Σ∗

uses g(κ(x)) many nx-sided dice. Let (qx)x∈Σ∗ : Σ∗ → N be fpt computable (output
coded in unary) such that for all x ∈ Σ∗

2g(κ(x)) · nx < qx. (1)

Then there is a W[P]-randomized (W[1]-randomized) program P′ which on x ∈ Σ∗

uses g(κ(x)) many qx-sided dice such that for all x ∈ Σ∗

dV (P′(x),P(x)) ≤
{

0 , if nx divides qx
g(κ(x)) · nx/qx , else.

Proof. On input x, the program P′ first computes qx and then starts simulating
P on x as follows. When P is about to roll its first nx-sided die P′ interrupts the
simulation and computes a table of the values rmodnx for all r ∈ [nx, qx − 1]
enabling it to compute r 7→ rmodnx in constant time. Then P′ continues the
simulation of P in the following manner: if P rolls one of its nx-sided dice, P′ rolls
one of its qx-sided dice, say with outcome r, computes rmodnx and continues
simulating P using rmodnx as outcome of the the dice roll. It is clear that P′ is
W[P]-randomized (W[1]-randomized) with respect to κ.

Fix an instance x ∈ Σ∗ and write

q := qx, n := nx and k := g(κ(x)).

We show that P′(x) is distributed as claimed. P′ outputs on some run determined by
the outcomes of dice rolls ā as P outputs on the (componentwise) residual āmodn.
Clearly, having the same such residual is an equivalence relation on [0, q−1]k. Then
the preimage of an event A (subset of the range of P(x)) under P′(x) is the disjoint

12 J. A. MONTOYA AND M. MÜLLER

union of such equivalence classes ⊆ [0, q − 1]k represented by the elements in the
preimage of A under P(x). Let R be a random variable with values in [0, n − 1]k

taking value ā ∈ [0, n− 1]k with the (uniform) probability of the equivalence class
of ā in [0, q − 1]k. Then

P′(x) ∼ P(x) ◦R.
In case n divides q, all equivalence classes ⊆ [0, q − 1]k have the same size

and hence R is uniformly distributed in [0, n − 1]k. Then P(x) ◦ R ∼ P(x) and
dV (P′(x),P(x)) = 0 follows.

If n does not divide q, then to run P′ on x amounts to run P on x using the
‘defective’ (non uniform) random source R. Intuitively, if the equivalence classes
have ‘almost’ the same size, then R is ‘almost’ uniform. More precisely, for all
ā ∈ [0, n− 1]k

Pr[R = ā] ≥
(
dq/ne − 1

q

)k
≥ (1/n− 1/q)k,

Pr[R = ā] ≤
(
dq/ne
q

)k
≤ (1/n+ 1/q)k.

Let U be a random variable uniformly distributed in [1, n − 1]k. Observe that
in general dV (X,Y) ≥ dV (f ◦ X, f ◦ Y) for all random variables X,Y and all
functions f . Thus, in order to bound dV (P′(x),P(x)) = dV (P(x) ◦ R,P(x) ◦ U), it
suffices to bound dV (R,U).

Let m be a real > 1. Call m good if n/q ≤ 1/(2km). We claim that for good m

(1/n+ 1/q)k − n−k ≤ n−k/m, (2)

n−k − (1/n− 1/q)k ≤ n−k/m. (3)

The proofs are similar, we only show (2). Observe

(1/n+ 1/q)k − n−k =
(

1/n · (1 + n/q)
)k
− n−k = n−k · ((1 + n/q)k − 1)

is at most n−k/m in case (1 + n/q)k ≤ 1 + 1/m. This is the case if and only if
ln(1+n/q) ≤ ln(1+1/m)/k. This is true if n/q ≤ ln(1+1/m)/k since ln(1+r) ≤ r
for reals r ≥ 0. This holds if n/q ≤ 1/(km)− 1/(2km2) since ln(1 + r) ≥ r − r2/2
for reals r ∈ (0, 1). The last inequality holds if m > 1 is good.

If m is good, (2) and (3) imply

|Pr[R = ā]− Pr[U = ā]| ≤ n−k/m

for all ā ∈ [0, n− 1]k. Then dV (R,U) ≤ 1/(2m) by Lemma 3.15. Especially,

m := q/(2kn)

is good. Note that m > 1 by (1). Hence dV (R,U) ≤ 1/(2m) = kn/q as claimed. �

The Dice Lemma implies that ‘you can always do with |x|-sided dice’:

Proposition 3.17 (Small Dice). Let d ≥ 1, b : Σ∗ → [0, 1), g : N → N be com-
putable and (Q, κ) be a parameterized problem. Assume (Q, κ) can be decided by
a W[P]-randomized (W[1]-randomized) program P with two-sided error b such that
P on x ∈ Σ∗ uses g(κ(x)) many dice. Then (Q, κ) can be decided by a W[P]-
randomized (W[1]-randomized) program P with two-sided error b+ |x|−d such that
P′ on x ∈ Σ∗ uses O(g(κ(x))) many |x|-sided dice.

PARAMETERIZED RANDOM COMPLEXITY 13

Proof. Say, P on x uses g(κ(x)) many nx-sided dice. Then nx ≤ h(κ(x)) · |x|c for
some computable h and some c ∈ N. It suffices to find a program P′ which works as
desired on large inputs x with |x| > max{h(κ(x)) · g(κ(x)), 2}. Non-large instances
can be decided by ‘brute force’ in time effectively bounded in the parameter.

First apply the Dice Lemma to get a program P′′ which on large inputs x
uses g(κ(x)) many |x|c+d+1-sided dice. Note that for large x we have |x|c+d+1 >
2g(κ(x)) · nx and thus

dV (P(x),P′′(x)) ≤ g(κ(x)) · h(κ(x)) · |x|c/|x|c+d+1 < |x|−d.

The desired program P′ on a large input x first computes a table containing a
bijection B : [0, |x|−1]c+d+1 → [0, |x|c+d+1−1] allowing it to compute B in constant
time. It then simulates P′′ on x as follows. Whenever P′′ rolls one of its |x|c+d+1-
sided dice, P′ rolls (c+d+1) many |x|-sided dice, say with outcome (a1, . . . , ac+d+1).
Using the table it continues the simulation with B(a1, . . . , ac+d+1).

It is clear that P′(x) ∼ P′′(x) and that P′ is a W[P]-randomized (W[1]-randomized)
program using (c+ d+ 1) · g(κ(x)) many |x|-sided dice. �

In the following sense, improving this lower bound on the size of dice amounts
to derandomization.

Proposition 3.18. Let (Q, κ) be a parameterized problem. If (Q, κ) can be decided
by a W[P]-randomized program with two-sided error < 1/2 that on x ∈ Σ∗ uses

|x|oeff(1)-sided dice, then (Q, κ) is fixed-parameter tractable.

Here, by |x|oeff(1) many sides we mean ≤ |x|1/ι(|x|) many sides for some com-
putable, nondecreasing and unbounded ι : N→ N and sufficiently long x.

Proof. Choose a program P according to the assumption. Choose a computable
g : N→ N and a computable, nondecreasing and unbounded ι : N→ N such that P
on input x ∈ Σ∗ uses g(κ(x)) many dice with at most |x|1/ι(|x|) sides (provided x is
sufficiently long). Let P′ on x simulate P on x exhaustively on all its random seeds.
We show that P′ runs in fpt time. For this it suffices to show that the number of
random seeds of P on x obeys an fpt bound.

Let h : N→ N be some computable, nondecreasing function such that h(ι(n)) ≥
n for all n ∈ N. We write n := |x| and k := κ(x) and distinguish two cases:

– if g(k) < ι(n), then there are at most (n1/ι(n))g(k) < n many random seeds.
– if g(k) ≥ ι(n), then h(g(k)) ≥ h(ι(n)) ≥ n, and hence there are at most
h(g(k))g(k) many random seeds. �

3.6. Turing characterizations. As a second application of the Dice Lemma we
characterize W[P]-randomized computations by Turing machines:

Proposition 3.19. Let (Q, κ) be a parameterized problem. The following state-
ments are equivalent.

(1) (Q, κ) ∈ BPFPT.
(2) There is a computable h : N→ N and an exact randomized fpt time bounded

(with respect to κ) Turing machine A such that for all x ∈ Σ∗ and every
run of A on x the machine A tosses at most h(κ(x)) · log |x| many coins
and decides Q with two-sided error at most 1/|x|.

14 J. A. MONTOYA AND M. MÜLLER

This follows from trivial amplification (Proposition 3.13) and Lemma 3.22 below.
We derive a characterization of the subclass of BPFPT consisting of parameterized
versions of problems in BPP:

Proposition 3.20. Let (Q, κ) be a parameterized problem. The following state-
ments are equivalent.

(1) (Q, κ) ∈ BPFPT and Q ∈ BPP.
(2) There is a computable h : N → N and an exact, randomized, polynomially

time bounded Turing machine A such that for all x ∈ Σ∗ and every run
of A on x the machine A tosses at most h(κ(x)) · log |x| many coins and
decides Q with two-sided error at most 1/|x|.

Proof. That (2) implies (1) follows by Proposition 3.19. Conversely, let P witness
that (Q, κ) ∈ BPFPT and let AQ witness that Q ∈ BPP. We can assume that
AQ is exact and has error at most 1/|x|. Choose for P a Turing machine A and
a function h according to Proposition 3.19 (2). Say, A on x needs time at most
f(κ(x)) · |x|O(1) for some time-constructible2 f .

Let A′ be the following Turing machine: on x it checks if f(κ(x)) ≤ |x| (this can
be done in polynomial time because f is time-constructible); in case, it simulates A,
and otherwise AQ. Then A′ is an exact randomized Turing machine deciding Q in
polynomial time with two-sided error 1/|x|. It uses at most h(κ(x)) · log |x| many
coins if |x| ≥ f(κ(x)) and at most f(κ(x))O(1) many coins otherwise. �

The last proposition parallels [11, Theorem 3.7]:

Theorem 3.21 (Cai, Chen, Downey, Fellows 1995). A parameterized problem
(Q, κ) with Q ∈ NP is in W[P] if and only if x ∈ Q can be decided in nonde-
terministic polynomial time with at most h(κ(x)) · log |x| nondeterministic bits for
some computable h : N→ N.

Lemma 3.22. Let κ be a parameterization.

(1) Let d ∈ N. For any (with respect to κ) W[P]-randomized program P there
exists an exact randomized fpt time bounded Turing machine A and a com-
putable h : N→ N such that for all x ∈ Σ∗ we have dV (P(x),A(x)) ≤ |x|−d
and A on x tosses at most h(κ(x)) · log |x| many coins.

(2) For any exact randomized fpt time bounded Turing machine A such that for
some computable h : N → N the machine A on any x ∈ Σ∗ tosses at most
h(κ(x)) · log |x| many coins there exists a W[P]-randomized program P such
that P(x) ∼ A(x) for all x ∈ Σ∗.

Proof. By straightforward simulations between Turing machines and RAMs. We
only show (1) to make clear where the Dice Lemma is used:

Say, P on x uses g(κ(x)) many nx-sided dice for some computable g : N → N.
Apply the Dice Lemma to get a program P′ which on x uses qx-sided dice for qx
the least power of two above g(κ(x)) · nx · |x|d. Then

dV (P(x),P′(x)) ≤ g(κ(x)) · nx/qx ≤ |x|−d.
The Turing machine A on x simulates P′ on x tossing log qx many coins whenever

P′ rolls a die. Then A is exact and A(x) ∼ P′(x). The machine A tosses g(κ(x)) ·

2Recall a function f : N → N is time-constructible if and only if there is a (deterministic)
Turing machine that on every x halts after exactly f(|x|) many steps.

PARAMETERIZED RANDOM COMPLEXITY 15

log qx many coins. But log qx ≤ h(κ(x)) · log |x| for some computable h, because nx
is fpt bounded. �

4. Deterministic probability amplification

4.1. Introduction. In the last section we observed that standard methods can
amplify success probabilities from 1 − 1/n to 1 − 1/nk (on instances of length n
with parameter k) and from 3/4 to 1− 1/2k. Can we amplify from 3/4 to 1− 1/n
(two-sided error) or from 1/2− 1/n to 3/4? In the classical setting one repeats the
random experiment for a sufficiently large number ` of times and votes by majority.
But in the parameterized setting this does not work because this number ` grows
with n and thus exceeds the resources of random complexity a W[P]-randomized
algorithm has at its disposal.

In the setting given by the parameterized BP operator [29], the first author [51]
linked the possibility of parameterized probability amplification to certain closure
conditions of parameterized classes. For example, he showed that a parameterized
analogue of the Arthur-Merlin class (which is not studied here) enjoys probability
amplification assuming it is closed under parameterized truth-table reductions. Un-
conditionally, he amplified success probabilities for W[P]-randomization from 3/4 to
1−1/n by a construction based on the Ajtai-Komlós-Szemerédi generator [1]. Here
we give a simpler, direct proof by a method called “deterministic amplification”
in [44].

Theorem 4.1. Let (Q, κ) be a parameterized problem, g : N → N an arbitrary
computable function and c ≥ 1. The following statements are equivalent.

(1) (Q, κ) ∈ BPFPT.
(2) (Q, κ) can be decided by a W[P]-randomized program with two-sided error

1
2 − |x|

−c.
(3) (Q, κ) can be decided by a W[P]-randomized program with two-sided error
|x|−g(κ(x)).

Remark 4.2. A similar statement holds true for one-sided error where in (2) the
constant 1/2 is replaced by 1.

4.2. A simple expander. We recall some basics from expander theory (see [41,
Appendix E], [48] or the comprehensive [44]).

A multigraph is an undirected graph possibly with parallel edges and possibly
with self loops. It is d-regular if each vertex is incident to exactly d edges. Let G be
a d-regular multigraph with n vertices. The normalized adjacency matrix AG of G is
the n×n-matrix whose ijth entry is 1/d times the number of edges from the ith to
the jth vertex. Since AG is symmetric there is an orthogonal basis of eigenvectors
corresponding to real eigenvalues λ1, . . . , λn. The matrix AG is stochastic, i.e. the
sum of each row equals 1. Hence ‘the uniform distribution’ (n−1, . . . , n−1) is an
eigenvector of AG to the eigenvalue, say, λ1 = 1. λ1 is the largest eigenvalue and
the corresponding eigenspace is one dimensional in case G is connected. For all
i ∈ [n]\{1} we have |λi| ≤ 1 and |λi| < 1 in case G is aperiodic. The second largest
eigenvalue modulus of G is

λ(G) := max
i∈[n]\{1}

|λi| .

An (n, d, λ)-graph is a connected, aperiodic, d-regular multigraph G on n vertices
such that λ(G) < λ. The following is known as the Expander Mixing Lemma:

16 J. A. MONTOYA AND M. MÜLLER

Lemma 4.3. Let G be a (n, d, λ)-graph and B,B′ sets of vertices of G. Write
e(B,B′) for the number of edges in G going from B to B′. Then∣∣e(B,B′)− |B| · |B′| · d/n∣∣ ≤ d · λ ·√|B| · |B′|.

We shall need a ‘strongly explicit’ such graph allowing to feasibly determine the
list of all neighbors of a given point without computing the graph explicitly. We
use the following example:

Example 4.4. Let q, k ≥ 1, q prime and let Fq denote the field with q elements.
We do not distinguish Fq from {0, . . . , q − 1} notationally. Fkq is the k-dimensional
vector space over Fq. Vectors are represented with relation to the standard basis
as k-tuples over {0, . . . , q − 1}. The multigraph

LDq,k

has vertices Fk+1
q where each vertex ā ∈ Fk+1

q has for each b, c ∈ Fq an edge to

ā+ (b, b · c, . . . , b · ck).

It is shown in [61, Proposition 5.3] that LDq,k is a (qk+1, q2, k/q)-graph.

4.3. Proof of Theorem 4.1. The amplification procedure is very simple: define
an expander graph on the sample space of your given program; the new program
samples a point (random seed) in the graph and simulates the old program on all its
neighbors. The Expander Mixing Lemma 4.3 tells us how much the success proba-
bility is amplified. The method is called “deterministic” because no additional die
is rolled. Note that the sample space and thus also the expander has unfeasible size.
That’s why we need a ‘strongly explicit’ expander. The following Proposition 4.5
makes this precise. Together with Proposition 3.13 it implies Theorem 4.1.

Proposition 4.5. Let c, c′ ≥ 1 and (Q, κ) be a parameterized problem. If there is
a W[P]-randomized program P solving (Q, κ) with two-sided error 1/2− |x|−c, then

there is a W[P]-randomized program P′ solving (Q, κ) with two-sided error |x|−c′ ,
which on any x ∈ Σ∗ uses the same number of dice as P.

Proof. Let c, c′ ≥ 1. Let c, c′ ≥ 1 and assume P is a W[P]-randomized program
deciding (Q, κ) with two-sided error 1

2 −
1
|x|c ; let g : N → N be computable that P

on x uses g(κ(x)) many nx-sided dice. We first move to a program that uses prime
sided dice and whose error is only a little bit worse than that of P: apply the Dice
Lemma with qx the smallest prime such that

qx ≥ max
{
g(κ(x)) · nx · 2|x|c , 2|x|2c+c

′
, (g(κ(x))− 1)2

}
. (4)

Since by Bertrand’s Postulate there is a prime between n and 2n for every n > 1,
we can compute qx from x by brute force in fpt time.

Fix some input x ∈ Σ∗ and write

n := |x|, k := κ(x), q := qx and p := 1/2− 1/(2nc).

By the Dice Lemma, the new program errs on x with probability at most 1/2 −
n−c + g(k) · nx/q ≤ p. For simplicity, we denote the new program again by P.

The set of ‘bad’ random seeds is B := {P(x) 6= Q(x)}. Then

|B|/qg(k) ≤ p. (5)

PARAMETERIZED RANDOM COMPLEXITY 17

We view B as a subset of Fg(k)
q , i.e. a set of vertices of the expander LDq,g(k)−1

from Example 4.4.

On input x, the program P′ first guesses r̄ ∈ Fg(k)
q and then simulates q2 many

runs of P on x, namely for every (a, b) ∈ F2
q the run determined by the random seed

r̄′ := r̄ + (a, a · b, . . . , a · bg(k)−1).

P′ answers according to the majority of the answers obtained. Note that r̄′ can
be computed given r̄, a, b with at most g(k)2 operations in Fq. Hence P′ is W[P]-
randomized and has the same random complexity as P, namely g(k) many q-sided
dice. Let B′ :=

{
P′(x) 6= Q(x)

}
be the set of ‘bad’ random seeds for P′. We aim

to show

|B′|/qg(k) < n−c
′
. (6)

Each vertex in B′ has more than q2/2 edges to vertices in B, i.e.

e(B′, B) > |B′| · q2/2. (7)

By Lemma 4.3 for LDq,g(k)−1 with λ := λ
(
LDq,g(k)−1

)
and (5) we get

e(B′, B) ≤ q2 · |B| · |B′|/qg(k) + q2 · λ ·
√
|B| · |B′|

≤ q2 · |B′| · p+ q2 · λ ·
√
qg(k) · |B′| · p . (8)

Combining (7) and (8) yields

(1/2− p) · q2 · |B′| < q2 · λ ·
√
qg(k) · |B′| · p

and hence (recall p < 1/2)

|B′|/qg(k) < λ2 · p/(1/2− p)2. (9)

By (4), p/(1/2 − p)2 < 2n2c and λ2 ≤ (g(k) − 1)2/q2 ≤ 1/q ≤ 1/(2n2c+c′). Thus
(9) implies (6). �

Note that the argument given breaks down for W[1]-randomized computations
because after rolling dice we run P on q2 many, that is, fpt many seeds.

Example 4.6 (pit, continued). var-PIT[terms] ∈ RFPT.

Proof. By Theorem 4.1 (and Remark 4.2) and Example 3.7. �

5. Parameterized derandomization

5.1. Introduction. How does parameterized derandomization relate to classical
derandomization? In this section we show that, in a certain sense, parameterized
derandomization implies classical derandomization and vice-versa.

We start with an observation due to M. Grohe. For a concise formulation denote
by paraNP-BPFPT the class of parameterized problems that can be decided by a
randomized fpt time bounded Turing machine with two-sided error 1/n (where n
is the size of the input). This notation will not be used later on.

Proposition 5.1. The following statements are equivalent.

(1) paraNP-BPFPT = FPT.
(2) paraNP-BPFPT = BPFPT.
(3) BPP = P.

18 J. A. MONTOYA AND M. MÜLLER

Sketch of proof. Trivially (1) implies (2). That (3) implies (1) follows by standard
arguments, and we omit the proof. The implication of interest is from (2) to (3):

Assume (2) and let Q ∈ BPP. Then (Q, 0), i.e. Q with the parameterization
which is constantly zero, is in paraNP-BPFPT. By assumption (Q, 0) ∈ BPFPT.
Choose a Turing machine A according to Proposition 3.20 (2). Then A on an input
x ∈ Σ∗ runs in polynomial time and tosses O(log |x|) many coins. Thus simulating
A on all |x|O(1) many random seeds requires only polynomial time. Thus Q ∈ P.�

Hence derandomizing randomized fpt algorithm to deterministic fpt algorithms
or to W[P]-randomized algorithms, are both tasks that are equivalent to full classi-
cal derandomization. What does derandomization of W[P]-randomized algorithms
mean in classical terms? The main result of this section reads as follows.

Theorem 5.2. The following statements are equivalent.

(1) BPFPT has a (weakly or strongly) black-box derandomization.
(2) There is a polynomial time computable, nondecreasing, unbounded function

c : N→ N such that BPP[c] = P.

Here, BPP[c] is BPP restricted to at most c(n)·log n many random bits. Observe
that for bounded c we trivially have BPP[c] = P. Thus nontrivial classical deran-
domization would mean to show BPP[c] = P for some unbounded c. Being “black-
box” is some extra condition on BPFPT = FPT which is mathematically strong,
but, as we are going to argue, philosophically weak. Informally, Theorem 5.2 states
that (“black-box”) derandomization of W[P]-randomized computations means the
same as arbitrarily weak but nontrivial classical derandomization. Note that c can
grow extremely slowly.

We only treat two-sided error. This is, however, not essential. All results of this
section have analogues for one-sided error with ‘the same’ proof.

The reader should compare Theorem 5.2 with [11, Theorem 3.8]:

Theorem 5.3 (Cai, Chen, Downey, Fellows 1995). W[P] = FPT if and only if there
is a polynomial time computable, nondecreasing, unbounded function c : N→ N such
that NP[c] = P.

Here, NP[c] is the class of classical problems decidable in polynomial time with
at most c(n) · log n nondeterministic bits. An analogue of this statement for the
class EW[P] appears in [38, Theorem 25].

5.2. Black-box derandomization. In this section we shall use the following no-
tation: a parameterized problem (Q, κ) can be decided in time

O∗(f)

if it can be decided in time f(κ(x)) · |x|O(1). Thus, (Q, κ) is in FPT if and only if it
can be decided in time O∗(f) for some computable function f . So derandomization
of BPFPT means that each parameterized problem with a W[P]-randomized algo-
rithm can be decided in time O∗(f) for some computable function f . In general this
function f may depend on the problem, in other words, on the specific program we
are derandomizing. However, it is plausible that if we succeed in proving this, we
do so by a general method, a method working well for all algorithms with similar
running time and random complexity. In other words, it is plausible that, if we

PARAMETERIZED RANDOM COMPLEXITY 19

succeed in derandomizing a class of algorithms, then we do so by treating these
algorithms as black boxes.

For example in the classical setting derandomization is done by constructing (un-
der certain hardness assumptions) pseudorandom strings, i.e. strings which algo-
rithms obeying a given running time are not able to distinguish from truly random
seeds. Given an algorithm to derandomize we feed it with these pseudorandom
strings and learn about its acceptance probability. Thereby we decide the problem
deterministically. The running time of the deterministic algorithm we get in this
way depends only on the running time of the randomized algorithm and the time we
need to construct the pseudorandom strings, that is, the new running time depends
only on the old running time and the old random complexity.

We therefore think of a “black-box” derandomization as being such that the
running time of the new deterministic algorithms it produces depends only on the
old time and random complexity. In our setting the random complexity is given by
the number and size of dice. But the size of dice can be assumed to be |x| by the
Small Dice Lemma 3.17. Formalizing these intuitions leads to the concept of being
strongly black-box, as defined below (Definition 5.5).

M.Grohe suggested considering the following relaxation. While in the classical
setting the length of the random seed can be assumed to be polynomially related
to the running time, in the parameterized setting we are asked to produce short
pseudorandom sequences of length, say, g(k) · log n which fool algorithms running
in time, say, g(k) · nd. It may be conceivable that the running time of a suitable
pseudorandom generator increases with this running time, say, it is d-fold exponen-
tial in k. So instead of a single f we may only expect a successful derandomization
to produce a family (fd)d of functions such that randomized algorithms with g(k)
dice and running time g(k) ·nd have determinizations running in time O∗(fd). This
relaxes the property of being strongly black-box to that of being weakly black-box
(see Definition 5.5 below).

Definition 5.4. Let t, c : Σ∗ → N. A classical or parameterized problem has a
(t, c)-machine if and only if it can be decided with two-sided error 1/|x| by an exact
randomized Turing machine which on x runs for at most t(x) many steps and tosses
at most c(x) · log |x| many coins. For t, c : N → N, by a (t, c)-machine we mean a
(t ◦ | · |, c ◦ | · |)-machine.

For c : N→ N we let BPP[c] denote the class of all classical problems that have
a (t, c)-machine for some polynomial t.

The following modes of speech rely on Propositions 3.19 and 3.20. As usual we
call a family (fd)d = (fd)d∈N of functions fd : N → N computable if and only if
(d, k) 7→ fd(k) is computable.

Definition 5.5. BPFPT has a weakly black-box derandomization if and only if for
all computable g : N→ N there is a computable family of functions (fd)d such that
for all d ∈ N and all parameterized problems (Q, κ):

if (Q, κ) has a
(
g(κ(x))·|x|d, g(κ(x))

)
-machine, then (Q, κ) ∈ O∗(fd).

If we weaken the last condition to:

if (Q, κ) has a
(
|x|d, g(κ(x))

)
-machine, then (Q, κ) ∈ O∗(fd).

then we say that the BPP part of BPFPT has a weakly black-box derandomization.
If the family (fd)d is constant, i.e. there is a f such that fd = f for all d, then

we say that BPFPT has a strongly black-box derandomization.

20 J. A. MONTOYA AND M. MÜLLER

Theorem 5.6. The following statements are equivalent.

(1) BPFPT has a strongly black-box derandomization.
(2) BPFPT has a weakly black-box derandomization.
(3) The BPP part of BPFPT has a weakly black-box derandomization.
(4) There is a polynomial time computable, increasing, time-constructible func-

tion g : N → N and there is a computable family of functions (fd)d such
that for all d ∈ N and all parameterized problems (Q, κ):

if (Q, κ) has a
(
|x|d, g(κ(x))

)
-machine, then (Q, κ) ∈ O∗(fd).

(5) There is a polynomial time computable, nondecreasing, unbounded function
c : N→ N such that BPP[c] = P.

Remark 5.7. Any computable, nondecreasing and unbounded function is lower
bounded by a polynomial time computable such function. Hence in (5) one can
equivalently write “computable” instead of “polynomial time computable”.

5.3. Proof of Theorem 5.6. We need the following simple lemma.

Definition 5.8. For nondecreasing, unbounded f : N→ N the inverse of f is the
function ιf : N→ N given by

ιf (n) := max{i ∈ N | f(i) ≤ n},

where we agree that max ∅ := 0. Further let ι+f := ιf + 1.

Lemma 5.9. If f : N→ N is nondecreasing and unbounded f : N→ N, then ιf is
nondecreasing and unbounded and for all n ∈ N

f ◦ ιf (n) ≤ max{n, f(0)} ≤ f ◦ ι+f (n).

If f is increasing, then ιf ◦ f = idN. Furthermore, if f : N → N is increasing and
time-constructible, then ιf is computable in polynomial time.

Proof of Theorem 5.6: The implications from (1) to (2), from (2) to (3) and from (3)
to (4) are trivial, so it suffices to show that (4) implies (5) and that (5) implies (1).

We first show that (4) implies (5). So assume (4) and choose a polynomial time
computable, increasing, time-constructible g : N → N and a computable family
of functions (fd)d accordingly. We can assume that for all d ∈ N the function
fd : N→ N is increasing and time-constructible.

Because the family (fd)d is computable there is a time-constructible increasing

f̃ : N→ N such that for all n ∈ N

f̃(n) ≥ max
{
f0(n), . . . , fn(n)

}
.

By Lemma 5.9 the inverse ιf̃ of f̃ is polynomial time computable, nondecreasing

and unbounded. For all d ∈ N and all n ≥ d we have f̃(n) ≥ fd(n), so

∀d ∈ N ∀n ≥ f̃(d) : ιf̃ (n) ≤ ιfd(n). (10)

We denote subtraction of 1 by s, that is, s(n) := max{n− 1, 0} and define

c := g ◦ s ◦ ιf̃ .

Then c is polynomial time computable, nondecreasing and unbounded, because it
is a composition of such functions.

Let Q ∈ BPP[c]. Then there is a constant d > 0 such that Q has a
(
|x|d, c(|x|)

)
-

machine A. We aim to show Q ∈ P.

PARAMETERIZED RANDOM COMPLEXITY 21

For κc(x) := c(|x|) define

κ := ι+g ◦ κc.
Then κ is polynomial time computable by Lemma 5.9, so (Q, κ) is a parameterized
problem. Because c(|x|) ≤ g ◦ ι+g ◦ κc(x) ≤ g(κ(x)), A is a

(
|x|d, g(κ(x))

)
-machine.

By assumption (4) we get (Q, κ) ∈ O∗(fd). Thus to show Q ∈ P it suffices to show
fd(κ(x)) ≤ |x| for sufficiently long x.

Observe that for all n > 0

ι+g ◦ g ◦ s(n) = ιg(g(s(n)) + 1 = s(n) + 1 = n, (11)

so ι+g ◦ g ◦ s is the identity on positive numbers. Note further that for n ≥ f̃(d)

ιf̃ (n) ≥ ιf̃ (f̃(d)) = d > 0. (12)

Hence for instances x with |x| ≥ f̃(d)

fd(κ(x)) = fd ◦ ι+g ◦ g ◦ s ◦ ιf̃ (|x|) = fd ◦ ιf̃ (|x|) ≤ fd ◦ ιfd(|x|) ≤ |x|.

The first equality follows from the definition of κ, the second equality from (11) and
(12), the first inequality from (10) and fd being increasing, and the final inequality

from |x| ≥ f̃(d) ≥ fd(d) > fd(0) and Lemma 5.9.

We now show that (5) implies (1). Assume (5) and choose a (polynomial time)
computable, nondecreasing, unbounded c : N→ N, such that BPP[c] = P. We have
to show for all computable g : N → N how to decide deterministically problems
with a (g(κ(x)) · |x|O(1), g(κ(x)))-machine. Clearly, it is sufficient to do so for all
computable nondecreasing g. So fix such a g.

We leave it to the reader to verify

Claim 1: There is a computable r : N → N such that any parameterized problem
(Q, κ) with a (g(κ(x)) · |x|O(1), g(κ(x)))-machine can be decided in (deterministic)
time r(|x|) · |x|O(1).

Clearly, ι+c is computable. Choose a time-constructible f : N→ N such that

f(k) ≥ max
{
ι+c ◦ g(k) , g(k)

}
(13)

for all k ∈ N. Further, choose r according to Claim 1. Clearly, we can assume that
r is nondecreasing. Let (Q, κ) have a (g(κ(x)) · |x|O(1), g(κ(x)))-machine A. We
aim to show

(Q, κ) ∈ O∗(r ◦ f). (14)

Claim 2: Q≥f := {x ∈ Q | |x| ≥ f(κ(x))} ∈ BPP[c].

Proof of Claim 2: Define the machine A′ as follows. On x it checks if f(κ(x)) > |x|.
This can be done in polynomial time since f is time-constructible. If this is the
case, it rejects. If f(κ(x)) ≤ |x| it simulates A. But then A needs time at most

g(κ(x)) · |x|O(1) ≤ f(κ(x)) · |x|O(1) ≤ |x| · |x|O(1),

where the first inequality is due to (13). Thus A′ runs in polynomial time. Clearly,
A′ decides Q≥f with two-sided error at most 1/|x|. We estimate its number of
coins: if f(κ(x)) > |x|, then A′ uses no coins at all. If f(κ(x)) ≤ |x|, then A′ uses
at most g(κ(x)) · log |x| many coins. But then (recall that c is nondecreasing)

g(κ(x)) ≤ c ◦ ι+c ◦ g ◦ κ(x) ≤ c ◦ f ◦ κ(x) ≤ c(|x|).

22 J. A. MONTOYA AND M. MÜLLER

The first inequality follows from c ◦ ι+c ≥ idN by Lemma 5.9, the second from
f ≥ ι+c ◦ g by (13), and the third from f(κ(x)) ≤ |x|. a

By Claim 2 and our assumption we get Q≥f ∈ P. We get the following algorithm
solving Q: on x it first checks in polynomial time if f(κ(x)) > |x|. If this is
the case it simulates a decision procedure for Q running in time (recall that r is
nondecreasing)

r(|x|) · |x|O(1) ≤ r(f(κ(x))) · |x|O(1).

Otherwise it runs a polynomial time procedure deciding Q≥f . This shows (14). �

Example 5.10 (pit, continued). If RP[c] = P for some polynomial time com-
putable, nondecreasing, unbounded c : N→ N, then var-PIT[terms] is fixed-parameter
tractable and decidable in time

2o(k logn) · nO(1),

on instances of length n with parameter k.

Sketch of Proof: The first statement follows by (the version for one-sided error of)
Theorem 5.6 and Example 4.6.

The statement on the time-bound follows from miniaturization theory [26, 24,
20]: var-PIT[terms] is length-condensable by Remark 3.6. Then var-PIT[terms]
is fpt equivalent to the miniaturization of its reparameterization by k log n [20,
Theorem 10]. Hence this miniaturization is fixed-parameter tractable too. Now the
claim follows from the miniaturization theorem (see e.g. [37, Theorem 16.30]). �

6. Upper bounds

6.1. Introduction. The Sipser-Gács Theorem [62, Theorem 6] states that BPP is
contained in ΣP

2 ∩ΠP
2 . We ask for parameterized analogues of this result. Therefore,

we have to choose parameterized analogues of the polynomial hierarchy.
Recall that W[1]-randomization is motivated by the choice of W[1] as parameter-

ized analogue of NP. Since W[1] is characterized by restricted, tail-nondeterministic,
existential machines (Theorem 2.5), the A-hierarchy is an analogue of the polyno-
mial hierarchy. W[P]-randomization is motivated by the choice of W[P] as analogue
of NP. The class W[P] is characterized by restricted existential machines (Theo-
rem 2.5), i.e. by machines for W[1] without the restriction of tail-nondeterminism.
Hence we get as analogue of the polynomial hierarchy the classes given by machines
for the A-hierarchy without the restriction to tail-nondeterminism. These classes
have been introduced by Y.Chen [18] via certain weighted alternating satisfiability
problems. We define them by their machine characterizations [18, Theorem 4.23]:

Definition 6.1. Let ` ≥ 1. The class AWP[`] contains those parameterized prob-
lems (Q, κ) that can be decided by κ-restricted, `-alternating programs.

By Theorem 2.5 we immediately get [18, Corollary 4.24]:

Proposition 6.2. A[`] ⊆ AWP[`] for all ` ≥ 1 and AWP[1] = W[P].

Our analogues of the Sipser-Gács Theorem read as follows.

Theorem 6.3.

(1) BPFPT ⊆ AWP[2] ∩ coAWP[2].
(2) BPFPT[1] ⊆ A[2] ∩ coA[2].

PARAMETERIZED RANDOM COMPLEXITY 23

The first statement can be inferred from a quite general parameterized analogue
of the Sipser-Gács Theorem from [52], that holds for all parameterized classes that
are closed under certain forms of parameterized reductions. Here we give a relatively
simple direct argument. An advantage is that this argument also works for W[1]-
randomization and thereby proves the new second statement.

The Sipser-Gács Theorem implies that BPP = P if P = NP. We get an analogue:

Corollary 6.4. If W[P] = FPT, then BPFPT = FPT.

Proof. It is not hard to see that the AWP-hierarchy satisfies a collapse theorem
[18, Corollary 4.25], i.e. AWP[`] = FPT for all ` ≥ 1 in case W[P] = FPT. By
Theorem 6.3 this implies the corollary. �

6.2. Proof of Theorem 6.3. We first prove (1). Let (Q, κ) ∈ BPFPT and let P
be a program witnessing this. By the Small Dice Lemma 3.17 we can assume that
P on x ∈ Σ∗ uses g(κ(x)) many |x|-sided dice for some computable g.

Let x ∈ Σ∗ and write k := κ(x) and n := |x|. Consider a random seed of P as

an element of the group Zg(k)
n : by this we mean the group on tuples [0, n − 1]g(k)

with componentwise addition modulo n. For the good seeds

Gx := {P(x) = Q(x)}

we know Pr[Gx] > 1 − 1/n. In a first step we show by the probabilistic method
that ‘a few’ translates of this set cover the whole sample space.

For ` ∈ N to be specified later, let X1, . . . , X` be mutually independent random

variables uniformly distributed in Zg(k)
n .

Fix some r̄ ∈ Zg(k)
n . Note that the function x̄ 7→ r̄− x̄modn is a permutation of

Zg(k)
n (being a group). Thus also (r̄ −X1) modn, . . . , (r̄ −X`) modn are mutually

independent and uniformly distributed in Zg(k)
n . Hence

Pr
[
r̄ /∈

⋃
i∈[`]

(Gx +Xi) modn
]

=
∏
i∈[`]

Pr
[
(r̄ −Xi) modn /∈ Gx

]
< n−`.

Here, (Gx + r̄) modn denotes
{

(ā+ r̄) modn | ā ∈ Gx
}

.
By the union bound

Pr
[
Zg(k)
n =

⋃
i∈[`]

(Gx +Xi) modn
]
≥ 1−

∑
r̄∈Zg(k)

n

Pr
[
r̄ /∈

⋃
i∈[`]

(Gx +Xi) modn
]

> 1− ng(k)−`.

This probability is positive for

` := g(k) + 1.

Hence there are r̄1, . . . , r̄` ∈ Zg(k)
n such that

Zg(k)
n =

⋃
i∈[`]

(Gx + r̄i) modn .

Next we show that the sample space can be covered by ‘few’ translates of seeds
causing P to accept if and only if x ∈ Q.

If x ∈ Q then Gx =
{
P(x) accepts

}
and there are r̄1, . . . , r̄` ∈ Zg(k)

n such that
for all r̄ there is an i ∈ [`] such that P(x)((r̄ − r̄i) modn) accepts.

24 J. A. MONTOYA AND M. MÜLLER

Conversely, assume x /∈ Q and let r̄1, . . . , r̄` ∈ Zg(k)
n be arbitrary. Then the set{

P(x) accepts
}

= Zg(k)
n \Gx has cardinality at most 1/n · ng(k) = ng(k)−1. Thus⋃

i∈[`]

({
P(x) accepts

}
+ r̄i

)
modn ≤ ` · ng(k)−1 < ng(k),

where we assume without loss of generality that n > ` = g(k) + 1. Hence there

exists an r̄ ∈ Zg(k)
n \

⋃
i∈[`]

({
P(x) accepts

}
+ r̄i

)
modn, that is, an r̄ ∈ Zg(k)

n such

that P(x)((r̄ − r̄i) modn) accepts for no i ∈ [`].
In summary:

x ∈ Q ⇐⇒ ∃r̄1, . . . , r̄g(k)+1 ∈ Zg(k)
n ∀r̄ ∈ Zg(k)

n ∃i ∈ [g(k) + 1] :

P(x)((r̄ − r̄i) modn) accepts.

It is not hard to see that this condition can be checked by a restricted 2-

alternating program P′: on x guess existentially r̄1, . . . , r̄g(k)+1 ∈ Zg(k)
n , then guess

universally r̄ ∈ Zg(k)
n and simulate P with random seed r̄ − r̄i for all i ∈ [g(k) + 1];

accept if at least one of these simulations is accepting. This shows (Q, κ) ∈ AWP[2].
Thus BPFPT ⊆ AWP[2] and thus also BPFPT ⊆ coAWP[2] since BPFPT is

closed under complementation (i.e. (Σ∗ \Q, κ) ∈ BPFPT if (Q, κ) ∈ BPFPT).

To prove (2) simply note that the program P′ above can be implemented tail-
nondeterministically in case P is tail-nondeterministic. �

7. Probably almost correct counting

7.1. Introduction. It is common to consider besides decision problems also search,
listing or counting problems. For, in a certain sense, self-reducible problems the
decision, search and listing versions all have the same complexity3. In contrast,
counting versions may be harder: e.g. counting satisfying assignments of DNFs is
#P-hard (it is ‘the same as’ doing so for CNFs), while deciding satisfiability of
DNFs is trivial. A famous and more surprising example (see [65, 45]) is Valiant’s
theorem stating that #PMatch, the problem to count perfect matchings in a
given bipartite graph, is #P-complete under polynomial time Turing reductions.
Deciding if there is such a matching is tractable and, by self-reducibility, so are the
associated search and listing problems. Twelve years later S.Toda reveiled [64, 59]
the surprising power of counting. He showed how to solve any problem in PH in
polynomial time with a single query to a #P-oracle.

This apparent intractability of (exact) counting suggests the quest for feasible
approximations, e.g. in the sense of a fully polynomial time randomized approxima-
tion scheme (fpras). Randomized approximation turns out to be related to almost
uniform sampling: here again self-reducibility implies equitractability [40, 45], a
fact opening the door to the rich theory of Markov chains. This finally enabled
Jerrum, Sinclair and Vigoda to construct an fpras for #PMatch (cf. [45]).

Thus some concrete hard counting problems have fast randomized approxima-
tions. In general, the complexity of randomized almost correct counting is much
lower than that of exact counting. While by Toda’s theorem the latter is at least
as hard as PH, the former is at most as hard as NP [63]:

3Concepts of tractability for listing problems have been introduced in [46].

PARAMETERIZED RANDOM COMPLEXITY 25

Theorem 7.1 (Stockmeyer 1985). Any counting problem in #P has an fpras using
an NP oracle.

How about parameterized analogues of these results? Again it is easy to see that
there are fixed-parameter tractable decision problems with hard associated counting
versions, even quite natural ones: e.g. the parameterized weighted satisfiability
problem for positive 2DNFs is fixed-parameter tractable. Its counting version is
‘the same’ as that for negative 2CNFs, a problem that is #W[1]-complete under
parsimonious fpt reductions (see e.g. [37, Theorem 14.18]).

A more surprising example is p-Cycle: decide if a given graph contains a cycle
of length k (the parameter is k). This problem is fixed-parameter tractable, but
J.Flum and M.Grohe proved [35] that its counting version is #W[1]-complete under
fpt Turing reductions. So as in the classical setting we are faced with natural
tractable parameterized decision problems having an intractable counting version.
The quest is again to find fast randomized approximations.

Notation: For reals r and ε > 0 we write (1 ± ε) · r for the open real interval
(r − ε · r, r + ε · r).

Definition 7.2. An fptras (fixed-parameter tractable randomized approximation
scheme) for a parameterized counting problem (F, κ) is a randomized fpt algorithm
P expecting inputs (x, `, `′) for x ∈ Σ∗ and positive `, `′ ∈ N (in unary) such that

Pr
[
P(x, `, `′) ∈ (1± 1/`) · F (x)

]
> 1− 1/`′.

Here, fpt is understood with respect to the parameterization mapping (x, `, `′)
to κ(x). If P is W[P]-randomized (with respect to the parameterization above),
then we call it a W[P]-fptras.

In [5] V.Arvind and V.Raman construct an fptras for p-#Cycle. In fact, they
construct an fptras for counting embeddings of structures coming from any poly-
nomial time decidable class of structures of bounded tree-width.

This section proves the following parameterized analogues of Theorem 7.1:

Theorem 7.3.

(1) Let `, t ≥ 1. Each parameterized counting problem in #A[`, t] has a W[P]-
fptras using a balanced oracle for A[`, t].

(2) Each parameterized counting problem in #W[SAT] has a W[P]-fptras using
a balanced oracle for W[SAT].

(3) Each parameterized counting problem in #W[P] has a W[P]-fptras using a
balanced oracle for W[P].

Recall, that an oracle is balanced if the algorithm asks only queries whose pa-
rameter is effectively bounded in the input parameter (cf. Section 2).

The third statement above has already been shown in [53, 52]. In [52] the first
author discusses certain gap problems associated to #W[P] approximate counting
problems and shows they are contained in AWP[2] (cf. Definition 6.1). All three
statements of Theorem 7.3 follow from the following ‘logical’ version of Stockmeyer’s
Theorem 7.1.

Definition 7.4. A class Φ of LFP-formulas is robust if it is polynomial time de-
cidable, closed under relativizations, closed under conjunctions with quantifier free

26 J. A. MONTOYA AND M. MÜLLER

first-order formulas (of arbitrary vocabulary) and closed under substitution of free
variables by parameters.

Here by “closure under relativizations” we mean: if ϕ ∈ Φ and P is a unary
relation symbol then also ϕP ∈ Φ where ϕP is the relativization of ϕ to P , i.e.
the formula obtained from ϕ by replacing all quantifiers ∃x . . . and ∀x . . . in ϕ by
∃x(Px ∧ . . .) and ∀x(Px→ . . .) respectively.

The main result of this section is the following. Recall the notation for model-
checking problems from Section 2.5.

Theorem 7.5. Let Φ be a robust class of LFP-formulas. Then the parameterized
counting problem var-#MC(Φ) (p-#MC(Φ)) has a W[P]-fptras using a balanced
oracle for the parameterized decision problem var-MC(Φ) (p-MC(Φ)).

7.2. Affine hashing. The technical trick we use is to view the set of solutions as
a subset of a vector space of parameter bounded dimension k over some large finite
field Fp (recall the notation from page 16). We use a suitable hash family on this
encoding. The following is particularly simple:

Definition 7.6. Let p ∈ N be prime and let i, k ∈ N be positive. Let Hp
k,i denote

the set of all affine transformations h from Fkp to Fip, i.e. mappings of the form

x̄ 7→Mx̄+ b̄ for x̄ ∈ Fkp, where M is an i× k-matrix with entries in Fp, and b̄ ∈ Fip.
Set h−1(ā) :=

{
x̄ ∈ Fkp | h(x̄) = ā

}
for ā ∈ Fip.

The following two lemmas are well-known (see e.g. [40, Lecture 4]).

Lemma 7.7. Hp
k,i is a 2-universal family of hash functions from Fkp to Fip, that is,

for all distinct x̄, ȳ ∈ Fkp and all ā0, b̄0 ∈ Fip:

Pr
h∈Hp

k,i

[
h(x̄) = ā0 , h(ȳ) = b̄0

]
= 1/p2i.

Here, Prh∈Hp
k,i

refers to the uniform measure on Hp
k,i.

Lemma 7.8 (Hashing Lemma). Let p be prime and k ≥ 1. For S ⊆ Fkp and i ∈ [k]
define

Y Si : Hp
k,i → N : h 7→ |S ∩ h−1(0i)|,

where 0i is the zero vector in Fip. Then for all ε > 0 we have for ρi := |S|/pi

Pr
h∈Hp

k,i

[∣∣Y Si − ρi∣∣ ≥ ερi] < 1

ε2ρi
.

7.3. Proofs. Theorem 7.5 implies Theorem 7.3 via the following trivial lemma:

Lemma 7.9. Let (F, κ) and (F ′, κ′) be parameterized counting problems such that
(F, κ) is fpt reducible to (F ′, κ′). If (F ′, κ′) has a W[P]-fptras, then so does (F, κ).

Proof of Theorem 7.3 from Theorem 7.5: For each class mentioned in Theorem 7.3
there is a set Φ of LFP-formulas such that the model-checking problem (MC(Φ), κ)
is complete for the class where κ is either the parameterization by the length of
the input formula or by its number of variables. Furthermore, the counting version
(#MC(Φ), κ) of the problem is complete for the counting version of the class.

By Theorem 7.5 there is a W[P]-fptras for (#MC(Φ), κ) using a balanced oracle
for (MC(Φ), κ). Then there is an W[P]-fptras for all problems in the counting

PARAMETERIZED RANDOM COMPLEXITY 27

version of the class by Lemma 7.9 (clearly we have this lemma also in the presence
of oracles).

This argument needs a correction: strictly speaking, the classes Φ considered
are not robust. However, they are robust ‘up to polynomial time transformations’:
e.g. Π17 is not closed under relativizations, but any relativization of a formula from
Π17 can easily be transformed in polynomial time to an equivalent formula in Π17.
Of course, this is good enough. �

To prove Theorem 7.5 the following simple characterization of W[P]-fptrases
turns out useful.

Definition 7.10. A parameterized counting problem (F, κ) is fpt paddable if there
is a function r : Σ∗ × N → Σ∗, fpt computable (in unary) with respect to the
parameterization mapping (x, `) to κ(x) such that for some computable g : N→ N

(1) F (r(x, `)) = F (x);
(2) κ(r(x, `)) ≤ g(κ(x));
(3) |r(x, `)| ≥ |x|+ `.

Lemma 7.11. Let let c, c′ ≥ 1 and (F, κ) be an fpt paddable parameterized counting
problem. Then (F, κ) has a W[P]-fptras P if and only if there is a W[P]-randomized
program P′ such that for all x ∈ Σ∗

Pr
[
P′(x) ∈ (1± |x|−c) · F (x)

]
> 1− |x|−c

′
.

Proof. To see sufficiency define P on (x, `, `′) to simulate the given P′ on x in case
|x| ≥ max{`, `′}; otherwise run P′ on r

(
x,max{`, `′} − |x|

)
for r witnessing fpt

paddability of (F, κ).

To see necessity define P′ on x to simulate the given P on (x, |x|c, |x|c′). �

Proof of Theorem 7.5. The approximation scheme specified below has a similar
high-level description as the one constructed in the proof for Theorem 7.1 as given
in [40]; however, the parameterized setting calls for new subroutines to feasibly
implement the scheme.

Let Φ be as stated. We present the proof for var-MC(Φ); the ‘same’ argument
works for p-MC(Φ).

We restrict attention to instances (A, ϕ) of var-MC(Φ) which have size bounded
by |A|2: if an instance is not of this form we enlarge the universe A of A by
sufficiently many new elements, colour the old universe black, relativize the formula
to a new predicate symbol for blackness and add to ϕ conjuncts “x is black” for all
variables x free in ϕ. The new formula is again from Φ. Note that this also shows
that var-#MC(Φ) is fpt paddable.

Let x̄ = x1 · · ·xk be the free variables of ϕ. We assume A = {0, . . . , n − 1} for
some n ∈ N with n ≥ k. In particular, for a prime p > n we have ϕ(A) ⊆ Fkp. We
write S := ϕ(A) and use the notation from the Hashing Lemma 7.8. Additionally
we set

min ∅ := 0 and Y S0 constantly 0.

We describe a program P approximating |S|. Thereby we use a constant ` ∈ N that
is to be fixed later:

28 J. A. MONTOYA AND M. MÜLLER

P(A, ϕ) // A a structure, ϕ ∈ Φ.

1. p← the smallest prime > n.
2. if |S| < p` then return |S|.
3. else for all i ∈ [k]: guess hi ∈ Hp

k,i.

4. j ← min
{
i ∈ [k]

∣∣Y Si (hi) < p`
}

.

5. return pj · Y Sj (hj).

The proof now is given in two parts, a combinatorial part verifying that P does
what it is supposed to do, and an algorithmic part showing how P can be imple-
mented as a W[P]-randomized program.

Combinatorics. Let p be the prime computed in line 1. P gives with probability one
the correct answer if |S| < p`, so let’s assume that |S| ≥ p`. Choose m such that

pm−1 < |S| ≤ pm.

Since |S| ≥ p` and S ⊆ Fkp we have ` ≤ m ≤ k. As we will choose ` ≥ 2, we have

1 ≤ m− `+ 1 < k (15)

We refer to a random seed of P on x with (h1, . . . , hk), a k-tuple of hash functions
guessed by P in line 3. Let jP(h1, . . . , hk) be the value j computed by P in line 4
in the run determined by (h1, . . . , hk). Note jP is a random variable with range
N defined on

∏
i∈[k]H

p
k,i endowed with the uniform probability measure Pr. For

i ∈ [k] let πi be the projection to the ith component (h1, . . . , hk) 7→ hi. Because
the random variable Y Si ◦ πi is distributed as Y Si we have the Hashing Lemma for
Y Si ◦ πi on the present probability space on

∏
i∈[k]H

p
k,i. For notational simplicity

we denote Y Si ◦ πi again by Y Si .

Claim: Pr
[
jP /∈ [m− `+ 1]

]
< n−`.

Proof of the Claim: Recall the notation ρi := |S|/pi and note

p`−1 = pm/pm−`+1 ≥ ρm−`+1 > pm−1/pm−`+1 = p`−2.

Hence {
jP /∈ [m− `+ 1]

}
⊆

{
Y Sm−`+1 ≥ p · p`−1

}
⊆

{
Y Sm−`+1 ≥ (p− 1) · ρm−`+1 + ρm−`+1

}
⊆

{ ∣∣Y Sm−`+1 − ρm−`+1

∣∣ ≥ (p− 1) · ρm−`+1

}
.

By (15) we can apply the Hashing Lemma on Y Sm−`+1 and conclude that

Pr
[
jP /∈ [m− `+ 1]

]
<

1

(p− 1)2 · ρm−`+1
<

1

(p− 1)2 · p`−2
< n−`.

a

Our program outputs pjP · Y SjP as approximation of |S|, so we are interested in
the probability of the events

Aε :=
{∣∣pjP · Y SjP − |S|∣∣ < ε|S|

}
,

for ε > 0. Let Aε denote the complement of Aε. Then

Aε ∩
{
jP = i

}
=
{∣∣pi · Y Si − |S|∣∣ ≥ ε|S|} =

{
|Y Si − ρi| ≥ ερi

}
. (16)

PARAMETERIZED RANDOM COMPLEXITY 29

For i ∈ [m− `+ 1] we have ρi > pm−1/pm−`+1 = p`−2. By the Hashing Lemma
we thus get for all ε > 0 and all i ∈ [m− `+ 1]

Pr
[∣∣Y Si − ρi∣∣ ≥ ερi] ≤ 1/(ε2ρi) < 1/(ε2p`−2) < 1/(ε2n`−2). (17)

Thus

Pr
[
Aε
]

= Pr
[
Aε ∩

{
jP /∈ [m− `+ 1]

}]
+ Pr

[
Aε ∩

{
jP ∈ [m− `+ 1]

}]
< n−` +

m−`+1∑
i=1

Pr
[
Aε ∩

{
jP = i

}]
by the Claim

< n−` +
m− `+ 1

ε2n`−2
by (17) and (16).

Now, let c, c′ ≥ 1 be arbitrary. For ε := n−c the above is by (15)

≤ n−` + (k − 1)n2cn−`+2 < kn2c+2−`

and hence < n2c+3−` as we assumed k ≤ n. Choosing ` := 2c+ 3 + c′ we get

Pr
[
An−c

]
= Pr

[
P(A, ϕ) ∈ (1± n−c) · |S|

]
> 1− n−c

′
.

This suffices by our assumption that the size of (A, ϕ) is ≤ n2 and by Lemma 7.11
(we already noted that our problem is fpt paddable).

Algorithmics. We now explain how to implement P as a W[P]-randomized program.
Concerning the random complexity, note that to guess some hi ∈ Hp

k,i in line 3, P
guesses the entries of a i×k-matrix and a length i vector over Fp. Hence line 3 can

be executed by rolling
∑k
i=1(ik + i) = O(k3) many p-sided dice.

Concerning the time complexity we have to explain how P does the jobs we
demand it to do in fpt time.

The prime p in line 1 can be computed in polynomial time (since p < 2n+ 1 by
Bertrand’s Postulate). Since ` is a constant, p` ≤ nO(1).

In a first step we explain how P works using a balanced oracle for the following
auxiliary parameterized counting problem:

var-Bounded-#MC(Φ)
Input: a structure B, ψ ∈ Φ and r ∈ N in unary.

Parameter: the number of variables of ψ.
Problem: compute min {|ψ(B)|, r}.

In a second step we will show how the oracle to var-Bounded-#MC(Φ) can be
replaced by an oracle to var-MC(Φ).

Line 2 is directly solved by one balanced oracle call to var-Bounded-#MC(Φ).
The remaining time needed is dominated by the computations of j in line 4 and
Y Si (hi) in line 5. Our program P has to solve the following problem:

Input: a structure A, ϕ ∈ Φ, h ∈ Hp
k,i with i ∈ [k] (where

p is the smallest prime > |A|, ϕ has k free vari-
ables, and i is determined by h).

Parameter: the number of variables of ϕ.
Problem: decide if Y Si (h) < p` and if so compute Y Si (h)

(where S = ϕ(A)).

30 J. A. MONTOYA AND M. MÜLLER

Let (A, ϕ, h) be an instance of this problem and let x̄ = x1 · · ·xk comprise the free
variables of ϕ. Furthermore, let h be given by the i× k-matrix M and the i-vector
b̄ over Fp.

To solve our problem with a balanced oracle for var-Bounded-#MC(Φ) it
suffices to express Y Si (h) as |ϕ∗(A∗)| for a formula ϕ∗ ∈ Φ and a structure A∗.
Moreover, for the oracle to be balanced we need that the number of variables of ϕ∗

is effectively bounded in that of ϕ.
We move from A to an arithmetical structure A∗: the universe of A∗ is that

of Fp; A∗ interprets all symbols as A does plus two new ternary relation symbols:

RA
∗

+ :=
{

(a, b, c) ∈ F3
p | a+ b = c in Fp

}
,

RA
∗

× :=
{

(a, b, c) ∈ F3
p | a · b = c in Fp

}
.

Further, A∗ interprets a new unary predicate Ȧ by A. Define the formula

ϕ∗ := ϕȦ(x̄) ∧
∧
ν∈[k]

Ȧxν ∧ “h(x̄) = 0i”.

Here ϕȦ denotes the relativization of ϕ to Ȧ (cf. page 26). We now explain what
formula “h(x̄) = 0i” stands for. First, for m̄ ∈ (A∗)k and b ∈ A∗ we introduce a
formula “〈m̄, x̄〉 + b = 0” (where 〈·, ·〉 stands for the inner product of Fkp). Write
mµ for the µth component of m̄. We use auxiliary variables uµ intended to stand
for mµ · xµ and vµ to stand for the intermediate results when computing the sum
〈m̄, x̄〉. Precisely, “〈m̄, x̄〉+ b = 0” is the formula∧

µ∈[k]

R×mµxµuµ ∧ v1 = u1 ∧
∧

µ∈[k−1]

R+vµuµ+1vµ+1 ∧R+vkb0.

The formula is quantifier free, uses m̄, b and 0 as parameters and has variables x̄
and auxiliary variables ū = u1 · · ·uk and v̄ = v1 · · · vk.

Now define “h(x̄) = 0i” to be the conjunction of the formulas “〈m̄ν , x̄〉+ bν = 0”
for ν ∈ [i], where m̄ν denotes the νth row of M and bν the νth component of b̄.
For each ν ∈ [i] we use a different set of auxiliary variables.

Then

|ϕ∗(A∗)| =
∣∣ϕ(A) ∩ h−1(0i)

∣∣ = Y Si (h).

Moreover, ϕ∗ has i · 2k more variables than ϕ and, as Φ is robust, ϕ∗ ∈ Φ.

We are left to show that var-Bounded-#MC(Φ) is fixed-parameter tractable
using a balanced oracle for the decision problem var-MC(Φ).

But var-MC(Φ) is ‘self-reducible’. It follows by general means that there is
an algorithm A (and we shall define such an algorithm below) using a balanced
oracle for var-MC(Φ) that solves the associated listing problem with fpt delay [43]:
A on an instance (B, ψ) of var-MC(Φ) outputs without repetitions all tuples in
ψ(B) such that the delay of A is fpt bounded; here delay means the maximum
number of steps until the first output, between any two outputs and from the last
output to the halting configuration (see [46]). Granted such an algorithm A, we
proceed straightforwardly: let (B, ψ, r) be an instance of var-Bounded-#MC(Φ);
on (B, ψ, r) simulate A on (B, ψ); increase a counter (initialized by 0) for each
output of A; stop the simulation in case the counter becomes r; return the counter.
The time needed here is roughly r times the delay of A and thus fpt bounded.

PARAMETERIZED RANDOM COMPLEXITY 31

We describe the algorithm A: on (B, ψ) it runs A′ on (B, ψ, λ) for the empty
tuple λ. Algorithm A′ takes inputs (B, ψ, b̄) for structures B, ψ ∈ Φ, and b̄ a tuple
over B. For b ∈ B let ψb := ψ b

x for x the first free variable in ψ (and undefined if

ψ is a sentence). A′ on (B, ψ, b̄) is the following recursive procedure:

A′(B, ψ, b̄) // B a structure, ψ ∈ Φ and b̄ a tuple over B.

1. if ψ(B) = ∅ then stop.
2. else if ψ has no free variables then return b̄
3. else for all b ∈ B do
4. return A′(B, ψb, b̄b)

(Note that for a sentence ψ we have ψ(B) ∈ {∅, {λ}}.) Algorithm A′ uses an oracle
for var-MC(Φ) to check the if-condition in line 1. It is routine to verify that this
defines a listing algorithm as desired. �

8. Uniqueness promises

8.1. A logical form of the Valiant-Vazirani Lemma. In classical complexity
theory the famous Valiant-Vazirani Lemma states that “the problems of distin-
guishing between instances of Sat having zero or one solution, or finding solutions
to instances of Sat having unique solutions, are as hard as Sat itself” ([66, Ab-
stract]). Here hardness refers to randomized reductions with one-sided error. This
result can be shaped as a probabilistic statement about Boolean logic:

Theorem 8.1 (Valiant, Vazirani 1985). There is a polynomial time algorithm com-
puting for any Boolean formula α(X̄) a Boolean formula β(X̄Ȳ) such that, if α is
satisfiable, then

Pr
b̄∈{0,1}|Ȳ |

[
b̄ |= ∃=1X̄

(
α(X̄) ∧ β(X̄Ȳ)

)]
> 1/10 · |X̄|−1.

It is easy to see that we can also allow the formula α to come from Boolean logic
extended by various quantifiers. In this section we intend to show such results for
logics beyond Boolean logic. We show that given a structure A and a formula ϕ of
least fixed-point logic LFP we can do the following in polynomial time: first, we en-
large A by increasing its universe and declare some additional (mainly arithmetical)
relations on it; second, we compute a formula ψ of roughly the same logical com-
plexity as ϕ such that if you randomly assign values to some distinguished variables
of ψ, then in the new structure with ‘good’ probability ψ singles out exactly one
of the solutions of ϕ in A provided there are any; furthermore we have one-sided
error in the sense that ψ has no solution in case ϕ has none. To make this precise
we employ the following mode of speech:

Definition 8.2. A τ∗-enlargement of a τ -structure A is a (τ ∪ τ∗)-structure A∗
which is an expansion of an extension of A such that there is some unary relation
symbol Ȧ ∈ τ∗ \ τ with ȦA

∗
= A.

Then the main result of this section reads:

Theorem 8.3. Let τ be a vocabulary. There is a relational vocabulary τ∗ and a
polynomial time algorithm which, given a τ -structure A and ϕ = ϕ(x̄) ∈ LFP[τ],

32 J. A. MONTOYA AND M. MÜLLER

computes a τ∗-enlargement A∗ of A and a quantifier free formula ρ = ρ(x̄ȳz̄) ∈
FO[τ∗] with parameters in A∗ such that, if ϕ(A) 6= ∅, then

Pr
b̄∈(A∗)|ȳ|

[
A∗ |= ∃=1x̄z̄

(
ϕȦ(x̄) ∧ ρ(x̄ȳz̄)

) b̄
ȳ

]
> |A∗|−2.

Furthermore, the length of ρ is polynomially bounded in |x̄|.

Here ϕȦ is the relativization of ϕ to Ȧ (see page 26).

This allows us to move in polynomial time to a ‘probably unique’ formula without
essentially increasing the logical complexity of the input formula. The ‘probably
unique’ formula can be seen as an ordinary LFP-formula where certain designated
individual variables are interpreted randomly in A∗. This is the view taken in
K.Eickmeyer and M.Grohe’s randomized logics [31].

The logic LFP does not play an essential role here and could be replaced by
certain abstract logics in the sense of [30]. We state the result for LFP for simplicity
and because it suffices for the applications we have in mind.

8.2. Corollaries on uniqueness promises. Theorem 8.1 has proven useful in
many respects. For example it is a main step in Toda’s [64] original proof that
PH ⊆ BP ⊕ P ⊆ P#P. Because of these applications some work has been done on
improving the involved parameters, especially the number of random bits [60, 15].

Another application of Theorem 8.1 concerns the problem

USat
Input: a CNF α.

Problem: does α have exactly one satisfying assignment?

This problem has received considerable attention [66, 6, 14, 13, 42, 12]. It is known
to be coNP-hard and contained in the class DP4. Moreover it has, in some sense,
the same exponential time complexity as Sat [42, 12].

Theorem 8.1 gives a randomized reduction of NP problems to Sat with unique-
ness promise, i.e. such that output formulas probably either have exactly one so-
lution or no solution at all. This implies that USat is NP-hard under randomized
polynomial time reductions with one-sided error. The reductions have an inverse
polynomial success probability, and, in fact, USat is complete for DP under such
reductions [66, Corollary 5] (see [14] for a discussion).

Corollary 8.4. If NP 6⊆ RP, then USat /∈ P.

R.G.Downey, M.R.Fellows and K.W.Regan [29] ask for analogues of these results
in the parameterized setting. They proved the following. Recall the definition of
the problem p-WSat(Ωt,d) from page 4.

Theorem 8.5 (Downey, Fellows, Regan 1998). Let t ≥ 1. There is a d ∈ N such
that for all (Q, κ) ∈ W[t] there is a randomized reduction with one-sided fpt error
from (Q, κ) to p-WSat(Ωt,d) with uniqueness promise.

4DP is sometimes written DP and comprises the differences of NP problems; [27, Exercise 16.04]
introduces a parameterized ‘stratification’ of this class.

PARAMETERIZED RANDOM COMPLEXITY 33

Informally, such a reduction probably produces instances having either exactly
one or no solution. “Probably” refers to an inverse fpt success probability, i.e.
1/(f(k) · nc) for some computable f : N → N and c ∈ N (cf. Definitions 8.10 here
and 6.1 in [29]). The reductions constructed in [29] use k · n · log n random bits.
They actually, achieve a better error bound of order 1/(f(k) · log n).

With an eye on the goal of finding some parameterized analogue of Toda’s the-
orem Downey et al. [29] asked how to derandomize their reduction to – in the
present terminology – W[P]-randomized reductions. The following result answers
this question affirmatively for all classes of the A-matrix and more:

Theorem 8.6. Let (Q, κ) be a parameterized problem. Then

(1) if (Q, κ) ∈ A[`, t], then there is a W[1]-randomized reduction with one-sided
fpt error to p-MC(Σ`,t−1,1) with uniqueness promise.

(2) if (Q, κ) ∈ W[SAT], then there is a W[1]-randomized reduction with one-
sided fpt error to var-MC(Σ1) with uniqueness promise.

(3) if (Q, κ) ∈W[P], then there is a W[1]-randomized reduction with one-sided
fpt error to var-MC(Σ1LFP[1]) with uniqueness promise.

The main message of this result is, roughly, that hard problems remain hard (in
a randomized sense) even with a uniqueness promise. E.g. an fpt algorithm solving

p-Clique
Input: a graph G and k ∈ N.

Parameter: k.
Problem: does G contain a k-clique?

with uniqueness promise would be an algorithm which behaves like an fpt algorithm
for p-Clique provided it is fed with an input (G, k) such that G either has exactly
one or no k-clique; on other instances the algorithm may do whatever it wants
(cf. Definition 8.11).

A second message of Theorem 8.6 is, roughly, that ‘uniqueness-versions’ of hard
problems are hard too. Specifically, [29] and [28] asked for the complexity of

p-UClique
Input: a graph G and k ∈ N.

Parameter: k.
Problem: does G contain exactly one k-clique?

We get the following parameterized analogue of Corollary 8.4:

Corollary 8.7. If W[1] 6⊆ RFPT, then p-Clique with uniqueness promise is not
fixed-parameter tractable, and in particular, p-UClique /∈ FPT.

This is not a special property of the clique problem and we shall prove something
more general (Theorems 8.17 and 8.18).

Remark 8.8. As for an an upper bound on the complexity of p-UClique first
observe that W[1] contains the problem p-Two-Cliques that asks, given a graph
G and a parameter k, whether G contains at least two k-cliques. Hence this problem
is fpt reducible to p-Clique. But p-UClique is the intersection of p-Clique and

34 J. A. MONTOYA AND M. MÜLLER

the complement of p-Two-Cliques. So two non-adaptive, balanced oracle queries
to p-Clique suffice to decide p-UClique.

Remark 8.9. In [19] Y.Chen and J.Flum apply Theorem 8.3 to show that certain
counting problems are not #W[1]-hard unless W[1] ⊆ RFPT.

8.3. Proof of Theorem 8.3. Let ϕ(x̄) ∈ LFP[τ] be a formula and A be a τ -
structure. Let k := |x̄|. If |A| = 1, we take ρ := y = y and asA∗ any τ∗-enlargement
of A with A∗ = A. The same works in case k = 0, since then ϕ(A) either contains
nothing or exactly the empty tuple. Hence we can assume k ≥ 1, |A| ≥ 2 and
A = {0, . . . , |A|−1}. We can further assume that k ≥ 3 and that 0̄ (the all 0 k-tuple)
does not satisfy ϕ in A. To see this, note that ϕ̃(x̄x1x2) := ϕ(x̄) ∧ x1 = 1 ∧ x2 = 1
(where 1 is a parameter) satisfies this assumption and |ϕ̃(A)| = |ϕ(A)|; if A∗ and
ρ̃(x̄x1x2ȳz̄) satisfy our claim for ϕ̃, then A∗ and ρ(x̄ȳz̄′) := x1 = 1 ∧ x2 = 1 ∧ ρ̃
with z̄′ := z̄x1x2 satisfy our claim for ϕ(x̄).

Construction of A∗. Let p be the smallest prime bigger than |A| and k + 2. By
Bertrand’s Postulate we can compute p in polynomial time. The structure A∗ has
universe

A∗ := {0, . . . , k · p− 1}.
We set τ∗ := {R+, R×, Rmod, Ȧ,≤} for ternaryR+, R×, Rmod, binary≤ and unary Ȧ.
We let A∗ be a τ∗-enlargement of A with

ȦA
∗

:= A,

RA
∗

+ := {(a, b, c) ∈ (A∗)3 | a+ b = cmod p},
RA

∗

× := {(a, b, c) ∈ (A∗)3 | a · b = cmod p},
RA

∗

mod := {(a, b, c) ∈ (A∗)3 | a < c and a = bmod c},
≤A

∗
:= the natural order on A∗.

In A∗ the set {0, . . . , p−1} carries the structure of Fp, the field with p elements.
The set of solutions ϕ(A) ⊆ Ak ⊆ Fkp lives in the k-dimensional vectorspace over Fp.

The hyperplanes Hā. For a vector ā ∈ Fkp \ {0̄} let 〈ā〉⊥ denote the hyperplane of

vectors orthogonal to ā. If we translate 〈ā〉⊥ by ā we get Hā, that is

Hā := 〈ā〉⊥ + ā =
{
b̄+ ā | b̄ ∈ 〈ā〉⊥

}
.

This is a hyperplane in Fkp and hence

|Hā| = pk−1. (18)

Let ā, b̄ ∈ Fkp \ {0̄} be distinct. If ā and b̄ are linearly independent, the hyperplanes
Hā and Hb̄ are not parallel and so the affine subspace Hā∩Hb̄ has dimension k−2.
If ā and b̄ are linearly dependent, then Hā ∩Hb̄ = ∅ (it is herefore that we use the
translation Hā instead of 〈ā〉⊥). In particular

|Hā ∩Hb̄| ≤ pk−2. (19)

To prove the classical Valiant-Vazirani Lemma one typically splits the space
containing the solutions (there a cartesian power of {0, 1}) randomly in half for a
random number of times, and analyzes the probability that exactly one solution
remains. We argue similarly. Our solutions are contained in Fkp. An idea now is
to cut down this space to a 1/p-fraction using random hyperplanes and to do so

PARAMETERIZED RANDOM COMPLEXITY 35

subsequently for a random number of times. We do not select random hyperplanes
but a random number of random vectors from Fkp and look at the event that all
these are contained in a hyperplane Hā associated with a solution ā ∈ ϕ(A). We
then bound from below the probability that the above event holds for exactly one
solution. It is here where we need that 0̄ /∈ ϕ(A). Details follow.

Construction of ρ. Intuitively, the following formula wants x̄ from A such that the
first u+ 2 of ȳ1, . . . , ȳk+2 ∈ Fkp are in Hx̄:

ρ′ :=
∧
j∈[k]

Ȧxj ∧
∧

i∈[k+2]

“ȳ′i = ȳi mod p” ∧Rmodu
′u(k + 1)

∧
∧

i∈[k+2]

(
max{i− 2, 0} ≤ u′ → “ȳ′i ∈ Hx̄”

)
.

This formula uses 0, . . . , k+1 and p as parameters from A∗. Further “ȳ′i = ȳi mod p”
abbreviates the formula

∧
j∈[k]Rmody

′
ijyijp, where we write e.g. ȳ1 = y11 · · · y1k. We

now explain for what formula “ȳ ∈ Hx̄” stands for.
Observe that, loosely written, ȳ ∈ Hx̄ if and only if

∑
j(yj − xj) · xj = 0. We

introduce auxiliary variables for all intermediate results obtained when computing
this sum, namely we intend uj = yj − xj , the vj ’s to denote the products summed
and the wj ’s to denote the partial sums obtained when adding up the vj ’s. Precisely,
we let “ȳ ∈ Hx̄” stand for the formula:∧

j∈[k]

R+ujxjyj ∧
∧
j∈[k]

R×ujxjvj ∧
∧

j∈[k−1]

R+wjvjwj+1 ∧ w1 = v1 ∧ wk = 0.

So “ȳ ∈ Hx̄” is a formula in the variables x̄ȳūv̄w̄ and with parameter 0. In ρ′ we
use for each i ∈ [k + 2] distinct auxiliary variables ūiv̄iw̄i in “ȳ′i ∈ Hx̄”, that is,
“ȳ′i ∈ Hx̄” has free variables x̄ȳ′iūiv̄iw̄i.

We aim at a formula ρ such that with good probability for a random assignment

to the ȳi and u we have exactly one solution of (ϕȦ ∧ ρ). So far this cannot work
since we can assign whatever we want to the auxiliary variables ūiv̄iw̄i for i larger
than the value of u′ plus 2. We set

ρ := ρ′ ∧
∧

i∈[k+2]

(¬max{i− 2, 0} ≤ u′ → “ūiv̄iw̄i = 0̄”).

In the notation of our claim we let ȳ comprise all the ȳi’s and u and we let z̄
comprise all primed variables as well as all the auxiliary variables ūiv̄iw̄i.

This completes the construction of A∗ and ρ. It is clear that A∗ and ρ can be
computed in polynomial time given A and ϕ.

Probability analysis. Assume ϕ(A) 6= ∅. Let b ∈ A∗ and b̄1, . . . , b̄k+2 ∈ (A∗)k be
arbitrary and abbreviate

ψ := (ϕȦ ∧ ρ)
b

u

b̄1 · · · b̄k+2

ȳ1 · · · ȳk+2
.

The assignment of ā to x̄ can be extended to an assignment satisfying ψ in A∗ if
and only if ā ∈ ϕ(A) and (b̄i mod p) ∈ Hā for all i ∈ [(bmod (k+1))+2]. Moreover,
in this case there is exactly one such extension. In particular

|ψ(A∗)| =
∣∣{ā ∈ ϕ(A) | b̄i mod p ∈ Hā for all i ∈ [(bmod (k + 1)) + 2]

}∣∣ . (20)

36 J. A. MONTOYA AND M. MÜLLER

We define a function f by

f
(
bb̄1 · · · b̄k+2

)
:=

∣∣∣∣(ϕȦ ∧ ρ)
b

u

b̄1 · · · b̄k+2

ȳ1 · · · ȳk+2
(A∗)

∣∣∣∣ .
Think of the set of the bb̄1 · · · b̄k+2’s as carrying a probability space with the uniform
probability measure. Declare two points bb̄1 · · · b̄k+2 and b′b̄′1 · · · b̄′k+2 of this space to

be equivalent if b ≡ b′mod (k+1) and componentwise b̄i ≡ b̄′i mod p for all i ∈ [k+2].
Then the event {f = 1} is a union of such equivalence classes. All equivalence
classes have the same size since both p and k divide |A∗| (therefore we chose A∗ as
we did). Thus, the probability that f is 1 on a random argument bb̄1 · · · b̄k+2 is the
same as the probability that f is 1 on an argument chosen uniformly at random
from those bb̄1 · · · b̄k+2 with b < k + 1 and b̄i ∈ Fkp for all i ∈ [k + 2].

Let B,B1, . . . , Bk+2 be independent random variables such that B is uniformly
distributed in {0, . . . , k} and each Bi is uniformly distributed in Fkp. Then the

theorem claims Pr [f(BB1 · · ·Bk+2) = 1] ≥ 1/|A∗|2.
To prove this, call m good if

pm ≤ |ϕ(A)| ≤ pm+1.

Since 1 ≤ |ϕ(A)| ≤ |A|k ≤ pk we have 0 ≤ m ≤ k for any good m. Hence
Pr[B is good] is at least 1/(k + 1). If we could find some t such that

Pr[f(mB1 · · ·Bk+2) = 1] > t

for all good m, then we would know the following: for at least a 1/(k + 1) frac-
tion of b’s we find at least a t fraction of b̄1 · · · b̄k+2’s such that f is 1; hence
Pr[f(BB1 · · ·Bk+2) = 1] > t/(k + 1).

Claim 1: If m is good, then Pr
[
f(mB1 · · ·Bk+2) = 1

]
> 1/(2p2).

This implies the theorem: 1/((k + 1)2p2) ≥ 1/(k2p2) = 1/|A∗|2 (as k ≥ 3).

Proof of Claim 1: Let m be good. By (20)

f(mB1 · · ·Bk+2) = |{ā ∈ ϕ(A) | B1, . . . , Bm+2 ∈ Hā}|.
Hence f(mb̄1 · · · b̄k+2) = 1 if and only if there is a solution ā ∈ ϕ(A) such that Hā

contains all b̄1, . . . , b̄m+2 but there is no other solution with this property. Define
for ā ∈ ϕ(A) the event

Am(ā) := {B1, . . . , Bm+2 ∈ Hā} ∩
⋂

ā′∈ϕ(A)\{ā}

⋃
i∈[m+2]

{Bi /∈ Hā′}. (21)

Then Am(ā) ∩Am(ā′) = ∅ for distinct ā, ā′ ∈ ϕ(A) and

{f(mB1 · · ·Bk+2) = 1} =
⋃̇

ā∈ϕ(A)

Am(ā). (22)

Using the following Claim 2 we get what we want:

Pr
[
f(mB1 · · ·Bk+2) = 1

]
=

∑
ā∈ϕ(A)

Pr[Am(ā)] >
∑

ā∈ϕ(A)

p− 1

pm+3
≥ pm(p− 1)

pm+3
≥ 1

2p2
.

Here, the equality is due to (22), the first inequality to Claim 2 below and the
second inequality to m being good. a

We are thus left to verify:

Claim 2: If m is good, then Pr[Am(ā)] > (p− 1)/pm+3 for all ā ∈ ϕ(A).

PARAMETERIZED RANDOM COMPLEXITY 37

Proof of Claim 2: Let m be good, ā ∈ ϕ(A) and write B̄ := (B1, . . . , Bm+2).
By (18)

Pr
[
B̄ ∈ Hm+2

ā

]
=

∏
i∈[m+2]

Pr [Bi ∈ Hā] = 1/pm+2. (23)

For any ā′ ∈ ϕ(A) \ {ā} we have by (19) (note ā, ā′ 6= 0̄)

Pr
[
B̄ ∈ (Hā ∩Hā′)

m+2
]

=
∏

i∈[m+2]

Pr [Bi ∈ Hā ∩Hā′] ≤ 1/p2(m+2). (24)

By (23) and (24)

Pr
[
B̄ ∈ Hm+2

ā′ | B̄ ∈ Hm+2
ā

]
≤ 1/pm+2. (25)

Letting ā′ range over ϕ(A) \ {ā} we conclude

Pr [Am(ā)] = Pr
[
B̄ ∈ Hm+2

ā

]
· Pr

[⋂
ā′

⋃
i∈[m+2]

{Bi /∈ Hā′}
∣∣∣ B̄ ∈ Hm+2

ā

]
≥ Pr

[
B̄ ∈ Hm+2

ā

]
·
(

1−
∑
ā′

Pr
[
B̄ ∈ Hm+2

ā′

∣∣∣ B̄ ∈ Hm+2
ā

])
≥ 1

pm+2
·
(

1− |ϕ(A)| − 1

pm+2

)
>

1

pm+2
·
(

1− pm+1

pm+2

)
=
p− 1

pm+3
.

The equality follows from definition (21), the first inequality from the union bound,
the second inequality from (23) and (25), and the third from m being good. �

8.4. Proofs of the corollaries. To prove the results announced in Section 8.2,
we need to make two things precise (Definitions 8.10 and 8.11 below), namely, we
have to define the randomized reductions to promise problems as mentioned in
Theorems 8.5 and 8.6 and we have to define what it means to decide a problem
with uniqueness promise in fpt time (as mentioned in Corollary 8.7).

Usually, if (F, κ) is the naturally associated counting version of a decision prob-
lem (Q, κ), then Q = {F > 0}(= {x ∈ Σ∗ | F (x) > 0}). But, of course {F > 0}
does not determine F , so the modes of speech we are going to introduce are appli-
cable only within a context determining F . This obligation vanishes when talking
about decision problems having – by agreement – a certain naturally associated
counting problem. This is the case for model-checking problems.

Definition 8.10. Let (Q, κ) be a parameterized decision problem and let (F, κ′)
be a parameterized counting problem. A (W[1]-, W[P]-)randomized reduction with
one-sided fpt error from (Q, κ) to ({F > 0}, κ′) with uniqueness promise is a (W[1]-,
W[P]-)randomized program P such that there are computable f, g : N → N and a
c ∈ N such that for all x ∈ Σ∗:

(1) if x ∈ Q, then Pr[F (P(x)) = 1] ≥ 1/(f(κ(x)) · |x|c);
(2) if x /∈ Q, then Pr[F (P(x)) = 0] = 1;
(3) Pr[κ′(P(x)) ≤ g(κ(x))] = 1.

Definition 8.11. Given a parameterized counting problem (F, κ), we say that
({F > 0}, κ) with uniqueness promise is fixed-parameter tractable if there are an
algorithm A and a computable f : N → N such that for all x ∈ Σ∗ with F (x) ∈
{0, 1}:

38 J. A. MONTOYA AND M. MÜLLER

(1) A runs in time f(κ(x)) · |x|O(1);
(2) A accepts x⇐⇒ x ∈ {F > 0}.

Remark 8.12. One could equivalently demand A to be fpt time bounded: equip
an algorithm as in Definition 8.11 with a clock; if time runs out the input x does
not satisfy F (x) ∈ {0, 1} and we can answer arbitrarily.

Proposition 8.13. Let (Q, κ) be a parameterized decision problem outside RFPT
and let (F, κ′) be a parameterized counting problem. Assume there is a W[P]-
randomized reduction with one-sided fpt error from (Q, κ) to ({F > 0}, κ′) with
uniqueness promise. Then ({F > 0}, κ′) with uniqueness promise is not fixed-
parameter tractable.

Proof. First apply the reduction from (Q, κ) to ({F > 0}, κ′) and then an fpt time
bounded (Remark 8.12) algorithm witnessing that ({F > 0}, κ′) with uniqueness
promise is fixed-parameter tractable. This decides (Q, κ) in fpt time with one-sided
error at most 1−1/(h(κ(x))·|x|c) for some computable h : N→ N and some constant
c ∈ N. In particular, Q is decidable. But the error 1− 1/(h(κ(x)) · |x|c) is at most
1−|x|−(c+1) on those instances x of length at least h(κ(x)). On other inputs we can
run some decision procedure for Q; this needs time effectively bounded in κ(x). We
conclude that (Q, κ) can be decided by a W[P]-randomized program with one-sided
error 1− |x|−(c+1). Thus (Q, κ) ∈ RFPT by Theorem 4.1 (and Remark 4.2). �

To prove Theorem 8.6 we use the following straightforward lemma:

Lemma 8.14. Let (F, κ′′) be a parameterized counting problem and (Q, κ), (Q′, κ′)
be parameterized decision problems such that (Q, κ) is fpt reducible to (Q′, κ′). If
there is a W[1]-randomized reduction with one-sided fpt error from (Q′, κ′) to ({F >
0}, κ′′) with uniqueness promise, then also from (Q, κ) to ({F > 0}, κ′′).

Proof of Theorem 8.6: To prove (1) or (2) or (3) we can, by Lemma 8.14, assume
that (Q, κ) = (MC(Φ), κ) where Φ is some suitable class of LFP formulas and
and κ is either the parameterization by the length of the input formula or the
number of its variables. A program computing the desired reduction works as
follows: given an instance (A, ϕ(x̄)) of MC(Φ) first compute deterministically A∗

and (ϕȦ(x̄) ∧ ρ(x̄ȳz̄)) from Theorem 8.3 in polynomial time. Then roll |ȳ| many

|A∗|-sided dice to get b̄ ∈ (A∗)|ȳ| and output
(
A∗, (ϕȦ ∧ ρ) b̄ȳ

)
.

Note (ϕȦ ∧ ρ) ∈ Φ, whenever ϕ ∈ Φ modulo an easy polynomial time modifi-
cation. As the length of ρ and hence also |ȳ| is polynomially bounded in |x̄|, our
program is W[1]-randomized and satisfies Definition 8.10 (3). Definition 8.10 (2) is

satisfied too, because in case ϕ(A) = ∅ we have (ϕȦ∧ρ) b̄ȳ (A∗) = ∅ for all b̄. Other-

wise |(ϕȦ ∧ ρ) b̄ȳ (A∗)| = 1 with probability at least 1/|A∗|2. As |A∗| is polynomially

bounded in the input size, Definition 8.10 (1) is satisfied. �

Remark 8.15. The argument given shows more than stated. It proves analo-
gous statements also for the classes of the W∗-hierarchy, the classes of the Wfunc-
hierarchy and the classes AW[∗], AW[SAT] and AW[P]. See [37, Chapter 8] for suit-
able model-checking characterizations of these classes except AW[P]. For AW[P]
see [21, Theorem 33(2)].

The following is easy to see.

PARAMETERIZED RANDOM COMPLEXITY 39

Lemma 8.16. Let (F, κ) and (F ′, κ′) be parameterized counting problems such that
(F, κ) is fpt reducible to (F ′, κ′). If ({F ′ > 0}, κ′) with uniqueness promise is fixed-
parameter tractable, then ({F > 0}, κ) with uniqueness promise is fixed-parameter
tractable.

Theorem 8.17. Let `, t ≥ 1 and let (F, κ) be a #A[`, t]-hard parameterized count-
ing problem. Then ({F > 0}, κ) with uniqueness promise is not fixed-parameter
tractable unless A[`, t] ⊆ RFPT.

Proof. Let `, t ≥ 1 and (F, κ) be as stated. If ({F > 0}, κ) with uniqueness promise
is fixed-parameter tractable, then so is p-MC(Π`−1,t−1,1) by Lemma 8.16. Then
A[`, t] ⊆ RFPT by Proposition 8.13 and Theorem 8.6. �

Concerning ‘uniqueness variants’ of decision problems this yields:

Theorem 8.18. Let `, t ≥ 1 and let (F, κ) be a #A[`, t]-hard parameterized count-
ing problem. Then ({F = 1}, κ) /∈ FPT unless A[`, t] ⊆ RFPT.

Proof. By Theorem 8.17 it suffices to note that an fpt algorithm for ({F = 1}, κ)
witnesses that ({F > 0}, κ) with uniqueness promise is fixed-parameter tractable.
�

Since p-#Clique is #W[1]-complete, the two claims of Corollary 8.7 follow from
the previous two theorems.

9. Questions

We saw some first steps of parameterized random complexity theory and many
question are open. Answers to the following ones may advance more generally our
understanding of structural parameterized complexity theory.

Section 3 (Parameterized randomization: basic observations and techniques). The
section defined two modes of parameterized randomization corresponding to taking
W[1] or W[P] as parameterized analogue of NP. Concerning the characterization
of randomized parameterized tractability by randomized kernelizations it would be
interesting to know whether randomized kernelizations can beat deterministic ones
with respect to kernel size.

Section 4 (Deterministic probability amplification). The section established strong
probability amplification for W[P]-randomization. Can you amplify W[1]-rando-
mized two-sided error from 1

2 −
1
|x| to 1

4 or from 1
4 to 1

|x|? We are not aware of

amplifications methods that are useful in this respect, so the question may be a
starting point to find new such methods.

Section 5 (Parameterized derandomization). The section characterized (“black-box”)
derandomization of BPFPT in terms of classical derandomization. What does
BPFPT[1] = FPT mean in such terms? The question points to the problem
that W[1] does not have a nice characterization by Turing machines (see however
[11, 29]). Or can you prove BPFPT[1] = FPT unconditionally?

40 J. A. MONTOYA AND M. MÜLLER

Section 6 (Upper bounds). The section gave analogues of the Sipser-Gács Theo-
rem for both W[P]- and W[1]-randomization. Is there an analogue of Adleman’s
Theorem, that is, does parameterized randomized tractability imply some form of
non-uniform parameterized tractability? Adleman’s line of argument breaks at the
point where the analogy of the parameterized class XP and the classical class EXP
is flawed: there are more than nf(k) instances of size n with parameter k. A struc-
tural question seemingly of relevance here is: what kind a problem (Q, κ) has an
fpt reduction r to itself such that the range of r is polynomial time decidable and
contains at most nf(k) instances of size n with parameter k?

Does W[1] = FPT imply BPFPT[1] = FPT? The structural problem behind
this question is the lack of a collapse theorem for the A-hierarchy.

Section 7 (Probably almost correct counting). The section gave analogues of a The-
orem of Stockmeyer. Under what conditions do we have these theorems ‘problem-
wise’? That is: when approximating a counting problem coming from a decision
problem (Q, κ), say (Q, κ) ∈W[1], are we really in need of an oracle for the full class
W[1] or could we do with (Q, κ)? Trivially, the answer is yes for W[1]-hard (Q, κ).
But the question is interesting for problems in FPT with a #W[1]-hard counting
version. An answer would constitute a step towards a theoretical understanding
of what it is that makes certain hard counting problems have fast randomized ap-
proximations.

Another open question is whether one can derandomize the result of V.Arvind
and V.Raman (see page 25) to W[P]-fptrases.

Section 8 (Uniqueness promises). We proved a general ‘logical’ version of the Valiant-
Vazirani Lemma applicable to all classes of the A-matrix. An important question
is whether we can achieve a better success probability, say, of at least 1/k? This
question comes from the struggle for a parameterized analogue of Toda’s Theorem,
repeatedly asked for in [29, 28, 35, 37]. The first author obtained some conditional

results [50]. Such an analogue would state that FPT#W[1] contains the A-hierarchy

or at least the W-hierarchy, or that FPT#W[P] contains the AWP-hierarchy (cf. Def-
inition 6.1) or at least the A-hierarchy.

References

[1] M.Ajtai, J.Komlós, and E.Szemerédi, Deterministic simulation in LOGSPACE, Proceedings

of the 9th annual ACM Symposium on Theory of Computing (STOC’87), pp.132-140, 1987.
[2] M.Alekhnovich and A.A.Razborov, Resolution is not automatizable unless W[P] is tractable,

Proceedings of the 41th IEEE Symposium on Foundations of Computer Science (FOCS’01),

pp- 210-219, 2001.
[3] N.Alon, R.Yuster, and U.Zwick, Color-coding, Journal of the ACM 42, pp.844-856,1995.

[4] S.Arora and B.Barak, Computational Complexity: A Modern Perspective, Cam-

bridge University Press, 2009.
[5] V.Arvind and V.Raman, Approximation algorithms for some parameterized counting prob-

lems. In I.Bose and P.Morin, ed., Proceedings of the 13th International Symposium on
Algorithms and Computation, LNCS 2518, pp.453-464. Springer, 2002.

[6] A.Blass and Y.Gurevich, On the unique satisfiability problem, Information and Computation

55, pp.80-88, 1982.
[7] R.P.Brent, D.J.Kuck and K.Maruyama, The parallel evaluation of arithmetic expressions

without division, IEEE Transactions on Computers C-22, pp.532-534, 1973.

[8] R.P.Brent, The parallel evaluation of general arithmetic expressions, Journal of the ACM
21(2), pp.201-206, 1974.

PARAMETERIZED RANDOM COMPLEXITY 41

[9] P.Bremaud, Markov Chains, Gibbs Fields, Monte Carlo Simulation and Qeues,
Springer Texts in Applied Mathematics 31, 1999.

[10] L.Cai, Random separation: a new method for solving fixed-cardinality optimization prob-

lems, Proceedings of the 2nd International Workshop on Parameterized and Exact Compu-
tation (IWPEC’06), LNCS 4169, pp.239-250, 2006.

[11] L.Cai, J.Chen, R.G.Downey and M.R.Fellows, On the structure of parameterized problems

in NP, Information and Computation 123, pp.38-49, 1995.
[12] C.Calabro, R.Impagliazzo, V.Kabanets and R.Paturi, The complexity of unique k-SAT: an

isolation lemma for k-CNFs, Proceedings of the 18th IEEE Conference on Computational
Complexity (CCC’03),pp.135-141, 2003.

[13] R.Chang and J.Kadin, On computing boolean connectives of characteristic functions, Theory

of Computing Systems 28 (3), pp.173-198 Springer, 1995.
[14] R.Chang, J.Kadin, and P.Rohatgi, On unique satisfiability and the threshold behavior of

randomized reductions, Journal of Computer and System Sciences, 50(3), pp.359–373, 1995.

[15] S.Chari, P.Rohatgi and A.Srinivasan, Randomness-optimal unique element isolation, with
applications to perfect matching and related problems, Proceedings of the twenty-fifth ACM

Symposium on Theory of Computing (STOC’93), pp.458-467, 1993.

[16] J.Chen, S.Lu, S.-H.Sze and F.Zhang, Improved algorithms for path, matching and pack-
ing problems, Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms

(SODA’07), pp.298-307, 2007.

[17] J.Chen, Randomized disposal of unknowns and implicitly enforced bounds on parameters,
Proceedings of the 3rd International Workshop on Parameterized and Exact Computation

(IWPEC’08) in Victoria, LNCS 5018, pp.1-8, 2008.

[18] Y.Chen, Model-Checking Problems, Machines and Parameterized Complexity,
Dissertation, Albert-Ludwigs-Universität Freiburg i.Br., 2004.

[19] Y.Chen and J.Flum, The parameterized complexity of maximality and minimality problems,
Annals of Pure and Applied Logic 151(1), pp.22-61, 2008.

[20] Y. Chen and J. Flum, Subexponential time and fixed-parameter tractability: exploiting the

miniaturization mapping, In: Proceedings of the 21st International Workshop on Computer
Science Logic (CSL’07), LNCS 4646, pp.389-404, 2007.

[21] Y.Chen, J.Flum and M.Grohe, Bounded nondeterminism and alternation in parameterized

complexity theory, In Proceedings of the 18th IEEE Conference on Computational Com-
plexity (CCC’03), pp.13-29, 2003.

[22] Y.Chen, J.Flum and M.Grohe, Machine-based methods in parameterized complexity theory,

Theoretical Computer Science 339, pp.167-199, 2005.
[23] Y.Chen, J.Flum and M.Müller, Lower bounds for kernelizations and other preprocessing

procedures, Theory of Computing Systems, 48(4):803-839, 2011.

[24] Y.Chen and M.Grohe, An isomorphism between subexponential and parameterized complex-
ity theory, SIAM Journal on Computing, 37(4), pp.1228-1258, 2007.

[25] S.A.Cook and R.A.Reckhoff, Time bounded random access machines, Journal of Computer
and System Sciences 7, pp.354-375, 1973.

[26] R.G.Downey, V.Estivill-Castro, M.R.Fellows, E.Prietoc and F.A.Rosamond, Cutting up is

hard to do: the parameterised complexity of k-cut and related problems, in J.Harland (ed.),
Proceeding of the Australasian Theory Symposium (CATS’03), Electronic Notes in Theo-

retical Computer Science 78, pp.209-222, 2003.

[27] R.G.Downey and M.R.Fellows, Parameterized Complexity, Springer, 1999.
[28] R.G.Downey and M.R.Fellows, Parameterized complexity after almost ten years: review

and open questions, Proceedings of Combinatorics, Computation and Logic, DMTCS’99
and CATS’99, Australian Computer Science Communications 21, Springer, pp.1-33, 1999.

[29] R.G.Downey, M.R.Fellows and K.W.Regan, Parameterized Circuit Complexity and the W

Hierarchy, Theoretical Computer Science 191(1-2), pp.97-115, 1998.

[30] H.D.Ebbinghaus, Extended Logics: The general framework, in: Model-Theoretical Logics,
ed. J.Barwise, S.Feferman, Springer-Verlag, pp.25-76, 1985.

[31] K.Eickmeyer and M.Grohe, Randomisation and derandomisation in descriptive complexity
theory, Proceedings of the 24th International Workshop Computer Science Logic (CSL’10),

2010.

42 J. A. MONTOYA AND M. MÜLLER

[32] K.Eickmeyer, M.Grohe and M.Grübner, Approximisation of W[P]-complete minimisa-
tion problems is hard, Proceedings 23rd IEEE Conference on Computational Complexity

(CCC’08), pp.8-18, 2008.

[33] M.R.Fellows and N.Koblitz, Fixed-parameter complexity and cryptography, Proceedings of
the 10th International Symposium on Applied Algebra, Algebraic Algorithms and Error-

Correcting Codes (AAECC’93), LNCS 673, pp.121-131, Springer, 1993.

[34] J.Flum and M.Grohe, Fixed-parameter tractability, definability, and model checking, SIAM
Journal on Computing 31, pp.113-145, 2001.

[35] J.Flum and M.Grohe, The parameterized complexity of counting problems, SIAM Journal
on Computing 33(4), pp.892-922, 2004.

[36] J.Flum and M.Grohe, Model-checking problems as a basis for parameterized intractability,

Logical Methods in Computer Science 1(1), 2005. Conference version in Proceedings of the
19th IEEE Symposium on Logic in Computer Science (LICS’04), pp.388-397, 2004.

[37] J.Flum and M.Grohe, Parameterized Complexity Theory, Springer, 2006.

[38] J.Flum, M.Grohe and M.Weyer, Bounded fixed-parameter tractability and log2 n nondeter-
ministic bits, Journal of Computer and System Sciences 72, pp.34-71, 2006.

[39] O.Goldreich, Introduction to complexity theory - Lecture Notes, 2001; available at

http://www.wisdom.weizmann.ac.il/~oded/homepage.html.
[40] O.Goldreich, Randomized methods in computation - Lecture Notes, 2001; available at

http://www.wisdom.weizmann.ac.il/~oded/homepage.html.

[41] O.Goldreich, Computational Complexity: A Conceptual Perspective, Cambridge
University Press, 2008.

[42] E.Grandjean and H.Kleine-Büning, SAT-problems and reductions with respect to the number

of variables, Journal of Logic and Computation 7(4), pp.457-471, 1997.
[43] M.Grohe, The Complexity of generalized model-checking problems, unpublished manuscript

from 2001.
[44] S.Hoory, N.Linial and A.Wigderson, Expander graphs and their applications, Bulletin of the

American Mathematical Society 43(4), pp.439-561, 2006.

[45] M.Jerrum, Counting, Sampling and Intergrating: Algorithms and Complexity,
Birkhäuser, 2003.

[46] D.S.Johnson, C.H.Papadimitriou and M.Yannakakis, On generating all maximal indepen-

dent sets, Information Processing Letters 27, pp.119-123, 1988.
[47] Y.Liu, S.Lu, J.Chen and S.-H.Sze, Greedy localization and color-coding: improved matching

and packing algorithms, Proceedings of the 2nd International Workshop on Parameterized

and Exact Computation (IWPEC’06), LNCS 4169, pp.84-95, 2006.
[48] M.Luby and A.Wigderson, Pairwise independence and derandomization, Foundation and

Trends in Theoretical Computer Science 1(4), pp.237-301, 2005.

[49] D.Marx, Parameterized complexity of constraint satisfaction problems, Computational Com-
plexity 14(2), pp.153-183, 2005.

[50] J.A.Montoya, On Parameterized Counting, Dissertation, Albert-Ludwigs-Universität
Freiburg i.Br, 2008.

[51] J.A.Montoya, The Parameterized Complexity of Probability Amplification, Information Pro-

cessing Letters 109(1), pp.46-53, 2008.
[52] J.A.Montoya, On the parameterized complexity of approximate counting, RAIRO - Theo-

retical Informatics and Applications, doi:10.1051/ita/2011007.

[53] M.Müller, Randomized approximations of parameterized counting problems, Proceedings of
the 2nd International Workshop on Parameterized and Exact Computation (IWPEC’06),

LNCS 4169, pp.50-59, 2006.
[54] M.Müller, Parameterized derandomization, Proceedings of the 3rd International Workshop

on Parameterized and Exact Computation (IWPEC’08), LNCS 5018, pp.148-159, 2008.

[55] M.Müller, Valiant-Vazirani lemmata for various logics, Electronic Colloquium

on Computational Complexity (ECCC’08), Report TR08-063, 2008; available at
http://eccc.hpi-web.de/eccc-reports/2008/TR08-063/index.html

[56] M.Müller, Parameterized Randomization, Dissertation, Albert-Ludwigs-Universität
Freiburg i.Br., 2009.

[57] J.Naor and M.Naor, Small-bias probability spaces: efficient constructions and applications,

SIAM Journal on Computing 22, pp.213-223, 1993.

PARAMETERIZED RANDOM COMPLEXITY 43

[58] M.Naor, L.Schulman and A.Srinivasan, Splitters and near-optimal derandomization, Pro-
ceedings of the 39th IEEE Symposium on Foundations of Computer Science (FOCS’95),

pp.182-190, 1995.

[59] M.Ogiwara and S.Toda, Counting classes are at least as hard as the polynomial-time hier-
archy, SIAM Journal on Computing 21(2), pp.316-328, 1992.

[60] K.W.Regan, Efficient reductions from NP to parity using error-correcting codes (prelimi-

nary version), State University of New York at Buffalo, Technial Report 93-24, 1993; avail-
able at http://www.cse.buffalo.edu/tech-reports/

[61] O.Reingold, S.Vadhan, A.Wigderson, Entropy waves, the zig-zag graph product, and new
constant degree expanders, Annals of Mathematics, 155, pp.157-187, 2002.

[62] M.Sipser, A complexity theoretic approach to randomness, Proceedings of the 15. ACM

Symposium on Theory of Computing (STOC’83), pp.330-335, 1983.
[63] L.Stockmeyer, On approximation algorithms for #P, SIAM Journal on Computing 14(4),

pp.849-861,1985.

[64] S.Toda, PP is as hard as the polynomial hierarchy, SIAM Journal on Computing 20(5) ,
pp.865-877, 1991.

[65] L.G.Valiant, The complexity of enumeration and reliability problems, SIAM Journal on

Computing 8(3), pp.410-421, 1979.
[66] L.G.Valiant, V.V.Vazirani, NP is as easy as detecting unique solutions, Proceedings of the

17th ACM Symposium on Theory of Computing (STOC’85), pp.458-463, 1985.

Escuela de Matemáticas, Universidad industrial de Santander, Bucaramanga, Colom-
bia.

E-mail address: jmontoya@matematicas.uis.edu.co

Kurt Gödel Research Center, University of Vienna, Austria.
E-mail address: moritz.mueller@univie.ac.at

