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Abstract

We continue recent work on computable structure theory in the setting
of ω1. We prove the analogue of a result from [7] saying that isomorphism
of computable structures lies “on top” among Σ1

1 equivalence relations on
ω. Our equivalence relations are on ω1. In the standard setting, Σ1

1 sets
are characterized in terms of paths through trees. In the setting of ω1, we
use a new characterization of Σ1

1 sets that involves clubs in ω1. Finally,
we present some new results about ω1-computable categoricity for fields.

1 Introduction

Recent work on computable structure theory has come to include the setting
of ω1-computability, in addition to the standard setting of ω-computability. In
[13], there is a sample of results, including some that transfer immediately from
the standard setting, some that transfer in modified form, and some that do
not transfer at all. The main motivation for this work is that there are familiar
uncountable structures, such as the field of real numbers and the field of complex
numbers, which feel computable. With suitable assumptions, these structures
actually are computable in ω1. In [5], there is a definition of the arithmetical
hierarchy in the setting of ω1, and of “computable Σα” and “computable Πα”
formulas, for countable ordinals α. (These are formulas of Lω2,ω1

, as opposed
to Lω1ω.) The main result of [5] is that for countable ordinals α, a relation R
on a computable structure A is “relatively intrinsically Σα” iff it is definable by
a computable Σα formula.
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In [14] and [12], there are results on computable categoricity in the setting
of ω1. In [14], it is shown that the “Zil’ber field” of size ℵ1 is not computably
categorical, while the “Zil’ber cover ” of size ℵ1 is computably categorical. The
Zil’ber fields are structures that resemble the field of complex numbers, with
complex exponentiation. The Zil’ber covers are a related class of structures.
There is a general condition on “quasi-minimal excellent” classes, saying exactly
when the member of size ℵ1 will be computably categorical. In [12], there is a
characterization of the linear orderings that are computably categorical in the
setting of ω1.

In the remainder of Section 1, we give a very brief summary of the basic
definitions and elementary results on computability and computable structures
in the setting of ω1. For more details, we refer the reader to [13]. In Section
2 we define an analogue of the Σ1

1 sets, and imitate a result of Kleene on Σ1
1-

completeness in order to give an analogue of a theorem from [7] concerning
Σ1

1 equivalence relations. Our result involves clubs (closed and unbounded sets)
instead of paths through trees. In Section 3, we define the notion of a computable
embedding of one class of structures (of size ℵ1) into another, giving several
examples. In particular, we give an analogue of a result of H. Friedman and
Stanley [8], concerning universality of linear orderings. Finally, in Section 4, we
study computable categoricity of fields in the context of ω1.

1.1 Basic computability in the setting of ω1

We assume at least that all subsets of ω are constructible, and in some places,
we assume that all subsets of ω1 are constructible. The basic definitions come
from “α-recursion” theory, where α = ω1 (see [23]).

Definition 1.1.

• A set or relation on ω1 is computably enumerable, or c.e., if it is defined
in (Lω1

,∈) by a Σ1-formula ϕ(c, x), with finitely many parameters—a Σ1

formula is finitary, with only existential and bounded quantifiers.

• A set or relation is computable if it and its complement are both com-
putably enumerable.

• A (partial) function is computable if its graph is c.e.

Results of Gödel give us a 1− 1 function g from ω1 onto Lω1
such that the

relation g(α) ∈ g(β) is computable. The function g gives us ordinal codes for
sets, so that computing on ω1 is really the same as computing on Lω1

. There
is also a computable function ` taking α to the code for Lα. Using the fact
that Lω1 is closed under α-sequences for any countable ordinal α, we may allow
relations and functions of arity α, where α is any countable ordinal.

As in the standard setting, we have indices for c.e. sets. There is a c.e.
set C of codes for pairs (ϕ, c), representing Σ1 definitions, where ϕ(u, x) is
a Σ1-formula and c is a tuple of parameters appropriate for u. There is a
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computable function h mapping ω1 onto C. A set X has index α if h(α) is
the code for a pair (ϕ, c) representing a Σ1 formula ϕ(c, x), and X is the set
defined in (Lω1

,∈) by this formula. We write Wα for the c.e. set with index
α. Suppose Wα is determined by the pair (ϕ, c); i.e., ϕ(c, x) is a Σ1 definition.
We say that x is in Wα at stage β, and we write x ∈ Wα,β , if Lβ contains x,
the parameters c, and witnesses making the formula ϕ(c, x) true. The relation
x ∈ Wα,β is computable. Let U ⊆ (ω1)2 consist of the pairs (α, β) such that
β ∈ Wα. Then U is m-complete c.e. It is not computable, since the “halting
set” K = {α : α ∈Wα} is c.e. and not computable.

In the setting of ω1, we have a good notion of relative computability.

Definition 1.2.

• A relation is c.e. relative to X if it is Σ1-definable in (Lω1
,∈, X).

• A relation is computable relative to X if it and its complement are both
c.e. relative to X.

• A (partial or total) function is computable relative to X if the graph is
c.e. relative to X.

A c.e. index for R relative to X is an ordinal α such that g(h(α)) = (ϕ, c),
where ϕ is a Σ1 formula (in the language with ∈ and a predicate symbol for X),
and ϕ(c, x) defines R in (Lω1

,∈, X). We write WX
α for the c.e. set with index

α relative to X.
As in the standard setting, we have a universal c.e. set of partial computa-

tions using oracle information. Let U consist of the codes for triples (σ, α, β)
such that σ ∈ 2ρ (for some countable ordinal ρ), and for X with characteristic
function extending σ, β ∈WX

α . Then U is c.e.

Definition 1.3. The jump of X is the set X ′ = {(α, x) : x ∈WX
α }.

We can iterate the jump function through countable levels. We let X(0) = X,
X(α+1) = (X(α))′, and for limit α, X(α) is the set of codes for pairs (β, x) such
that β < α and x ∈ X(β). As Lω1

is closed under countable sequences, it follows
that for countable limit λ, X(λ) is the least upper bound of the X(α) for α < λ,
in the ordering of relative computability.

1.2 A little computable structure theory

We consider structures with universe a subset of ω1. As in the standard set-
ting, we usually identify a structure with its atomic diagram. A structure is
computable if the atomic diagram is computable. A structure is decidable if
the complete diagram is computable. We mention some simple examples, taken
from [13]. The ordered field of reals has a computable copy with universe ω1.
If we think of the reals as a subset of Lω1

, where each number is represented
by a rational cut, this is a computable structure. The field of complex numbers
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has a computable copy. We may even add exponential functions such as exp,
noting that any analytic function is determined by the countable sequence of
coefficients of a power series.

In the standard setting, Morley [20] and Millar [19] showed that for any
countable complete decidable elementary first order theory T , there is a de-
cidable saturated model iff there is a computable enumeration of the complete
types consistent with T . In the setting of ω1, we have the following (see [13]).

Proposition 1.4. For any countable complete elementary first order theory T
(with infinite models), T has a decidable saturated model with universe ω1.

In the standard setting, the first non-computable ordinal, ωCK1 , is the next
admissible ordinal after ω. In the setting of ω1, the first non-computable ordinal
comes much before the next admissible after ω1. This was well-known in the
1970’s. The simple proof1 is found in [9] and [13]. In the standard setting, the
Harrison ordering is a computable ordering of type ωCK1 · (1+η). This ordering
has initial segments isomorphic to all computable well orderings. In the setting
of ω1, we have the following (see [13]).

Theorem 1.5 (Greenberg-Knight-Shore). There is a computable ordering H
with initial segments isomorphic to all computable ordinals.

Sketch of proof. We take a uniformly computable list of linear orderings, repre-
senting all computable isomorphism types, and carry out a finite-injury priority
construction to produce H with an initial segment that is a sum of intervals
representing the well ordered Aα, in order, followed by various other intervals
that are not well ordered.

In the standard setting the property of being well ordered is complete Π1
1.

We have seen that in the setting of ω1 being well-ordered is relatively simple.
The following result holds in the standard setting [7].

Theorem 1.6 (Fokina-S.Friedman-Harizanov-Knight-McCoy-Montalbán). For
every Σ1

1 equivalence relations E on ω, there is a uniformly computable sequence
of trees (Tn)n∈ω (subtrees of ω<ω) such that

mEn⇔ Tm ∼= Tn .

In the proof of Theorem 1.6, in the standard setting, the isomorphism type
of each tree Tn is determined by an ω-sequence of computable ordinals, or ∞.

In [7], the result for trees is used to show that isomorphism on computable
members of certain other classes lies on top in the same way: notably, torsion-
free Abelian groups and Abelian p-groups.

1Here is the argument: Let α be the least admissible after ω1. Then the set of computable
well-orderings of ω1 is an element of Lα and the function f that takes such a well-ordering to
its length is Σ1 definable over Lα; it follows that the range of f is bounded in α.
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In the next section, we shall lift Theorem 1.6 to the setting of ω1. Since
there are so few computable ordinals, we shall need some fresh ideas.

Theorem 1.7. Assume V = L. For any Σ1
1 equivalence relation E on ω1, there

is a uniformly computable sequence of structures M∗(α)α<ω1
(with universe ω1)

such that αEβ iff M∗(α) ∼= M∗(β).

2 Σ1
1 sets

Recall that in the standard setting, a set S ⊆ ω is Σ1
1 if there is a computable

relation R(x, u) such that

n ∈ S ⇔ (∃f ∈ ωω) (∀s ∈ ω)R(n, f � s) .

Kleene showed the following.

Theorem 2.1 (Kleene). If S is Σ1
1, then there is a uniformly computable se-

quence of subtrees (Tx)x∈ω of ω<ω such that x ∈ S iff Tx has a path.

In the standard setting, a computable tree with no path has a tree rank that
is a computable ordinal. The ordinal tree ranks were crucial to the proof of
Theorem 1.6. In our setting, we do not have enough computable ordinals, so we
will need a new idea. We take the following as our definition of Σ1

1 subset of ω1.

Definition 2.2. A set S ⊆ ω1 is Σ1
1 if there is a computable relation R, on ordi-

nals and functions in ω<ω1
1 , such that x ∈ S iff (∃f ∈ ωω1

1 ) (∀β ∈ ω1)R(x, f � β).

Thus Σ1
1 sets are projections of “co-c.e.” subsets of ωω1

1 , defined using Π1

formulas and parameters from Lω1
. As in the standard setting, we can replace

Π1 by Πn here for any finite n, using Skolem functions to replace alternating
quantification over Lω1

with existential quantification over functions in ωω1
1 (for

the details see Chapter 16 of [22]).
A subtree T of ω<ω1

1 is a subset of ω<ω1
1 which is closed under initial segments

(i.e., if σ belongs to T then so does σ � β for all β). Two such trees are isomorphic
if there is a bijection between them which preserves the initial segment relation
σ ⊆ τ . The same definitions apply to subtrees of A<ω1 for any set A.

Lemma 2.3. For any Σ1
1 set S ⊆ ω1, there is a uniformly computable sequence

(Tx)x<ω1 of subtrees of ω<ω1
1 such that x ∈ S iff Tx has an ω1-branch.

Proof. We do just what Kleene did. Let Tx consist of those σ ∈ ω<ω1
1 such that

∀β < length(σ)R(x, σ � β).

The structures that we produce for our main result (Theorem 1.7) are not
members of any familiar class. The structures in the range of our embedding
will each code a sequence of sets (Xβ)β<ω1

, up to an equivalence relation ∼,
which is defined as follows.
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Definition 2.4. For X,Y ⊆ ω1, X ∼ Y iff X4Y is not stationary, where
X4Y denotes the symmetric difference of X and Y .

Lemma 2.5. For any Σ1
1 set X ⊆ ω1, there is a uniformly computable sequence

(Sα)α<ω1
of subsets of ω1 such that α ∈ X iff Sα contains a club.

Proof. Choose a uniformly computable sequence of trees (Tα)α<ω1 as in Lemma
2.3. Thus α ∈ S iff Tα has an ω1-branch. Choose a parameter p ∈ Lω1 and a
Σ1 formula ϕ so that σ belongs to Tα iff Lω1

� ϕ(p, α, σ). This is possible as
the uniformly computable sequence of Tα’s is Σ1 definable with some parameter
over Lω1

.
For ordinals α < β ≤ ω1 such that p belongs to Lβ we let T βα be the

interpretation of the tree Tα in Lβ , i.e. {σ | Lβ � ϕ(p, α, σ)}. This may not be
a tree for all such pairs α < β. By definition we have that Tω1

α = Tα.
Now let Sα be the set of countable ordinals β > α such that for some

countable γ > β,

1. Lγ |= ZF− (ZF minus Power Set),

2. ω
Lγ
1 = β,

3. T βα is a tree which has a branch of length β in Lγ .

First, suppose that Tα has an ω1-branch b. We show that Sα contains a
club.

Suppose that M is a countable elementary substructure of Lω2
such that

b ∈ M . Then the transitive collapse, denoted by M , has the form Lγ . Let

β = ωM1 . Since b is an ω1-branch through the tree Tα = Tω1
α , b � β is a β-branch

through the tree T βα that belongs to Lγ and therefore γ witnesses that β belongs
to Sα.

Now form a continuous chain (Mi)i<ω1 of countable elementary substruc-
tures of Lω2

. Let M i be the transitive collapse of Mi. Then M i = Lγi , for some

countable ordinal γi. Let βi = ω
Lγi
1 . Then the sequence (βi)i<ω1

enumerates
a club C in ω1. For each i, the image of b under the transitive collapse of Mi,
πi(b), is a βi-branch through T βiα belonging to Lγi , witnessing that βi belongs
to Sα. Thus C is the required club.

Conversely, we show that if Tα has no ω1-branch, then Sα does not contain
a club.

Suppose that C is a club and we will show that some element of C does
not belong to Sα. Let M be the least elementary substructure of Lω2

such
that C,α, ω1 ∈ M . In Lω2

, Tα = Tω1
α has no ω1-branch, so the same holds

in M . Again, we take the transitive collapse π(M) = M = Lγ . We have

β = ωM1 ∈ C and T βα has no β-branch in Lγ . We claim that β does not belong
to Sα. Indeed, suppose otherwise and that the ordinal γ witnesses this. Then
γ must be greater than γ, as T βα has no β-branch in Lγ . But if γ is greater
than γ, then β is countable in Lγ : as M was chosen to be the least elementary
substructure of Lω2

containing the parameters C,α, ω1, it follows that M is the
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least elementary substructure of M containing the parameters π(C), π(α), π(ω1)
and therefore M , as well as β ∈M , is countable in Lγ̄+2. We have reached the
desired contradiction.

Let E be a Σ1
1 equivalence relation on ω1. We identify pairs of ordinals with

single ordinals and let S be as above, so that αEβ iff Sα,β contains a club.
For any X ⊆ ω1, let L(X) be the ℵ1-like linear order formed by stacking ω1

many copies of the rational order, and at limit stage α putting in a supremum
iff α ∈ X. More precisely: Let Q denote the rational order and Q0 the rational
order together with a least element; then L(X) is obtained from the ordering
(ω1, <) by replacing α with a copy ofQ0 if α is a limit ordinal in X and otherwise
replacing α by a copy of Q.

Lemma 2.6. For X,Y ⊆ ω1, L(X) ∼= L(Y ) iff X ∼ Y (as in Definition 2.4).

Proof. Suppose L(X) is isomorphic to L(Y ) via the isomorphism π. For count-
able α let L(X)�α be the initial segment of L(X) obtained from the order (α,<)
by replacing i < α by Q0 if i is a limit ordinal in X and by Q otherwise. Then
for club-many α, the restriction of π to L(X)�α is an isomorphism from L(X)�α
onto L(Y )�α. For such α, α belongs to X iff it belongs to Y , as otherwise the
restriction of π to L(X)�α would not be extendible to an isomorphism from
L(X) onto L(Y ). Thus X,Y agree on a club and X ∼ Y .

Conversely, suppose that X ∼ Y and choose a club C on which X,Y agree.
By induction on α in C, build an isomorphism between L(X)�α and L(Y )�
α: The base case is easy, as there is a unique countable dense linear order
without endpoints. The limit cases are trivial, as the limit of isomorphisms is
an isomorphism. For the case where α is the C-successor to β ∈ C, use the fact
that X,Y agree at β to conclude that the ordinal β is replaced by the same
ordering in L(X)�α as it is in L(Y )�α.

We use ideas from [7]. For any finite chain c = (α, γ1, γ2, . . . , γn, β), let

S(c) = Sα,γ1 ∩ Sγ1,γ2 ∩ . . . ∩ Sγn,β
If α′Eα, then Sα′,α contains a club. Therefore, for each finite chain c from α
to β, (Sα′,α ∩ S(c)) ∼ S(c). It follows that if we define S∗(α, β) to be the set of
the S(c), where c is a chain starting with α and ending with β, and αEα′, then
S∗(α, β) agrees with S∗(α′, β), in the sense that they have the same elements
modulo the ideal of nonstationary sets. Let M(α, β) be the structure that is
the “free union” of ω1 copies of the linear orders L(X) for X ∈ S∗(α, β). One
way to make this precise is to let M(α, β) consist of two disjoint sets A,B of
size ω1, with a relation R(a, b0, b1) for a in A and b0, b1 in B so that for each
fixed a, R(a,−,−) defines a linear order of B isomorphic to one of the L(X),
for X ∈ S∗(α, β), and each such order occurs for exactly ω1-many such a in A.

Alternatively, we may let M(α, β) have an equivalence relation with an or-
dering on each equivalence class, so that for each set X ∈ S∗(α, β), the ordering
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L(X) is copied in uncountably many equivalence classes, and for each equiv-
alence class, the ordering on the equivalence class is isomorphic to L(X) for
some X ∈ S∗(α, β). We note that in either case, the language of the structures
M(α, β) is finite.

Lemma 2.7.

1. If αEα′, then for all β, M(α, β) ∼= M(α′, β).

2. If it is not the case that αEα′, then M(α, α) 6∼= M(α′, α).

Proof. (1) is clear. For (2), we note that if it is not the case that αEα′, then
there is no set X ∈ S∗(α, α′) that contains a club, but there is such a set in
S∗(α, α). From this it follows that M(α, α) is not isomorphic to M(α, α′).

The structures M(α, β) have a finite language. Finally, let M∗(α) be the
sequence (not the free union) of the structures M(α, β), for β < ω1. To make
this precise we could add to the language a disjoint family of unary predicates
(Uβ)β<ω1 , where Uβ is the universe of a copy of M(α, β); but as we would like
to keep the language finite, we instead let M∗(α) be a structure that includes
a copy of ω1 with the usual ordering, and has a predicate associating to each
β < ω1 one of a family of sets, disjoint from ω1 and disjoint from each other.
We put a copy of M(α, β) on the set associated with β.

Lemma 2.8. For all α, α′, αEα′ iff M∗(α) ∼= M∗(α′).

Proof. If αEα′, then for all β, M(α, β) ∼= M(α′, β). Then M∗(α) ∼= M∗(α′).
If it is not the case that αEα′, then M(α, α) 6∼= M(α′, α). Then we have
M∗(α) 6∼= M∗(α′).

This completes the proof of Theorem 1.7.

Our structures M∗(α) are in a finite relational language, and we may use
standard coding tricks to transform them into undirected graphs. We represent
each element by a point attached to a triangle. For an n-place relation symbol
R, we represent each n-tuple of elements by a special point, attached by chains
of length 1, 2, . . . , n to the points representing the elements. Therefore the
structures M∗(α) of Theorem 1.7 can be chosen to be undirected graphs.

3 Turing computable embeddings

H. Friedman and Stanley [8] introduced the notion of Borel embedding for com-
paring classification problems for classes of countable structures. The notion of
Turing computable embedding [2] allows some finer distinctions. Here we define
the analogue of Turing computable embedding for structures with universe a
subset of ω1. We have said that in the setting of ω1, A ≤T B if there is some
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α such that ϕAα = χB . We begin by saying something about indices for partial
computable functions, and for partial computable functions relative to an ora-
cle. We write ϕα for the partial computable function f derived in the following
way from the c.e. set Wα. We order the elements according to their Gödel codes.
We let f(x) = y if for the first γ such that there is a pair (x, u) ∈Wα,γ , y is the
first such u—if there is no pair (x, u) in Wα, then f(x) is undefined. Similarly,
ϕXα is the partial function f derived from WX

α such that f(x) = y if for the
first γ such that there is some pair (x, u) in WX

γ , y is the first such u. If we let
X vary, then we obtain an operator Φ = ϕα taking each set X to the partial
function ϕXα .

Definition 3.1.

1. Let K and K ′ be classes of structures with universe a subset of Lω1
. A

computable transformation from K to K ′ is a computable operator Φ = ϕα
such that for each A ∈ K, there is some B ∈ K ′ such that ϕ

D(A)
α = χD(B).

We write Φ(A) = B.

2. We write K ≤tc K ′ if there is a computable transformation Φ = ϕα from
K to K ′ such that A,A′ ∈ K, A ∼= A′ iff Φ(A) ∼= Φ(A′).

In the standard setting, the class of undirected graphs lies on top among
classes of countable structures under ≤tc. The same is true in our setting. Let
L be a computable relational language—L may be uncountable, and it may
include symbols of arity α for computable ordinals α. When we say that the
language is computable, we mean that the set of relation symbols is computable,
and we have a computable function assigning a countable ordinal arity to each
symbol. Let Mod(L) be the class of L-structures with universe a subset of ω1.
Let UG be the class of undirected graphs.

Proposition 3.2. Mod(L) ≤tc UG

Proof. We first give a transformation that replaces the language L by one with
just finitely many relations of finite arity. We have a predicate U , for elements
of the structure M . We have a predicate O with an ordering of type ω1. We
have another predicate S for special points, representing triples (R,α, σ), where
R is a predicate symbol R in L of arity α and σ is an α-tuple from M . There
is a relation Q that holds of x ∈ O, p ∈ S and a ∈ U if p is the special point
corresponding to a triple (R,α, σ) such that x is the βth element of O, and
σ(β) = a. We let T be the set of special points p in S representing atomic
facts that are true in M ; i.e., p is the special point corresponding to (R,α, σ),
where R is a relation symbol of arty α, σ ∈ Mα, and M |= R(σ). The unary
predicates U , O, and S are disjoint, and the universe of our structure M∗ is the
union. Beyond these, we have a binary relation—the ordering on O, the ternary
relation Q, and the set T ⊆ S. So, the language is finite. It is not difficult to
see that M1

∼= M2 iff M∗1
∼= M∗2 .

Marker included in his basic model theory text [16] a simple way of coding an
arbitrary structure (for a finite relational language L) in an undirected graph.

9



(There are further coding methods that accomplish the same thing, described
by Lavrov, Nies, and others.) In Marker’s transformation, for each element b of
the input structure, the graph has an element gb, which we mark by making it
one vertex of a triangle. For each relation symbol Rj in the finite language L,
j = 0, . . ., we designate a pair of shapes, a (2j+4)-gon, and a (2j+5)-gon, which
we use to indicate that the relation holds, or does not hold. For each ordered
n-tuple of elements b1, . . . , bn, we introduce a special point tRj ,b1,...,bn . This
point is connected to gbi by a chain of length i. The special point tRj ,b1,...,bn is
one vertex of a (2j+4)-gon if R(b1, . . . , bn) holds, and a (2j+5)-gon, otherwise.
The n-gons have no points in common, aside from the special points. We can
easily make this transformation into a computable embedding in the setting of
ω1.

We start with a large ω1-computable graph G∗, such that there are ℵ1 ele-
ments that are the special vertex of a triangle, for each n-ary relation symbol Rj
in L and each n-tuple of special vertices of triangles v1, . . . , vn, there is a special
point gRj ,b1,...,bn , connected to bi by a chain of length i. This point gRj ,b1,...,bn
is one vertex of both a (2j + 4)-gon, and a (2j + 5)-gon. We note that the
elementary first order theory of the desired G∗ is totally categorical. It follows
that there is an ω1-computable model G∗ of size ℵ1—see [13], or [14]. The set
V of special vertex elements is computable. To see this, note that there is a Σ1

definition of V—saying that the element is part of a triangle and is connected
to further elements. There is also a Σ1 formula defining the elements not in
V—a disjunction of formulas indicating the position in an n-gon, or on a chain
from a vertex of a triangle to a vertex of some other n-gon. For each n-ary
relation symbol Rj , there is a computable function taking n-tuples b1, . . . , bn of
points in V to the special point gRj ,b1,...,bn . There are obvious Σ1 definitions
of the graph. We have a computable function f taking α to the αth element of
V , which we call bα. The functions are defined by Σ1 recursion. We have a Σ1

formula saying how f(α) is obtained from f�α.
Now, for an input L-structure A, with universe that we can computably

identify with a subset of ω1, Φ(A) is the subgraph of G∗ consisting of the
following elements: bα, for α ∈ A, the special points gRj ,bα1

,...,bαn
, for Rj an

n-ary relation symbol and a n-tuple α1, . . . , αn, together with the rest of the
(2j + 4)-gon if A |= Rj(α1, . . . , αn) and the (2j + 5)-gon otherwise.

In [8], H. Friedman and Stanley give a Borel embedding of countable undi-
rected graphs into fields (of arbitrary characteristic). The embedding requires a
modification for characteristic 2. Some of the algebraic number theory behind
the result for finite characteristic was completed in later work of Shapiro. This
embedding is effective. It is used in [2]. It is also used, with minor modification,
in [4] and [3]. Here the modification helped us keep track of Scott rank. The
basic embedding, and the modification from [4], both transfer directly to the
uncountable setting, with no fresh ideas. The coding idea was used already in
the uncountable setting for a result of Hirschfeldt that is included in [13]. We
describe the embedding below. We state the result just for characteristic 0,
although it is true also for any finite characteristic.
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Proposition 3.3. If K is the class of undirected graphs, and K ′ is the class of
fields of characteristic 0, then K ≤tc K ′. (The same is true for finite charac-
teristic.)

Proof. Let F ∗ be a large algebraically closed field of characteristic,0 with inde-
pendent transcendentals bα, for α < ω1. Since the theory is ℵ0-categorical, we
get an ω1-computable model F ∗ of size ω1—see [13]. We may suppose that the
universe is ω1. Checking independence of a countable tuple is computable. Let
f(α) be the first element not algebraic over {f(β) : β < α}. Then ran(f) is a
transcendence basis for F ∗. This function is computable. We write bα for f(α).
For an input graph G, with universe a subset of ω1, we let Φ(G) be the subfield
of F ∗ generated by the elements bα, for α ∈ G, elements algebraic over a single
bα, and elements

√
bα + bβ , if in G there is an edge between α and β. It may

seem clear that for graphs G and G′, G ∼= G′ iff Φ(G) ∼= Φ(G′). For characteris-
tic p 6= 2, the construction is the same, except that F ∗ has characterstic p. For
characteristic 2, it is necessary to use a different coding to indicate the presence
of an edge—we may use the cube root of bα+bβ instead of the square root. The
hardest part of Friedman and Stanley’s proof is showing

√
bα + bβ do not get

in by accident. The proof in [8] works for characteristic 0. There is a reference
in [10] to work of Shapiro [24] (from algebraic number theory) that completes
the proof. For characteristic 0, there is a geometric proof, due to Dwyer, which
was included in Calvert’s thesis [6].

In [8], H. Friedman and Stanley give a Borel embedding of undirected graphs
into linear orderings. This embedding is effective. We can use the same idea,
with some modifications, to give an embedding in our uncountable setting.

Proposition 3.4. If K is the class of undirected graphs and K ′ is the class of
linear orderings, then K ≤tc K ′.

Proof. By Proposition 1.4, a countable complete theory has a computable sat-
urated model Q with universe ω1. We could apply this result to the theory
of dense linear orderings without endpoints. We want a theory of dense lin-
ear orderings without endpoints, partitioned into infinitely many disjoint dense
subsets. Let T be the theory of a structure whose universe is the disjoint union
of predicates U and V , where on V , there is a dense linear ordering without
endpoints, U is infinite, and there is a function f from V onto U such that for
each u ∈ U , f−1(u) is dense in V . We consider a computable saturated model
Q∗ of this theory, with universe ω1. We have a type ω1 ordering on the elements
of UQ

∗
, inherited from the ordering on ω1. This is not part of the structure Q∗.

We identify the elements of UQ
∗

with the countable ordinals. We write Q
for V Q

∗
. Let Qα be f−1(u), where u is the αth element of U . Now, Q, with the

ordering from Q∗, is a saturated dense linear ordering without endpoints. The
sets (Qα)α<ω1

partition Q into dense subsets. The elements of Qα represent the
element α from an input graph G, but only as part of a tuple of some countable
arity β. The sets Q0 and Q1 will play another role as well, indicating that there

11



is more to the tuple, or that it is coming to an end. We make a list of the
atomic types of countable graphs tα, α < ω1. The types are given in terms of a
tuple of variables (xi)i<β , where β is a countable ordinal—the types indicate, for
i 6= j, whether there is an edge between xi and xj . Consider the lexicographic
ordering on Q<ω1 . The ordering corresponding to a given input graph G will
be a sub-ordering Φ(G) of this ordering, consisting of the sequences σ of length
2β + 2 such that for some β-tuple a from G, satisfying the atomic type tα, we
have

1. for γ < β, σ(2γ) ∈ Q0, and σ(2γ + 1) ∈ Q2+aγ ,

2. σ(2β) ∈ Q1,

3. σ(2β + 1) is an element of U identified with an ordinal less than α.

This is the construction. In [8], Q is a countable dense linear ordering
without endpoints, partitioned into disjoint dense sets (Qn)n∈ω.

Let σ ∈ Φ(G). We say that σ represents the tuple a if σ is related to a in
the way described. The ordering Φ(G) is made up of intervals having the order
type α, for the various atomic types tα realized in G. It takes effort to show
that G1

∼= G2 iff Φ(G1) ∼= Φ(G2). In [8], the details are omitted. We say a little
here. First, suppose G1

∼= G2 via f . To show that Φ(G1) ∼= Φ(G2), we consider
the set F of countable partial isomorphisms p, where for some countable family
of σi ∈ Φ(G1),

1. if p(σi) = τi, where σi represents the tuple ai (of countable arty), then τi
represents the corresponding tuple f(ai),

2. if σi represents a tuple ai realizing type tα, then p maps the full interval
of type α containing σi to the corresponding interval of type α containing
τi.

Clearly, F is closed under unions of countable chains. The fact that Q∗ is
saturated allows us to show that it has the back-and-forth property. Say p ∈ F
maps σi representing ai to τi representing bi = f(ai). We indicate how to go
forth, with a further element σ of Φ(G1), representing c. We need an image τ
representing d = f(c). If σ has length 2β + 2, we choose τ , of the same length,
representing f(c). For γ < β, τ(2γ + 1) ∈ Qf(a), located to the left, or right,
of σ(2γ + 1) is located to the left, or right, of σi(2γ + 1). Similarly, for γ < β,
τ(2γ) ∈ Q0, τ(2β) ∈ Q1, located in the proper relation to τi(2γ), or τi(2β).
Finally, τ(2β + 1) matches σ(2β + 1). Going back, with a further element of
Φ(G2) is similar.

Next, suppose Φ(G1) ∼= Φ(G2) via f . We define an isomorphism g from
G1 onto G2. The universes of G1 and G2 are subsets of ω1, so we have lists
of elements (aα)α<ω1

and (bα)α<ω1
. At step α, we have a countable partial

isomorphism gα. At stage α+ 1, we add an element to the domain or the range.
Take the first β such that aβ is not in the domain or bβ is not in the range. If
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aβ is not in the domain, then we add aβ to the domain, and otherwise, we add
bβ to the range.

The partial isomorphisms will form a continuous chain. Of course g0 = ∅.
For g1, we must add a0 to the domain. Take σ ∈ Φ(G1) representing the
sequence (a0), of atomic type tδ. Then σ has the form r0q0r1β, where r0 ∈ Q0,
q0 ∈ Q2+a0 , r1 ∈ Q1, and β < δ. Note that σ is part of a maximal well-
ordered interval of type δ, and tδ is the atomic type of the sequence of length
1. Now, f(σ) must be in the same position in a maximal well-ordered interval
of type δ. Therefore, f(σ) also represents a 1-tuple—it is a sequence of the
form r′0, q

′
0, r
′
1, β, where r′0 ∈ Q0, q′0 ∈ Qd, for d ∈ G2, and r′1 ∈ Q1. We let

g1(a0) = d. Assuming that b0 6= d, we define g2 with b0 in the range. For this,
we take τ ∈ Φ(G2) of length 6, representing (d, b0), such that τ extends r′0q

′
0.

Let tα′ be the atomic type of d, b0. Then τ has the form r′0, q
′
0, r
′′
1 , q
′′
1 , r
′′
2 , δ
′,

where r′′1 ∈ Q1, q′′1 ∈ Qb0 , r′′1 ∈ Q1, and δ′ < α′. Note that in the interval
between f(σ) and τ , every element represents an extension of (d)—there is no
sequence representing the type of the empty sequence. Since τ lies in a maximal
well-ordered interval of type α′, the same is true of f−1(τ). Between f(σ) and
τ , there is no interval of type γ, where γ is the atomic type of the empty set, so
all elements of this interval represent extensions of (q0). We can see that f−1(τ)
will have the form (r0, q0, r

′′
1 , q1, r2, δ

′′), where q1 ∈ Qc, for some c ∈ G1, and
r2 ∈ Q1, and δ′′ < α′. We let g1(c) = b0.

We continue in this way. At each stage α, we have gα mapping a countable
sequence (cβ)β<α from G1 to a countable sequence (dβ)β<α from G2. We also
have sequences (σβ)β<α in Φ(G1) and (τβ)β<α in Φ(G2), such that σβ , of length
2β+2, represents the sequence (cγ)γ<β , and τβ , also of length 2β+2, represents
the sequence (dγ)γ<β . We arrange that between σβ and σβ+1 in Φ(G1), all
elements represent extensions of the sequence represented by σβ and between τβ
and τβ+1 in Φ(G1), all elements represent extensions of the sequence represented
by τβ . (We choose one side, and the isomorphism f takes care of the other side.)
For limit α, we let gα = ∪β<αgβ , as required. We let σα be the sequence of
length 2α+ 2 such that for β < α, σα agrees with σβ on the first 2β terms. Let
tρ be the atomic type of the domain, and range, of gα. At the end of σα, we
put two last terms r2α ∈ Q1 and δ < ρ. We let τα = f(σα). This extends the
initial part of τβ of length 2β.

4 Results on fields

Here we consider arbitrary ω1-computable fields of characteristic 0. The domain
of each field is either ω1 or possibly just ω, and the field operations are all ω1-
computable. We believe that our first results carry over equally well to fields of
positive characteristic, and so we denote the prime subfield (either Q or Fp) of
a field F by Q.

Lemma 4.1. Every ω1-computable field F has a computable transcendence basis
over its prime subfield Q. (Q itself is ω1-computable, being countable.)
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Proof. This follows from the proof of [13, Lemma 4.6], although it is stated there
only for ω1-computable presentations of C. For each α ∈ F we define α ∈ B iff

(∀〈β1, . . . , βn〉 ∈ α<ω)(∀p ∈ Q[X1, . . . , Xn, Y ])

[p(β1, . . . , βn, α) = 0 =⇒ p(β1, . . . , βn, Y ) = 0].

This statement quantifies only over countable sets which we can enumerate
uniformly and know when we have finished enumerating each one. It says that
α lies in B iff α satisfies no nonzero polynomial over the subfield Q(β : β < α)
generated by all elements < α. Clearly this B is a transcendence basis for F .

Corollary 4.2. The field C of complex numbers is relatively ω1-computably
categorical.

Proof. Given any two ω1-computable fields E ∼= F ∼= C, use the lemma to
find computable transcendence bases B for E and C for F . Let f be any
computable bijection from B onto C (for instance, let f(α) be the least element
of C which is > f(β) for every β < α). We now extend this f effectively to
an isomorphism from E onto F . For each element ξ ∈ E in order, find any
polynomial q ∈ Q(B)[X] satisfied by ξ and take the finite subset B0 ⊆ B of
those elements of B actually used in the coefficients of q. Let E0 be the countable
subfield of E generated by B0∪ ξ (with ξ now denoting the set of those ordinals
< ξ, so that E0 lies within the domain on which f has already been defined),
and find the minimal polynomial p(X) of the field element ξ over E0. (This can
be done by brute force, just by checking all of the countably many polynomials
in E0[X].) Every coefficient in p(X) lies in E0, hence already has an image
in F under f , and we choose f(ξ) to be the least root in F of the image of
this polynomial p(X) in F [X] under f , which must exist, F being algebraically
closed. Thus we recursively build a field embedding f : E → F . But since f
maps B onto the transcendence basis C for F , f must map E onto all of F :
every η ∈ F has a minimal polynomial p(X) ∈ Q(C)[X] of some degree d, and
the roots ξ1, . . . , ξd of its preimage in E[X] must map one-to-one to the d-many
roots of p(X) in F , forcing η ∈ ran(f).

The foregoing proof relativizes to the degree of any field E ∼= C, yielding
relative ω1-computable categoricity.

For our next results, it is useful to have an ω1-computable bijection f : ω1 →
(ω1)2. Say that the pair (α, β) lies on the diagonal Dγ in (ω1)2 if α + β = γ.
(Geometrically, this is a misnomer: for instance, the “diagonal” Dω contains
the pairs (0, ω), (1, ω), . . . and (ω, 0).) Let f(0) = (0, 0), and to define f(δ)
recursively, find the least γ for which Dγ is not a subset of ran(f � δ), and the
least α ≤ γ for which the (unique) pair (α, β) in Dγ is not in ran(f �δ), and set
f(δ) = (α, β). If δ = θ + 1 is a successor and f(θ) = (α, β), this defines

f(θ + 1) =

 (0, α+ β + 1), if β = 0;
(α+ 1, β − 1), if 0 < β < ω;

(α+ 1, β), otherwise.
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One checks that this f really is a bijection, and then uses angle brackets to
write 〈α, β〉 = f−1((α, β)) ∈ ω1, borrowing the notation from ω-computability.
Moreover, f is clearly computable, hence allows us to partition ω1 effectively
into ω1-many uniformly computable disjoint subsets of size ω1:

ω
[α]
1 = {〈α, β〉 : β ∈ ω1}.

One guesses that every countably generated extension of the field of complex
numbers should be computably categorical. First, we show that there is a
computable copy.

Proposition 4.3. Let F be countably generated extension of the field C of com-
plex numbers; i.e., F = C(a0, a1, . . .), for some countable sequence a0, a1, . . ..
Then F has an ω1-computable copy.

Proof. First, let C0 be a countable algebraically closed subfield of C such that
if ai is algebraic over C((aj)j<i), then it is algebraic over C0((aj)j<i); i.e.,
the minimal polynomial for ai over C((aj)j<i) has coefficients in C0((aj)j<i).
Define A0 = C0(a0, a1, . . .) using the same minimal polynomials as in F ; this is
all countable, hence can be done ω1-effectively. If C1 is an algebraically closed
extension of C0 of transcendence degree 1 over C0, we set A1 = C1((ai)i∈ω).
Thus, if ai is algebraic over C1((aj)j<i), its minimal polynomial has coefficients
in C0((aj)j<i). We continue, building Cα and Aα, for all countable ordinals
α, with C0 ⊆ Cα ⊆ C, where each Cα is the algebraic closure of the first α-
many elements in a computable transcendence basis for C over C0. We obtain
Cα+1 and Aα+1 from Cα and Aα in the same way we obtained C1 and A1

from C0 and A0. For limit α, we let Cα = ∪β<αCβ , and Aα = ∪β<αAβ .
Finally, let C = ∪α<ω1Cα and A = ∪α<ω1Aα. Clearly, C is isomorphic to C,
via an isomorphism extending the (identity) map from the subfield C0 of the
copy of C within F to the copy of C0 within A0. Moreover, if ai is algebraic
over C((aj)j<i), then its minimal polynomial has coefficients in C0((aj)j<i).
Therefore, A ∼= F .

We can prove computable categoricity, modulo a conjecture, for every field F
such as described in Proposition 4.3. We believe that the conjecture holds, but
the proof seems delicate. Notice that within each such field F , although there are
many subfields isomorphic to C, one such subfield must contain all the others,
and indeed this largest one is the only copy of C over which F is countably
generated. (If C1 6⊆ C2 are copies of C within a larger field, then C1 cannot be
countably generated over C2: each z1 ∈ C1\C2 must be transcendental over C2,
so for each z2 in a transcendence basis for C2, a separate generator is required
to produce

√
z1 + z2.)

Conjecture 4.4. Suppose F is a countably generated extension of a subfield
C isomorphic to C, and let C0 and A0 be as in the previous proof. Then C is
definable in F by a computable Σ1-formula with a countable tuple of parameters
from A0, and hence is relatively intrinsically ω1-c.e.
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We believe that it is possible to fix an element z0 ∈ C \ C0 such that, for
x ∈ F , x ∈ C if and only if the algebraic closure of the countable set {x}∪C0(z0)
is contained within F . This containment is a Σ1 statement, as the algebraic
closure would have to be contained within some countable initial segment σ
of dom(f) = ω1, and so this would prove Conjecture 4.4. The details remain
elusive, and here we leave this claim as a conjecture. Once shown to be true, it
will imply the following theorem.

Theorem 4.5 (modulo Conjecture 4.4). If F is a countably generated extension
of C, then F is relatively ω1-computably categorical.

Proof using Conjecture 4.4. For simplicity, we identify F with one of its com-
putable copies, and let F ′ be another computable copy. Let C0 and A0 be
the countable parts of F from the proof of Proposition 4.3. There is a non-
computable isomorphism ρ from F onto F ′, and we write C ′0 and A′0 for the
images of C0 and A0 under ρ. Let C and C ′ = ρ(C) be the largest subfields
isomorphic to C within F and F ′, respectively. Note that A0 = C0(a0, a1, . . .),
and if a′i = ρ(ai), then A′0 = C ′0(a′0, a

′
1, . . .).

We build a computable isomorphism f from F onto F ′ recursively. We
define, by Σ1 recursion a chain of countable subfields Aα ⊆ F and A′α ⊆ F ′

with a chain of functions such that fα is an isomorphism from Aα onto A′α. We
will have F = ∪αAα and F ′ = ∪αA′α. Then f = ∪αfα will be a computable
isomorphism from F onto F ′. Inside Aα and A′α, we will have algebraically
closed subfields Cα and C ′α such that Cα ⊆ C and C ′α ⊆ C ′. For each α, Aα
will be the field generated by the elements of Cα and the elements ai. Similarly,
A′α will be the field generated by the elements of C ′α and the elements a′i. Once
we have fα taking Cα isomorphically onto C ′α, and knowing that fα(ai) = a′i,
the rest of fα is determined.

To start off, we have A0, C0, A′0, and C ′0. We let f0 be the restriction of
ρ to A0. Given Aα, Cα, A′α, C ′α, with the isomorphism fα taking Cα to Cα
and taking ai to a′i, we extend as follows. Applying Conjecture 4.4, we let c
be the first element that we find in C \ Aα. Since Cα is algebraically closed,
c is not algebraic over Cα. It is also not algebraic over Aα = Cα(a0, a1, . . .).
Similarly, let c′ be the first element that we find in C ′ \A′α. This is not algebraic
over Aα. Let Cα+1 be the algebraic closure of Cα(c) in C, and let C ′α+1 be the
algebraic closure of Cα(c′) in C ′. We let fα+1 be the extension of fα taking c to
c′, and taking Cα+1 isomorphically onto C ′α+1. Extend in the obvious way to
an isomorphism from Aα+1 onto A′α+1. For limit ordinals α, Cα, Aα, C ′α, A′α,
and fα are all defined by taking limits.

It is clear that no element of C can be left out of the domain of f , and no
element of C ′ can be left out of the range. The ai are all in the domain, and the
a′i are all in the range. Therefore, the domain includes all of F and the range
includes all of F ′, so f is the desired computable isomorphism from F onto F ′.

Relative ω1-computable categoricity again follows just by relativizing the
argument to the degree of any F ∼= E.

It is natural to ask whether Theorem 4.5 would hold for fields of countable
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transcendence degree over C. Such fields need not be countably generated over
C, so the theorem does not apply to them directly, and indeed such a field need
not be computably categorical.

Theorem 4.6. There exists an ω1-computable field F , with transcendence de-
gree 1 over a computable subfield isomorphic to C, such that F is not ω1-
computably categorical.

Proof. We use a computable listing {ϕα : α ∈ ω1} of all partial ω1-computable
functions from ω1 into ω1. With this listing, we build the following two com-
putable fields E and F , with E ∼= F and each with C as a computable subfield,
but diagonalizing to satisfy requirements Rα:

Rα : ϕα is not an isomorphism from E onto F .

Set E−2 = F−2 = C to be a computable copy of C with a computable
transcendence basis {zα : α ∈ ω1}, and let E−1 = F−1 = C(x) with x purely
transcendental over C. We then build E0 = F0 by adjoining every

√
x+ zα, for

every α, so that E0 = E−1(
√
x+ zα : α ∈ ω1) = F0. (Of course, adjoining a

square root also adjoins its conjugate. When we write
√
x+ zα below, we will

always mean the root actually adjoined to E here, which is taken to be a lesser
element than its conjugate in the domain ω1 of E.) With these fields, we are
ready to begin diagonalizing. It is important to note that E0 can be viewed as
a subfield of the real numbers R (by considering the elements inside the square
roots to be positive), and that henceforward every Eσ will also embed into R,
by the same trick. Hence E will not contain any square root of −1.

At stage 0, we initialize every requirement Rα, by declaring it unsatisfied
and setting yα,0 = 0. We also set every τα = 0, and define f0 : E0 → F0 to be
the identity map.

At stage σ + 1, we have Eσ ∼= Fσ via an isomorphism fσ. Find the least
α ≤ σ such that

• Rα is currently unsatisfied; and

• ϕα,σ respects the addition and multiplication operations in Eσ and Fσ (at
all inputs from Eσ for which ϕα,σ converges); and

• for some y ∈ Fσ, ϕα,σ(
√
x+ z〈α,τα〉)↓= y and ϕα,σ(x+z〈α,τα〉)↓= y2; and

• ϕα,σ(ξ) ↓, where ξ is the least element of ω1 such that ϕα,σ′(ξ) ↑ at the
last stage σ′ ≤ σ at which Rα either was initialized or received attention.

If there is no such α ≤ σ, then do nothing. Otherwise, Rα receives attention
according to the following instructions.

1. If y = ϕα(
√
x+ z〈α,τα〉) is algebraically dependent over {yβ,σ : β < α},

and the set {ϕα(
√
x+ z〈α,ρ〉) : ρ ≤ τα} is algebraically independent in Fσ,

then increment τα by 1, and do nothing else.
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2. If this y is dependent over {yβ,σ : β < α}, and the set {ϕα(
√
x+ z〈α,ρ〉) :

ρ ≤ τα} is algebraically dependent in Fσ, then declare Rα satisfied, set
yα,σ = y, and do nothing else.

3. If y is algebraically independent over {yβ,σ : β < α}, then check whether
y and/or (−y) has a square root in Fσ. If either one does, then declare
Rα satisfied (since x〈α,τα〉 has no square root in Eσ). If neither of ±y has
a square root in F , then:

(a) adjoin to Eσ a square root a of
√
x+ z〈α,τα〉, and adjoin to Fσ a

square root b of fσ(
√
x+ z〈α,τα〉) (in which case fσ+1 ⊇ fσ, with

fσ+1(a) = b), provided that the adjoinment of this square root
in F does not generate a square root of ϕα(

√
x+ z〈α,τα〉), nor of

ϕβ(
√
x+ z〈β,τβ〉) for any β < α; or

(b) adjoin to Eσ a square root a of
√
x+ z〈α,τα〉, and adjoin to Fσ a

square root b of −fσ(
√
x+ z〈α,τα〉) (in which case fσ+1(a) = b and

fσ+1 � Fσ = fσ ◦ ψ, where ψ is the automorphism of Fσ+1 inter-
changing ±

√
x+ z〈α,τα〉 and fixing everything else), provided that

the adjoinment of this square root in F does not generate a square
root of ϕα(

√
x+ z〈α,τα〉), nor of ϕβ(

√
x+ z〈β,τβ〉) for any β < α; or

(c) increment τα by 1, if neither (a) nor (b) holds.

If (3a) or (3b) applied, then Rα is declared satisfied, with yα,σ+1 =
ϕα(
√
x+ zα,τα), and every Rβ with β > α is injured at this stage: Rβ is

initialized, with τβ being incremented by 1 (instead of being reset to 0).

Only in Steps (3a) and (3b) is any element adjoined to either E or F . When
one of these applies at a stage σ + 1, fσ+1 is redefined only on ±

√
x+ z〈α,τα〉,

not on E−1 nor on any
√
x+ zβ with β 6= 〈α, τα〉. f will never subsequently be

redefined on ±
√
x+ z〈α,τα〉 (since either Rα remains satisfied forever, or else

it is subsequently injured and τα is incremented). Therefore f(x) = limσ fσ(x)
exists for all x ∈ E. Since every fσ : Eσ → Fσ was an isomorphism, this limit
f is an isomorphism from E onto F .

However, we claim by induction on α that everyRα holds, and that it injures
the requirements Rβ with β > α at only countably many stages. Assume that
this holds for all α′ < α (so that τα is incremented on account of injury at only
countably many stages).

If ϕα is not total, then eventually the construction finds an ξ on which it
diverges, and thereafter it never receives attention again. Likewise, if ϕα fails
to respect the field operations, then at some stage we will discover this and Rα
will never again receive attention. (Of course, in both of these cases, ϕα cannot
be an isomorphism.) So suppose that ϕα is a field embedding from E into
F . Once the injuries by higher-priority requirements have ceased (according to
our inductive hypothesis), τα can only be incremented by Steps (1) or (3c) at
stages where Rα receives attention. But if there are uncountably many such
stages, then uncountably many algebraically independent elements

√
x+ z〈α,τα〉
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in E are mapped to elements algebraically dependent over the countable subset
{yβ,σ : β < α} of F . No field embedding can do this, so by assumption, Step
(1) applies to Rα at only countably many stages, and therefore the construction
must eventually reach Step (2) or Step (3).

Of course, if Step (2) ever happens, then Rα is satisfied right then and never
again becomes unsatisfied. (Indeed, in this case ϕα cannot have been a field
embedding, since it maps an algebraically independent set to an algebraically
dependent set.) So assume that eventually we reach Step (3) for Rα. If we
execute either Step (3a) or (3b) there, then

√
x+ z〈α,τ〉 has a square root in E,

but ϕα(
√
x+ z〈α,τ〉) has no square root in F , which will ensure that ϕα is not

an isomorphism. So we must show that Step (3c) cannot apply forever. But this
is easy. First, the proposed adjoinments of square roots in Steps (3a) and (3b)
cannot both generate square roots of ϕα(

√
x+ z〈α,τα〉): the two proposed square

roots do not generate each other (as neither E nor F contains any
√
−1), so

the two proposed square roots generate distinct field extensions, and since each
of these proposed extensions has degree 2, they intersect only in the ground
field. Therefore, when (3c) applies, one or the other proposed square root
must be algebraic over {ϕβ(

√
x+ zβ,τβ ) : β < α}. If Step (3c) applied at

uncountably many stages σ + 1, then for uncountably many distinct values of
τα, f(

√
x+ z〈α,τα〉) would be dependent over {ϕβ(

√
x+ zβ,τβ ) : β < α} which

(since all τβ converge to limits) would mean that ϕα would map an uncountable,
algebraically independent set to a set of elements all of which are dependent
over a countable set. No field embedding can do this, so in this case ϕα would
eventually show itself not to be an embedding. Therefore, eventually either Step
(3a) or Step (3b) must apply, at which stage Rα is declared satisfied and never
again receives attention. Subsequent adjoinments to E and F are done only in
Steps (3a) or (3b) by lower-priority requirements, which are always careful not
to adjoin elements which would cause Rα to become unsatisfied. (This is the
reason for the existence of Step (3c).) Our induction is now complete, and the
theorem is proven.

At the other extreme from algebraically closed fields, namely fields purely
transcendental over Q, computable categoricity fails again.

Proposition 4.7. If F = Q(Xα : α ∈ ω1) is an ω1-computable field and is
purely transcendental over the rationals with transcendence degree ω1, then F is
not ω1-computably categorical.

Proof. We take F itself to be a presentation with the transcendence basis
{Xα : α < ω1} computable. (Lemma 4.1 only guarantees the existence of
some computable transcendence basis, not necessarily of one generating the en-
tire field.) We build a computable field E ∼= F with no computable isomorphism
from E onto F . Xα will be our witness that the computable function ϕα is not
such an isomorphism.

At the start, we build E0 to be F itself, although we only use the elements

of ω
[0]
1 to do so. (Let E0 be the isomorphic image of F under the map λ+ n 7→
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λ + 2n for all limit ordinals λ.) We write yα ∈ E0 for the image of xα under
this map. Then, for each α, we wait for ϕα(yα) to converge, say to some
zα ∈ F . When this happens, we find β1, . . . , βn such that zα ∈ Q(xβ1

, . . . , xβn),
and ask whether the polynomial p(X) = X2 − zα factors over the subfield
Q(xβ1

, . . . , xβn). (Kronecker gives a splitting algorithm for this field in [15],
since we know the elements xβi to be algebraically independent over Q.) If so,
then zα has a square root in F , and so we do not change anything in E, but define
y′α = yα. If not, then we adjoin to E a new element y′α whose square in E is yα,
and use the next row of currently unused elements to close E under the field
operations. (This must happen at ω1-many stages, so all rows eventually get
used.) Formally, the existing field Eσ is extended to Eσ+1 = Eσ[X]/(X2 − yα),
which is a field because the quadratic polynomial (X2− yα), having no roots in
Eσ, must be irreducible in Eσ[X]. This completes the construction.

Now E = Q(y′α : α < ω1) is isomorphic to F via the map y′α 7→ xα. However,
if ϕα(yα)↓, then yα has a square root in E iff ϕα(yα) has no square root in F .
Thus no ϕα can be an isomorphism from E onto F .
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