
Confident Iterative Learning
in Computational Learning Theory

Vanja Doskoč?

Vienna University of Technology, Institute of Discrete Mathematics and Geometry,
Wiedner Hauptstraße 8-10, 1040 Vienna, Austria,

vanjadosk@gmail.com

Abstract. In inductive inference various types of learning have emerged.
The main aim of this paper is to investigate a new type of learning, the
confident iterative learning. Given a class to be learnt, the idea here is to
merge the following two concepts. For confidence, we require the learner
to converge on any set, however, it only needs to be correct on the sets
in the class. To be iterative, we restrict the learner’s memory on previ-
ous inputs and calculations to its last hypothesis. Investigating the new
learner, we will provide negative and positive examples, as well as some
properties the confident iterative learner possesses. This will peak at a
classification theorem for certain types of classes.
Next, we will introduce and compare different types of confidence, focus-
ing on the learner’s behaviour on sets outside of the class. Lastly, we will
focus on the possible hypotheses. Introducing learning with respect to
hypothesis spaces, we will provide examples witnessing that exact, class
preserving and class comprising learning are different.

Keywords: Inductive inference; Confident iterative learning; Very and
strongly confident iterative learning; Hypothesis space.

1 Introduction

Given a numbering of all partial computable functions ϕ0, ϕ1, . . . , inferring a
computable function is the process of finding a code e such that f = ϕe, when
successively fed information on f . The same can be done when given a number-
ing of all computably enumerable (c.e.) sets W0,W1 . . . , where Wn = dom(ϕn).
We will infer languages, i.e. non-empty c.e. sets, using learning machines, i.e.
computable functions. One natural form of learning a language is receiving
the positive information of the language, i.e. words which are in the language.
As suggested in [12], we can compare that to an archaeologist coming across
some ruins. There, the archaeologist will find examples of words of the language,
rather than counterexamples. This kind of learning is called learning from text,
see [12]. When inferring a language, one faces several problems. Firstly, no human
or computer has infinite memory capabilities. One learner with such a restric-
tion is the iterative learner, see [6] or [8]. Secondly, a learner should be able

? Supported by the Austrian Science Fund FWF through the project P 27527.

2

to deal with irregular information, i.e. information that does not belong to the
language, and still converge on it. A formalization of such a learner is the confi-
dent learner, see [3] or [4]. Both learning styles, also in combination with other
criteria, have been studied intensively, see for example [3] and [6]. However, the
combination of these seems unexplored, yet. We would like to start filling this
gap by presenting the results of the respective Master’s thesis. This combination
may provide additional insight especially for the hard to understand iterative
learning, see [6].
In Section 2, we establish some examples and general results which hold for
confident iterative classes. The most prominent result here is the Classification
Theorem 18. To further understand the topic, in Section 3, we investigate iter-
ative learning combined with stricter versions of confident learning, gaining the
respective hierarchies found in Corollary 25 and Theorem 33. Lastly, in Section
4, we consider confident iterative learning with respect to hypothesis spaces,
obtaining the hierarchy presented in Theorem 43.
Besides standard notation used in computability theory, see [2] or [11], we will
use the notations introduced hereinafter.

Remark 1. For ease of notion, we informally describe programs e, which then
could be easily translated into a W -index. We call a function used for this trans-
lation, see Appendix.

Notation 2. We will write ∀∞y x : A(x), or ∀∞x : A(x), if ∃y ∀x ≥ y : A(x).

Notation 3. Let S be a class and D ⊆ IN. We write (dn)n ∈ D if d0, d1, . . . is
some input sequence of D, i.e. if {d0, d1, . . . } = D.
Furthermore, given some input sequence d0, d1, . . . , we write (dn)n ∈ DS if the
input belongs to some set DS in S, i.e. if ∃DS ∈ S : (dn)n ∈ DS . We will call
such an input regular. Otherwise, or if we allow both cases, we write (dn)n.

Remark 4. As we will not infer empty sets, we will omit using a pause symbol #.

At every step, the iterative learner has the current datum and its last hy-
pothesis, where information on previous calculations can be stored, at disposal.
To formalize that, we will adapt the definition from [6] and [8] to fit our needs.

Definition 5 (IT). A class S is iteratively learnable via it(. , .) iff, for some
fixed initial hypothesis p0,

∀D ∈ S ∀(dn)n ∈ D ∃p ∀∞i : it(pi, di) = pi+1 = p ∧Wp = D.

Notation 6. We write C ∈ LC if C can be learnt via the learning criterion LC.

For confident learning, as explained in [3] or [4], we will allow the learner to
be fed any arbitrary input and also request it to converge on it. However, it only
has to be correct on regular input.

Definition 7 (CFD). A class S is confidently learnable via cfd(.) iff

∀(dn)n ∃e :
((
∀∞i : cfd(d0, d1, . . . , di) = e

)
∧
(
(dn)n ∈ DS ⇒We = DS

))
.

3

Definition 8 (CI). A class S is confidently iteratively learnable via ci(., .) iff
ci(., .) learns S confidently1 and iteratively.

2 Confident Iterative Learner

In order to get a feeling for CI-classes consider the following lemma.

Lemma 9. If S ∈ CI, then S cannot contain an infinite ascending chain.

Proof. Let S have a CI-learner ci(., .). Assume, that S contains an infinite
ascending chain A0 (A1 (· · · . Then

A0: for some input d0,0, d0,1, . . . of A0, ci(., .) will eventually converge, so

∃p0 ∀∞I0 j : ci(p0,j , d0,j) = p0,j+1 = p0.

A1: Starting with the previous input d0,0, d0,1, . . . , d0,I0 , and then continuing
with some d1,I0+1, d1,I0+2, . . . of A1 \ {d0,0, d0,1, . . . , d0,I0}, ci(., .) will even-
tually converge, so

∃p1 ∀∞I1 j : ci(p∗,j , d∗,j) = p∗,j+1 = p1.

Ai: Starting with the input d0,0, . . . , d0,I0 , d1,I0+1, . . . , d1,I1 , d2,I1+1, . . . , di−1,Ii−1 ,
and continuing with some di,Ii−1+1, di,Ii−1+2, . . . of Ai\{d0,I0 , . . . , di−1,Ii−1

},
ci(., .) will eventually converge, so

∃pi ∀∞Ii j : ci(p∗,j , d∗,j) = p∗,j+1 = pi.

So, we have an input sequence

d0,0, . . . , d0,I0 , d1,I0+1, . . . , d1,I1 , d2,I1+1, . . . , di−1,Ii−1
, di,Ii−1+1, . . .

where ci(., .) outputs the codes . . . , p0, . . . , p1, . . . , pi, . . . , which are all different.
So, ci(., .) does not converge on this input of A :=

⋃
iAi, a contradiction. ut

Now, we will show that the other direction does not hold.

Example 10. Let INe be the set of all even natural numbers, and let INo be the
set of all odd natural numbers. Consider the class

C := {E | ∃n : 2n+ 1 ∈ E ∧ |INe ∩ E| = 2n ∧ |INo ∩ E| = 1}.

The sets of this class contain one odd element 2n+1 and 2n many even elements.
One can show that C ∈ CFD and C ∈ IT, see Appendix.
Now, we will prove that C is not CI. Assume there exists a CI-learner ci(., .).
Consider some input sequence (en)n ∈ INe. The learner ci(., .) has to converge
on that input, so

∃p ∀∞I j : ci(pj , ej) = pj+1 = p.

1 Confidence is only required for the argument of the input sequence.

4

Now consider the set LI = {e0, e1, . . . , eI}. Without loss of generality, we can
assume that |LI | = 2k for some k ∈ ω.
If we take four different even numbers that have not appeared in the input, yet,
i.e. n1, . . . , n4 ∈ INe \ LI , then N1 := LI ∪ {n1, n2} and N2 := LI ∪ {n3, n4}
still have the same code p, as ci(., .) will not change its mind on even numbers
anymore. Furthermore, |N1| = |N2| = 2(k+ 1). So, if we consider N1 ∪ {m} and
N2 ∪ {m}, where m = 2(k + 1) + 1, the sets appear to be in C. However, these
two sets have the same code ci(p,m) = p′. A contradiction.

So we see that having an iterative and a confident learner does not suffice to
have a confident iterative learner. To see another example, we need the following
lemma.

Lemma 11. Let C ∈ CI. Then, for every finite set F ∈ C we can compute its
code, i.e. for certain input (dn)n ∈ F we can find I effectively such that for some
p we have ci(pi, di) = pi+1 = p for all i > I.

Proof. Let C ∈ CI via ci(., .), and F = {f0, . . . , fn} ∈ C. Now, we will feed
ci(., .) the input f0, f1, . . . , fn, fn, fn, . . . , abbreviated by (f∗m)m.
As the class is CI, ci(., .) will learn the set on this input, i.e. there exists some
p and I such that ci(pj , f

∗
j) = pj+1 = p for all j > I. Without loss of generality,

let I > n. Since the elements of the input sequence do not change anymore, once
ci(., .) repeats its output, it actually learned the set, since the next calculation
is the same as the previous. I.e. at some point I > n the computation outputs
ci(pI , f

∗
I) = ci(pI , fn) = pI , thus receives the same input again, namely pI and

fn. Thus, ∀j > I : ci(pj , f
∗
j) = ci(pj , fn) = pj . That I is the sought index. ut

Example 12. Consider the class M = {A | ∃x, y : A ⊆ Mx,y} where, with K
being the halting set,

Mx,y := {2x, 2x3, . . . , 2x3y : x is enumerated into K in exactly y steps}.

Again, one can show that M∈ CFD and M∈ IT, see Appendix.
Now, assume M has a CI-learner ci(., .). For x ∈ IN, consider the following
computation. Let (x ∈ K)y be the abbreviation for the computable question,
whether x is enumerated into K in at most y steps.

0: Input 2x, . . . , 2x until ci(., .) computably converges, see Lemma 11, to some
p1. Then, check if (x ∈ K)0. If so, then x ∈ K. Otherwise, proceed with the
next step.

1: Continue to input 2x3, . . . , 2x3 until ci(., .) computably converges to some
p2. Then, check if p1 = p2 ∨ (x ∈ K)1. In the second case, again x ∈ K.
In the first case, Wp1 = Wp2 . So, if x ∈ K, then the class members {2x}
and {2x, 2x3} would have the same code. A contradiction. Thus, x /∈ K.
Otherwise, proceed with the next step.

i: Continue to input 2x3i, . . . , 2x3i until ci(., .) computably converges to some
pi+1. Then, check if pi = pi+1∨ (x ∈ K)i. If not, then again x /∈ K or x ∈ K,
respectively. Otherwise, proceed with the next step.

5

This computation has to stop, as otherwise, as pi = pi−1 is one of the require-
ments, ci(., .) would not converge on the input sequence

2x, . . . , 2x, 2x3, . . . , 2x3, 2x32, . . . , 2x3i−1, 2x3i,

Thus, the computation stops for all x, and therefore we can solve the halting
problem, a contradiction.

So far, we have only seen classes that are not CI. To get rid of this peculiar
situation, we will provide some examples of CI classes.

Example 13. For n ∈ IN>0 let Cn := {A : |A| ≤ n}. Then, Cn ∈ CI, see Ap-
pendix.

This example is of some finite nature, as all the sets do not expand some
bound. However, we can find examples with a set of every size. The following
remark and lemma will help us to do so.

Remark 14. In our algorithms, we will use ”output x”, meaning that the algo-
rithm outputs x as its current hypothesis and then requests the next input, and
”return 0”, implying that the computation could actually halt here.

Lemma 15. Let R(x, y) be a two place computable relation, such that

∀x : SR(x) := {2x3y : R(x, y), y ∈ IN} is finite. (1)

Then the class CR := {S | ∃x : S ⊆ SR(x)} is CI.

Proof. Let R(x, y) be a two place computable relation such that (1). Then, for
some input sequence (dn)n the following algorithm will learn CR confidently
iteratively. Let exp(x, y) be the computable function that outputs the exponent
of the x-th prime number in the prime decomposition of y. Let p0 be a program
of the function f , where f(0) = exp(0, d0) and f(x+ 1) = 0 for x ≥ 0. Also, let
sgn(x) := 1− sgn(x). Then, execute the following algorithm.

1. For input di and pi, check whether di = 2si3ti . If so, then
2. for s = ϕpi(0), check whether s = si. If so, then
3. check whether ϕpi

(di + 1) = 0. If so, then
4. check whether R(si, ti). If so, then
5. let pi+1 be a program of f(x) = ϕpi

(x) + sgn (|x− (di + 1)|).
6. In the else case of step 3 output pi+1 = pi. In all remaining else cases,

return 0.

Notice, that pi+1 in step 5 can be computed using pi, see [11]. For some input pi
and di, we first check the form, step 1, and whether s = si, step 2. Then we check
whether the datum is new, step 3, and whether the condition R(si, ti) is met,
step 4. If all of this is true, output a code of the corresponding characteristic
function f . Else, one can return 0, as the input cannot belong to some set in the
class. The only exception here is when the element is already seen, i.e. step 3,
where the algorithm outputs the last hypothesis.
Since every SR(x) is finite, the algorithm may only come to step 5 finitely many
times. If the input is not regular, at some time the algorithm will return 0. Thus,
it works properly. One can recompute SR(x) via χSR(x)

(x) = ϕp(x+ 1). ut

6

Example 16. By Lemma 15, C := {S | ∃x : S ⊆ Sx} ∈ CI, where

Sx := {2x, 2x3, . . . , 2x3y : y ≤ x}.

So far, we have gathered examples of CI classes and such that are not. Next,
we aim to find a classification of some confident iterative classes.

Notation 17. Let D0, D1, . . . be an effective enumeration of all finite sets. Then,
for x ∈ IN we call Dx the x-th finite set.

Theorem 18 (Classification Theorem). Let C be a class such that

1. C is a class of finite sets,

2. C is closed under subsets,

3. there exists an effective procedure which tells whether Dx ∈ C.

Then, C is CI iff C does not contain an infinite ascending chain.

Proof. Let C be as stated.

⇒: By Lemma 9, if C ∈ CI, then C cannot contain an infinite ascending chain.

⇐: Let C have no infinite ascending chain. Also, let (dn)n be any input sequence.
Then, the following algorithm will serve as a CI-learner. Let p0 be a program
of the zero function.

1. For some input di and pi, if ϕpi(di + 1) = 0, then

(a) collect all ϕpi(0) = n many elements that have appeared so far, i.e.
Oi = {x : ϕpi

(x+ 1) = 1} with |Oi| = n. Then
(b) check whether Oi ∪ {di} = Dx′ ∈ C.

i. If so, let pi+1 be a program of

f(x) = ϕpi
(x) sgn(x) + (ϕpi

(x) + 1) sgn(x) + sgn (|x− (di + 1)|) .

ii. Else, return pi+1 = 0.

2. Else, pi+1 = pi.

The only step that is not obviously computable, is finding Oi. Since the
algorithm knows how many elements Oi has to contain, one can conduct the
search effectively. Thus, all steps in the algorithm can be done effectively.
For some input (dn)n, the algorithm checks whether di is some new input,
i.e. ϕpi

(di + 1) = 0. If so, it collects all the information so far, and then
checks whether the corresponding set Dx′ belongs to the class. If it does, it
outputs a program of its characteristic function, with an additional update
on the first argument. Else, i.e. if the algorithm witnesses Dx′ not belonging
to the class, it returns 0.
So, the only case where the machine could possibly change its mind infinitely
many times, is when it confirms Dx ∈ C and thus changes the program.
However, as C has no infinite ascending chain, this cannot happen. ut

7

3 Advanced Confidence

In this section we will expand the idea of the confident learner. As discussed,
the confident learner converges even if the input does not belong to any set in
the class. However, we can request it to output some fixed dummy code, i.e. −1,
if the learner detects such a case. With that idea in mind, we introduce the very
confident learner. A similar attempt can be found in [7].

Definition 19 (vC). A class C is very confidently learnable via vc(.) iff

∀(dn)n : ∃e
((
∀∞i : vc(d0, . . . , di) = e

)
∧
(
(dn)n ∈ DC ⇒We = DC

))
∧

∀j
((
∀S ∈ C : {d0, . . . , dj} 6= S

)
⇒
(
vc(d0, . . . , dj) = −1

))
.

Remark 20. Classes in vC cannot have any infinite sets, see Appendix.

By requesting the learner to stop its computations once it detects some ir-
regular input, we can get that idea even further.

Definition 21 (sC). A class C is strongly confidently learnable via sc(.) iff

∀(dn)n : ∃e
((
∀∞i : sc(d0, . . . , di) = e

)
∧
(
(dn)n ∈ DC ⇒We = DC

))
∧

∀J
((
∀S ∈ C : {d0, . . . , dJ} 6= S

)
⇒
(
∀j ≥ J : sc(d0, . . . , dj) = −1

))
.

Corollary 22. sC ⊆ vC ⊆ CFD.

Corollary 22 follows directly from the definitions. The following examples
show that the inclusions are proper.

Example 23. With K ′′ being the second jump of the halting set K, let

C = {{x} : x ∈ IN ∧ x ∈ K ′′}.

Then, C is obviously in CFD, via the confident learner cfd(d0, . . . , di) which
outputs a code of {d0}.
Assume C ∈ vC via vc(.). For x ∈ IN and the input sequence x, x, x, . . . we have

x /∈ K ′′ ⇒ ∀N : vc(xN) = −1⇒ ∀N ∃n : (n > N ∧ vc(xn) = −1),

x ∈ K ′′ ⇒ ∃N ∀n : (n > N ⇒ vc(xn) 6= −1).

Thus, x ∈ K ′′ ⇔ ∃N ∀n : (n > N ⇒ vc(xn) 6= −1) and therefore K ′′ ≤m K ′. A
contradiction.

Example 24. For x, y ∈ IN, x 6= y, let C = {{x, y}}. Obviously, C ∈ vC. However,
it is not in sC. Assume the opposite, with a learner sc(.). Then for some input
sequence x, y, y, . . . the machine sc(.) will see that {x} is not in the class, thus
output −1 for everything that is to come, i.e. ∀j : sc(x, yj) = −1. This is
obviously the wrong behaviour, since {x, y} is in the class.

8

Corollary 25. sC (vC (CFD.

The strongly confident learner may seem awfully weak compared to the very
confident one. However, its weakness in the last example originates from the fact,
that the class was not closed under subsets. When combining those attempts with
the iterative learner, we will see a slightly different behaviour.

Definition 26 (vCI). A class S is very confidently iteratively learnable via
vci(., .) iff vci(., .) learns S very confidently2 and iteratively.

Definition 27 (sCI). A class S is strongly confidently iteratively learnable via
sci(., .) iff sci(., .) learns S strongly confidently2 and iteratively.

Corollary 28. sCI ⊆ vCI ⊆ CI.

Again, Corollary 28 follows directly from the definitions. However, these
classes do behave different than the ones in Corollary 25, as we will show next.
To do so, we need some auxiliary results.

Lemma 29. Let C ∈ vCI via vci(., .), and let (dn)n be some input.
Then, if vci(pi, di) = −1 for some i ∈ IN, then vci(pj , dj) = −1 for all j ≥ i.

Proof. Let C ∈ vCI via vci(., .), let (dn)n be some input and let i be such that
vci(pi, di) = −1. Assume that ∃j > i : vci(pj , dj) 6= −1. Then,

S1 = {d0, . . . , di} ({d0, . . . , dj} = S2

as S1 /∈ C, while S2 ∈ C. As C ∈ vCI ⊆ CI, it cannot contain any infinite
ascending chain. So, there is some finite S3) S2 such that S3 /∈ C. Now, consider
the following two input sequences

d0, . . . , di, di+1, . . . , dj , d
∗
j+1, . . . ,

e0, . . . , em, di+1, . . . , dj , d
∗
j+1, . . . ,

where d∗k ∈ S2, and ek ∈ S3, such that {e0, . . . , em} = S3 and vci(pm, em) = −1.
Then, as the input is the same after the occurrence of −1, vci(., .) converges to
the same program on both inputs. This is a contradiction, since the first input
belongs to S2 ∈ C and the second to S3 /∈ C. ut

In particular, the previous lemma also shows the next results.

Corollary 30. Every class C ∈ vCI is closed under subsets.

Lemma 31. Let C be a class. Then, C ∈ vCI if and only if C ∈ sCI.

2 An analogous version of Footnote 1 applies here.

9

Proof. The right to left direction follows from Corollary 28.
For the other direction, let C ∈ vCI. Then, for some input sequence (dn)n and
the same starting program p0, let sci(pi, di) = vci(pi, di).
It only remains to prove that for any J(

∀S ∈ C : {d0, . . . , dJ} 6= S
)
⇒
(
∀j ≥ J : sci(pj , dj) = pj+1 = −1

)
.

Via Lemma 29, for any J ∈ IN,(
∀S ∈ C : {d0, . . . , dJ} 6= S

) vci(pJ ,dJ)=−1⇒
(
∀j ≥ J : vci(pj , dj) = −1

)
.

Since vci(., .) = sci(., .), we have the sought learner. ut

This lemma is not too surprising. Since the only information on the previous
calculations and inputs has to be coded into the output in some form, outputting
−1 deletes all that information. Thus, it is the same as stopping.

Theorem 32. Let C be a class of finite sets. Then C ∈ vCI if and only if C ∈ CI,
C is closed under subsets, and there is a decision procedure telling whether or
not Dx ∈ C.

Proof. We will prove each direction separately.

⇒: If C ∈ vCI, then, by Corollary 28, C ∈ CI, and by Corollary 30 the class
has to be closed under subsets. For x ∈ IN, we can compute a code p of Dx

effectively, see Lemma 11. Then, Dx ∈ C ⇔ p 6= −1.
⇐: For the other direction, let C ∈ CI via ci(., .) and the starting program p̃0,

as well as some translation s(.), see Remark 1. Let C be closed under subsets
and have a decision procedure for Dx ∈ C. Let c(.) be some coding of finite
sets. Then, for the starting program p0 = 2c(∅)3p̃0 ,

vci(pi, di) =

{
2c({d0,...,di})3ci(pi,di), if {d0, . . . , di} ∈ C ∧ pi 6= −1,

−1, else.

will do the trick. Here s(exp(1, .)) is the translation.
Let (dn)n be some input sequence. For input di and pi, the machine checks
whether or not c−1(exp(0, pi)) ∪ {di} = {d0, . . . , di−1, di} ∈ C. If not, it out-
puts −1, and after that never changes its mind again. Otherwise, it will com-
pute the code that ci(pi, di) would have, and output 2c({d0,...,di})3ci(pi,di).
As ci(., .) learns this class, and as it cannot contain an infinite ascending
chain, see for the Classification Theorem 18, the machine may only change
its mind finitely often.
Again, as ci(., .) learns the class correctly, it will converge on any (dn)n to
some p̃. If (dn)n ∈ SC , then the program p̃ has to be correct, i.e. Ws(p̃) = SC .
If we compute s(exp(1, p)) = s(p̃), we get the computable s(exp(1, .)) as
translation. So, the algorithm will always converge and behave correctly. ut

As classes in CI do not need to be closed under subsets, we get the following.

Theorem 33. sCI = vCI (CI.

10

4 Learning with Hypothesis Spaces

Until now, we did not care too much about the hypotheses, as long as they gave
some sort of computable information on the learnt set. However, it did prove to
be inconvenient to code all the information into the hypotheses itself. We also
witnessed that for certain problems, certain hypotheses were more comfortable
to use. To drill down onto that, we will equip the classes with hypothesis spaces.
To do so, we need to introduce the following notion, see for example [1] or [5].

Definition 34. A class C is given by a uniformly indexed family if there exists
a two-place, {0, 1}-valued, computable function L, such that

1. L(e, x) = Le(x) =

{
1, x ∈ Le,

0, x /∈ Le.

2. ∀e : Le ∈ C,
3. ∀L ∈ C ∃e : L = Le.

We will call such a class C indexed class for short. We will denote these by
C = {Le : e ∈ IN}, where Le = {x : Le(x) = 1}.

Remark 35. Since we are only considering classes without the empty set, we
additionally demand that none of the Le is empty.

So, indexed classes provide an effective enumeration of the class and also an
effective way to check whether x ∈ Le for some x, e. With this, we can introduce
the idea of the hypothesis space.
Given some indexed class C, we will learn it with respect to some hypothesis
space H = {Hi : i ∈ IN}, which itself is an indexed class. Learning a set C ∈ C
here means that the learning machine converges to some i, such that C = Hi.
In [5] or [9], we can find three different ideas, how such learning can be done.

– Exactly: C is exactly learnable, if H = C, using the same numbering.
– Class Preservingly: C is class preservingly learnable, if H = C.
– Class Comprisingly: C is class comprisingly learnable, if H ⊇ C.

Notation 36. Contrary to the widely used e, ε and c, we will use the prefixes e,
cp and cc, respectively. Also, we will write C ∈ LC(H) if the class C can be
learnt via the learning criterion LC with respect to the hypothesis space H.

Remark 37. Since the hypotheses are restricted now, we will use an ”initial state”
as first hypothesis p0 to signalize the first computation step, rather than a proper
hypothesis, see [6]. However, the learner may never output this state.

Corollary 38. eCI ⊆ cpCI ⊆ ccCI.

Corollary 38 follows directly from the definitions. In order to investigate
learning with respect to some hypothesis space and to show that the inclusions
are proper, let us fix one special indexation of all non-empty, finite sets.

11

Definition 39. Let [i]2 be the binary expression of i and B = {Bi : i > 0}, with

Bi(x) = ([i]2)(x) =

{
1, if [i]2 is 1 at position x,

0, else.

Lemma 40. Let C = {Ci : i ∈ IN} be an indexed class of finite sets, which is
closed under subsets, with a decision procedure for Dx ∈ C. Then

C ∈ ccCI⇔ C contains no infinite ascending chain⇔ C ∈ CI.

Proof. Since the second equivalence is exactly the Classification Theorem 18, we
only need to show the first one.

⇒: Conducting some similar proof as in the proof of Lemma 9, we can see that
this direction is true.

⇐: By observing the proof of the Classification Theorem 18, we can see that we
could change the output to its respective counterpart in B, and still receive
a natural bound on the amount of the elements. Thus, we could conduct the
same proof here. ut

Example 41. Consider the class C = {Cx,y : x, y ∈ IN}, where

Cx,y =

{
{p}, x /∈ K in y steps,

{x}, x ∈ K in y steps.

where p is a program of some everywhere undefined function.
By outputting 2d0 on the input (dn)n, we see that C ∈ ccCI(B).
Assume, C ∈ cpCI(H). For x ∈ IN consider the input sequence x, x, At some
computable stage N , the learner cpci(., .) will converge to some px, see Lemma
11. Then, for x 6= p,

x ∈ K ⇒ Hpx
= {x},

x /∈ K ⇒ Hpx
6= {x}.

The second property originates from the fact, that there is no set in H repre-
senting {x}, since x /∈ K. For any i and x, the question whether Hi = {x} is
computable, as all Hi have exactly one element. Thus, the canonical search for
y such that Hi(y) = 1 will terminate.
Thus, x ∈ K ⇔ Hpx

= {x}, with the latter being computable. A contradiction.

The next example is inspired by an example in [5] and [10].

Example 42. Consider the following indexed classes L = {Li,j : i, j ∈ IN} and

L̃ = {L̃i,j : i, j ∈ IN}, where

L̃i,j =

{
{2i3n : n ∈ IN}, (ϕi(i))j ↑,
{2i3n : n ≤ k}, (ϕi(i))j ↓ in k steps.

Li,j =

L̃i,0, j = 0,

L̃i,j , j > 0 and (ϕi(i))j ↓ in exactly j steps,

L̃0,0, else.

12

Notice that L = L̃. Without loss of generality, assume that every program needs
at least two steps to compute, i.e. L̃i,0 = L̃i,1 are infinite for all i ∈ IN. For input
(dn)n and for some starting program p0 = (s0, 0), where s0 = exp(d0, 0), the
following algorithm will show that L ∈ cpCI(L̃).

1. For di and pi, check whether di = 2si3ti and whether pi = (si, x). If not,
return 0.

2. If so, check whether (ϕsi(si))ti ↓ and let k be the amount of steps needed.
(a) If x = 0 and ti = k, output (si, ti). If ti > k, output (si, 1).
(b) If x = 1, output pi+1 = pi.
(c) If x > 1, and if ti > k, output (si, 1). Else, output pi+1 = pi.
(d) If not (ϕsi(si))ti ↓, output pi+1 = pi.

One can easily see that the algorithm works correctly. Let (dn)n be some input,
and let pi and di be the current input. Then, after checking the form, we check
whether pi = (si, x) and ϕi(i) ↓. If x = 0 and the function converged, we output
(si, ti) if ti = k, as the input belongs to a finite set, and output (si, 1), as the
input outranged the finite set. If x = 1, we already witnessed that second case,
and thus just output the previous hypothesis. If x > 1, we already witnessed
ϕi(i) to converge, so we only change mind if ti > k, i.e. if we outranged a finite
set again. If we did not witness ϕi(i) to converge, we simply output the previous
hypothesis and request the next input.
Assume now, that L ∈ eCI via eci(., .). Let i ∈ IN>0, and consider some canon-
ical input (dn)n ∈ Li,0, i.e. dj = 2i3j . At some point m, eci(., .) has to output
(i, 0). Now check whether ϕi(i) ↓ in at most m steps. If so, then ϕi(i) converges. If
not, then ϕi(i) has to diverge. Assume the opposite, i.e. ϕi(i) converges at some
later point m′ > m. Then, on the input 2i, 2i3, . . . , 2i3m

′
, 2i3m

′
, . . . , eci(., .) will

computably converge to (i,m′). If we continue to input 2i3m
′+1, 2i3m

′+2, . . . once
eci(., .) converged, at some point we will witness (i, 0) as output again. Now,
we can repeat the input from when we witnessed (i, 0) for the first time. Thus,
the machine will not converge on this input, a contradiction. So, we can solve
the halting problem, a contradiction.

Theorem 43. eCI (cpCI (ccCI.

Acknowledgments. I would like to thank my supervisor Ekaterina
Fokina for her excellent support and patience.

13

Appendix

Addition (for Remark 1). Intuitively, a program of a set S should provide us
with the information which elements are in the set. For example, if we know the
characteristic function χS , we can compute the set. However, that is not consis-
tent with our definition of a program of S. Since χS = ϕe is everywhere defined,
We = IN. To circumvent that, we will allow reinterpretations of programs.
Using that and letting f(p,m, x) = ϕp(x+m) if latter is 1, and undefined else,
we can prove that having the shifted version of the characteristic function χS

allows us to compute the set. For fixed m, let e be such that ϕe(x+m) = χS(x).
Then, using the Sm

n Theorem on f = ϕn, we obtain

ϕs(n,p,m)(x) = ϕn(p,m, x) = f(p,m, x) =

{
1, ϕp(x+m) = 1,

↑, else.

Then, Ws(n,e,m) = S.

Addition (for Example 10). First, observe that any subclass S of Pfin(ω) =
{A ⊆ ω : |A| <∞} can be learned iteratively.

Proof. Let S be a subclass of Pfin(ω) and (dn)n ∈ AS the input for the algorithm
below. Let p0 be the program of the zero function. For inputs pi and di,

1. if ϕpi
(di) = 0, then pi+1 is a program of f(x) = ϕpi

(x) + sgn(|x− di|),
2. otherwise, pi+1 = pi.

Let (dn)n ∈ AS be some input sequence. For any input di the algorithm checks,
whether di is a new datum, i.e. ϕpi

(di) = 0. In the first case, it changes the
characteristic function on this argument to 1, leading to f(x). Then it computes
and outputs a code of f(x). Otherwise, it outputs the last hypothesis.
At some point I, all elements of AS have appeared in the input, i.e. ∀∞I i :
{d0, . . . , dI} = {d0, . . . , di} = AS . Now, the algorithm will always proceed with
step 2, as there are no yet unmentioned elements anymore.
So, the algorithm will converge, and output a code of the characteristic function
of AS . ut

Thus, C is iteratively learnable.
Next, we will provide a confident learner of C. For any input (dn)n, execute the
following algorithm.

1. If {d0, . . . , di} contains no odd elements, output 0.
2. If {d0, . . . , di} contains one odd element m = 2n + 1 and 2n many even

elements, output a code of the characteristic function of {d0, . . . , di}.
3. Else, output 0.

To see that the algorithm works properly, let (dn)n be some input sequence. The
idea of the algorithm is simple, we count the odd elements, leading us into three
cases on {d0, . . . , di}.

14

1. While we have no odd elements, we do not have a set in the class, yet, so we
output any dummy code, i.e. 0.

2. When we have exactly one odd element m = 2n + 1 and 2n many even
elements, we output a code of the characteristic function of {d0, . . . , di}, as
it is a set in the class.

3. Else, output 0.

Since the algorithm does only change its mind when changing from case 1 or 3
to 2 or from 2 to 3, which can only happen finitely many times, we see that the
algorithm works properly.

Addition (for Example 12). As above, M∈ IT.
In order to show that the class is confidently learnable, recall the computable
function exp(x, y), which outputs the exponent of the x-prime number in the
prime decomposition of y. Also, let [x ∈ K]y output the number of steps ≤ y
needed for x to be enumerated into K. If x is not enumerated into K in y steps,
let that function output y + 1.
Now, let (dn)n be some input for the algorithm. Upon starting, fix two global
variables, namely b = 0 and s = exp(0, d0).

1. For input di and pi, check whether di = 2si3ti . If not, return 0. Else,
2. check whether s = si. If not, return 0. If so,
3. calculate t = [si ∈ K]ti . Now compare t and ti.
t < ti: Return 0.
t = ti: Output a program of the characteristic function of {d0, . . . , di}.
t > ti: For3 b = max(b+ 1, t), calculate t′ = [si ∈ K]b.

t′ ≤ b: Output a program of the characteristic function of {d0, . . . , di}.
t′ > b: Output 0, but request the next input.

We will prove that the algorithm works as supposed and with that explain it.
Let (dn)n be some input. As already mentioned, we have two global variables.
First, we have a counter b which will come to use later. Secondly, we have
s = exp(0, d0), which is the pivot program.
Now, once we receive the next di as input, we check whether di is equal to
2exp(0,di)3exp(1,di). If not, we know that the input cannot belong to a set in the
class, so we may as well as stop here and return 0.
If we do have the sought form, we ask whether or not the corresponding program
si matches the program s. If not, we again are surely outside the class, so we
return 0.
Otherwise, we compute t = [si ∈ K]ti and then proceed depending on the
outcome.

1. t < ti. In this case, the amount of steps extends the minimal amount, so we
do not have a subset of some Mx,y, rather a superset. So, we are surely not
in the class and thus return 0.

3 This is to be seen as a code. We define the new value of b as either b + 1 or t,
depending on which one is bigger.

15

2. t = ti. In this case, we have a candidate for a class member. So, we output a
program of the set {d0, d1, . . . , di}, i.e. the set of input that we have gathered
so far.

3. t = ti + 1. When we get to this case, we may have one of the two following
situations. We may have a candidate, namely a proper subset of some Mx,y,
or we may have a program that actually is never enumerated into K. Here,
the counter comes to use. We set the counter b to the maximal value of the
counters last value plus one, i.e. b + 1, or t. Then we ask, whether or not
the program was enumerated into K in b steps. By doing so, we make sure
to check the next, yet unchecked, step, to see whether or not we enumerate
s into K in some later step, namely b. If so, we can output the program of
{d0, . . . , di}, as we may have hit some proper subset of some Mx,y. In the
other case, we output 0 and request the next input. By doing so, we ensure
the machine to converge if the input does not belong to a set of the class.

We see that the algorithm works properly. So, the class is confidently learnable.

Addition (for Example 13). We will show that Cn is CI. For some input
(dn)n, the following algorithm will do the trick. Let p0 be the program of the
zero function. Then,

1. given di and pi, check whether ϕpi
(0) < n and if so, do

(a) if ϕpi
(di + 1) = 0, then pi+1 is a program of

f(x) = ϕpi
(x) + sgn(x) + sgn(|x− (di + 1)|),

(b) else, pi+1 = pi,
2. else, pi+1 = pi.

The idea is simple. Position 0 of the program counts the different data that oc-
curred so far. Once it reaches n, i.e. case 1 is not true anymore, the computation
will converge, as either we have met some set in the class correctly, or we ex-
panded it. Otherwise, while we do not have all the elements, in case 1a we check
whether the datum is really new, i.e. ϕpi(di + 1) = 0. If so, we add one to the
counter, i.e. f(0) = ϕpi

(0) + 1, and mark the element as seen, i.e. f(di + 1) = 1.
Then the algorithm outputs a code of this current characteristic function. Since
this case can only occur finitely often, the algorithm will converge here, too.
In the end, we can rebuild the characteristic function of SCn via χSCn

(x) =
ϕp(x+ 1).

Addition (for Remark 20). Let U ∈ vCI be a class with an infinite set U =
{u0, u1, . . . }. Notice that confident classes cannot contain any infinite ascending
chain. So, ∀∞n m : {u0, . . . , um} /∈ U . Then, ∀∞n i : vc(u0, . . . , ui) = −1, however,
vc(.) should converge to some code of U .

16

References

1. Angluin, D.: Inductive inference of formal languages from positive data. Information
and Control 45 (1980), 117-135. doi.org/10.1016/S0019-9958(80)90285-5

2. Cooper, S. B.: Computability Theory. Chapman & Hall, 2004.
3. Gao, Z., Stephan, F.: Confident and consistent partial learning of recursive func-

tions. Theoretical Computer Science 558 (2014), 5-17.
4. Harizanov, V. S.: Inductive Inference Systems for Learning Classes of Algorithmi-

cally Generated Sets and Structures. Induction, Algorithmic Learning Theory, and
Philosophy (2007), 27-54.

5. Jain, S.: Hypothesis spaces for learning. Information and Computation 209 (2011),
513-527. doi.org/10.1016/j.ic.2010.11.016

6. Jain, S., Lange, S., Zilles, S.: Consistent and conservative iterative learning. Tech-
nical Report. 2007.

7. Jantke, K. P.: Reflecting and self-confident inductive inference machines. Algorith-
mic Learning Theory 1995 (1995), 282-297.

8. Lange, S., Zeugmann, T.: Incremental learning from positive data. Journal of Com-
puter and System Sciences 53 (1996), 88-103.

9. Lange, S., Zeugmann, T.: Language Learning in Dependence on the Space of Hy-
potheses.

10. Lange, S., Zeugmann, T.: Learning recursive languages with bounded mind changes.
International Journal of Foundations of Computer Science (1993), 157-178.

11. Rogers, Jr., H.: Theory of Recursive Functions and Effective Computability. First
MIT paperback edition, third printing. 1992.

12. Stephan, F.: Script on Einführung in die Lerntheorie. 2002/2003.

