
Hard Instances of Algorithms and Proof Systems

Yijia Chen1, Jörg Flum2, and Moritz Müller3

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Dongchuan Road, No. 800, 200240 Shanghai, China

yijia.chen@cs.sjtu.edu.cn
2 Abteilung für mathematische Logik, Albert-Ludwigs-Universität Freiburg,

Eckerstraße 1, 79104 Freiburg, Germany
joerg.flum@math.uni-freiburg.de

3 Kurt Gödel Research Center for Mathematical Logic,
Währinger Straße 25, 1090 Wien, Austria

moritz.mueller@univie.ac.at

Abstract. If the class Taut of tautologies of propositional logic has
no almost optimal algorithm, then every algorithm A deciding Taut
has a polynomial time computable sequence witnessing that A is not
almost optimal. We show that this result extends to every Πp

t -complete
problem with t ≥ 1; however, assuming the Measure Hypothesis, there
is a problem which has no almost optimal algorithm but is decided by
an algorithm without such a hard sequence. Assuming that a problem
Q has an almost optimal algorithm, we analyze whether every algorithm
deciding Q, which is not almost optimal algorithm, has a hard sequence.

1 Introduction

Let A be an algorithm deciding a problem Q. A sequence (xs)s∈N of strings
in Q is hard for A if it is computable in polynomial time and the sequence
(tA(xs)s∈N) is not polynomially bounded in s.1 Here, tA(x) denotes the number
of steps the algorithm A takes on input x. Clearly, if A is polynomial time, then
A has no hard sequences. Furthermore, an almost optimal algorithm for Q has
no hard sequences either. Recall that an algorithm A is almost optimal for Q
if for any other algorithm B deciding Q and all x ∈ Q the running time tA(x)
is polynomially bounded in tB(x). In fact, if (xs)s∈N is a hard sequence for an
algorithm, then one can superpolynomially speed up it on {xs | s ∈ N}, so it
cannot be almost optimal.

Central to this paper is the question: To what extent can we show that algo-
rithms which are not almost optimal have hard sequences? Our starting point is
the following result (more or less explicit in [3,11]):

If Taut, the class of tautologies of propositional logic, has no almost op-
timal algorithm, then every algorithm deciding Taut has hard sequences.

First we generalize this result from the Πp
1 -complete problem Taut to all prob-

lems which are Πp
t -complete for some t ≥ 1:

1 All notions will be defined in a precise manner later.

S.B. Cooper, A. Dawar, and B. Löwe (Eds.): CiE 2012, LNCS 7318, pp. 118–128, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Hard Instances of Algorithms and Proof Systems 119

(∗) If a Πp
t -complete problem Q has no almost optimal algorithm, then every

algorithm deciding Q has hard sequences.

Apparently there are some limitations when trying to show (∗) for all problems
Q as we prove:

(+) If the Measure Hypothesis holds, then there is a problem which has no almost
optimal algorithm but is decided by an algorithm without hard sequences.

Perhaps one would expect that one can strengthen (∗) and show that even if a
Πp

t -complete problem Q has an almost optimal algorithm, then every algorithm,
which is not almost optimal and decides Q, has a hard sequence. However, we
show:

If the Measure Hypothesis holds, then every problem with padding and
with an almost optimal algorithm is decided by an algorithm which is not
almost optimal but has no hard sequences.

As an algorithm deciding a problem Q which is not almost optimal can be
polynomially speeded up on an infinite subset of Q, by (+) we see that, at
least under the Measure Hypothesis, this notion of speeding up (e.g., considered
in [13]) is weaker than our notion of the existence of a hard sequence.

Assume that Q := Taut (or any Πp
t -complete Q) has no almost optimal

algorithm; thus, by (∗), every algorithm deciding Q has a hard sequence. Can
we even effectively assign to every algorithm deciding Q a hard sequence? We
believe that under reasonable complexity-theoretic assumptions one should be
able to show that such an effective procedure or at least a polynomial time
procedure does not exist, but we were not able to show it. However, recall that
by a result due to Stockmeyer [13] and rediscovered by Messner [10] we know:

For every EXP-hard problem Q there is a polynomial time effective pro-
cedure assigning to every algorithm solving Q a sequence hard for it.

Hence, if EXP = Πp
t , then for every Πp

t -hard problem Q there is a polynomial
time effective procedure assigning a hard sequence to every algorithm deciding Q.

Our proof of (∗) generalizes to nondeterministic algorithms. This “nondeter-
ministic statement” yields a version for Πp

t -complete problems of a result that
Kraj́ıc̆ek derived for non-optimal propositional proof systems: If Taut has no
optimal proof system, then for every propositional proof system P there is a
polynomial time computable sequence (αs)s∈N of propositional tautologies αs

which only have superpolynomial P-proofs; moreover, he showed that the αs can
be chosen with s ≤ |αs|. While it is well-known that for any problem Q nonde-
terministic algorithms deciding Q and proof systems for Q are more or less the
same, the relationship between deterministic algorithms and propositional proof
systems is more subtle. Nevertheless, we are able to use (∗) to derive a statement
on hard sequences for Πp

t -complete problems Q without a polynomially optimal
proof system.

As a byproduct, we obtain results in “classical terms” (that is, not referring
to hard sequences). For example, we get for t ≥ 1:

120 Y. Chen, J. Flum, and M. Müller

Let Q be Πp
t -complete. Then, Q has an almost optimal algorithm if and

only if Q has a polynomially optimal proof system.

If some Πp
t -complete has no almost optimal algorithm, then every Πp

t -
hard problem has no almost optimal algorithm.

It is still open whether there exist problems outside of NP with optimal proof
systems. We show their existence (in NE) assuming the Measure Hypothesis.
Kraj́ıc̆ek and Pudlák [7] proved that NE = coNE implies that Taut has an
optimal proof system, a result later strengthened by [8,1].

If for an algorithm A deciding a problem Q we have a hard sequence (xs)s∈N

satisfying s ≤ |xs|, then {xs | s ∈ N} is a hard set for A, that is, a polynomial
time decidable subset of Q on which A is not polynomial time. Messner [10]
has shown for any Q with padding that all algorithms deciding Q have hard
sets if and only if Q has no polynomially optimal proof system. We show for
arbitrary Q that the existence of hard sets for all algorithms is equivalent to the
existence of an effective enumeration of all polynomial time decidable subsets of
Q, a property which has turned out to be useful in various contexts (cf. [12,3,4]).
We analyze what Messner’s result means for proof systems.

The content of the sections is the following. In Section 2 we recall some con-
cepts. We deal with hard sequences for algorithms in Section 3 and for proof
systems in Section 4. Section 5 is devoted to hard sets and Section 6 contains
the results and the examples of problems with special properties obtained as-
suming that the Measure Hypothesis holds. Finally Section 7 gives an effective
procedure yielding hard sequences for nondeterministic algorithms for coNEXP-
hard problems. Due to space limitations we defer almost all proofs to the full
version of this extended abstract.

2 Preliminaries

By nO(1) we denote the class of polynomially bounded functions on the natural
numbers. We let Σ be the alphabet {0, 1} and |x| the length of a string x ∈ Σ∗.
We identify problems with subsets of Σ∗. In this paper we always assume that
Q denotes a decidable and nonempty problem.

We assume familiarity with the classes P (polynomial time), NP (nondeter-
ministic polynomial time) and the classes Πp

t for t ≥ 1 (the “universal” class of
the tth level of the polynomial hierarchy). In particular, Πp

1 = coNP.
The Measure Hypothesis [5] is the assumption “NP does not have measure 0

in E.”‘ For the corresponding notion of measure we refer to [9]. This hypothesis
is sometimes used in the theory of resource bounded measures.

A problem Q ⊆ Σ∗ has padding if there is a function pad : Σ∗ × Σ∗ → Σ∗

computable in logarithmic space having the following properties:

– For any x, y ∈ Σ∗, |pad(x, y)| > |x| + |y| and
(
pad(x, y) ∈ Q ⇐⇒ x ∈ Q

)
.

– There is a logspace algorithm which, given pad(x, y) recovers y.

Hard Instances of Algorithms and Proof Systems 121

By 〈. . . , . . .〉 we denote some standard logspace computable tupling function with
logspace computable inverses.

If A is a deterministic or nondeterministic algorithm and A accepts the string
x, then we denote by tA(x) the minimum number of steps of an accepting run
of A on x; if A does not accept x, then tA(x) is not defined. By L(A) we denote
the language accepted by A. We use deterministic and nondeterministic Turing
machines with Σ as alphabet as our basic computational model for algorithms
(and we often use the notions “algorithm” and “Turing machine” synonymously).
If necessary we shall not distinguish between a Turing machine and its code, a
string in Σ∗. By default, algorithms are deterministic. If an algorithm A on input
x eventually halts and outputs a value, we denote it by A(x).

3 Hard Sequences for Algorithms

In this section we derive the results concerning the existence of hard sequences
for Πp

t -complete problems.
Let Q ⊆ Σ∗. A deterministic (nondeterministic) algorithm A deciding (accept-

ing) Q is almost optimal if for every deterministic (nondeterministic) algorithm
B deciding (accepting) Q we have

tA(x) ≤ (
tB(x) + |x|)O(1)

for all x ∈ Q. Note that nothing is required for x /∈ Q.
Clearly, every problem in P (NP) has an almost optimal (nondeterminis-

tic) algorithm. There are problems outside P with an almost optimal algorithm
(see Messner[10, Corollary 3.33]; we slightly improve his result in Theorem 22
of Section 6). However, it is not known whether there are problems outside
NP having an almost optimal nondeterministic algorithm and it is not known
whether there are problems with padding outside P having an almost optimal
algorithm. We show in Theorem 23 of Section 6 that the former is true if the
Measure Hypothesis holds.

Definition 1. Let Q ⊆ Σ∗.
(1) Let A be a deterministic (nondeterministic) algorithm deciding (accepting)

Q. A sequence (xs)s∈N is hard for A if {xs | s ∈ N} ⊆ Q, the function 1s �→ xs

is computable in polynomial time, and tA(xs) is not polynomially bounded
in s.

(2) The problem Q has hard sequences for algorithms (for nondeterministic al-
gorithms) if every (nondeterministic) algorithm deciding Q has a hard se-
quence.

In the proof of the following lemma we show that an algorithm A can be super-
polynomially speeded up on {xs | s ∈ N} if (xs)s∈N is hard for A.

Lemma 2. Let A be a deterministic (nondeterministic) algorithm deciding (ac-
cepting) Q. If A has a hard sequence, then A is not almost optimal.

122 Y. Chen, J. Flum, and M. Müller

As already remarked in the Introduction, part (b) of the next theorem, the main
result of this section, generalizes the corresponding result for Q = TAUT due to
Kraj́ıc̆ek.

Theorem 3. Let Q be a Πp
t -complete problem for some t ≥ 1. Then:

(a) Q has no almost optimal algorithm ⇐⇒ Q has hard sequences for algo-
rithms.

(b) Q has no almost optimal nondeterministic algorithm ⇐⇒ Q has hard
sequences for nondeterministic algorithms.

Remark 4. ForQ = Taut, part (a) is implicit in [3,11]. In fact, there it is shown
that a halting problem polynomially isomorphic to Taut has hard sequences for
algorithms if it has no almost optimal algorithm. In Remark 14 we show how this
can be extended to every coNP-complete problem using known results relating
almost optimal algorithms and proof systems.

Lemma 2 yields the implications from right to left in Theorem 3. The following
considerations will yield a proof of the converse direction. For a nondeterministic
algorithm A and s ∈ N let A

s be the algorithm that rejects all x ∈ Σ∗ with
|x| > s. If |x| ≤ s, then it simulates s steps of A on input x; if this simulation
halts and accepts, then A

s accepts; otherwise it rejects.
For Q ⊆ Σ∗ we consider the deterministic (nondeterministic) algorithm subset

problem Das(Q) (Nas(Q))

Das(Q) (Nas(Q))
Instance: A (nondeterministic) algorithm A and 1s with

s ∈ N.
Question: L(As) ⊆ Q ?

The following two lemmas relate the equivalent statements in Theorem 3 (a)
(in Theorem 3 (b)) to a statement concerning the complexity of Das(Q) (of
Nas(Q)).

Lemma 5. (a) If 〈A, 1s〉 ∈ Das(Q) is solvable in time sf (A) for some function
f , then Q has an almost optimal algorithm.

(b) If there is a nondeterministic algorithm V accepting Nas(Q) such that for
all 〈A, 1s〉 ∈ Nas(Q) we have tV(〈A, 1s〉) ≤ sf (A) for some function f , then
Q has an almost optimal nondeterministic algorithm.

If Q is Πp
t -complete, then Nas(Q) and hence Das(Q) are in Πp

t , too (this is the
reason why 1s and not just s is part of the input of Nas(Q) and of Das(Q)).
Thus, together with Lemma 5 the following lemma yields the remaining claims
of Theorem 3.

Lemma 6. (a) Assume that Das(Q) ≤p Q, that is, that Das(Q) is polynomial
time reducible to Q. If 〈A, 1s〉 ∈ Das(Q) is not solvable in time sf (A) for
some function f , then Q has hard sequences for algorithms.

Hard Instances of Algorithms and Proof Systems 123

(b) Assume that Nas(Q) ≤p Q. If there is no nondeterministic algorithm V

accepting Nas(Q) such that for all 〈A, 1s〉 ∈ Nas(Q) we have tV(〈A, 1s〉) ≤
sf (A) for some function f , then Q has hard sequences for nondeterministic
algorithms.

Remark 7. In the proof of Theorem 3 we use the assumption that Q is Πp
t -

complete only to ensure that Nas(Q) ≤p Q (cf. Lemma 6). This condition is also
fulfilled for every Q complete, say, in one of the classes E or Pspace. Thus the
statements of Theorem 3 hold for such a Q.

Remark 8. Assume that Q is Πp
t -complete and has padding (for t = 1, the set

Taut is an example of such a Q). If Q has no almost optimal algorithm, then
every algorithm B deciding Q has a hard sequence (xs)s∈N with s ≤ |xs|. Then,
in particular

{xs | s ∈ N} ∈ P and B is not polynomial time on {xs | s ∈ N}.
In fact, it is well-known that for Q with padding we can replace any polynomial
time reduction to Q by a length-increasing one. An analysis of the proof of
Lemma 6 shows that then we can get hard sequences (xs)s∈N with s ≤ |xs|.
In contrast to the last remark, for the validity of the next lemma it is important
that we do not require s ≤ |xs| in our definition of hard sequence.

Lemma 9. Assume that S is a polynomial time reduction from Q to Q′ and let
B be a (nondeterministic) algorithm deciding (accepting) Q′. If (xs)s∈N is a hard
sequence for B ◦ S, then (S(xs))s∈N is a hard sequence for B.

Therefore, if Q ≤p Q′ and Q has hard sequences for (nondeterministic) al-
gorithms then so does Q′.

We derive two consequences of our results:

Corollary 10. Assume t ≥ 1 and let Q and Q′ be Πp
t -complete. Then, Q has

an almost optimal algorithm if and only if Q′ has an almost optimal algorithm.

Corollary 11. Let t ≥ 1 and assume that the some Πp
t -complete problem has no

almost optimal algorithm. Then every Πp
t -hard problem has no almost optimal

algorithm.

4 Hard Sequences for Proof Systems

In this section we translate the results on hard sequences from algorithms to
proof systems. We first recall some basic definitions.

A proof system for Q is a polynomial time algorithm P computing a function
from Σ∗ onto Q. If P(w) = x, we say that w is a P-proof of x.

Let P and P
′ be proof systems for Q. An algorithm T is a translation from P

′

into P if P(T(w′)) = P
′(w′) for every w′ ∈ Σ∗. Note that translations always exist.

A translation is polynomial if it runs in polynomial time.

124 Y. Chen, J. Flum, and M. Müller

A proof system P for Q is p-optimal or polynomially optimal if for every proof
system P

′ for Q there is a polynomial translation from P
′ into P. A proof system

P for Q is optimal if for every proof system P
′ for Q and all w′ ∈ Σ∗ there is a

w ∈ Σ∗ such that P(w) = P
′(w′) and |w| ≤ |w′|O(1). Clearly, any p-optimal proof

system is optimal.
We often will make use of the following relationship between the optimality

notions for algorithms and that for proof systems (see [7,10]).

Theorem 12. (1) For every Q we have (a) ⇒ (b) and (b) ⇒ (c); moreover (a),
(b), and (c) are all equivalent if Q has padding. Here
(a) Q has a p-optimal proof system.
(b) Q has an almost optimal algorithm.
(c) There is an algorithm that decides Q and runs in polynomial time on

every subset X of Q with X ∈ P.
(2) For every Q we have (a) ⇐⇒ (b), (b) ⇒ (c), and (c) ⇒ (d); moreover

(a)–(d) are all equivalent if Q has padding. Here
(a) Q has an optimal proof system.
(b) Q has an almost optimal nondeterministic algorithm.
(c) There is a nondeterministic algorithm that accepts Q and runs in poly-

nomial time on every subset X of Q with X ∈ NP.
(d) There is a nondeterministic algorithm that accepts Q and runs in poly-

nomial time on every subset X of Q with X ∈ P.

We use our results of Section 3 to extend the equivalence between (a) and (b)
of part (1) of Theorem 12 to arbitrary Πp

t -complete problems:

Theorem 13. Let Q be a Πp
t -complete problem for some t ≥ 1. Then:

Q has a p-optimal proof system ⇐⇒ Q has an almost optimal algorithm.

Remark 14. Using Theorem 12, for every coNP-complete Q we get a simple,
direct proof of

if Q has no almost optimal algorithm, then Q has hard sequences for
algorithms

using the result for Q = Taut (that we already knew by Remark 4). In fact,
assume that Q has no almost optimal algorithm. Then Taut has no almost opti-
mal algorithm; otherwise, Taut has a p-optimal proof system by the equivalence
of (a) and (b) in part (1) of Theorem 12 (Taut has padding!). As Q ≤p Taut,
then Q has a p-optimal proof system too (cf. [8, Lemma 1]) and hence, again
by Theorem 12, an almost optimal algorithm, a contradiction. Thus, Taut has
hard sequences for algorithms. As Taut ≤p Q, by Lemma 9 the problem Q has
hard sequences for algorithms, too.

We already mentioned that for every Q ⊆ Σ∗ there is a well-known and straight-
forward correspondence between proof systems and nondeterministic algorithms
preserving the optimality notions, so that the proof of the equivalence between
(a) and (b) in Theorem 12 (2) is immediate. Thus the translation of our results

Hard Instances of Algorithms and Proof Systems 125

for nondeterministic algorithms to proof systems is easy and we omit it here.
Moreover, the corresponding results are due to Kraj́ıc̆ek [6] who proved them by
quite different means.

Definition 15. (1) Let P be a proof systems for Q. A sequence (xs)s∈N is hard
for P if {xs | s ∈ N} ⊆ Q, the function 1s �→ xs is computable in polynomial
time, and there is no polynomial time algorithm W with P(W(1s)) = xs for
all s ∈ N.

(2) The problem Q has hard sequences for proof systems if every proof system
for Q has a hard sequence.

For Q = Taut the following result is already known (cf., e.g., the survey [2,
Section 11]). We give a new proof that works for any, not necessarily paddable
Πp

t -complete problem Q.

Theorem 16. Let Q be a Πp
t -complete problem for some t ≥ 1. Then:

Q has no p-optimal proof system iff Q has hard sequences for proof systems.

Again an analysis of the proof of this theorem shows that for Q with padding,
we can require that the claimed hard sequence (xs)s∈N satisfies s ≤ |xs|.

5 Hard Subsets

If for an algorithm A deciding a problem Q we have a hard sequence (xs)s∈N

satisfying s ≤ |xs|, then {xs | s ∈ N} is a polynomial time decidable subset of
Q on which A is not polynomial time. We then speak of a hard set for A even if
its elements cannot be generated in polynomial time. More precisely:

Definition 17. Let Q ⊆ Σ∗.
(1) Let A be a deterministic or nondeterministic algorithm acceptingQ. A subset

X of Q is hard for A if X ∈ P and A is not polynomial time on X .
(2) The problemQ has hard sets for (nondeterministic) algorithms if every (non-

deterministic) algorithm deciding Q has a hard set.

Using these notions the equivalences (a) ⇔ (c) and (a) ⇔ (d) in Theorem 12 (1)
and (2), respectively, can be expressed in the following way:

Assume that Q has padding. Then
(1) Q has no almost optimal algorithm ⇐⇒ Q has hard sets for algo-

rithms.
(2) Q has no almost optimal nondeterministic algorithm ⇐⇒ Q has

hard sets for nondeterministic algorithms.

Hence, we get (we leave the nondeterministic variant to the reader):

126 Y. Chen, J. Flum, and M. Müller

Corollary 18. Assume Q has padding.
(a) If Q has hard sequences for algorithms, then Q has hard sets for algorithms.
(b) If in addition Q is Πp

t -complete, then Q has hard sequences for algorithms if
and only if Q has hard sets for algorithms.

Assume that Q has an almost optimal algorithm. Then, in general, one cannot
show that every algorithm deciding Q, which is not almost optimal, has a hard
set. In fact, Messner [10, Corollary 3.33] has presented a P-immune Q0 with an
almost optimal algorithm. Of course, no algorithm deciding Q0 has a hard set.

For an arbitrary problem Q the existence of hard subsets is equivalent to a
(non-)listing property. We introduce this property.

Let C be the complexity class P or NP. A set X is a C-subset of Q if X ⊆ Q
and X ∈ C. We write List(C, Q) and say that there is a listing of the C-subsets
of Q by C-machines if there is an algorithm that, once having been started, lists
Turing machines M1,M2, . . . of type C such that {L(Mi) | i ≥ 1} = {X ⊆ Q |
X ∈ C}.

For Q with padding the equivalences in the following proposition were
known [12].

Theorem 19. (1) Q has hard sets for algorithms ⇐⇒ not List(P, Q).
(2) Every nondeterministic algorithm A accepting Q is not polynomial on at

least one subset X of Q with X ∈ NP ⇐⇒ not List(NP, Q).

We close this section by introducing hard subsets for proof systems and stating
the corresponding result.

Definition 20. (1) Let P be a proof system for Q. A subset X of Q is hard
for P if X ∈ P and there is no polynomial time algorithm W such that
P(W(x)) = x for all x ∈ X .

(2) Q has hard sets for proof systems if every proof system for Q has a hard set.

The following result can be obtained along the lines of the proof of Theorem 16.

Theorem 21. Let Q be a problem with padding. Then:

Q has no p-optimal proof system if and only if Q has hard sets for proof systems.

6 Assuming the Measure Hypothesis

In this section we present some examples of problems with special properties,
some yield limitations to possible extensions of results mentioned in this paper.
Most are proven assuming the Measure Hypothesis.

Recall that an algorithm A deciding Q is optimal if for every algorithm B

deciding Q we have
tA(x) ≤ (tB(x) + |x|)O(1)

for all x ∈ Σ∗. Clearly, every problem in P has an optimal algorithm.

Hard Instances of Algorithms and Proof Systems 127

Theorem 22. (1) There exist problems in E \ P with optimal algorithms.
(2) If the Measure Hypothesis holds, then there exist problems in NP \ P with

optimal algorithms.

Here, E :=
⋃

d∈N
Dtime(2d·n). Messner [10] showed the existence of problems

in E \ P with almost optimal algorithms. The question whether there are sets
outside of NP with optimal proof systems was stated by Kraj́ıc̆ek and Pudlák [7]
and is still open. As already mentioned, they proved that Taut has an optimal
proof system if E = NE (:=

⋃
d∈N

Ntime(2d·n)). We are able to show:

Theorem 23. If the Measure Hypothesis holds, then there exist problems in
NE \NP with optimal proof systems (or, equivalently, with almost optimal non-
deterministic algorithms).

Concerning algorithms which are not almost optimal but do not have hard se-
quences we derive the following results.

Theorem 24. Let Q be a problem with padding and with an almost optimal al-
gorithm. If the Measure Hypothesis holds, then there is an algorithm deciding Q,
which is not almost optimal and has hard sets but does not have hard sequences.

The following example shows that the padding hypothesis is necessary in
Theorem 24.

Example. Let Q := {1n | n ∈ N}. As Q ∈ P, it has an almost optimal algorithm.
However, the set Q itself is a hard set and (1s)s∈N a hard sequence for every
non-optimal (that is, for every superpolynomial) algorithm deciding Q.

Corollary 25. If the Measure Hypothesis holds, then the following are equiva-
lent for t ≥ 1:
(i) No Πp

t -complete problem has an almost optimal algorithm.
(ii) Every non-almost optimal algorithm deciding a Πp

t -complete problem has
hard sequences.

Theorem 26. If the Measure Hypothesis holds, there is a problem which has
hard sets for algorithms (and hence has no almost optimal algorithm) but has
algorithms without hard sequences.

7 Getting Hard Sequences in an Effective Way

We have mentioned in the Introduction that Stockmeyer [13] has shown that
for every EXP-hard problem Q there is a polynomial time procedure assigning
to every algorithm deciding Q a hard sequence. Based on his proof we derive a
“nondeterministic” version.

Theorem 27. Let Q be a coNEXP-hard problem. Then there is a polynomial
time computable function g : Σ∗ × {1}∗ → Σ∗ such that for every nondetermin-
istic algorithm A accepting Q the sequence

(
g(A, 1s)

)
s∈N

is hard for A.

128 Y. Chen, J. Flum, and M. Müller

Acknowledgments. The authors thank the John Templeton Foundation for its
support through Grant #13152. Yijia Chen is affiliated with BASICS and MOE-
MS Key Laboratory for Intelligent Computing and Intelligent Systems which is
supported by National Nature Science Foundation of China (61033002). Moritz
Müller thanks the FWF (Austrian Research Fund) for its support through Grant
number P 23989 - N13.

References

1. Ben-David, S., Gringauze, A.: On the existence of optimal propositional proof
systems and oracle-relativized propositional logic. Electronic Colloquium on Com-
putational Complexity (ECCC), Technical Report TR98-021 (1998)

2. Beyersdorff, O.: On the correspondence between arithmetic theories and propo-
sitional proof systems - a survey. Mathematical Logic Quarterly 55(2), 116–137
(2009)

3. Chen, Y., Flum, J.: On p-Optimal Proof Systems and Logics for PTIME. In:
Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G.
(eds.) ICALP 2010, Part II. LNCS, vol. 6199, pp. 321–332. Springer, Heidelberg
(2010)

4. Chen, Y., Flum, J.: Listings and logics. In: Proceedings of the 26th Annual IEEE
Symposium on Logic in Computer Science (LICS 2011), pp. 165–174. IEEE Com-
puter Society (2011)

5. Hitchcock, J.M., Pavan, A.: Hardness hypotheses, derandomization, and circuit
complexity. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328,
pp. 336–347. Springer, Heidelberg (2004)

6. Kraj́ıc̆ek, J.: Bounded arithmetic, propositional logic, and complexity theory. Cam-
bridge University Press (1995)

7. Kraj́ıc̆ek, J., Pudlák, P.: Propositional proof systems, the consistency of first order
theories and the complexity of computations. The Journal of Symbolic Logic 54,
1063–1088 (1989)

8. Köbler, J., Messner, J.: Complete problems for promise classes by optimal proof
systems for test sets. In: Proceedings of the 13th IEEE Conference on Computa-
tional Complexity (CCC 1998), pp. 132–140 (1998)

9. Mayordomo, E.: Almost every set in exponential time is P-bi-immune. Theoretical
Computer Science 136(2), 487–506 (1994)

10. Messner, J.: On the Simulation Order of Proof Systems. PhD Thesis, Univ. Erlan-
gen (2000)

11. Monroe, H.: Speedup for natural problems and noncomputability. Theoretical Com-
puter Science 412(4-5), 478–481 (2011)

12. Sadowski, Z.: On an optimal propositional proof system and the structure of easy
subsets of TAUT. Theoretical Computer Science 288(1), 181–193 (2002)

13. Stockmeyer, L.: The Complexity of Decision Problems in Automata Theory. PhD.
Thesis, MIT (1974)

	Hard Instances of Algorithms and Proof Systems
	Introduction
	Preliminaries
	Hard Sequences for Algorithms
	Hard Sequences for Proof Systems
	Hard Subsets
	Assuming the Measure Hypothesis
	Getting Hard Sequences in an Effective Way
	References

