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We study the algorithmic complexity of isomorphic embeddings between com-
putable structures. Suppose that L is a language. We say that L-structures A
and B are bi-embeddable (denoted by A ≈ B) if there are isomorphic embeddings
f : A ↪→ B and g : B ↪→ A. The systematic investigation of the bi-embeddability re-
lation in computable structure theory was initiated by Montalbán [1, 2]: he proved
that any hyperarithmetical linear order is bi-embeddable with a computable one.
In [3], similar results were obtained for abelian p-groups, Boolean algebras, and
compact metric spaces. The paper [4] studies degree spectra with respect to bi-em-
beddability.

Definition 1. Let d be a Turing degree. We say that a computable structure S
is d-computably bi-embeddably categorical if for any computable structure A ≈ S,
there are d-computable isomorphic embeddings f : A ↪→ S and g : S ↪→ A. The
bi-embeddable categoricity spectrum of S is the set

CatSpec≈(S) = {d : S is d-computably bi-embeddably categorical}.

A degree c is the degree of bi-embeddable categoricity of S if c is the least degree in
the spectrum CatSpec≈(S).

Definition 1 is similar to the notions of categoricity spectrum and degree of cat-
egoricity which were introduced in [5]. The categoricity spectrum of a computable
structure S is the set of all Turing degrees which are capable of computing iso-
morphisms among arbitrary computable isomorphic copies of S. The degree of
categoricity of S is the least degree from the categoricity spectrum of S.

Our first result gives examples of degrees of bi-embeddable categoricity. It shows
that every degree of categoricity known in the literature [5, 8] can be realized as
a degree of bi-embeddable categoricity. We make use of the following notion. A
structure A is called bi-embeddably trivial (or b.e. trivial for short) if for any B
bi-embeddable with A, B and A are isomorphic.

Theorem 1. Let α be a computable non-limit ordinal. Suppose that d is a Turing
degree such that d is d.c.e. in 0(α) and d ≥ 0(α). There is a computable, bi-embed-
dably trivial structure S with degree of bi-embeddable categoricity d.
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Proof Sketch. We build two b.e. trivial computable structures A and B such that
A ∼= B, A is d-computably categorical, and any embedding from A into B must
compute d. Here we give a construction for the case when d is d.c.e. over 0(2β+1),
where β is an infinite ordinal.

Ash’s characterization of the back-and-forth relations for linear orders and his
pairs of structures theorem, see Chapters 11 and 16 in [6], tells us that for any
Σ0

2β+1 set S, there is a computable sequence (Ce)e∈ω of linear orders such that

(1) Ce ∼=

{
ωβ · 2, if e ∈ S,
ωβ , if e 6∈ S.

A relativized version of the argument from [5, Theorem 3.1] shows that one can
choose a set D ∈ d such that D is d.c.e. in 0(2β+1) and for any oracle X, we have:

(D is c.e. in X) ⇒ D ≤T X ⊕ 0(2β+1).

The language of our structures contains an equivalence relation ∼, a partial
order ≤, a unary predicate T , and a unary predicate Pe, for each e ∈ ω. We have
that D = U \ V for U and V c.e. in 0(2β+1), where V ⊂ U . We first describe the
construction of A. For every e, we choose elements ae and be in A, and for every
Pe, Pe(A) is infinite and includes ae, be.

For a fixed e, we give a construction for the substructure on Pe(A). We let Pe(A)
consist of two infinite equivalence classes (with respect to ∼) such that ae 6∼ be.
The two classes [ae] and [be] will both contain pairs of linear orders, i.e., structures
of the form (L1, L2) where L1 and L2 are linear orders (with respect to ≤), any
x ∈ L1 and y ∈ L2 are incomparable, and T ([ae]) = L1.

If e = 2m, then we encode the information whether or not m is an element of D
in Pe(A). There are three cases:

(1) m 6∈ U : we build T ([ae]),¬T ([ae]), T ([be]) ∼= ωβ , and ¬T ([be]) ∼= ωβ · 2;
(2) m ∈ U \ V : we build T ([be]) ∼= ωβ and T ([ae]),¬T ([ae]),¬T ([be]) ∼= ωβ · 2;
(3) m ∈ V : we build T ([ae]), T ([be]),¬T ([ae]),¬T ([be]) ∼= ωβ · 2.

Analyzing this construction, we see that

[ae] ∼=

{
(ωβ · 2, ωβ · 2), if m ∈ U,
(ωβ , ωβ), if m 6∈ U ;

and [be] ∼=

{
(ωβ · 2, ωβ · 2), if m ∈ V,
(ωβ , ωβ · 2) if m 6∈ V.

If e = 2m+ 1, then we let [be] ∼= (ωβ , ωβ · 2), and for [ae] we let

[ae] ∼=

{
(ωβ · 2, ωβ · 2), if m ∈ ∅(2β+1),

(ωβ , ωβ), if m 6∈ ∅(2β+1).

The existence of the uniformly computable sequence of structures (Ce)e∈ω from (1)
implies that we can do the construction computably.

For B, we again choose elements âe, b̂e for every e, and we build B like A with the

difference that the roles of âe and b̂e are switched. Clearly, B and A are isomorphic
and computable. It is not hard to show that they are b.e. trivial: Indeed, every
embedding of A into a bi-embeddable copy Â must map elements in Pe(A) to

elements in Pe(Â), for every e ∈ ω. Every Pe(Â) must have exactly 2 equivalence

classes as otherwise Pe(Â) 6≈ Pe(A). Moreover, the pairs of structures that we use
are pairs of well-orders, and thus b.e. trivial.
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Following the lines of the proof of [7, Theorem 4], it is not hard to obtain that A
is d-computably categorical. It remains to show that for every f : A ↪→ B, f ≥T D.
We have that f ≥T 0(2β+1) because

m ∈ ∅(2β+1) ⇔ f(a2m+1) ∼ b̂2m+1 and m 6∈ ∅(2β+1) ⇔ f(a2m+1) ∼ â2m+1.

Similarly, we have that

m 6∈ U \ V ⇔ (f(a2m) ∼ â2m) or (m ∈ V ).

Thus, D is c.e. in f ⊕ 0(2β+1). Hence, D ≤T (f ⊕ 0(2β+1)) ≡T f .
The construction for the case α = 2β+ 2 is nearly the same. The only difference

is that in place of (1), we use the following fact: For any Σ0
2β+2 set S, there is a

computable sequence (Ce)e∈ω of linear orders such that

Ce ∼=

{
ωβ+1 + ωβ , if e ∈ S,
ωβ+1, if e 6∈ S.

The proof for finite α can be obtained by minor modifications. �

The rest of the paper is devoted to bi-embeddable categoricity for structures
from familiar algebraic classes. Recall that A = (A,E2) is an equivalence structure
if E is an equivalence relation on the domain of A.

Theorem 2 ([9]). Any computable equivalence structure has degree of bi-embedda-
ble categoricity d ∈ {0,0′,0′′}.

Note that a similar result for degrees of categoricity was proved by Csima and
Ng (unpublished).

Theorem 3. (a) A computable Boolean algebra is computably bi-embeddably
categorical if and only if it is finite.

(b) A computable linear order is computably bi-embeddably categorical if and
only if it is finite.

Note that Theorem 3 contrasts with the characterizations of computably cate-
gorical Boolean algebras [10, 11] and computably categorical linear orders [10, 12]:
In particular, a computable Boolean algebra is computably categorical iff its set of
atoms is finite.

An undirected graph is strongly locally finite if each of its components is finite. It
is easy to show that every computable, strongly locally finite graph is 0′-computably
categorical.

Theorem 4. (a) There exists a computable, strongly locally finite graph which
is not hyperarithmetically bi-embeddably categorical.

(b) The index set of 0′-computably bi-embeddably categorical, strongly locally
finite graphs is Π1

1-complete.

Proof. Ad (a). Let H ⊆ ω<ω be a computable tree without hyperarithmetic paths.
We build a strongly locally finite graph GH such that the partial ordering under
embeddability of its components is computably isomorphic to H.

For any σ ∈ H, GH contains the component Cσ: A ray of length |σ| + 1 where
the first vertex has a loop connected to it and the (i + 2)th vertex for i < |σ| has
a cycle of length σ(i) + 2 attached. Clearly the partial ordering of the components

is computably isomorphic to H by Cσ 7→ σ. Now GH has a bi-embeddable copy G̃
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that skips a fixed Cσ such that σ lies on a path in H. Now consider embeddings
µ : GH → G and ν : G→ GH , then Cσ ⊂ µ(Cσ) ⊂ ν(µ(Cσ)) ⊂ . . . and thus there
is f ∈ [H] hyperarithmetic in µ⊕ν. Hence, µ⊕ν itself can not be hyperarithmetic.

Ad (b). Let (Ti)i∈ω be a uniformly computable sequence of trees such that Ti
is well-founded iff i ∈ O. For two strings σ, τ of the same length let σ ? τ =
σ0τ0σ1τ1 . . . σ|σ|−1τ|τ |−1, and consider the sequence of trees (Si)i∈ω

Si = {ξ : ξ ⊆ σ ? τ, |σ| = |τ |, σ ∈ Ti, τ ∈ H}.
Clearly, it is uniformly computable, and Si is well-founded iff i ∈ O. Furthermore,
no path in [Si] is hyperarithmetical. Using the same coding as above we get that if
i ∈ O, then GSi

is b.e. trivial and thus 0′-computably bi-embeddably categorical.
If i 6∈ O, then GSi

is not 0(α)-computably bi-embeddably categorical for α < ωCK
1 .
�

Note that in [13], it was shown that the index set of computably categorical
structures is Π1

1-complete. We leave open whether a similar result can be obtained
for computably bi-embeddably categorical structures.
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