7. Übung Mathematik 2 für MB/VT/WI

- 61. Gegeben ist das Vektorfeld $\boldsymbol{v} = \binom{\sin(x) \lambda y^2}{xy}$
 - (a) Fixieren Sie λ reell so, dass v die Integrabilitätsbedingung erfüllt und somit konservativ wird.
 - (b) Skizzieren Sie das Vektorfeld an den Punkten $P_1 = (0,0), P_2 = (\pi/2,0)$ und $P_3 = (3\pi/2,1)$.
 - (c) Berechnen Sie das Potential des Vektorfeldes.
 - (d) Welchen Wert hat das Kurvenintegral $\int_C \boldsymbol{v} d\boldsymbol{x}$, wobei C eine beliebige geschlossene Kurve ist. Warum?
- 62. (a) Gegeben ist die geschlossene Kurve C im \mathbb{R}^2 , welche sich aus C_1 und C_2 zusammensetzt, wobei C_1 die obere Hälfte des Kreises mit Radius 2 und Mittelpunkt (0,0) ist (d.h. jener Teil des Kreises, dessen Punkte positive y-Koordinate haben), und C_2 der Teil der x-Achse ist, der die Punkte (-2,0) und (2,0) verbindet.

Skizzieren Sie C und geben Sie eine Parametrisierung von C_1 (Hinweis: Polarkoordinaten) und C_2 an. an.

- (b) Berechnen Sie die Kurvenintegrale $\int_{C_1} \boldsymbol{v} d\boldsymbol{x}$ und $\int_{C_2} \boldsymbol{v} d\boldsymbol{x}$, wobei das Vektorfeld $\boldsymbol{v} = \begin{pmatrix} y \\ x \end{pmatrix}$ ist.
- (c) Ist v ein Gradientenfeld?
- 63. Berechnen Sie das Kurvenintegral $\int_C v dx$, wobei C die dreidimensionale Kurve mit Parameterdarstellung

$$x(t) = \begin{pmatrix} t \\ t^2 \\ t^3 \end{pmatrix}, t \in [-1, 1], \text{ ist und } \boldsymbol{v} = \begin{pmatrix} xy \\ yz \\ xz \end{pmatrix}.$$

Ist das Vektorfeld konservativ?

64. (a) Sei $\mathbf{v} = \begin{pmatrix} u(x,y) \\ v(x,y) \end{pmatrix}$ ein konservatives Vektorfeld mit Potentialfunktion F(x,y). Sei weiters C eine ebene Kurve, welche die Punkte $P = (x_P, y_P)$ und $Q = (x_Q, y_Q)$ verbindet. Zeigen Sie die Formel

$$\int_C \boldsymbol{v} d\ x = F(x_Q, y_Q) - F(x_P, y_P).$$

(b) Verwenden Sie die Formel aus (a) um konkret den Wert des Kurvenintegrals $\int_C vd\ x$ zu berechnen, wobei C die Kurve mit Parameterdarstellung

$$x(t) = {t(t^2 - 1) + \pi^t \choose 17t^{17} + 17}, \qquad 0 \le t \le 1,$$

ist und \boldsymbol{v} jenes konservative Vektorfeld ist, dessen Potentialfunktion $F(x,y) = -y\cos(x)$ ist. Wie lautet das Vektorfeld \boldsymbol{v} ?

- 65. (Zentrales Kraftfeld vgl. Skript) Durch $f(x) = x^2$ wird das zentrale Kraftfeld $\mathbf{v}(\mathbf{x}) = f(\|\mathbf{x}\|) \frac{\mathbf{x}}{\|\mathbf{x}\|}$, $\mathbf{x} = {x \choose y}$, festgelegt.
 - (a) Skizzieren Sie das Vektorfeld für alle Punkte x mit ||x|| = 1/2, 1, 2 und 7.
 - (b) Weisen Sie nach, dass die Integrabilitätsbedingung erfüllt ist.
 - (c) Berechnen Sie die Potentialfunktion des Vektorfeldes.
 - (d) Berechnen Sie $\int_{1}^{\|x\|} f(s)ds$.
- 66. Skizzieren Sie folgende Flächen im \mathbb{R}^3 und geben Sie deren (eventuell stückweise) Parameterdarstellung $\boldsymbol{x}(u,v)$ inklusive jeweiligem Parameterbereich an:
 - (a) Kreisscheibe mit Radius 17 und Mittelpunkt (0,0,0) in der x-y-Ebene.
 - (b) Teil der Kreisscheibe mit Radius $\sqrt{17}$ in der Ebene x=3 mit Mittelpunkt (3,0,0), der im ersten Oktanten liegt.

- (c) z = x + y für $0 \le x \le 1$, $0 \le y \le 1$.
- (d) $z = x + y \text{ für } 0 \le x \le y \le 1.$
- (e) Kegel mit Spitze in (0,0,1), dessen Grundflache der Kreis mit Radius 1 in der x-y-Ebene liegt.
- (f) Quader, aufgespannt durch die drei Geraden, welche den Ursprung mit den Punkten (17,0,0), (0,1,0) und (0,0,7) verbinden.
- 67. Skizzieren und parametrisieren Sie die Randfläche von folgendem völlig sinnlosen Gegenstand aufgebaut aus einer Kugelscheibe, einem darauf gesetzten Zylinder und einem abschließenden Kegel (Grundfläche ist auch zu parametrisieren!):

Angenommen der Körper stehe im Ursprung, so sei die Kugelscheibe jener Teil der Vollkugel mit Mittelpunkt (0,0,2) und Radius 5, welcher zwischen der x-y-Ebene und der Ebene z=2 liegt. An diese Kugelscheibe schließt der Zylinder um die z-Achse mit Radius 5 und Höhe 7 an. Der abschließende Kegel um die z-Achse schließt stetig (also auch mit Radius 5) an den Zylinder an und hat Höhe 3, d.h. seine Spitze befindet sich im Punkt (0,0,12).

- 68. Berechnen Sie das Oberflächenelement dO der im zweiten Beispiel unter (a), (c) und (e) angegebenen Flächen.
- 69. (a) Begründen Sie anhand der Definition des Oberflächenintegrals über Funktionen aus dem Skript (7.4.1), dass O(1, F), d.h., falls $f \equiv 1$ gewählt wird, die Oberfläche des Flächenstücks F berechnet.
 - (b) Berechnen Sie den Flächeninhalt jenes Teils der Fläche 3x + 2y + z = 6, der in dem Zylinder $x^2 + y^2 = 4$ liegt.
- 70. Berechnen Sie das Oberflächen
integral $\int_F f dO$ über die Funktion f, wobe
i $f = f(x, y, z) = z^2$ und F jener Teil des Funktionsgebirge
s $z = \sqrt{x^2 + y^2}$ ist, für welchen $1 \le x^2 + y^2 \le 4$ gilt.