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eiqably |esauan uo doysiyiom 801



COLORING THE INFINITE

THEOREM 1 (RAMSEY 1930)

Let X be a countably infinite set. For any finite col-
oring of [X]", there exists an infinite subset M C X
such that [M]" is monochromatic.

Frank P. Ramsey (1903-1930)
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COLORING THE INFINITE

THEOREM 2 (RAMSEY 1930)

Let X be a countably infinite set. For any finite
coloring of [X]", there exists an infinite subset
M C X such that [M]" is monochromatic.

If we impose an order type of w on X, this theorem
becomes a structural Ramsey theorem about
infinite linear orders.

Frank P. Ramsey (1903—1930)



COLORING THE INFINITE

THEOREM 3 (RAMSEY 1930)

—Let——be-acountably-infinite-set. For any finite
coloring of [w|”, there exists an infinite-subset [

w, L = w, such that [L|” is monochromatic.

If we impose an order type of w on X, this theorem
becomes a structural Ramsey theorem about
infinite linear orders.

We could, of course, say we're coloring all
n-element chains instead of [L]".

Frank P. Ramsey (1903-1930)



COLORING STRUCTURES/EMBEDDINGS
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COLORING STRUCTURES/EMBEDDINGS
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Let A be a finite, and B an infinite L£-structrue over some language L. Denote by
(),f) the set of substructures of X isomorphic to Y and by Emb(Y, X) the set of
embeddings from Y to X.



COLORING STRUCTURES/EMBEDDINGS

Now the setting becomes the following:

Let A be a finite, and B an infinite L£-structrue over some language L. Denote by
(),f) the set of substructures of X isomorphic to Y and by Emb(Y, X) the set of
embeddings from Y to X.

For every function(k-coloring) x : (5) — [k], we seek to find B C B, B = % such
that [x[(3)]] = 1

<= (more or less)

For every x : Emb(A, B) — [k], we seek to find f € Emb(23,B) such that
|x[f o Emb(A, B)]| = 1.

Note that the latter version lets us swhitch completely to category theory.
([Masulovi¢ ~2015],[Solecki 2022] and many more)



STRUCTURES- RARELY MONOCHROMATIC

THEOREM 4 (GALVIN)

For every coloring of 2-element chains in (Q, <) into finitely many colors, there is a

S C @, S = Qsuch that x[(;3)] < 2. This bound is tight!

Expectation: monochromatic copy
Reality: oligochromatic copy
ologochromatic- not depending on the initial number of colors.



STRUCTURES- RARELY MONOCHROMATIC

THEOREM 4 (GALVIN)

For every coloring of 2-element chains in (Q, <) into finitely many colors, there is a
S C Q, S~ Q such that x[(5)] < 2. This bound is tight!

[2]
Expectation: monochromatic copy
Reality: oligochromatic copy
ologochromatic- not depending on the initial number of colors.

DEFINITION 5 (KECHRIS—PESTOV-TODORCEVIC)

Let S be a structure and let A be a finite substructure of S.

The big Ramsey degree of Ain S is the least t € N such that for every finite
coloring

x : Emb(A, S) — [K],
there exists an isomorphic copy C < S satisfying
X(Emb(A, C))| < t.
We write T(A,S) = t, or T(A, S) = o if no such t exists.



KNOWN RESULTS ON ORDERS

Ordinals
T(1,w®) = 1 for every ordinal « [Fraissé]
T(1,a) < oo for every infinite ordinal a [Fraissé]
Scattered linear orders
T(1,A) = 1 for every additively indecomposable A [Laver]
T(1,S) < o for every scattered S [Laver]

Non-scattered linear orders

Q ~ (Q) [Galvin]

T(n,Q) < oo+ formula for every n € N [Galvin, Laver, Devlin]



KNOWN RESULTS ON ORDERS

Countable linear orders

« ...a countable ordinal
S ...a countable linear order

Big Ramsey spectrum
Spec(S) = (T(1,S), T(2,5), 7(3,9), ...)

Classification for all countable linear orders
Theorem [Masulovi¢, Sobot] Spec(«) is finite if and only if o < w®.

Theorem [Galvin, Laver, Devlin] For every non-scattered S, Spec(S) is finite.

Theorem [Da Silva Barbosa, Masulovi¢, Nenadov] For scattered S, Spec(S) is
finite if and only if rkyausa(S) < oc.

We can even calculate spectra
Theorem|[Boyland, Gasarch, Hurtig,Rust] Formula for Big Ramsey degrees of
all countable ordinals.

Partial orders
Theorem[Balko, Chodounsky, Dobrinen, Hubi¢ka, Kone¢ny, Vena, Zucker]
Found spectrum for the Random poset
Theorem[Masulovi¢, T] Generic 2-dimensional partial order P> has finite
spectrum.



MONOMORPHIC STRUCTURES

DEFINITION 6 (FRAISSE)
A structure S is monomorphic if all finite substructures of S of the same size are
isomorphic.
Examples
Linear orders
Hausdorff topological spaces [Raghavan, Todor&evié]

Characterization

THEOREM 7 (FRAISSE; POUZET)

A countable relational structure M = (M,...) is monomorphic if and only if it is
quantifier-free definable in some linear order (M, <).

In this case, we say that the linear order (M, <) chains M.



MONOMORPHIC STRUCTURES AND BIG
RAMSEY SPECTRA

Setup

M .. .a countable monomorphic structure
T(n, M) ...the big Ramsey degree of the unique n-element substructure of
M

Big Ramsey spectrum
Spec(M) = (T(1, M), T(2, M), T(8, M), ...)

THEOREM 8 (MASuULOVIC, T)

Spec(M) is finite if and only if Spec(M, <) is finite for some (and hence for every)
linear order < that chains M.

i

THEOREM 9 (FRAISSE’S CONJECTURE; LAVER)

The class of all countable linear orders is a well-quasi-order under embeddability.



PROFILE= T.P.T.O0.E.N.I.S.0.S.n

Profile of a monomorphic structure: (1,1,1,1,....).
Can we exitend our results for slowly-growing structures?

Not so painful for ordered structures!
In this case, we can classify specitra for all structures of polynomial growth(with

finite signature).



PROFILE= T.P.T.O.E.N.1.5.0.S.n

Profile of a monomorphic structure: (1,1,1,1,....).

Can we exitend our results for slowly-growing structures?

Not so painful for ordered structures!

In this case, we can classify specitra for all structures of polynomial growth(with
finite signature).

THEOREM 10 (OUDRAR,POUZET)

Let C be a hereditary class of finite ordered relational structures with a finite
signature L.
Then exactly one of the following holds:
There exists an integer k such that every member of C admits an
into at most k + 1 blocks. In this case, C is a finite union of ages
of ordered relational structures, each having an interval decomposition into at
most k + 1 blocks, and the profile of C is polynomial.

Otherwise, the profile of C grows exponentially.



FMD- KEEPING A LOW PROFILE

S =(S,...)...arelational structure
{E.,: a < K} ...apartition of S

DEFINITION 11 (POUZET, THIERY)

The partition {E, : a < k} is a monomorphic decomposition of S if for all finite
substructures A, B < S of the same size,

A=B < |ANE,=|BNE,|foralla< k.

THEOREM 12 (POUZET, THIERY)

Every relational structure admits a coarsest monomorphic decomposition, called the
minimal monomorphic decomposition.



FMD- KEEPING A LOW (RAMSEY)

Setup
S =(S,...)...acountable relational structure
{Ei, ..., En} ...afinite monomorphic decomposition of S(polynomial growth)

S[E] .. .the substructure of S induced by E C S(obviously monomprphic)

Main result(though not a surprising one)

THEOREM 13 (MASuULOVIC, T)

S has finite big Ramsey degrees if and only if each S[Ej] does, for 1 < i < m.

i

Underlying principle(a surprising result and technique)
A product Ramsey statement for linear orders



A PRODUCT RAMSEY THEOREM FOR
LINEAR ORDERS
Li,...,Ly...countable linear orders with finite big Ramsey spectra

THEOREM 14 (MASULOVIC, T)

For every choice of ny,...,n, € N there exists t € N such that for every finite
coloring
X : Emb(ny, Ly) X -+ X Emb(nm, Lym) — {1,..., k},

there exist suborders C; < L; with C; = L, for 1 < i < m such that
‘X(El’nb(fh7 C1) X oo X Emb(nm, Cm))‘ <t
T((Mm,.- 0m), (L1, ..., Ly)) < .



AFETRMATH

As a nice consequence of the fact that T((n, m), (Q, Q)) < oo, we prove that
Cameron’s generic permutation has finite spectrum, and from there:

THEOREM 15 (MASuULOVIC,T)

Generic permutation (Q, <, =) has finite big Ramsey degrees.

THEOREM 16 (MASuULOVIC,T)

The is quantifier-free definable in the generic permu-
tation:
x=<y iff x=y or (x<y and xC y).

P, is a weak Fraissé limit of all posets embeddable into a product of two chains.
Weak Fraissé limits are precisely ...



HOW IT’S DONE

Many proofs in Ramsey theory use various color transfer principles, to "steal"
Ramsey properties from other structures.

lt's difficult(or in some cases impossible) to prove finite big Ramsey degrees on
product categories just by color transfer from the structures themselves

It turns out to be a problem of book-keeping!

Strategy
Find a strong enough catgorical notion of color transfer(a lot of reading
involved)
Prove it respects products
Find a Big Ramsey structure/category whose products reduce to itself.
Hope it will be strictly stronger than all nice chains.

The category in question is Q with partial set-functions and (Q, <)
self-embeddings.

particuarly tough are scattered chains, where we mimic the proof of da Silva
Barbosa,Masulovi¢, Nenadov



COLOR-STEALING MAP

DEFINITION 17

Let A and B be locally small categories. For A, X € Ob(.A) and B, Y € Ob(B), we
write
(A, X)4 < (B, Y)s
to denote that there exist:
a subset M C hom(B, Y), and
a set-function ¢ : M — hom(A, X)
such that for every h € hom(Y, Y), there exists g € hom(X, X) satisfying

g o hom(A, X) C ¢(MnN (hohom(B, Y))).



