

AAA
100

FRÄISSE'S CONJECTURE AND BIG RAMSEY DEGREES OF STRUCTURES ADMITTING FINITE MONOMORPHIC DECOMPOSITIONS

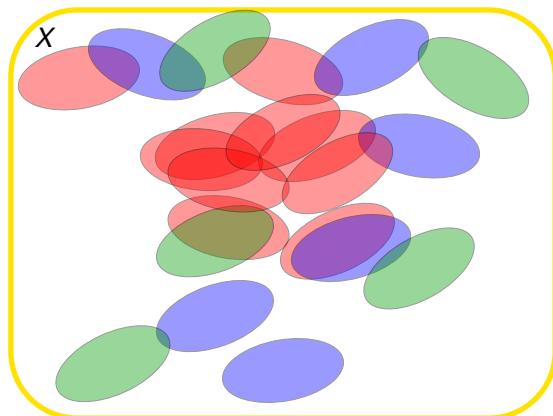
Veljko Toljić (joint work with Dragan Mašulović)

February 8th 2026

COLORING THE INFINITE

THEOREM 1 (RAMSEY 1930)

Let X be a countably infinite set. For any finite coloring of $[X]^n$, there exists an infinite subset $M \subseteq X$ such that $[M]^n$ is monochromatic.

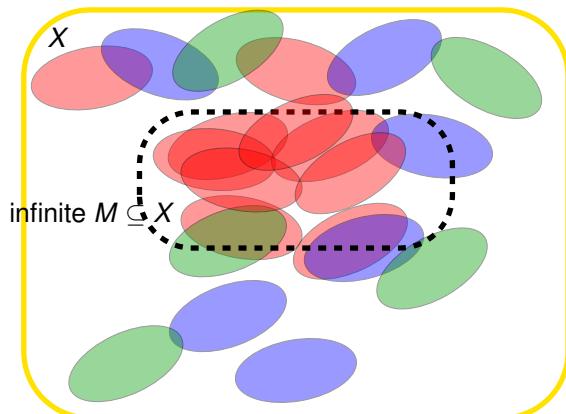


Frank P. Ramsey (1903–1930)

COLORING THE INFINITE

THEOREM 1 (RAMSEY 1930)

Let X be a countably infinite set. For any finite coloring of $[X]^n$, there exists an infinite subset $M \subseteq X$ such that $[M]^n$ is monochromatic.

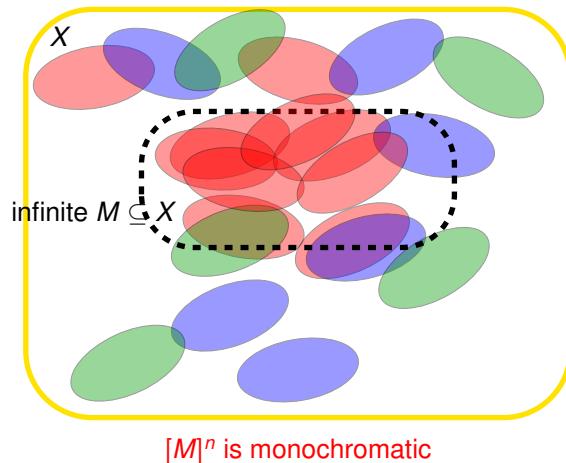


Frank P. Ramsey (1903–1930)

COLORING THE INFINITE

THEOREM 1 (RAMSEY 1930)

Let X be a countably infinite set. For any finite coloring of $[X]^n$, there exists an infinite subset $M \subseteq X$ such that $[M]^n$ is monochromatic.



Frank P. Ramsey (1903–1930)

COLORING THE INFINITE

THEOREM 2 (RAMSEY 1930)

Let X be a **countably infinite set**. For any finite coloring of $[X]^n$, there exists an **infinite subset** $M \subseteq X$ such that $[M]^n$ is monochromatic.

COLORING THE INFINITE

THEOREM 2 (RAMSEY 1930)

Let X be a **countably infinite set**. For any finite coloring of $[X]^n$, there exists an **infinite subset** $M \subseteq X$ such that $[M]^n$ is monochromatic.

If we impose an order type of ω on X , this theorem becomes a **structural Ramsey theorem** about infinite linear orders.

Frank P. Ramsey (1903–1930)

COLORING THE INFINITE

THEOREM 3 (RAMSEY 1930)

Let ω be a countably infinite set. For any finite coloring of $[\omega]^n$, there exists an infinite subset $L \subset \omega$, $L \cong \omega$, such that $[L]^n$ is monochromatic.

If we impose an order type of ω on X , this theorem becomes a **structural Ramsey theorem** about infinite linear orders.

We could, of course, say we're coloring all n -element chains instead of $[L]^n$.

Frank P. Ramsey (1903–1930)

COLORING STRUCTURES/EMBEDDINGS

Now the setting becomes the following:

COLORING STRUCTURES/EMBEDDINGS

Now the setting becomes the following:

Let A be a finite, and \mathfrak{B} an infinite \mathcal{L} -structure over some language \mathcal{L} . Denote by $\binom{X}{Y}$ the set of substructures of X isomorphic to Y and by $\text{Emb}(Y, X)$ the set of embeddings from Y to X .

COLORING STRUCTURES/EMBEDDINGS

Now the setting becomes the following:

Let A be a finite, and \mathfrak{B} an infinite \mathcal{L} -structure over some language \mathcal{L} . Denote by $\binom{X}{Y}$ the set of substructures of X isomorphic to Y and by $\text{Emb}(Y, X)$ the set of embeddings from Y to X .

For every function (k -coloring) $\chi : \binom{\mathfrak{B}}{A} \rightarrow [k]$, we seek to find $B \subset \mathfrak{B}$, $B \cong \mathfrak{B}$ such that $|\chi[\binom{B}{A}]| = 1$

\iff (more or less)

For every $\chi : \text{Emb}(A, \mathfrak{B}) \rightarrow [k]$, we seek to find $f \in \text{Emb}(\mathfrak{B}, \mathfrak{B})$ such that $|\chi[f \circ \text{Emb}(A, \mathfrak{B})]| = 1$.

Note that the latter version lets us switch completely to category theory.
([Mašulović ~2015], [Solecki 2022] and many more)

STRUCTURES- RARELY MONOCHROMATIC

THEOREM 4 (GALVIN)

For every coloring of 2-element chains in $(\mathbb{Q}, <)$ into finitely many colors, there is a $S \subset \mathbb{Q}$, $S \cong \mathbb{Q}$ such that $\chi[(\binom{S}{2})] \leq 2$. This bound is tight!

- Expectation: monochromatic copy
- Reality: **oligochromatic** copy
- oligochromatic- not depending on the initial number of colors.

STRUCTURES- RARELY MONOCHROMATIC

THEOREM 4 (GALVIN)

For every coloring of 2-element chains in $(\mathbb{Q}, <)$ into finitely many colors, there is a $S \subset \mathbb{Q}$, $S \cong \mathbb{Q}$ such that $\chi[(\binom{S}{2})] \leq 2$. This bound is tight!

- Expectation: monochromatic copy
- Reality: **oligochromatic** copy
- oligochromatic- not depending on the initial number of colors.

DEFINITION 5 (KECHRIS–PESTOV–TODORCEVIC)

Let S be a structure and let A be a finite substructure of S .

- The big Ramsey degree of A in S is the least $t \in \mathbb{N}$ such that for every finite coloring

$$\chi : \text{Emb}(A, S) \rightarrow [k],$$

there exists an isomorphic copy $C \leq S$ satisfying

$$|\chi(\text{Emb}(A, C))| \leq t.$$

- We write $T(A, S) = t$, or $T(A, S) = \infty$ if no such t exists.

KNOWN RESULTS ON ORDERS

- **Ordinals**

- $T(1, \omega^\alpha) = 1$ for every ordinal α [Fraïssé]
- $T(1, \alpha) < \infty$ for every infinite ordinal α [Fraïssé]

- **Scattered linear orders**

- $T(1, A) = 1$ for every additively indecomposable A [Laver]
- $T(1, S) < \infty$ for every scattered S [Laver]

- **Non-scattered linear orders**

- $\mathbb{Q} \not\rightarrow (\mathbb{Q})_2^2$ [Galvin]
- $T(n, \mathbb{Q}) < \infty$ + formula for every $n \in \mathbb{N}$ [Galvin, Laver, Devlin]

KNOWN RESULTS ON ORDERS

- **Countable linear orders**

- $\alpha \dots$ a countable ordinal
- $S \dots$ a countable linear order

- **Big Ramsey spectrum**

$$\text{Spec}(S) = (T(1, S), T(2, S), T(3, S), \dots)$$

- **Classification for all countable linear orders**

- **Theorem** [Mašulović, Šobot] $\text{Spec}(\alpha)$ is finite if and only if $\alpha < \omega^\omega$.
- **Theorem** [Galvin, Laver, Devlin] For every non-scattered S , $\text{Spec}(S)$ is finite.
- **Theorem** [Da Silva Barbosa, Mašulović, Nenadov] For scattered S , $\text{Spec}(S)$ is finite if and only if $\text{rk}_{\text{Hausd}}(S) < \infty$.

- **We can even calculate spectra**

- **Theorem** [Boyland, Gasarch, Hurtig, Rust] Formula for Big Ramsey degrees of all countable ordinals.

- **Partial orders**

- **Theorem** [Balko, Chodounský, Dobrinen, Hubička, Konečný, Vena, Zucker] Found spectrum for the Random poset
- **Theorem** [Mašulović, T] Generic 2-dimensional partial order \mathbb{P}_2 has finite spectrum.

MONOMORPHIC STRUCTURES

DEFINITION 6 (FRAÏSSÉ)

A structure S is monomorphic if all finite substructures of S of the same size are isomorphic.

Examples

- Linear orders
- Hausdorff topological spaces

[Raghavan, Todorčević]

Characterization

THEOREM 7 (FRAÏSSÉ; POUZET)

A countable relational structure $\mathcal{M} = (M, \dots)$ is monomorphic if and only if it is quantifier-free definable in some linear order $(M, <)$.

In this case, we say that the linear order $(M, <)$ chains \mathcal{M} .

MONOMORPHIC STRUCTURES AND BIG RAMSEY SPECTRA

- **Setup**

- \mathcal{M} ... a countable monomorphic structure
- $T(n, \mathcal{M})$... the big Ramsey degree of the unique n -element substructure of \mathcal{M}

- **Big Ramsey spectrum**

$$\text{Spec}(\mathcal{M}) = (T(1, \mathcal{M}), T(2, \mathcal{M}), T(3, \mathcal{M}), \dots)$$

THEOREM 8 (MAŠULoviĆ, T)

$\text{Spec}(\mathcal{M})$ is finite if and only if $\text{Spec}(\mathcal{M}, \prec)$ is finite for some (and hence for every) **minimal** linear order \prec that chains \mathcal{M} .

↑

THEOREM 9 (FRAÏSSÉ'S CONJECTURE; LAVER)

The class of all countable linear orders is a well-quasi-order under embeddability.

PROFILE= T.P.T.O.E.N.I.S.O.S.*n*

- Profile of a monomorphic structure: $(1, 1, 1, 1, \dots)$.
- Can we extend our results for slowly-growing structures?
- Not so painful for ordered structures!
- In this case, we can classify spectra for all structures of polynomial growth (with finite signature).

PROFILE= T.P.T.O.E.N.I.S.O.S. n

- Profile of a monomorphic structure: $(1, 1, 1, 1, \dots)$.
- Can we extend our results for slowly-growing structures?
- Not so painful for ordered structures!
- In this case, we can classify spectra for all structures of polynomial growth (with finite signature).

THEOREM 10 (OUDRAR,POUZET)

Let \mathcal{C} be a hereditary class of finite ordered relational structures with a finite **restricted** signature μ .

Then exactly one of the following holds:

- There exists an integer k such that every member of \mathcal{C} admits an **interval decomposition** into at most $k + 1$ blocks. In this case, \mathcal{C} is a finite union of ages of ordered relational structures, each having an interval decomposition into at most $k + 1$ blocks, and the profile of \mathcal{C} is polynomial.
- Otherwise, the profile of \mathcal{C} grows exponentially.

FMD- KEEPING A LOW PROFILE

- $\mathcal{S} = (S, \dots)$... a relational structure
- $\{E_\alpha : \alpha < \kappa\}$... a partition of S

DEFINITION 11 (POUZET, THIÉRY)

The partition $\{E_\alpha : \alpha < \kappa\}$ is a **monomorphic decomposition** of \mathcal{S} if for all finite substructures $A, B \leq \mathcal{S}$ of the same size,

$$A \cong B \iff |A \cap E_\alpha| = |B \cap E_\alpha| \text{ for all } \alpha < \kappa.$$

THEOREM 12 (POUZET, THIÉRY)

Every relational structure admits a coarsest monomorphic decomposition, called the **minimal monomorphic decomposition**.

FMD- KEEPING A LOW (RAMSEY)

- **Setup**

- $\mathcal{S} = (S, \dots)$... a countable relational structure
- $\{E_1, \dots, E_m\}$... a finite monomorphic decomposition of \mathcal{S} (polynomial growth)
- $\mathcal{S}[E]$... the substructure of \mathcal{S} induced by $E \subseteq S$ (obviously monomorphic)

- **Main result (though not a surprising one)**

THEOREM 13 (MAŠULoviĆ, T)

\mathcal{S} has finite big Ramsey degrees if and only if each $\mathcal{S}[E_i]$ does, for $1 \leq i \leq m$.

↑

- **Underlying principle (a surprising result and technique)**
A product Ramsey statement for linear orders

A PRODUCT RAMSEY THEOREM FOR LINEAR ORDERS

- $L_1, \dots, L_m \dots$ countable linear orders with finite big Ramsey spectra

THEOREM 14 (MAŠULOVIĆ, T)

For every choice of $n_1, \dots, n_m \in \mathbb{N}$ there exists $t \in \mathbb{N}$ such that for every finite coloring

$$\chi : \text{Emb}(n_1, L_1) \times \dots \times \text{Emb}(n_m, L_m) \rightarrow \{1, \dots, k\},$$

there exist suborders $C_i \leq L_i$ with $C_i \cong L_i$ for $1 \leq i \leq m$ such that

$$|\chi(\text{Emb}(n_1, C_1) \times \dots \times \text{Emb}(n_m, C_m))| \leq t.$$

$$T((n_1, \dots, n_m), (L_1, \dots, L_m)) < \infty.$$

AFETRMATH

As a nice consequence of the fact that $T((n, m), (\mathbb{Q}, \mathbb{Q})) < \infty$, we prove that Cameron's generic permutation has finite spectrum, and from there:

THEOREM 15 (MAŠULoviĆ, T)

Generic permutation $(\mathbb{Q}, <, \sqsubset)$ has finite big Ramsey degrees.

THEOREM 16 (MAŠULoviĆ, T)

The **generic 2-dimensional poset** is quantifier-free definable in the generic permutation:

$$x \preceq y \quad \text{iff} \quad x = y \text{ or } (x < y \text{ and } x \sqsubset y).$$

\mathbb{P}_2 is a weak Fräissé limit of all posets embeddable into a product of two chains.

Weak Fräissé limits are precisely ...

HOW IT'S DONE

- Many proofs in Ramsey theory use various color transfer principles, to "steal" Ramsey properties from other structures.
- It's difficult(or in some cases impossible) to prove finite big Ramsey degrees on product categories just by color transfer from the structures themselves
- It turns out to be a problem of book-keeping!
- **Strategy**
 - Find a strong enough categorical notion of color transfer(a lot of reading involved)
 - Prove it respects products
 - Find a Big Ramsey structure/category whose products reduce to itself.
 - Hope it will be strictly stronger than all nice chains.
- The category in question is \mathbb{Q} with partial set-functions and $(\mathbb{Q}, <)$ self-embeddings.
- particularly tough are scattered chains, where we mimic the proof of da Silva Barbosa, Mašulović, Nenadov

COLOR-STEALING MAP

DEFINITION 17

Let \mathcal{A} and \mathcal{B} be locally small categories. For $A, X \in \text{Ob}(\mathcal{A})$ and $B, Y \in \text{Ob}(\mathcal{B})$, we write

$$(A, X)_{\mathcal{A}} \prec (B, Y)_{\mathcal{B}}$$

to denote that there exist:

- a subset $M \subseteq \text{hom}(B, Y)$, and
- a set-function $\phi : M \rightarrow \text{hom}(A, X)$

such that for every $h \in \text{hom}(Y, Y)$, there exists $g \in \text{hom}(X, X)$ satisfying

$$g \circ \text{hom}(A, X) \subseteq \phi(M \cap (h \circ \text{hom}(B, Y))).$$