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COLORING THE INFINITE

THEOREM 1 (RAMSEY 1930)

Let X be a countably infinite set. For any finite col-
oring of [X ]n, there exists an infinite subset M ⊆ X
such that [M]n is monochromatic.

X

Frank P. Ramsey (1903–1930)
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COLORING THE INFINITE

THEOREM 2 (RAMSEY 1930)

Let X be a countably infinite set. For any finite
coloring of [X ]n, there exists an infinite subset
M ⊆ X such that [M]n is monochromatic.

If we impose an order type of ω on X , this theorem
becomes a structural Ramsey theorem about

infinite linear orders.

Frank P. Ramsey (1903–1930)
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COLORING THE INFINITE

THEOREM 3 (RAMSEY 1930)

Let ω be a countably infinite set. For any finite
coloring of [ω]n, there exists an infinite subset L ⊂
ω, L ∼= ω, such that [L]n is monochromatic.

If we impose an order type of ω on X , this theorem
becomes a structural Ramsey theorem about

infinite linear orders.

We could, of course, say we’re coloring all
n-element chains instead of [L]n.

Frank P. Ramsey (1903–1930)



COLORING STRUCTURES/EMBEDDINGS

Now the setting becomes the following:

Let A be a finite, and B an infinite L-structrue over some language L. Denote by(X
Y

)
the set of substructures of X isomorphic to Y and by Emb(Y ,X ) the set of

embeddings from Y to X .

For every function(k -coloring) χ :
(
B
A

)
−→ [k ], we seek to find B ⊂ B,B ∼= B such

that |χ[
(B

A

)
]| = 1

⇐⇒ (more or less)

For every χ : Emb(A,B) −→ [k ], we seek to find f ∈ Emb(B,B) such that
|χ[f ◦ Emb(A,B)]| = 1.

Note that the latter version lets us swhitch completely to category theory.
([Mašulović ∼2015],[Solecki 2022] and many more)
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STRUCTURES- RARELY MONOCHROMATIC

THEOREM 4 (GALVIN)

For every coloring of 2-element chains in (Q, <) into finitely many colors, there is a
S ⊂ Q,S ∼= Q such that χ[

( S
[2]

)
] ≤ 2. This bound is tight!

• Expectation: monochromatic copy
• Reality: oligochromatic copy
• ologochromatic- not depending on the initial number of colors.

DEFINITION 5 (KECHRIS–PESTOV–TODORCEVIC)

Let S be a structure and let A be a finite substructure of S.
• The big Ramsey degree of A in S is the least t ∈ N such that for every finite

coloring
χ : Emb(A,S) → [k ],

there exists an isomorphic copy C ≤ S satisfying

|χ(Emb(A,C))| ≤ t .

• We write T (A,S) = t , or T (A,S) = ∞ if no such t exists.
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KNOWN RESULTS ON ORDERS

• Ordinals
◦ T (1, ωα) = 1 for every ordinal α [Fraïssé]
◦ T (1, α) < ∞ for every infinite ordinal α [Fraïssé]

• Scattered linear orders
◦ T (1,A) = 1 for every additively indecomposable A [Laver]
◦ T (1,S) < ∞ for every scattered S [Laver]

• Non-scattered linear orders
◦ Q ↛ (Q)2

2 [Galvin]
◦ T (n,Q) < ∞+ formula for every n ∈ N [Galvin, Laver, Devlin]



KNOWN RESULTS ON ORDERS

• Countable linear orders
◦ α . . . a countable ordinal
◦ S . . . a countable linear order

• Big Ramsey spectrum

Spec(S) =
(
T (1,S), T (2,S), T (3,S), . . .

)
• Classification for all countable linear orders

◦ Theorem [Mašulović, Šobot] Spec(α) is finite if and only if α < ωω.

◦ Theorem [Galvin, Laver, Devlin] For every non-scattered S, Spec(S) is finite.

◦ Theorem [Da Silva Barbosa, Mašulović, Nenadov] For scattered S, Spec(S) is
finite if and only if rkHausd(S) < ∞.

• We can even calculate spectra
◦ Theorem[Boyland, Gasarch, Hurtig,Rust] Formula for Big Ramsey degrees of

all countable ordinals.
• Partial orders

◦ Theorem[Balko, Chodounský, Dobrinen, Hubička, Konečný, Vena, Zucker]
Found spectrum for the Random poset

◦ Theorem[Mašulović,T] Generic 2-dimensional partial order P2 has finite
spectrum.



MONOMORPHIC STRUCTURES

DEFINITION 6 (FRAÏSSÉ)

A structure S is monomorphic if all finite substructures of S of the same size are
isomorphic.

Examples
• Linear orders
• Hausdorff topological spaces [Raghavan, Todorčević]

Characterization

THEOREM 7 (FRAÏSSÉ; POUZET)

A countable relational structure M = (M, . . .) is monomorphic if and only if it is
quantifier-free definable in some linear order (M, <).

In this case, we say that the linear order (M, <) chains M.



MONOMORPHIC STRUCTURES AND BIG
RAMSEY SPECTRA

• Setup
◦ M . . . a countable monomorphic structure
◦ T (n,M) . . . the big Ramsey degree of the unique n-element substructure of
M

• Big Ramsey spectrum

Spec(M) =
(
T (1,M), T (2,M), T (3,M), . . .

)

THEOREM 8 (MAŠULOVIĆ, T)

Spec(M) is finite if and only if Spec(M,≺) is finite for some (and hence for every)
minimal linear order ≺ that chains M.

⇑

THEOREM 9 (FRAÏSSÉ’S CONJECTURE; LAVER)

The class of all countable linear orders is a well-quasi-order under embeddability.



PROFILE= T.P.T.O.E.N.I.S.O.S.n

• Profile of a monomorphic structure: (1, 1, 1, 1, ....).
• Can we exitend our results for slowly-growing structures?
• Not so painful for ordered structures!
• In this case, we can classify spectra for all structures of polynomial growth(with

finite signature).

THEOREM 10 (OUDRAR,POUZET)

Let C be a hereditary class of finite ordered relational structures with a finite re-
stricted signature µ.
Then exactly one of the following holds:
• There exists an integer k such that every member of C admits an interval

decomposition into at most k + 1 blocks. In this case, C is a finite union of ages
of ordered relational structures, each having an interval decomposition into at
most k + 1 blocks, and the profile of C is polynomial.

• Otherwise, the profile of C grows exponentially.
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FMD- KEEPING A LOW PROFILE

• S = (S, . . .) . . . a relational structure
• {Eα : α < κ} . . . a partition of S

DEFINITION 11 (POUZET, THIÉRY)

The partition {Eα : α < κ} is a monomorphic decomposition of S if for all finite
substructures A,B ≤ S of the same size,

A ∼= B ⇐⇒ |A ∩ Eα| = |B ∩ Eα| for all α < κ.

THEOREM 12 (POUZET, THIÉRY)

Every relational structure admits a coarsest monomorphic decomposition, called the
minimal monomorphic decomposition.



FMD- KEEPING A LOW (RAMSEY)

• Setup
◦ S = (S, . . .) . . . a countable relational structure
◦ {E1, . . . ,Em} . . . a finite monomorphic decomposition of S(polynomial growth)
◦ S[E ] . . . the substructure of S induced by E ⊆ S(obviously monomprphic)

• Main result(though not a surprising one)

THEOREM 13 (MAŠULOVIĆ, T)

S has finite big Ramsey degrees if and only if each S[Ei ] does, for 1 ≤ i ≤ m.

⇑
• Underlying principle(a surprising result and technique)

A product Ramsey statement for linear orders



A PRODUCT RAMSEY THEOREM FOR
LINEAR ORDERS

• L1, . . . , Lm . . . countable linear orders with finite big Ramsey spectra

THEOREM 14 (MAŠULOVIĆ, T)

For every choice of n1, . . . , nm ∈ N there exists t ∈ N such that for every finite
coloring

χ : Emb(n1, L1)× · · · × Emb(nm, Lm) → {1, . . . , k},
there exist suborders Ci ≤ Li with Ci

∼= Li for 1 ≤ i ≤ m such that∣∣χ(Emb(n1,C1)× · · · × Emb(nm,Cm)
)∣∣ ≤ t .

T
(
(n1, . . . , nm), (L1, . . . , Lm)

)
< ∞.



AFETRMATH

As a nice consequence of the fact that T ((n,m), (Q,Q)) < ∞, we prove that
Cameron’s generic permutation has finite spectrum, and from there:

THEOREM 15 (MAŠULOVIĆ,T)

Generic permutation (Q, <,⊏) has finite big Ramsey degrees.

THEOREM 16 (MAŠULOVIĆ,T)

The generic 2-dimensional poset is quantifier-free definable in the generic permu-
tation:

x ⪯ y iff x = y or (x < y and x ⊏ y).

P2 is a weak Fräissé limit of all posets embeddable into a product of two chains.

Weak Fräissé limits are precisely ...



HOW IT’S DONE

• Many proofs in Ramsey theory use various color transfer principles, to "steal"
Ramsey properties from other structures.

• It’s difficult(or in some cases impossible) to prove finite big Ramsey degrees on
product categories just by color transfer from the structures themselves

• It turns out to be a problem of book-keeping!

• Strategy
◦ Find a strong enough catgorical notion of color transfer(a lot of reading

involved)
◦ Prove it respects products
◦ Find a Big Ramsey structure/category whose products reduce to itself.
◦ Hope it will be strictly stronger than all nice chains.

• The category in question is Q with partial set-functions and (Q, <)
self-embeddings.

• particuarly tough are scattered chains, where we mimic the proof of da Silva
Barbosa,Mašulović, Nenadov



COLOR-STEALING MAP

DEFINITION 17

Let A and B be locally small categories. For A,X ∈ Ob(A) and B,Y ∈ Ob(B), we
write

(A,X )A ≺ (B,Y )B

to denote that there exist:
• a subset M ⊆ hom(B,Y ), and
• a set-function ϕ : M → hom(A,X )

such that for every h ∈ hom(Y ,Y ), there exists g ∈ hom(X ,X ) satisfying

g ◦ hom(A,X ) ⊆ ϕ
(
M ∩ (h ◦ hom(B,Y ))

)
.


